
Vol.:(0123456789)1 3

Vegetation History and Archaeobotany 
https://doi.org/10.1007/s00334-022-00880-3

ORIGINAL ARTICLE

Microbotanical signatures of kreb: differentiating inflorescence 
phytoliths from northern African wild grasses

Charles Le Moyne1,2   · Dorian Q. Fuller3,4   · Alison Crowther1,2 

Received: 14 June 2021 / Accepted: 9 March 2022 
© The Author(s) 2022

Abstract
Throughout northern Africa, evidence for an intensification of wild grass gathering is reflected in Holocene archaeological 
contexts. However, both the recovery of macrobotanical assemblages and the specificity of their taxonomic classification are 
heavily influenced by food processing and post-depositional conditions. In contrast, inflorescence phytoliths provide high 
levels of taxonomic specificity and preserve well in most archaeological contexts. This study analyses the in situ morphol-
ogy of inflorescence phytoliths from modern specimens of nine wild C4 grass species commonly observed in ethnographic 
studies and recovered in seed assemblages from archaeological contexts across northern Africa. Morphological differences in 
Interdigitate phytoliths within the fertile florets of six Paniceae species enabled differentiation between them. The morpho-
logical parameters established in this study provide an additional resource for archaeological and palaeoecological analyses 
using phytoliths, which demonstrates the effectiveness of applying this method to African wild grass species.
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Introduction

Although the systematic use of wild grasses has diminished 
over the last few centuries, they have nonetheless formed 
a key component of non-agrarian subsistence throughout 
global history (Harlan 1975; Harris 1984; Nesbitt 1997). 
In northern Africa, 19th century European explorers fre-
quently documented extensive market economies revolving 
around the management and consumption of an array of wild 
grasses (Barth 1857; Duveyrier 1864; Heuglin 1869; Nachti-
gal 1881). Across the central Sahel region, from Nigeria 

to Sudan, for example, dozens of species known locally as 
kreb were routinely collected and extensively traded (Barth 
1857; Nachtigal 1881). While published accounts continued 
to remark upon these subsistence systems during the 20th 
century (Chevalier 1932; Nicholaisen 1963; Jardin 1967; 
Tubiana and Tubiana 1977; Harlan 1989a), the consump-
tion of wild grasses has become increasingly associated 
with famine and considered marginal to modern subsistence 
(Batello et al. 2004). Despite this diminished economic role, 
wild grasses are still a dietary staple amongst northern Afri-
can subsistence farmers and pastoral communities (Batello 
et al. 2004).

Based on contemporary observations and ethnographic 
accounts, Harlan (1989a) defined three broad ecological 
zones within northern Africa with extensive cultural use 
of specific wild grass species: desert (Aristida pungens, 
Cenchrus biflorus and Panicum turgidum), swamp (Brachi-
aria, Echinochloa, Oryza and Paspalum spp.) and savannah 
(Dactyloctenium, Digitaria, Echinochloa, Eleusine, Era-
grostis, Latipes, Oryza, Panicum, Pennisetum, Setaria and 
Sorghum spp.) (Fig. 1). Within these areas, variations in 
species selection reflect both local availability and cultural 
preferences (Barth 1857; Nachtigal 1881; Harlan 1989a; 
Batello et al. 2004). Of particular interest is the highly var-
ied complex of savannah grasses collectively known in the 
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central Sahel as kreb (Harlan 1989a). Species such as Dac-
tyloctenium aegyptium, Panicum laetum and various Era-
grostis spp. are frequently described as components of kreb 
in ethnographic accounts, however, numerous other taxa are 
also routinely associated with this complex of grasses (Barth 
1857; Nachtigal 1881; Harlan 1989a; Batello et al. 2004). 
These species are predominately xerophytes and mesophytes 
in the Panicoideae or Chloridoideae subfamilies, but also 
hydrophytic taxa, including various Brachiaria, Echinoch-
loa, Paspalum and Oryza spp. used in areas with seasonally 
standing water (Harlan 1989a; Batello et al. 2004).

Numerous ethnographers have noted the importance of 
kreb to human communities, observable through the rou-
tine management and protection of natural grass stands 
from overgrazing (Barth 1857; Nachtigal 1881; Batello 
et al. 2004). The Sahelian kreb species form dense stands 
during the wet season and are easily harvested by transhu-
mant pastoralists and subsistence farmers as they mature 
in the early dry season in October–November (Nachtigal 
1881). Hydrophytes, like wild Oryza barthii, O. staminata 

or wetland panicoids, are normally available for gathering 
later and are more easily reached as floods recede well into 
the dry season by January (Barth 1857; Batello et al. 2004). 
While methods vary between regions and communities, 
these dehiscent grass seeds are often gathered by sweep-
ing a basket or container through ripe stands (Barth 1857; 
Nicholaisen 1963; Harlan 1989a; Batello et al. 2004). The 
grains can be consumed by people as seed cakes without the 
removal of the husk by winnowing (Nicholaisen 1963). The 
preparation of flat breads, porridge, flour, gruel, couscous 
and beer, on the other hand, typically involves processing 
by parching, pounding and winnowing of the grains (Harlan 
1989a).

