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ABSTRACT

Understanding the solar corona and its structure, evolution and composition can provide new insights regarding the processes
that control the transport of energy throughout the solar atmosphere and out into the heliosphere. However, the visible emission
coming from the corona is more than a million times weaker than the emission from the photosphere, implying that direct
corona observations are only possible when the Sun is obscured. The goal of this paper is to perform a feasibility study of a Sun
occultation mission using the Earth as an occulter. The challenge is that the occultation zone created by the Earth does not follow
a Keplerian trajectory, causing satellites placed in this region to quickly drift apart from the target area. To increase the number
of revisits while optimizing the propellant budget, we propose optimal trajectories in the Sun-Earth-Spacecraft circular restricted
three body problem that account for scientific and engineering constraints such as limited power budget and mission duration.
Chemical propulsion, electric propulsion and solar sailing configurations are compared in terms of performance and mission
feasibility, revealing how 24 hours of corona observations would be possible every 39 days with as little as 199 m/s AV-equivalent
of propellant. The feasibility of the solar sail approach is hereby demonstrated, making it a challenging engineering alternative

to currently available technologies.
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1 INTRODUCTION

The corona and solar wind form one of the key elements in control-
ling planetary environments within the solar system, and indeed the
size and shape of the heliosphere itself. At the heart of the origin and
evolution of the corona is the solar magnetic field, which is respon-
sible for the organisation of the solar plasma at all scales, and for the
storage, transport and release of magnetic energy. Alongside the still
poorly understood processes that control both the existence and the
large-scale variation of the corona and the acceleration of the solar
wind, the corona is also the region of the solar atmosphere where it is
believed that the explosive energy release responsible for flares and
coronal mass ejections (CMESs) occurs; these are the key drivers of
space weather events Boe et al. (2020). Despite the critical role that
this region plays in controlling the release of plasma and magnetic
field into the heliosphere, measuring the magnetic field responsible
remains a significant challenge, hampered by the high plasma tem-
perature and weak intensity in the visible, and until very recently
(Si et al. (2020); Landi et al. (2020)), a complete lack of diagnostics
in the extreme ultraviolet (EUV). Consequently many of our mod-
els rely on the extrapolation of measurements of the photospheric
magnetic field and assumptions that the coronal field becomes radial
beyond the ‘source surface’ Altschuler & Newkirk (1969); Schatten
et al. (1969). However, recent work by Boe et al. (2020) demon-
strates that this assumption is over simplistic and there is substantial
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inhomogeneity and variation across the solar cycle. This result has
significant implications not only for existing models of the coronal
magnetic field but also for solar wind acceleration models and the
linking of in situ measurements to solar source regions: a central goal
of the Solar Orbiter mission Zouganelis et al. (2020).

From the ground, total solar eclipses offer a unique opportunity to
observe the corona down to its base and typically at much higher spa-
tial and temporal resolution than routinely possible. However, these
events only occur every 18 months on average, lasting typically only
for a few minutes Eckersley & Kemble (2017). It was the pioneer-
ing work of Lyot (1932) in the development of the coronagraph that
made the routine observation of the corona in the visible possible in
both broadband continuum and spectral lines. While such observa-
tions allow detailed study of the structure and temporal variations of
the coronal intensity, and, indirectly the morphology of the coronal
magnetic field, work by e.g. Arnaud & Newkirk (1987); Lin et al.
(2004); Tomczyk et al. (2007) further opened the possibility to di-
rectly infer the strength and direction of the field through polarization
measurements.

The concept of the coronagraph instrument is to occult the sun by
placing an artificial disk that projects an artificial eclipse on the in-
strument sensor. This instrument presents some limitations related to
the presence of daylight like atmospheric seeing and scattering which
limits how close to the solar disk one is able to observe. Space-based
observations limit these effects to some degree, in particular atmo-
spheric seeing, and coronagraphs have been key instruments on many
solar missions since the 1980s, e.g. the coronagraph and polarime-
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ter on the Solar Maximum Missions MacQueen et al. (1980) and
the LASCO coronagraph on the Solar and Heliospheric Observatory
(SOHO) Domingo et al. (1995). However, these instruments are also
limited by stray light and vignetting for observations in the lower
corona, as a result of the small occulter diameter and subsequent
short distance between the occulter and the aperture of the instru-
ment Eckersley & Kemble (2017).

