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Abstract: 

Two-step esterification/transesterification process is considered as the most widely used 

technology for biodiesel synthesis from waste cooking oil (WCO). However, this process 

has currently been explored in a single step using supercritical technology due to its 

higher biodiesel yield and shorter reaction time. This paper presents experimental and 

simulation studies on biodiesel production from high acid value WCO using supercritical 

methanolysis. The effect of four reaction parameters on biodiesel production including 

methanol to oil (M:O) molar ratio, temperature, pressure and time has been investigated. 

Response surface methodology (RSM) has been used to develop an empirical regression 

equation representing reaction variables function in response variable. Analysis of 

variance (ANOVA) has been used to examine the accuracy of the predicted model. 

Optimisation of reaction variables has been performed to maximise biodiesel production. 

The optimal conditions for 99.1% and 97.5% overall conversions of triglycerides and free 

fatty acids (FFA), respectively have been reported at 25:1 M:O molar ratio, 265 oC 

temperature, 110 bar pressure and 18.5 min reaction time. A commercial simulation 

software (Aspen HYSYS) has been used to design and simulate the production process. 

The reaction has been simulated using the developed kinetic data at optimal conditions. 

A comparative analysis has been performed for results obtained experimentally, 

numerically and from simulation. 
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1. Introduction 
The increasing demand of energy, spurred by the accelerated metropolitan growth and 

industrialisation, has led to extensive increase in fossil fuels consumption. Fossil fuels’ prices 

fluctuation and instability are resulted from the huge demand and consumption. In addition, the toxic 

and greenhouse gasses emissions from fossil fuels have significant impacts on air pollution and global 

warming. These facts have enhanced the research on securing sustainable resources of energy 

required for transportation and energy generation [1]. 

Amongst the renewable energies, biofuels including biodiesel and bioethanol have been considered 

as potential substitute for fossil fuels. Harnessing biofuels for fossil fuels replacement provides an 



ideal solution due to their compatibility with the existing engines without the need to perform any 

engine modifications [2]. Biodiesel is a sustainable, green and renewable fuel that is derived from 

animal fats, vegetable oils and microalgae. Biodiesel synthesis is very simple in terms of consumables 

and production time in comparison with bioethanol. Biodiesel production has been readily 

commercialised from edible oils. However, several obstacles have affected the expansion of biodiesel 

production from edible oil including the increase of crop prices, increasing the competition with food 

industry and water shortage. Accordingly, the research has been shifted towards non-edible and waste 

oils for biodiesel production [3].  

WCO is considered as a substantial feedstock for biodiesel production as it significantly decreases 

the total production cost. On the other hand, valorisation of WCO into biodiesel has numerous 

advantages including lowering the cost of waste water treatment (as WCO is usually disposed) and 

contribute to waste utilisation. However, the main obstacles in biodiesel production from WCO is the 

presence of high FFAs and water content. Accordingly, extensive pre-treatment is required prior to 

biodiesel production from WCO using the conventional catalysed techniques [4]. 

Recently, supercritical technology has been implemented in biodiesel production using supercritical 

methanol. It has been reported that the solubility of methanol in oil is very high at its supercritical 

state. Hence, no requirement to catalyse the reaction as the methanol is already completely soluble in 

oil. Saka and Kusdiana [5] have reported the first non-catalytic supercritical production of biodiesel. 

They have reported that supercritical methanol has the ability to esterify the FFAs into FAMEs and 

transesterify the triglycerides into FAMEs simultaneously [6]. 

In his study, high acid value WCO has been used as a feedstock for biodiesel production using 

supercritical methanol. The effect of four reaction variables including M:O molar ratio, temperature, 

pressure and time on biodiesel yield have been examined. RSM using central composite design (CCD) 

has been employed to optimise reaction conditions. Two quadratic models have been developed 

representing empirical relationships between reaction variables and response. 

2. Materials and methods  
In this section, the materials and procedures applied for experimental and simulation work were 

described.  

2.1. Materials  

WCO was collected from different restaurants and industries in Egypt and mixed together to form a 

realistic mixture of waste oil. Methanol 99% (MeOH) was purchased from Fisher Scientific UK Ltd. 

The liquid CO2 cylinder (99.9%) equipped with dip tube was purchased from BOC Ltd., UK. 

2.2. Experimental procedures 

This section presents the procedures of experimental work that was performed. It is divided into four 

subtitles including supercritical methanolysis, experimental design, statistical analysis and reactor 

simulation.  

2.2.1. Supercritical methanolysis 

The detailed procedures for the biodiesel synthesis using supercritical methanol were reported 

elsewhere [7]. In summary, WCO was physically filtered using a strainer to remove any residuals 

resulted from the cooking process. The oil and methanol were weighted and mixed together with a 

specified molar ratio based on each experimental run. The mixture was then fed to a 100-mL high 

pressure reactor made of stainless steel (model 4590, Parr Instrument Company, USA). The reactor 

was fitted with a thermocouple (type J), controller (model 4848), heating mantle and a mechanical 

stirrer. The mixture was then heated to a targeted temperature and then pressurised CO2 using a 

supercritical fluid pump (model SFT-10, Analytix Ltd., U.K) to a targeted pressure. Once the mixture 

reaches the targeted reaction temperature and pressure, it is considered as the starting time of the 

reaction (t=0). The reaction mixture was then quenched with an ice bath once completed the targeted 



reaction time. The reaction was then depressurised and unreacted methanol was recovered using a 

rotary evaporator. Finally, the glycerol was separated from biodiesel using a centrifuge (1500 rpm, 3 

min/cycle). 