Initially inferred through the frequent recovery of grind-
stones, direct archaeobotanical remains of these species 
are now consistently found in northern African Holocene 
deposits (Fig.  1; Harlan 1989a). Evidence for regional 
intensification of wild grass gathering coincides with the 
increasing environmental instability of the middle Holocene 
(Clark 1976; Harlan 1989a; Radomski and Neumann 2011; 

Fig. 1   Map of northern Africa indicating broad regions of recent wild 
grass use (desert, savannah/kreb and swamp, adapted from Harlan 
1989a) and distribution of Holocene archaeological sites with genus 

or species level evidence of wild grasses belonging to these groups. 
The median age of the earliest phase of occurrence for each site is 
represented; for the list of sites and references see ESM 1
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Mercuri et al. 2018; Fuller et al. 2019). Regionally diverse 
selection practices are evident in middle and late Holocene 
archaeological deposits, with numerous species displaying 
phenotypic modifications derived from intensive manage-
ment strategies, including Echinochloa and Panicum spp. 
in southwest Libya (Mercuri et al. 2018). While cultural 
management of some taxa diminished over time, prolonged 
selection pressures on other grasses resulted in the complete 
domestication of Sorghum bicolor (sorghum) in the Sudan 
(Winchell et al. 2017; Beldados 2019; Barron et al. 2020), 
Pennisetum glaucum (pearl millet) in the western Sahel 
(Manning et al. 2011; Fuller et al. 2021), as well as less 
well-documented processes for Oryza glaberrima (African 
rice), Eleusine coracana (finger millet), Eragrostis tef (teff) 
and Digitaria exilis (fonio) (Harlan 1989b; D’Andrea 2008; 
Giblin and Fuller 2011; Champion et al. 2021).

The archaeological identification of African wild grasses 
is typically achieved from the recovery of their charred or 
desiccated macrobotanical remains (Wasylikowa et al. 1997; 
Barakat and Fahmy 1999; Fahmy 2001; Mercuri and Garcea 
2007; Murray et al. 2007; Pelling 2007; Thanheiser 2011; 
McDonald 2016; Mercuri et al. 2018; Brass et al. 2019) and 
analysis of spikelet and seed impressions within pottery 
(Munson 1976; Costantini et al. 1982; Magid 1984, 1989; 
Stemler 1990; Klee et al. 2000; Fuller et al. 2007, 2021; Bel-
dados 2019; Barron et al. 2020). Microbotanical techniques, 
including analyses of pollen (Mercuri 1999, 2008; Mercuri 
and Garcea 2007; Florenzano et al. 2016), starch granules 
(Buckley et al. 2014; Madella et al. 2014) and particularly 
phytoliths (Neumann et al. 2009; Radomski and Neumann 
2011; Madella et al. 2014; Out et al. 2016; Ryan 2018) have 
also been used to successfully detect the presence of various 
grass taxa at archaeological sites.

While species level identifications are often possible with 
exceptionally well preserved desiccated macrobotanical 
remains (Mercuri et al. 2018), the identification of charred 
material is usually more taxonomically limited and largely 
dictated by conditions of processing, state of charring and 
post-depositional taphonomy. Chaff remains (glumes, lem-
mas and paleas) from large-seeded domestic cereals are 
often preserved in archaeological contexts, however, char-
ring typically destroys smaller and less robust chaff (Wilson 
1984; Harvey and Fuller 2005; Märkle and Rösch 2008; Ste-
vens et al. 2021). The small seed size (generally < 2 mm) of 
economic wild grasses significantly influences the recovery 
of charred material with diagnostic features required for con-
fident species level identifications (Harvey and Fuller 2005; 
Märkle and Rösch 2008; Weber and Fuller 2008).

In contrast to these macroremains, inorganic phyto-
liths are highly resilient to degradation in most sedimen-
tary environments (Piperno 2006). Formed through the 
uptake, polymerisation and deposition of mono-silicic acid 
within the plant cell walls, lumen and intercellular spaces, 

phytoliths from archaeological contexts usually represent 
the in situ decay of plant material (Piperno 2006). The 
archaeological recovery and identification of phytoliths 
enables reconstructions of human use of plants and local 
vegetation composition during site formation. Since the 
1990s, phytoliths have been increasingly used in Afri-
can archaeology as environmental proxies and in recon-
structions of human use of plants (for example, Barboni 
et al. 1999; Mercader et al. 2000, 2010, 2011; Fahmy and 
Magnavita 2006; Barboni and Bremond 2009; Neumann 
et al. 2009, 2017; Eichhorn et al. 2010; Radomski and 
Neumann 2011; Wadley et al. 2011, 2020; Novello et al. 
2012; Madella et al. 2014, 2016; Novello and Barboni 
2015; Out et al. 2016; Collura and Neumann 2017; Este-
ban et al. 2017; Murungi 2017; Murungi et al. 2017; Out 
and Madella 2017; Ryan 2018).

While various phytolith taxonomies have been established 
for the African flora, current phytolith classification indices 
for wild African grasses remain largely restricted to disar-
ticulated short cell morphotypes (Fahmy 2008; Mercader 
et al. 2010; Radomski and Neumann 2011; Neumann et al. 
2017; Bourel and Novello 2020).