New space missions with larger occulters have recently been pro-
posed to overcome the limitations of current instrumentation suites.
ESA’s Proba-3 mission, to be launched in mid 2022 Llorente et al.
(2013), will study the corona of the Sun via two satellite flying in for-
mation. One satellite, the observer, will fly in a tight formation behind
the occulter along the Sun-occulter line of sight. Despite significant
engineering challenges associated with operating two satellites in
a tight Earth formation, the mission will allow observations last-
ing 6 hours. An alternative approach is introduced in Eckersley &
Kemble (2017), where the use of natural occulting bodies was first
proposed.The large distance between the occulter and the observer
allows us to have much larger baselines than other conventional
coronographs. This would highly limit undesired phenomena like vi-
gnetting and straight light effects, improving the observations of the
inner corona Eckersley & Kemble (2017). In addition to that the use
of a natural occultation zone enables more frequent and longer ob-
servations compared to observations performed on Earth.The patent
focuses on using the Moon as an occulting body, regardless of strong
dynamical perturbations due to the gravitational influence of the
Earth. The aim of this paper is to perform a feasibility study of a sim-
ilar concept, where Earth is used as an occulting body rather than the
Moon. While the Earth is less spherical than the Moon and it is possi-
ble to have atmospheric effects during the observation, the advantage
of using the Earth as occulter is that the target zone remains fixed in
the rotating frame of the Sun-Earth system. Accordingly, trajectories
are designed in the Sun-Earth circular restricted three-body problem
while taking into account the preliminary engineering requirements
of a typical small satellite mission (i.e., limited AV budget and power
capabilities). Focus is given to the definition of two controlled tra-
jectories and their AV budgets for bringing the satellite back into the
occultation zone. Chemical, low-thrust and solar sail are investigated
as possible propulsion systems and compared in terms of time-of-
flight and AV cost per observation cycle. Optimal control theory and
indirect optimization methods are adopted to compute the desired
transfers.

This paper is organized as follows: first a definition of the occul-
tation zone and the penumbra is provided, followed by the equations
of motion adopted in this study. Two mission profiles are presented
in Section 4 along with system parameters adopted for the numerical
simulations. The optimal control problem solution methodology is
then explained. Main results and conclusions are summarized in the
remaining two paragraphs of the manuscript.

2 OCCULTATION ZONE AND PENUMBRA

The occultation zone is a small region found at the edge of the umbra
cone created by the Earth. This region can be exploited to perform
regular observations of the solar corona as follows.

Neglecting the oblateness of the occulting body, the zone is
defined by the tangents to the Sun and the Earth, as shown in
Figure 1. It is necessary to identify two Sun radii; the first radius
is the reference radius of the Sun (R@), while the second (Rr@)
identifies field of view. This second radius represents the radius of
the corona and it is defined by multiplying the reference radius with
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Figure 1. Occultation Zone, Umbra and Penumbra Regions

Symbol Quantity Value Units
Ri® Sun Radius 6.9555 x 10° km
Ry Expanded Sun Radius 7.09461 x 10° km
AU Sun Earth Distance 1.49598 x 108 km
Ro Earth Radius 6378.137 km

Py Right Edge Occultation Zone (1.50982 X 108, 0, 0) km
P Centre Edge Occultation Zone (1 .50955 % 108, 0, 0) km
P3 Left Edge Occultation Zone (1.5097 X 108 N 63 .73, 0) km

Table 1. Occultation Zone Parameters

an expansion factor. For the observation of the Sun corona a factor
of 1.02 is used Eckersley & Kemble (2017) but smaller factor could
be achieved adopting the same procedures presented in this study.
Similar missions with different field of view have been proposed:
Proba-3 is planned to have a field of view 1.08 R;@ Loreggia et al.
(2019), HiRISE proposed field of view is 1.01 R Erdelyi (2019).

The penumbra region is computed by taking the tangent lines to the
Sun and Earth as shown in Figure 1. The amount of solar radiation that
the satellite receives while in the penumbra, called shadow factor (7)
is computed as shown in Montenbruck et al. (2002). Using r; and ro
as the position of the spacecraft and the Sun w.r.t. the occulting body
respectively as shown in Figure 2, the shadow factor is computed as
follow:

T=1 ifa+b<
T=17=0 if c< |b—a\ (1)
r=1— -4 otherwise,
Ta
where
a = arcsin ( ) (2a)
[re —ra

= arcsin < ) (2b)
2|

¢ = arccos ( (ro—rz) 1 ) (2¢)
[ro —raf ra
2 2
b
=L (2d)
2c
¢ = az - Xza (26)
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Figure 2. Planar CRTBP coordinates in the rotating frame

A = a?arccos (/K) + b? arccos (c — X)c ¢. 2f)
a b

3 EQUATION OF MOTIONS

Because the occultation zone is found along the position vector of
the Earth as seen from the Sun, the problem of designing optimal
trajectories from / to the occultation zone can be better investigated
in the synodic frame of the Sun-Earth circular restricted three body
problem. The frame is centered in the baricenter of the two primaries,
the Sun and the Earth, and oriented such that ¥ is constantly aligned
with the Sun-Earth direction, £ is perpendicular to the orbital plane
of the Earth, and § = Z x £ completes the right-handed triad. In
this reference frame, the occultation zone remains fixed along the
positive X axis near x ~ 1.00916 AU. In what follows, the length and
time units of the problem are set to 149597870.7 km and 5022635 s,
respectively, so that the primaries me and mg may be found along
the £-axis in (—u, 0,0) and (1—p, 0, 0), respectively. Here, the value
of mass ratio parameter, i.e., u = meg/(me+me),is 3.0035x 1079,
Furthermore, denoting the state of the satellite as x = [r, v, m], the
equations of motions becomes Koon et al. (2008):

v
x=f(x)={g(r)—2[zv+ Imaty 3)
_Tmaxu
Ispgo
where
1_
g(r) = ——Fr — Ery 2] (2], (4a)
" )
0 —1 0
[Z]=|1 0 of, (4b)
0o 0 O
r = \/(x + )% +y2 4+ 22, (4c)
and
rzz\/(x71+p)2+y2+zz. (4d)

Moreover, Tinagx is the maximum thrust, Isp is the specific im-
pulse, @ is the satellite control direction and u € [0, 1] represents the
throttle.