Researchers have recently demonstrated the high taxo-
nomic potential of articulated phytoliths from grass inflo-
rescence bracts (glumes, lemmas and paleas), particularly 
Interdigitate morphotypes within the lemma and palea of 
the fertile floret (Lu et al. 2009; Madella et al. 2014; Out 
et al. 2016; Zhang et al. 2017; Bhat et al. 2018; Ge et al. 
2018, 2020). To date, archaeological studies of Interdigitate 
phytoliths have mainly focused on establishing classifica-
tion criteria for Eurasian domesticated millets and related 
wild Panicoideae taxa, with combined morphological and 
morphometric parameters enabling differentiation of closely 
related species (Lu et al. 2009; Zhang et al. 2011, 2017, 
2018; Kealhofer et al. 2015; Yang et al. 2015; Weisskopf and 
Lee 2016; Bhat et al. 2018; Ge et al. 2018, 2020). Originally 
described as an ‘interdigitating’ phytolith pattern by Parry 
and Hodson (1982), Interdigitate phytoliths are situated 
between the epidermal cuticle layer and the Elongate cells 
on the abaxial (outer) surface of the fertile floret. In con-
trast to Elongate morphotypes, Interdigitate phytoliths are 
typified by a thin layer of cells that, based on archaeological 
recovery, seem to be fused together and do not disarticulate 
into individual cells (Lu et al. 2009; Madella et al. 2014; 
Out et al. 2016; Weisskopf and Lee 2016; Zhang et al. 2017; 
Deng et al. 2018; Luo et al. 2019; An et al. 2021). Rather, 
published photographs of this morphotype in archaeological 
assemblages suggest that Interdigitate phytolith layers frac-
ture when damaged, preserving fused segments consisting 
of multiple cells with anatomical characteristics in situ (Lu 
et al. 2009; Madella et al. 2014; Out et al. 2016; Weisskopf 
and Lee 2016; Zhang et al. 2017; Deng et al. 2018; Luo et al. 
2019; An et al. 2021).
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Initial classifications of Interdigitate phytoliths primar-
ily focused on using undulation type and level (amplitude/
length of projections along the lateral cell margins) com-
bined with shape variables (height/width ratios) to differenti-
ate Panicum miliaceum and Setaria italica (Lu et al. 2009; 
Weisskopf and Lee 2016). Subsequent studies have exam-
ined a wider array of taxa, with an emphasis on differentiat-
ing domesticates from closely related wild species (Zhang 
et al. 2011, 2018; Kealhofer et al. 2015; Ge et al. 2018, 
2020). Zhang et al. (2018) explored the link between the fre-
quency of level III undulations in Interdigitate phytoliths, 
grain size and growing conditions by comparing samples 
of P. miliaceum with wild P. repens and P. ruderale from 
different environmental regions. The results demonstrated 
a strong correlation, irrespective of growing environment, 
between greater numbers of Interdigitate phytoliths with 
level III undulations and a reduction in grain length/width 
ratio in domesticated P. miliaceum (Zhang et al. 2018). This 
suggests a correlation between Interdigitate undulation 
amplitude and seed size, which is primarily under genetic 
control (Sadras 2007). However, other studies have indicated 
that growing conditions may also influence Interdigitate 
size (Ge et al. 2018) and increase intraspecific variability of 
height/width shape ratios derived from Interdigitate phy-
toliths (Zhang et al. 2011; Kealhofer et al. 2015). While 
phytolith shape variables are less plastic and therefore more 
reliable than size variables (Portillo et al. 2020), researchers 
have recommended the analysis of multiple populations to 
account for intraspecific variation linked to growing environ-
ment (Ball and Brotherson 1992; Zhang et al. 2011; Keal-
hofer et al. 2015; Out and Madella 2016, 2017). Further-
more, studies of interspecific variation between numerous 
closely related taxa indicate that taxonomic identifications 
based on Interdigitate shape ratios may be limited to genus 
level (Kealhofer et al. 2015; Ge et al. 2020). Interestingly, a 
recent study of Interdigitate phytoliths by Ge et al. (2020) 
suggests that the comparison of multiple morphological 
characteristics (undulation type and amplitude, shape of 
terminal margins and shape of the central cell body) as well 
as Papillate presence, could achieve similar classification 
levels to morphometric shape ratios, and in some cases, spe-
cies classifications (Ge et al. 2020).

Despite these advances in the identification of inflores-
cence phytoliths from small-seeded wild grasses, taxonomic 
criteria for African species based on articulated phytoliths, 
and particularly Interdigitate morphotypes, is limited. 
While preliminary studies on African grasses have indicated 
the potential in establishing comprehensive classification 
parameters, these have primarily focused on glumes rather 
than lemmas or paleas (Madella et al. 2016) and identifying 
select Interdigitate morphotypes recovered from archaeo-
logical contexts (Madella et al. 2014; Out et al. 2016; Ryan 
2018). As such, there remains a need for the development 

of dedicated articulated inflorescence classification criteria 
for a wide range of taxa in order to differentiate wild African 
grass species. To help address this gap, this study analyses 
the in situ morphological characteristics of inflorescence 
phytoliths from nine species commonly found in archaeo-
logical deposits across northern Africa.

Materials and methods

Selected species

Nine wild grass species, representing seven genera associ-
ated with the kreb complex, were selected for this initial 
study (Table 1). These genera often occur together in Hol-
ocene archaeological assemblages from across northern 
Africa including the Tadrart Acacus sites of southwest Libya 
(Wasylikowa 1992; Mercuri 2008; Mercuri et al. 2018), the 
Dhar Tichitt sites of south central Mauritania (Munson 
1976), the Early Khartoum sites of Central Sudan (Magid 
1989; Stemler 1990) and Nabta Playa (Wasylikowa et al. 
1997), as well as later Iron Age cities at Jenné-jeno (McI-
ntosh and McIntosh 1979) and Essouk (Nixon et al. 2011). 
The specimens analysed in this study were sourced from 
existing reference collections (Table 1, Fig. 2). Subsamples 
were processed for phytoliths at the University of Queens-
land (UQ) and stored in their archaeobotanical reference 
collection. Three spikelets from a single reference acces-
sion of each species were dissected, oxidised and analysed 
to account for variation within the panicles. It is unclear, 
however, if the selected spikelets in each accession origi-
nated from one plant or several that were collected together 
in the field. Furthermore, with only one reference accession 
analysed per species, we cannot explore any variation that 
might be genetic, geographical or ecological. Rather, the 
focus of this preliminary study was on determining broad 
morphological variation between key species within the kreb 
complex.

Sample preparation and analysis

A wet ashing protocol modified from Lu et al. (2009) and 
Ge et al. (2020) was applied for this study. Each spikelet was 
separated into individual components (lower glume, upper 
glume, sterile lemma, sterile palea, fertile lemma and fertile 
palea), depending on the physiology of each species (Fig. 3). 
Individual spikelet components were cleaned with distilled 
water and placed in 10 ml centrifuge tubes. For most spikelet 
components, cell lignin and cytoplastic material were oxi-
dised with 5 ml of 9.8 M (30%) hydrogen peroxide (H2O2) 
in a 60 °C water bath for ~ 24 h. Higher lignification and 
silicification in the glumes or fertile florets of some species 
required substitution of H2O2 with 5.6 M (30%) nitric acid 
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(HNO3) for ~ 6 h to fully oxidise them. Trials with stronger 
nitric acid concentrations (> 30%) caused increased frac-
turing of the cuticle and abaxial phytolith layers, hindering 

observation of articulated morphology. Chemical oxidisation 
was conducted in a fume hood, with reaction completion 
observable through full specimen transparency and loss of 

Table 1   Selected C4 species, water requirements, sample origin and accession information

1 The recent taxonomic treatment of Wiersema and Dahlberg (2007) have ssp. verticilliflorum as the taxon of wild sorghum with precedent
Hy hydrophytic, He helophytic, Xe xerophytic, UCL University College London archaeobotany collections, USDA United States Department 
of Agriculture with germplasm accession number, UQ The University of Queensland archaeobotany collections; K, Kew herbarium economic 
botany collections

Taxonomy Species Water 
require-
ment

Sample origin Accession information

Chloridoideae
 Cynodonteae Dactyloctenium aegyptium (L.) Willd Xe India Fuller 17/07/2004 (UCL)

Eleusine indica (L.) Gaertn Xe Malaysia Braun 30/08/1921 (UCL)
Panicoideae
 Paniceae Echinochloa colona (L) Link Hy South Africa UCL (ex USDA PI # 364,796)

Panicum anabaptistum Steud He Burkina Faso Küppers 1365 (UCL)
P. laetum Kunth He Burkina Faso Küppers 1359 (UCL)
P. turgidum Forssk Xe Israel Nesbitt 4413 (UQ)
Pennisetum divisum (Forssk ex J.F.Gmel.) Henrard Xe Libya Nesbitt 4344 (UCL)
Setaria sphacelata (Schumach.) Stapf & C.E.Hubb. ex Moss He Botswana Mithen 615 (K), 75,622

 Andropogoneae Sorghum bicolor ssp. verticilliflorum (Steud.) de Wet ex 
Wiersema & J. Dahlb. (syn. S. arundinaceum (Desv.) 
Stapf)1

Xe Uganda Snowden 1314 (UCL)

Fig. 2   Photographs of three selected spikelets for each species. Scale bar (1 mm) applies to all panels
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buoyancy. While most wet ashing procedures use centrifuga-
tion to rinse specimens after oxidisation (Piperno 2006), this 
was substituted with a series of rinses with distilled water 
in glass petri dishes to retain articulated silica structures 
(Ge et al. 2020). Distilled water was used as a slide mount-
ing medium as it enabled easy reorientation of specimens 
to focus on specific cell layers and areas, such as abaxial/
adaxial. An Olympus BX50 light microscope was used at 
400 × , equipped with a MIchrome 5 pro camera and using 
Mosaic v. 2.0 software.

Phytolith nomenclature

Following previous studies (Lu et al. 2009; Ge et al. 2018, 
2020), phytolith classifications focused on the abaxial layer 
(the surface facing away from the seed), as the adaxial 
(towards the seed) layers of the inner epidermis are com-
prised of undiagnostic hypoderm fibres and Elongate entire 
phytoliths. Phytolith types are classified and described 
according to the International Code for Phytolith Nomen-
clature (ICPN 1.0 and 2.0) (Madella et al. 2005; Neumann 
et al. 2019). Short cell phytoliths (Fig. 4) were classified 
using previously published African grass Bilobate, Saddle, 
Rondel and Cross morphologies (Fahmy 2008; Mercader 
et al. 2010; Radomski and Neumann 2011; Novello et al. 
2012; Novello and Barboni 2015; Neumann et al. 2017). 
Elongate classifications also followed common descriptions 
for projections along the lateral margins (clavate, dentate, 
entire and sinuate) (Madella et al. 2005; Piperno 2006; Ball 
et al. 2009) (Fig. 4).

Previous studies have classified Interdigitate phytoliths 
from the abaxial layers as epidermal long cells (Lu et al. 
2009; Zhang et al. 2011), inflorescence long cells (Keal-
hofer et al. 2015), husk phytoliths (Deng et al. 2018), silica 
skeletons (Madella et al. 2014; Weisskopf and Lee 2016; An 
et al. 2021) and silica layers (Ge et al. 2018). However, these 
terminologies are also typically used to classify articulated 
sheets of Elongate phytoliths (Rosen 1992; Ball et al. 2009). 
While the anatomical position of inflorescence phytolith lay-
ers can sometimes be preserved in archaeological assem-
blages, with Interdigitate phytoliths overlaying Elongate 
phytoliths, these morphotypes represent separate cell layers 
and can occur independently in archaeological assemblages 
(Parry and Hodson 1982; Ge et al. 2020). Therefore, fol-
lowing the recommendations of Ge et al. (2020), Interdigi-
tate phytoliths were classified independently of Elongate 
ones. While Ge et al. (2020) proposed ‘Interdigitating’ as 
the formal morphotype, we use the term ‘Interdigitate’ in 
accordance with botanical terminology, derived from the 
Latin adjective digitatus for radiating digit-like projections 
(Stearn 1983).