Notice that the equations of motion admits an integral of motion
known as the Jacobi integral as long as u = 0:

C=—(2+y*+2%)—2U(x,y.2), (%)
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where
Uy =——H L Lot

is the effective potential consisting of gravitational, constant, and
centrifugal terms.

4 CANDIDATE MISSION PROFILES

The occultation zone is 0.00084 length units away from the collinear
L2 Lagrangian point, so a satellite placed there would quickly drift
away unless properly controlled back to the target area. It is assumed
that the satellite can only operate with its own batteries while per-
forming its measurement campaigns. As a result of this assumption,
the satellite will be required to exit from the region of penumbra to
recharge its batteries before beginning a new cycle. The operational
phase can be then divided into two main phases: a ballistic coasting
phase and a controlled arc.

The controlled trajectory goes from an initial state, Xq, to a final
state, X ¢ . The initial and final conditions are chosen by imposing a
zero velocity passage through the occultation zone and propagating
the state forward and backward in time. More specifically we require
the satellite velocity to be zero in the rotating frame when aligned
with the Sun and Earth:

TZ

@)

H
N
(=il

0

This particular choice of zero velocity passages ensures that the
satellite does not escape the system even if it is uncontrolled as
shown in Figure 3. The choice of x Z is driven by the observation
time. As shown in Figure 4, selecting an observation time yields
two possible values of xT Z in the occultation zone (one on the left
side of the polygon, and one on the right). The numerical simulations
presented in this paper focus on the right side of the polygon, although
similar investigations could be made for the other point in the target
zone. Once a point in the occultation zone has been picked, the
initial conditions of the spacecraft are integrated using Equation (3)
with u = 0 until the satellite leaves the penumbra region. Here, the
satellite is left to coast for a certain number of days, depending on
the requirement for batteries recharge. At the end of this coasting
phase, the state of the spacecraft is fixed and labelled as x hereafter.
A similar procedure is implemented for the definition of x¢. In
this case, XZ}“Z is propagated backward in time until it crosses the
occultation zone or the time elapsed reaches a user-defined value.
The first scenario is presented in Figure 5 and hereby referred as the
propelled scenario. The second case is represented in Figure 6 and
it is referred as the solar sail scenario. The names follow from the
performances of the different propulsion technologies as shown in
Section 6. We note here that a particular case of the solar sail scenario
where x( and x ¢ are symmetric with respect to the x-axis of synodic
frame is also analyzed in order to enable battery recharging before
and after the controlled leg of the trajectory cycle. In all the cases, an
optimal control trajectory from X( to Xy needs to be implemented.
Once atx ¢ the spacecraft would eventually return to the initial point
in the occultation zone and restart its loop.

Considering that observations of the solar corona on ground last
only a few minutes and the limitations of batteries capacity, the
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Figure 3. Uncontrolled trajectory starting from xgz.
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Figure 4. Observation time as a function of x in the occultation zone. Zero-
velocity points for an 80-hour observation window are shown as an example.
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Figure 5. Propelled mission scenario. The spacecraft coasts from the occul-
tation zone until it exits the penumbra region (green), from there it continue
coasting while recharging the batteries (cyan) and it is then controlled back
to the occultation zone (red trajectory). Note that the figure is only illustrative
and not in scale
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Figure 6. Solar sail scenario. The spacecraft coasts from the occultation zone
until it exits the penumbra region (green), from there it continues coasting
while recharging the batteries (cyan), it is then controlled back to the final
state X and from there it naturally coasts back to the occultation zone (green).

Table 2. Spacecraft reference parameters for the chemical, electric, and solar
sail configurations.

Symbol Quantity Value Units
Tnax Chemical Max Thrust 1 N
1sp Chemical Specific Impulse 200 S
Tyax Low-Thrust Max Thrust 0.1 N
1S p Low-Thrust Specific Impulse 2000 S
mg Wet Mass 100 kg
Umax Solar Sail Max Acc 1 mm / S2

time for observations in the occultation zone is fixed to 24 hours.
The study is performed considering some typical values for a small
satellite system equipped with 3 different propulsion technologies:
chemical propulsion, low-thrust propulsion, and solar sailing. The
reference values for the spacecraft are shown in Table 2 along with
the maximum thrust and specific impulses used for the numerical
simulations.

5 OPTIMAL CONTROL PROBLEM

Consider a mass particle subject to the dynamics x = f(x,u,t).
The aim of an optimal control problem is to find the control u that
minimizes a performance index J. In this section the methodologies
to compute fuel optimal, time optimal and solar sail trajectories are
explained.