In accordance with existing studies, morphological char-
acteristics of Interdigitate phytoliths (Fig.  5) were fur-
ther classified according to differences in: 1, undulation 

Fig. 3   Dissected Setaria sphacelata spikelet. Note ornate seriate pat-
terns (in rows) on abaxial (outer) surface of fertile lemma and palea Fig. 4   Photographic examples of grass phytolith nomenclature for 

short and long cells used in this study. BIL, Bilobate; CRO, Cross; 
SAD, Saddle; RON, Rondel; ar, arched, conc, concave; conv, convex; 
sq, squat; st, short tabular; ta, tabular; th, thin; tz; trapeziform base. 
ELO, Elongate; CLA, clavate; DET, dentate; ENT entire; SIN, sin-
uate. ACU, Acute bulbosus. Sorghum Elongate pattern shows dis-
tinctive arrangement of Elongate clavate and Bilobate short tabular 
rounded morphotypes found in the sessile (unstalked) glumes
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pattern of the lateral margin projections (Λ-type, β-type 
or η-type), which were further classified according to the 
level of amplitude (higher levels relate to increased undu-
lation length and complexity) (Fig.  6); 2, terminal mar-
gin pattern (repand/sinuolate = slightly wavy, articu-
late  = jointed, articulate/brachiate = branching); and 3, 
Papillate cell (attached, detached or absent) (Ge et al. 2020). 

The use of these descriptors assists in avoiding confusion with 
those used for Elongate phytoliths. Previous studies have also 
referred to the terminal margins of Interdigitate morphotypes 
as ‘junctions’ (Zhang et al. 2018), ‘wavy fingers’ (Lu et al. 
2009), or ‘connections’ (Ge et al. 2020), however, the use of 
‘terminal margin’ (Fig. 6) to denote the characteristics along 
the shorter cell axis easily differentiates from ‘undulation’ 
(connecting projections along the lateral cell margin) and fol-
lows ICPN guidelines. Morphometric analysis of Interdigi-
tate phytolith shape variables such as height/width ratio was 
not done in this initial study, as previous studies have shown 
the potential limitations of these parameters based on single 
reference accessions (Ball and Brotherson 1992; Kealhofer 
et al. 2015; Out and Madella 2017). Other phytoliths of lesser 
taxonomic value observed in the present study consisted of 
Papillate cells in the non-fertile florets and Acute bulbosus 
(hair cell) morphotypes (Fig. 4). Additionally, stomata were 
present in all species with distinct lateral nerves, and cork cells 
adjoined short cells in the glumes of all species; however, these 
are of little taxonomic value. 

Results

All spikelet components were successfully analysed for 
each species, with the exception of glumes from Dacty-
loctenium aegyptium and the uppermost sterile floret, non-
flowering and flowering glumes of Eleusine indica. These 
lower bracts were not present in our reference specimens 
as the floret of these species disarticulates easily. For the 
purposes of this study, this was not considered an issue, as 
existing publications suggest that phytoliths in the fertile 
floret are of higher taxonomic value (Lu et al. 2009; Ge 
et al. 2018, 2020). As noted in “Sample preparation and 
analysis”, a stronger oxidising agent was required to process 
robust spikelet components including sessile (unstalked) 
glumes of S. bicolor ssp. verticilliflorum as well as the fer-
tile florets of Echinochloa colona, Setaria sphacelata and 
the three Panicum spp. Increased cell lignin and silica depo-
sition within these components is linked to enhanced seed 
protection (Hodson and Sangster 1988; Kumar et al. 2017). 
This mainly occurs on the abaxial surface, with pronounced 
silicification observable macroscopically with thick spikelet 
components and ornate epidermal patterns (Fig. 3). Within 
each species, morphotype occurrence was stable across the 
three analysed spikelets.

Variations in phytolith occurrence 
between inflorescence bracts

Glumes

For most of the analysed species, the glumes were thin and 
papery with reduced silicification compared to the fertile 

Fig. 5   Morphological characteristics of Interdigitate phytolith layers 
observed in this study (terminology modified from Ge et  al. 2020). 
Arrows indicate area of interest for each morphological characteristic

Fig. 6   Variations in level (amplitude) for observed undulation types; 
higher levels relate to increased length and complexity; modified 
from Lu et al. (2009) and Ge et al. (2020)
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florets (Table 2). Short cell and Elongate phytoliths in the 
glumes tended to match those found in the sterile florets of 
all species and were of limited taxonomic value (note that 
a complete photographic taxonomic key for each species 
is presented in ESM 2). As previously reported (Radom-
ski and Neumann 2011), Rondel morphotypes were only 
observed in the upper glume of Panicum turgidum. Acute 
bulbosus morphotypes were found in relatively greater 
quantity in the glumes of all species compared to the 

florets, with density increasing towards the top of each 
glume. In contrast to the other species, the sessile glumes 
of Sorghum bicolor ssp. verticilliflorum were strongly lig-
nified, with Elongate clavate and Bilobate short tabular 
morphotypes covering the abaxial surface. This observed 
phytolith pattern within the sessile glumes matched previ-
ous publications (Madella et al. 2016; Ge et al. 2020) and 
displayed the greatest taxonomic specificity for S. bicolor 
ssp. verticilliflorum (Fig. 4).

Table 2   Summary of phytolith morphotypes present in the spikelets of each studied species

Morphotypes with high diagnostic potential are indicated in bold
For examples of morphotypes refer to Fig. 4 and 5. NB no bract. BIL, Bilobate; CRO, Cross; SAD, Saddle; RON, Rondel; ar, arched; conc, 
concave; conv, convex; ro, rounded; sq, squat; st, short tabular; ta, tabular; th, thin; tz, trapeziform base. ELO, Elongate; CLA, clavate; DET, 
dentate; ENT, entire; SIN, sinuate. INT, Interdigitate; mPAP, Papillate attached; nPAP, Papillate absent; dPAP, Papillate detached; Λ, -type 
undulation; β, -type undulation; η, -type undulation. ACU, Acute bulbosus; PAP, Papillate

Species Glumes Lemma Palea

Lower Upper Sterile Fertile Sterile Fertile

Dactyloctenium aegyptium NB NB SAD th
ELO DET
ACU​

SAD th
ELO DET
ACU​

SAD th
ELO DET/CLA
ACU​

SAD th
ELO DET/CLA
ACU​

Echinochloa colona BIL st conc
BIL tz
CRO ta
ELO CLA/DET
ACU​

BIL st conc
BIL tz
CRO ta
ELO CLA/DET
ACU​

BIL st conc
BIL tz
ELO CLA
ACU​

INT mPAP β BIL st conc
BIL tz
ELO CLA
ACU​

INT mPAP β

Eleusine indica NB NB NB BIL st conv
SAD sq
CRO ta ar
ELO CLA
ACU​

NB BIL st conv
BIL tz
CRO ta ar
ELO CLA
ACU​

Panicum anabaptistum BIL st conv
BIL st conc
ELO CLA/DET
ACU​

BIL st conv
BIL st conc
ELO CLA/DET
ACU​

BIL st conv
BIL st conc
ELO CLA/DET
ACU​

INT nPAP η BIL st conv
BIL st conc
ELO CLA/DET
ACU​

INT nPAP η

Panicum laetum BIL st conc
BIL st conv
ELO CLA/DET
ACU​

BIL st conc
BIL st conv
ELO CLA/DET
ACU​

BIL st conc
BIL st conv
ELO CLA/DET
ACU​

INT nPAP η INT mPAP η INT nPAP η

Panicum turgidum BIL st conc
ELO DET
ACU​
PAP

BIL st conc
RON conc
ELO DET
ACU​
PAP

BIL st conc
BIL tz
ELO CLA
ACU​
PAP

INT nPAP η BIL st conc
BIL tz
ELO CLA
ACU​
PAP

INT nPAP η

Pennisetum divisum BIL st conc
ELO DET
ACU​

BIL st conc
ELO DET
ACU​

BIL st conc
ELO DET/ENT
ACU​

INT dPAP η BIL st conc
ELO DET/ENT
ACU​

INT dPAP η

Setaria sphacelata BIL st conc
ELO DET/SIN
ACU​

BIL st conc
ELO DET/SIN
ACU​

BIL st conc
ELO CLA
ACU​

INT mPAP Λ BIL st conc
ELO CLA
ACU​

INT mPAP Λ

Sorghum bicolor ssp. verticil-
liflorum

Pedicellate Glumes CRO ta
ELO CLA/SIN
ACU​

BIL st conv
CRO ta
ELO ENT/SIN
ACU​

ELO CLA/SIN
ACU​

ELO ENT
ACU​BIL st conv

CRO ta
ELO CLA

BIL st conv
CRO ta
ELO CLA

Sessile Glumes
BIL st ro
ELO CLA

BIL st ro
ELO CLA
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Lemmas

Phytolith types in the sterile lemmas were similar to those in 
the glumes within all species, with slightly more developed 
projections on Elongate morphotypes (Table 2). The fertile 
lemma of Pennisetum divisum had a weakly silicified Inter-
digitate layer. All other Paniceae species had morphologi-
cally robust fertile lemmas with a strongly silicified Inter-
digitate phytolith layer on the abaxial surface (Fig. 5). While 
there is an Elongate layer underlying the Interdigitate phy-
toliths in the fertile lemma and palea of these species, this 
layer was not described, as the anatomical articulation of the 
abaxial layers prevent direct observation. Eleusine indica 
fertile lemmas had Saddle squat morphotypes which are 
commonly found in chloridoid grasses (Twiss et al. 1969). 
Dactyloctenium aegyptium was characterised by Elongate 
phytoliths with pronounced dentate projections (Fig. 4) and 
Saddle thin morphotypes.

Paleas

In general, paleas displayed similar phytolith morphologies 
to lemmas, however, sterile paleas tended to have reduced 
phytolith abundance in comparison to sterile lemmas 
(Table 2). The fertile and sterile paleas of Sorghum bicolor 
ssp. verticilliflorum were weakly silicified, displaying Elon-
gate entire/sinuate and Acute bulbosus morphotypes of 
low taxonomic value. As observed in the fertile lemma, an 
Interdigitate phytolith layer was present in all Paniceae spe-
cies, though in Pennisetum divisum and the sterile palea of 
Panicum laetum it was only weakly silicified.

Classification of Interdigitate morphotypes

In the inflorescence bracts of all species, the phytoliths 
were dominated by Elongate and short cell morphotypes. 

However, while select morphotypes were of higher taxo-
nomic interest (for example, Elongate dentate in Dacty-
loctenium aegyptium and the Elongate/Bilobate arrange-
ment in Sorghum bicolor ssp. verticilliflorum), anatomical 
distribution revealed significant variation within the indi-
vidual bracts of each species in addition to overlap between 
species. While there is significant overlap in short cell and 
Elongate morphologies, species with an Interdigitate phy-
tolith layer between the cuticle and Elongate layer (Echi-
nochloa colona, Panicum anabaptistum, P. laetum, P. tur-
gidum, Pennisetum divisum and Setaria sphacelata) have 
increased taxonomic potential (Table 3). Comparison of 
multiple morphological traits including undulation pattern, 
terminal margins and Papillate presence and form (Fig. 5) 
enabled confident taxonomic discrimination of these six spe-
cies (see ESM 2 for anatomical variations in Interdigitate 
morphology within each species). The central cell shape of 
Interdigitate morphotypes was rectangular in all species 
analysed. As observed in previous studies, Interdigitate 
taxonomic specificity is greatest at the centre of the fertile 
lemma or palea, with undulation amplitude reduced to only 
basic undulation towards the margins (Figs. 6, 7; Lu et al. 
2009; Zhang et al. 2011, 2018; Bhat et al. 2018; Ge et al. 
2018, 2020). With the exception of Pennisetum divisum, 
the floral bracts of these species also have involute margins 
(rolled inwards) characterised by reduced undulation and 
significant morphological overlap between species (Fig. 7).