5.1 Fuel Optimal

The fuel optimal problem is of greatest interest from an engineering
point of view since decreasing the fuel mass on a spacecraft means
decreasing the price of a mission or increasing its payload capacity.
The fuel optimal problem formulation is given below assuming a
fixed time of flight ToOF = 7 — 19. The cost function is defined from
Jiang et al. (2012)

T, ’s
J=AOI’"”J udt (8)
sp80 Jry

and needs to be minimized subject to:

(i) dynamics constraint, given by Eq. (3);
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(ii) initial conditions

. ro — (o) |
y'=|vo—v(to) | =0; )
mo — m(tg) |

(iii) final conditions

o |ry —r(te)| _
Y = [Vf _V(tf)i =0. (10)

It is possible to define the Hamiltonian of the fuel optimal prob-
lem by introducing the Lagrange multipliers (or adjoints) 4 =
[4r;2y; Am]. The inclusion of A and its scaling factor ¢ allows us
to reduce the solution of the fuel optimal problem into a well-posed
two point-boundary value problem arising from the Hamiltonian:

T, T,
H =202y 4+ ATy + 27 (g(r)—z[z]v—i— %xua) +

0
I
sp80 (11)

Tmax
mlsng

u.
Following Pontryagin’s minimum principle, the Hamiltonian can
be minimized with respect to the control variables # and @ via Law-

den’s primer vector. It follows that the optimal thrust magnitude that
minimizes the Hamiltonian is given by Conway (2010):

, (12)

0 if p>0
u =
1 if p<O

where p is called switching function and it is defined as Jiang et al.
(2012):

p=1-—227v mm (13)

a=-"2 (14)

From the stationary condition of the Hamiltonian it then follows:

(Z—;I=)k—>i(=f(x,u,t), (15)
oH . Ar = =Gl
—=-14 - {4, =4, +2z]4, , (16)
ox . T u
Am = __n;,:f Ay
where
T T

1— rr rr
G=-— 2”(1—3 21>—ﬁ3<1—3 22)—[2][2] (17

ri rl r2 7'2

is the Hessian of the effective potential. Notice that not all the final
conditions are known since the mass of fuel is the value that has
to be minimized. Accordingly. the final condition on the mass is
substituted by a final condition on the mass adjoint, which must be
equal to zero. The initial and final boundary conditions become:

¢() = X0 — X(lo) = 0; (183)
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ry —I‘(l‘f)
¢ = |vr —viyp)|=0. (18b)
/lm(tf)

It is helpful to rewrite the problem with a smooth control profile
as done in Rasotto et al. (2016). In this way it is possible to eliminate
the discontinuity produced by Equation 12 with the addition of a
smoothing factor k € (0, 00):

1

A good set of initial adjoints is required to solve the fuel optimal
control problem as the convergence region is generally small. To
choose the initial adjoints for the single shooting method, a particle
swarm optimizer is used as recommended in Jiang et al. (2012). Here,
the addition of 1 becomes relevant in that it reduces the search space
of the optimizer to the surface of an 8-dimensional unit sphere such
that

Iv(o)[ = 1, (20)

where v = [1g, 477
Introducing the optimization variables [x1, X2, x3, X4, X5, X6, X7] €
[0, 1], one has that the initial adjoints can be defined as

2o = sin (B)
A0 = cos (B1) cos (B2) cos (83) x
x [cos (B4) cos (Bg) ; cos (B4) sin (Be) ; sin (B4)]

21
Avo = cos (B1) cos (B2) sin (Bs) X @b
x [cos (Bs) cos (B7) ;cos (B7) sin (B7) ; sin (Bs)]
Amo = cos (B1)sin (B2),
where
B3 = %[xuxz;xa]
1
Bas=nm ([x4;x5] — 5) (22)

Be,7 = 27 [xg3x7] -

Provided with a crude approximation of the initial adjoints ob-
tained with the particle swarm optimizer, the two-point boundary
value problem described in this section can be solved iteratively with
a single-shooting procedure. Upon convergence, the initial adjoints
can be passed as an initial guess for the same two-point boundary
value problem and different values of the smoothing factor k. The
numerical continuation procedure is repeated as shown in Algorithm
1 until & is sufficiently high to resemble a bang-bang solution (e.g.,
kmax = 10000). We highlight that all of the single shooting prob-
lems are solved by a trust-region-dogleg algorithm implemented in
the MATLAB function fsolve and for a fixed, user-defined, ToF.

5.2 Time Optimal

The goal of time optimal controller is to minimize the time of the
transfer. The new cost function becomes:

1y
J= f 1 dr, 23)
0
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Algorithm 1: Summary of Continuation Approach for Fuel
Optimal Solutions

Algorithm 2: Summary of Double Continuation Approach
from Fuel Optimal to Time Optimal Solutions

Input: xo, x¢, ToF
Result: Fuel optimal solution
Find initial adjoints with PSO for smooth problem;
Set k=5 and solve the fuel optimal smooth problem with
single shooting;
Define k4 = 10000;
while k& < k4 do
Solve fuel optimal problem with new smoothing factor k;
if final state error < max error then
Decrease control smoothing;
Update initial adjoints;
else
‘ Increase control smoothing;
end

end
Solve fuel optimal problem with k = kpqx.

implying

H=1+alv+al (g(r) —2[z]v+ Ma) +
m
24

Tmax
m
Ispg()

u.