Echinochloa: As noted in other studies of Echinochloa 
spp. (Yang et al. 2015; Weisskopf and Lee 2016; Ge et al. 
2018), E. colona Interdigitate phytoliths have character-
istic β-type undulations with articulate terminal margins 
and Papillate cells attached to the central body. Level III 
undulations were only observed in the centre of the fertile 
lemma and palea. Level IV undulations were not present in 
the specimens analysed.

Table 3   Characteristics of 
Interdigitate morphotypes in 
fertile floret bracts of Paniceae 
species analysed in this study

*Within each species higher levels of undulation occur in the centre of floral bracts

Species Fertile floret Undulation pattern* Terminal margin Papillate

Echinochloa colona Lemma β-type, level I – III articulate Attached
Palea β-type, level I – III articulate Attached

Panicum anabaptistum Lemma η-type, level I repand/sinuolate Absent
Palea η-type, level I repand/sinuolate Absent

Panicum laetum Lemma η-type, level II – III articulate/brachiate Absent
Palea η-type, level II – III articulate/brachiate Absent

Panicum turgidum Lemma η-type, level I – II articulate Absent
Palea η-type, level I – II articulate Absent

Pennisetum divisum Lemma η-type, level I – II articulate Detached
Palea η-type, level I – II articulate Detached

Setaria sphacelata Lemma Λ-type, level I – II repand/sinuolate Attached
Palea Λ-type, level I – III articulate Attached
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Panicum: Papillate cells were absent in the fertile florets 
of all three Panicum species. Interdigitate phytoliths in P. 
anabaptistum were characterised by η-type level I undula-
tions with repand/sinuolate terminal margins (Fig. 8a). P. 
turgidum also had η-type level I-II undulations, with more 
articulate terminal margins than those of P. anabaptistum 
(Fig. 8b). Undulation patterns in P. laetum were η-type level 
II-III with intricate articulate/brachiate terminal margins 
(Fig. 8c). Weakly silicified Interdigitate patterns with basic 
η-type undulations and Papillate cells attached to the central 
cell body were observed in the sterile palea of P. laetum.

Pennisetum: Weakly silicified Interdigitate morphotypes 
were observed in P. divisum. These were characterised by 
η-type undulations with large Papillate cells detached from 
the central cell body. While undulation amplitude is similar 
to Panicum anabaptistum and other previously published 
species with η-type undulations, for example, Panicum mili-
aceum, P. ruderale and P. repens (Lu et al. 2009; Zhang 
et al. 2018), the undulations in Pennisetum divisum are 
slightly more crenate (broader) in shape towards the top of 

the fertile lemma and palea. These features, combined with 
the presence of Papillate cells detached from the central 
cell body, may enable taxonomic differentiation from other 
species.

Setaria: S. sphacelata has Λ-type undulation patterns 
with large Papillate cells attached to the central cell body 
similar to reported S. verticillata morphologies (Bhat et al. 
2018). Within S. sphacelata, Λ-type level III undulations 
were only observed in the centre of the fertile palea (Fig. 6). 
Terminal margins were repand/sinuolate within the fertile 
lemma and articulate within the fertile palea. Pronounced 
Papillate cells matched the ornate epidermal patterns on 
the abaxial surface of the fertile lemma and were less pro-
nounced in the fertile palea.

Discussion

Interdigitate phytoliths were present in the fertile floret of 
six of the nine species analysed in this study. In accord-
ance with previous publications, presence was restricted 
to Paniceae grasses. As such, they were not observed in 
Dactyloctenium aegyptium, Eleusine indica and Sorghum 
bicolor ssp. verticilliflorum, which are in the Cynodonteae 
and Andropogoneae tribes respectively. While the analysis 
of a single accession of each species restricts confidence in 
species level classifications, within the context of this study 
all analysed species could be differentiated from each other 
by multiple morphological parameters (Tables 2, 3). How-
ever, observed Interdigitate morphologies share similarities 
with published parameters for closely related taxa within the 
same genus (Lu et al. 2009; Zhang et al. 2011, 2018; Yang 
et al. 2015; Weisskopf and Lee 2016; Bhat et al. 2018; Ge 
et al. 2018). The Interdigitate phytolith layer observed in 
Echinochloa colona matches previously published criteria 
for this species, with β-type undulations and small Papillate 

Fig. 7   a, Echinochloa colona fertile floret; b, basic type Interdigi-
tate phytoliths from involute margin of fertile lemma. Inset scale 
bar = 20 µm

Fig. 8   Variations in Interdigitate morphology in the middle of 
the fertile palea of three Panicum species. a, Panicum anabaptis-
tum, η-type level I undulations, repand/sinuolate terminal margins; 
b, Panicum turgidum, η-type level II undulations, articulate ter-

minal margins; c, Panicum laetum, η-type level II-III undulations, 
articulate/brachiate terminal margins. Papillate cells were absent 
in all three species. Scale bar (20 µm) applies to all panels
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cells attached to the central cell body (Yang et al. 2015; Ge 
et al. 2018). Likewise, Interdigitate patterns in the three 
Panicum spp. analysed in this study were morphologically 
similar to published descriptions of Panicum miliaceum, 
P. ruderale and P. repens, with η-type undulations and no 
Papillate cells (Lu et al. 2009; Zhang et al. 2018). While 
there was overlap in undulation amplitude between the 
three analysed Panicum spp., the terminal margin morphol-
ogy varied between species. Weakly silicified Interdigitate 
phytoliths with η-type undulations were also observed in 
Pennisetum divisum, however in contrast to Panicum spp., 
these had pronounced Papillate cells. Interdigitate Λ-type 
undulations in Setaria sphacelata were morphologically 
similar to S. verticillata (Bhat et al. 2018) and differed from 
other published Setaria spp. with Ω-type undulations (Lu 
et al. 2009; Zhang et al. 2011; Kealhofer et al. 2015; Ge et al. 
2020). Further analyses of other accessions for each species 
as well as a wider range of species within each genus may 
enable these patterns to be refined.