According to Pontryagin’s minimum principle, the time optimal
solution is obtained by thrusting at maximum capacity for the whole
trajectory (u(¢) = 1) along the direction of thrust dictated by primer
vector theory Pan et al. (2020). The stationary conditions of the
Hamiltonian return the set of ODEs shown in Equation 15 - 16
with u = 1. The initial and final boundary conditions are similar to
the ones for the fuel optimal problem (Equation 18), except for an
additional constraint on the Hamiltonian at the final time that follows
from the time-free formulation of the problem Sullo et al. (2017):

Hl;, = 0. (25)

The solution of the time optimal problem is obtained via single
shooting and MATLAB’s fsolve. The solution of the fuel optimal
problem can be exploited to obtain the initial adjoints for the time-
optimal one, thereby simplifying the work of the algorithm. To this
end, a solution of the fuel optimal problem that resembles the time
optimal one is needed. By reducing the maximum thrust in the fuel
optimal problem, the bang-bang thrust arcs are observed to increased
until they almost merge into a single continuous event. The adjoints
obtained at the end of this continuation procedure can be then used as
initial guesses for the adjoints of the time optimal problem. Once the
first solution of the time optimal is obtained a second continuation
method is then introduced to bring back the thrust magnitude to the
design value. A summary of this two-step continuation is offered in
Algorithm 2.

5.3 Solar Sail

The last problem solved with indirect methods is the solar sail. The
solar sail is a time optimal problem where the thrust is provided by
solar radiation pressure acting on a reflective surface. This introduces
another level of complexity if we consider that the thrust magnitude
and direction would be constrained by the amount and direction of
solar radiation pressure.

Recall that the normal vector of the sail (72) is defined by two

Input: Fuel optimal solution

Result: Time optimal solution

) = 0.1 X Trax;

y=11;

x =0095;

Tyﬂ;mx = Tmax;

while 7%, > T, do

Solve Fuel Optimal problem with 7} , . ;

if final state error < max error then
Toax = Timax/7:
update initial adjoints;

else
‘ T;rklax = T;rklax/)(Q
end
if u(t) = 1Vt € [0, ToF] then
| break
end
end

Update initial adjoints ;

while 7}, . < Tinax do

Increase T}, . ;

Solve Time Optimal problem with T;% , ;
Update initial adjoints;

end
Solve single shooting with 7%, . = Trnax

s

Figure 7. Solar sail directions, cone angle and clock angle

angles, the cone angle a and the clock angle ¢ (Fig. 7, Mclnnes
(2004)). The cone angle is the angle between the sail normal and
the sun line (§ = ry/ry). The clock angles is defined as the angle
between the projection of the sail normal onto a plane normal to the
sun line and a reference direction £. The unit vector  is obtained by
cross product of § with v, the velocity of the spacecraft:

©

N X
f=

. (26)
X V||

It follows that the components of the unit vector /i may be expressed
with respect to the triad §, w = fx§, fas

©

i = cos(a)§ + sin(a) sin(8)W + sin(a) cos(d)7. (27)

The acceleration provided by the solar sail is not independent from
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the state of the satellite Gong et al. (2011) and it is formulated as
follow:

2
U = tmax (r’ef) (5-7)2%h = ﬁ‘;@ (5-7)2A (28)
r n

where r,. ¢ is a reference distance used to evaluate the solar force,
B is the lightness number of the sail, and ue = 1 — u is the solar
gravitational parameter . In this study the Sun-Earth distance (AU)
is used as the reference distance, i.e., 7y = 1 in normalized units.

The solar sail optimal control problem is similar to the time optimal
problem in that it tries to minimize the time-of-flight between the
initial and target states. However, since the solar sail does not use
propellant, the mass of the spacecraft remains constant throughout
the execution of the transfer. It follows that the Hamiltonian of the
solar sail problem can be reformulated as:

H=1+2aTv+ 2T (g(r) —2[z] v+
o a 29
@(s.ny ). (29)

Minimizing the Hamiltonian (29) implies finding the unit vector 7
that maximizes the projection of the acceleration provided by the

solar sail along the primer vector p = — ’;—: This can be obtained by
minimizing:
BHO (o 2\2/4
28 a)2 (R Ay) (30)
r
1

or, equivalently, by maximizing

BEO (5. )2 (a - p). 31)
"

Finally, by expressing p in the solar sail frame of Fig. 7, as

A

p = cos(&)§ + sin(a) sin(8)W + sin(a) cos(6)7, 32)

one finds that the optimal clock and cone angle would be given by
Mclnnes (2004)

§* =4, (33)
and

—3 +sgn (n/2 — @) 4/9 + 8tan?(a)
o® = arctan — s (34)
4 tan(@)

respectively. As a result, the optimal orientation of the sail becomes

A* = cos(a™®)§ + sin(a™) sin(a™)W + sin(a™) cos(6*), (35)

which results in the adjoints dynamics given by

Ay = —GA, +
BHO /n ssey/a R P
-2 r3® (§-a*)(A* - a,) (A* —2(5-7*)5), (36)
1
Ay = =2, +2[z]4,.

Similarly to the fuel and time optimal problems, the single shooting
method can be applied to find optimal trajectories for the the solar
sail scenario. Here, a novel homotopy procedure is implemented. The
main idea is to continue from a time optimal solution to the solar
sail solution by introducing a continuation parameter on the sun-line
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direction. Starting from the time optimal solution, it is possible to
imagine a fictitious Sun-line that matches the desired direction of the
primer vector. In this non-physical scenario, the time optimal and
solar sail solution overlaps as long as the propellant consumption
can be neglected. A continuation parameter on the Sun-line, namely
€ € [0, 1], summarizes our approach:

s=(l—e)p+es. (37

When the € parameter is 0, the sun-line moves according to the prime
vector. When € = 1, the sun-line matches the actual location of the
sun as seen from the spacecraft.

The final step is to account for the partial illumination available in
the penumbra region. Here, the thrust magnitude can be modified to
account for a shadow factor, 7(r), such that
T@(S‘\-ﬁ*)zﬁ*. (38)

2
n

u=

Next, a second continuation procedure is implemented to continue
the optimal trajectory from the solar sail scenario without shadow
factor to the solar sail scenario with partial illumination conditions:

u= (ﬁ"@(f-ﬁ*)%*) (1—n(1-1)), (39)

2
n

where 7 is allowed to grow from 0 to 1. The outline of our double-
homotopy continuation scheme is attached in Algorithm 3.

Algorithm 3: Summary of Double Continuation Approach
from Time Optimal to Solar Sail Solutions

Input: Time Optimal Solution
Result: Solar sail optimal solution

fore =0:1do
single shooting solution of solar sail without shadow

factor;
update initial adjoints;
end
forn =0:1do
single shooting solution of solar sail with shadow factor ;
update initial adjoints;

end
single shooting solution of solar sail with shadow factor.

6 NUMERICAL SIMULATIONS
6.1 Fuel optimal

The first type of transfer that is analyzed is the fuel optimal problem
with chemical propulsion for the propelled mission scenario. An
optimal trajectory is first generated with the methodology of Section
5.1 and later utilized to initiate a grid search on possible combinations
of time of flight and coasting time. The time of flight is varied between
10 and 30 days, whereas the coasting time to recharge the batteries
after exiting the penumbra is allowed to vary between 1 and 5 days.
The AV cost and optimal trajectories obtained with our numerical
analyses are shown in Fig. 8 and 9, respectively.

It is clear that increasing the coasting time would result in higher
propellant expenditures. Accordingly, the best solution found with
chemical propulsion (in terms of total AV cost) has a coasting time
in the penumbra of 1 day and a time of flight of 19.37 days. The
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Figure 8. Fuel Optimal Chemical propulsion grid search, time for batteries
recharging while coasting from the penumbra (one the x axis) and time of
flight (left axis) comparison. The blue dots indicate the trajectory with the
minimum fuel for a fixed coasting time.
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Figure 9. Fuel Optimal Grid search trajectories with chemical propulsion.
The trajectories represent the blue points in Figure 8.

AV for one revisit is equal to 199.4 m/s, with a total cycle duration
of 39.50 days (19.37 days for the controlled trajectory + 18.13 days
for coasting from the occultation zone to the penumbra edge + 1 day
for battery recharging + 1 day of observation). The solution presents
two thrust arcs, once at the beginning and once at the end of the
controlled trajectory lasting 4.77 hours and 0.50 hours respectively.

A similar simulation has been performed using low-thrust propul-
sion instead of chemical maneuvers (see Fig. 10 & 11). Here, the
minimum fuel consumption is obtained with the smallest time of
coasting (1 day) and a time-of-flight of 21.39 days; The AV per cy-
cle is 213.9 m/s allowing a revisit of 24 hours every 41.52 days.
The latter accounts for 18.13 days of coasting until penumbra plus
one day of battery recharging and 21.39 days of transfer. As seen in
the previous results with chemical propulsion, increasing the time
allocated to the battery charging results in higher propellant costs.
Similarly to the chemical system he solution presents two thrust arcs,
once at the beginning and once at the end of the controlled trajectory
lasting 53.15 hours and 5.95 hours respectively.
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Figure 10. Fuel Optimal Low-thrust propulsion grid search, time for batteries
recharging while coasting from the edge of the penumbra (one the x axis) and
time of flight (left axis) comparison. The blue dots indicate the trajectories
with the minimum fuel for a fixed coasting time.
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Figure 11. Fuel Optimal Grid search trajectories with low-thrust propulsion.
The trajectories represent the blue points in Figure 10.

6.2 Time optimal

A grid search on the coasting time and thrust magnitude is imple-
mented for the time optimal case. Due to higher propellant costs,
chemical propulsion was not considered for time-optimal maneu-
vers.