Interdigitate phytoliths have been successfully recovered 
from archaeological grave fills (Madella et al. 2014; Out 
et al. 2016; Ryan 2018; Le Moyne unpublished), dental cal-
culus (Le Moyne unpublished), middens (Yang et al. 2015; 
Weisskopf and Lee 2016; An et al. 2021), sediments (Zhang 
et al. 2017; Deng et al. 2018; Luo et al. 2019) and grind-
stones (Yang et al. 2015). As the occurrence of this morpho-
type is restricted to the fertile floret of select grass species, 
its presence within archaeological contexts is strongly asso-
ciated with crop processing and human food consumption 
(Harvey and Fuller 2005). Presence also reflects the season-
ality of wild grass gathering, with flowering and fruiting 
expected to occur at the end of the rainy season for savan-
nah and Sahelian grasses or into the dry season for wetland 
plants like Oryza and some Echinochloa or Paspalum spe-
cies. Most wild African grasses routinely harvested for sub-
sistence purposes, and particularly kreb species, are freely 
dehiscent with disarticulation occurring above the glumes 
during gathering and threshing not required (Nicholaisen 
1963). Thus, phytolith assemblages derived from process-
ing by parching, pounding and winnowing of wild Paniceae 
species would include Interdigitate morphotypes and pro-
vide clear indications of food preparation areas (Harvey and 
Fuller 2005). In contrast, phytolith assemblages derived 
from the use of these species in animal fodder or for pur-
poses such as thatching would contain higher frequencies of 
Elongate and short cell phytoliths from the leaves and culms 
(Harvey and Fuller 2005). In agricultural contexts, these 
wild grasses often occur as arable weeds with domesticated 
crops (Harvey and Fuller 2005). Recovery of Interdigitate 
morphotypes from wild grass species within domestic crop 
assemblages has the potential to provide high resolution tax-
onomic information regarding weed species. The inclusion 
of Interdigitate phytoliths within dental calculus matrices 

can provide direct evidence for consumption of grasses by 
an individual, as husk fragments can be expected to contami-
nate grains even after dehusking. These numerous pathways 
into the archaeological record, combined with published 
observations documenting the preservation of valuable tax-
onomic characteristics, indicate that the recovery and clas-
sification of Interdigitate phytoliths can enhance our ability 
to study the composition of past vegetation communities, 
seasonality, cultural preferences and human behaviours.

Lastly, the findings reported by Zhang et al. (2018) high-
light the potential for examining domestication processes 
through phenotypic modification of Interdigitate phytoliths. 
For example, undulation amplitude appears to be correlated 
with grain length/width ratios (Zhang et al. 2018), which 
has been shown for some Paniceae species, such as P. mili-
aceum, to have undergone a marked shift during domestica-
tion (Stevens et al. 2021). However, the high panicoid and 
chloridoid grass diversity in Africa makes this more of a 
challenge to apply in this context, as does the high diversity 
of documented grass use. Jardin (1967) catalogued the con-
sumption of over 60 species of small-seeded wild grasses 
across Africa during the mid 20th century, though many 
were no longer routinely consumed. Future analyses of inflo-
rescence phytoliths from kreb and other African wild grasses 
should therefore work towards building comprehensive taxo-
nomic keys for the full suite of economic taxa. Incorporat-
ing Aristida, Brachiaria, Cenchrus, Digitaria, Eragrostis, 
Latipes, Oryza and Paspalum species would assist in deter-
mining accurate morphological markers for each genus and 
potentially refine differentiation between related wild and 
domesticated species from phytolith assemblages. Addition-
ally, as demonstrated by Ge et al. (2018), the collection and 
analysis of multiple accessions of each species, grown in 
different conditions, is necessary to account for phenotypic 
plasticity. Future studies combining morphological and mor-
phometric analysis of multiple accessions and incorporat-
ing a greater number of economic species would potentially 
enable confident differentiation between species within an 
African context.

Conclusions

The results presented within this preliminary study dem-
onstrate the taxonomic potential of Interdigitate inflores-
cence phytoliths in African Paniceae grasses and provide 
additional means of identifying the presence of these taxa 
from archaeological contexts. The analysis of phytolith 
occurrence within individual spikelet components indicates 
that highly diagnostic morphotypes are restricted to heav-
ily silicified and lignified components. Combined morpho-
logical parameters enable classification to genus level for 
the nine African wild grass species included in this study. 
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Morphological variations in the undulation amplitude and 
terminal margins of Interdigitate phytoliths as well as the 
presence or absence of Papillate cells suggest the poten-
tial for reliable differentiation between African Paniceae 
species and particularly Panicum spp., however, morpho-
metric analysis of additional taxa and reference accessions 
is required to further test this finding. The morphological 
parameters described in this preliminary study provide an 
additional means of taxonomic classification for archaeo-
logical material, potentially providing another tool by which 
we can understand different trajectories of wild grass use. 
Current perceptions of the past economic importance of wild 
grasses across northern Africa are constrained by analytical 
limitations. However, it is evident that these plants formed a 
vital component of past subsistence practices that persisted 
after the uptake of dedicated agricultural practices until the 
very recent past.
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