For a fixed coasting time the best solution in terms of time of flight
is always the one with the highest thrust. As shown in Figure 12-13,
increasing the coasting time causes an increase in the time of flight
similarly to the fuel optimal scenarios. The solution with the shortest
time of flight of 7.43 days is obtained with the largest thrust and the
shortest coasting time of 1 day. The total AV for this maneuver results
in 652.5 m/s equivalent of propellant. The solution that requires the
least amount of fuel is obtained with a maximum thrust of 0.026 N
and 1 day of battery recharging, resulting in a time of flight of 19.99
days and a total AV of 463.6 m/s. By decreasing the maximum
thrust is possible to find combinations of thrust and time for battery
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Figure 12. Time Optimal Grid search time for batteries recharging while
coasting from the penumbra (one the x axis) and max thrust (left axis). The
blue dots indicate the trajectory with the minimum fuel for a fixed coasting
time. The white area represents combinations of acceleration and coasting
time that are not feasible.
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Figure 13. Time Optimal Grid search coasting time (one the x axis) and max
thrust (left axis). The red dots indicate the trajectory with the minimum fuel
for a fixed coasting time.

recharging that do not lead to feasible combinations. These unfeasible
solutions are removed from the contour plots hereafter.

6.3 Solar Sail

An interesting alternative to chemical and electric propulsion can be
found in the solar sail. Due to the presence of the penumbra it is
not feasible to have a solar sail solution that goes from outside the
penumbra to the occultation zone as done for the propelled mission
scenario. Indeed, the control capabilities of a sail would be limited
by the amount of solar photons. Hence the solar sail scenario of
Figure 6 is hereby considered. The initial state, X, is fixed to 1 day
of recharging time and the final state, X ¢, varies from the edge of the
target zone to the symmetric point of Xy depending on the backward
integration time allowed for the simulation. In this case, a grid search
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Figure 14. Time Optimal Grid search time optimal trajectories. The trajec-
tories represent the blue points in Figure 12- 13.
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Figure 15. Solar Sail Grid search backward coasting time (from the occul-
tation zone to the penumbra) and max acceleration (left axis). The blue dots
indicate the trajectories with the minimum time for a fixed coasting time. The

white area represents combinations of acceleration and coasting time that are
not feasible.

is performed by varying the final state and maximum acceleration of
the sail.

As show in Figure 15, increasing the backward propagation time
(i.e., moving away from the occultation zone) makes it easier to find
feasible solutions. The minimum time of flight trajectory is obtained
with the highest acceleration and the final state at the edge of the
penumbra region; the lightness number found for this combination is
B = 0.169, corresponding to a sail loading of 9.08 g/mz. However
choosing a final state at the edge of the penumbra means longer cycles
due to the required coasting time to go from X ¢ to the occultation
zone. It follows that the solution with the shortest time of flight is not
necessary the best in terms of number of observations.

Figure 16 illustrates solutions according to the time elapsed be-
tween two consecutive observations. The best case is observed with
a backward coasting of 12.93 days and a maximum acceleration of 1
mm/s2. The length of the cycle is found to be 44.76 days as opposed
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Figure 16. Solar Sail Grid search backward coasting time (from the occul-
tation zone to the penumbra) and max acceleration (left axis). The white
area represents combinations of acceleration and coasting time that are not
feasible.
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Figure 17. Solar Sail Grid search optimal trajectories. The trajectories rep-
resent the blue points in Figure 15.

to 27.56 days obtained from the minimum time-of-flight trajectory.
In Figure 15 it is shown that feasible solutions exists by adopting
smaller values of maximum acceleration that the nominal case of 1
mm/s2; the lowest values of acceleration for which a feasible solution
is found 0.306 mm/s2 and the corresponding to a lightness number
of 0.05175.

7 COMPARISON AND DISCUSSION

Some final considerations can be drawn from the previous simula-
tions and results as summarized in Table 3 - 4. The time optimal
with the best time-of-flight solution allows to decrease the time be-
tween subsequent observations while using 3 times less propellant
than chemically propelled trajectories. As expected the time optimal
solution is less efficient in terms of AV when compared to fuel op-
timal low-thrust trajectory, as the second one requires a third of the
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Figure 18. Trajectories of the best solutions for Fuel Optimal, Time Optimal
and Solar Sail. The red part of the trajectory represents where the engine is
on, cyan represents the battery recharging and black the coasting arcs. For the
solar sail there is no thrust arc.

fuel at the expenses of a higher time-of-flight; a trade-off between
revisit times and fuel consumption has to be performed. Chemical
propulsion enables to achieve similar transfers with a lower AV con-
sumption when compared to low-thrust technologies. However, since
the specific impulse of the chemical engine is smaller, the required
fuel mass can be more than 10 times larger than the one required
for low-thrust. The chemical option remains interesting; in particu-
lar, if few observations are required, chemical propulsion should be
considered due to lower complexities and far less stringent power re-
quirements. The low-thrust option seems to be preferable in terms of
propellant costs, even though the overall system mass of the thruster
should be taken into account to draw final conclusions. The type of
thruster that is analyzed falls into the category of Hall engines. These
type of low-thrust engines tend to be more demanding from a system
power point of view than another low-thrust systems. Nevertheless,
as highlighted in the time optimal solutions of Figure 12, it is possible
to find feasible solutions with lower thrust values. As Hall thrusters
have the advantage of being adaptable over a wide range of power
levels Krejci & Lozano (2018), it seems possible to mitigate power
requirements by considering different thrust value (see, for example,
the time optimal low-thrust best AV reported in Table 3). Neverthe-
less, we highlight that the second burn maneuver in the propelled
mission scenario is always occurring within the penumbra region
of the Sun-Earth system (see, e.g., Figure 18). The situation gets
worse when considering time-optimal trajectories where the satellite
constantly thrusts while passing through the penumbra and umbra
regions. Batteries should be sized accordingly in order to provide
the power required for the burning arcs, and this can quickly escalate
to impractical system designs. In the case of fuel optimal solutions
is possible to take advantage of the coasting arcs after the first burn
arc to recharge the batteries. The coasting arc outside the penumbra
region for the chemical represents 55.3% (10 days) of the whole
coasting arc while for the low-thrust solution the 64.5% (13.6 days).

As an alternative, it is possible to consider fuel and time-optimal
trajectories in the solar sail scenario where the state of the spacecraft
is propagated backwards until it leaves the penumbra region of the
Sun-Earth system. For instance, consider the case where the final
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Figure 19. Trajectories of the best solutions for Fuel Optimal, Time Optimal
and Solar Sail for the solar sail scenario with symmetric initial and final
conditions. The red part of the trajectory represents where the engine is on,
cyan represents the battery recharging and black the coasting arcs. For the
solar sail there is no thrust arc.

state, X ¢, is chosen to be the symmetric of the initial state, X, with
respect to x-axis of the synodic frame.

As shown in Figure 19, battery recharging would take place before
and after the end of the transfer phase, thereby relaxing potential
system engineering constraints. However, if the focus is given only
on AV and time-of-flight, fuel optimal solutions with this mission
profile do not seem to give any advantage when compared with
optimal trajectories from the propelled mission scenario. This is
not the case for time optimal trajectories, which showcase a slight
improvement in terms of total AV costs. As summarized in Table 4,
the length of a cycle increases when compared to the time optimal
transfer of the nominal mission scenario due to the fact that in the
solar sail scenario the coasting time is basically doubled. The results
from the nominal mission scenario appears to be more efficient than
the symmetric solar sail scenario in terms of time elapsed between
consecutive observations. Nevertheless, batteries requirements could
be relaxed by using a symmetric solar sail scenario. Decreasing the
battery size would mean decreasing the overall weight and therefore
cost of the mission. Alternatively, more fuel could be stored on-
board to enable more measurement campaigns and improve upon the
scientific output of the mission.

Transfers in the solar sail scenario are the only options for solar sail
solutions. In fact the solar sail solutions cannot reach the occultation
zone due to the decrease of solar radiation pressure in the last phase
of the transfer. We highlight that the solar sail scenario could provide
longer mission duration as there are practically no constraints due
to fuel consumption. However, prohibitive area-to-mass ratios can
quickly make the solar sail configuration the most unfeasible among
the propulsion systems being analyzed for this work. Indeed, the
values obtained for the optimal solar sail solution are still quite far
from existing solar sail missions. Lightsail 2, for example, has a
lightness number of 0.009799, i.e., 5 to 17 times smaller than the
lightness numbers identified in Section 6.3 Spencer et al. (2020).
Future work will assess the feasibility of designing solar sail transfers
that would avoid the penumbra region and operate at more realistic
lightness numbers.

Earth-enabled Sun Occultation Missions 11

8 CONCLUSION

In this paper a feasibility analysis was performed for a novel sun
occultation mission that uses the Earth as a natural occulter. The
occultation provided by the Earth would enable more frequent and
longer observations of the Sun corona than the one performed on the
ground during total eclipses. Focus was given to optimal trajectories
that bring the spacecraft back into the Earth occultation zone via
either chemical propulsion, low-thrust technologies, or solar sailing.
Fuel, time, and solar sail optimal control problems were solved via
indirect optimization techniques. To deal with the small convergence
radius of the single shooting method, various continuation procedures
were implemented. A new continuation method on the sun-line was
hereby introduced to robustly pass from the time optimal solution to
the solar sail solution.

Grid search analyses revealed that fuel optimal trajectories with
both chemical and low-thrust propulsion could be compatible with a
small satellite mission (100-500 kg). The AV consumption per cycle
was found to be 199 m/s and 213 m/s, with chemical and electric
propulsion, respectively. This propellant cost is relatively small if
compared to the AV equivalent of time optimal solutions. Neverthe-
less, time optimal solutions displayed shorter revisit times between
consecutive observations, making them an interesting alternative for
shorter mission life cycles.

Solar sail solutions are possible and competitive when compared to
traditional propulsion systems due to virtually zero-propellant costs.
However, we highlight that area-to-mass ratios can quickly become
impractical from a technological point view. More research is war-
ranted in order to validate the feasibility of a solar-sail design with
lightness numbers in the range of 8 € [0.0098,0.01]. Future work
will consider fully sunlit transfers that avoid the penumbra region and
explore the feasibility of lower lightness numbers. In parallel to this,
future research will focus on adopting a more accurate dynamical
model, taking into account the Earth’s elliptic orbit and seasonal ef-
fects on the observations given by Earth’s oblateness. More focus will
be given to addressing possible issues in the observations produced
by atmospheric refraction.
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