2.2.2. Experimental design 

RSM via CCD method was used to design the experimental runs. The experiments were designed to 

investigate the influence of four independent variables. i.e. M:O molar ratio, temperature, pressure 

and time, on the conversion of triglycerides and FFAs. Five levels of each variable were examined 

and coded as -2, -1, 0, 1 and +2, as shown in Table 1. The variables levels were chosen based on our 

previous study on high acid value WCO [8]. Hence, thirty randomised experiments were generated 

using CCD. 

Table 1.  Experimental design variables and their coded levels 

Factor Code Levels 

  -2 -1 0 1 2 
M:O (molar ratio) A 20 25 30 35 40 
Temperature (oC) B 240 250 260 270 280 

Pressure (bar) C 85 110 135 160 185 
Time (min) D 7 12 17 22 27 

2.2.3. Statistical analysis 

Model development was performed using the general quadratic model as shown in Equation 1. 

 

                              𝑌 = 𝑏𝑜 + ∑ 𝑏𝑖𝑥𝑖
𝑛
𝑖=1 + ∑ 𝑏𝑖𝑖𝑥𝑖

2𝑛
𝑖=1 + ∑ ∑ 𝑏𝑖𝑗

𝑛
𝑗>1 𝑥𝑖𝑥𝑗

𝑛−1
𝑖=1 +  ℇ             (1) 

 

Where Y represents the process predictive response, bo represents the model coefficient constant, bi, 

bii, bij, represent the coefficients for intercept of linear, quadratic, interactive terms respectively, while 

Xi, Xj represent independent variables (i≠j). Finally, n represents number of independent variables and 

ɛ represents the random error. 

ANOVA was used to check the adequacy of the predicted models at 95% confidence levels. Design 

Expert 11 software (Stat-Ease Inc., Minneapolis, MN, USA) was used to design the experiments, 

model development and optimisation.   

2.2.4. Reactor simulation 

Aspen HYSYS simulation programme version 8.8 was used to design and simulate the biodiesel 

process (Aspen Technology Inc., USA). The procedures for process simulation based on HYSYS 

simulator consist of several steps including selection of chemical components, appropriate 

thermodynamic models, required process units and operating conditions. Triolein (C57H104O6) and 

Tripalmitin (C51H98O6) were used to represent the triglycerides exists in the WCO as they were 

reported as the major compositions (~90%) based on the chromatographic analysis of the feedstock 

reported elsewhere [8]. Oleic and palmitic acids have been used to represent the FFAs exist in the 

WCO. Hence, methyl oleate (C19H36O2) and methyl palmitate (C17H34O2) were considered as the 

desirable product of the reaction. Tripalmitin component was not available in the HYSYS data bank 

library where it has been introduced as a hypo-component using the hypo-manager tool by identifying 

its physicochemical properties [9]. 

Due to the existence of polar components in the esterification and transesterification reactions, i.e. 

methanol and glycerol, NRTL activity model was selected to represent the thermodynamic model of 

the simulation background.  



3. Results and discussion 
This section covers the results and findings of the present work. It includes the discussion of the 

model development and adequacy checking. This has been followed by discussing effect of process 

variables and their interactions of both triglycerides and FFAs conversions. Then, the optimisation of 

the process variables has been predicted and validated experimentally. Finally, a kinetic study has 

been developed and used to simulate a reactor representing the experimental results.  

3.1. Regression model development  

The experimental results of the 30 experiments developed by Central Composite Design (CCD) have 

been used to develop two regression models for triglycerides and FFAs conversions, respectively. 

Each model has represented the reaction response function in the process variables. Different 

mathematical models have been used to fit the experimental data including linear, two factors 

interactions (2FI), quadratic and cubic polynomial models. It has been observed that the quadratic 

polynomial equation has the highest fitting predicted results to the experimental results. Hence, two 

quadratic models have been developed to represent the experimental results as shown in Equations 2 

and 3.  

 

𝑌1 =  88.68 − 1.54 𝐴 − 1.44 𝐵 − 0.6 𝐶 + 0.037 𝐷 − 2.58 𝐴𝐵 − 0.2 𝐴𝐶 − 1.67 𝐴𝐷 − 0.95 𝐵𝐶 −
0.33 𝐵𝐷 − 0.93 𝐶𝐷 − 0.31 𝐴2 + 1.08 𝐵2 + 2.04 𝐶2 + 1.5 𝐷2      (2) 

 

𝑌2 =  96.36 + 0.28 𝐴 + 0.37 𝐵 − 0.44 𝐶 + 0.47 𝐷 + 𝐴𝐵 − 0.2 𝐴𝐶 − 0.17 𝐴𝐷 − 0.12 𝐵𝐶 +
0.07 𝐵𝐷 −  0.06 𝐶𝐷 + 0.02 𝐴2 + 0.08 𝐵2 + 0.5 𝐶2 − 0.37 𝐷2      (3) 

 

Where Y1 and Y2 represent conversion of triglycerides and FFAs, respectively. While, A, B, C and D 

represent the process variables including M:O molar ratio, temperature, pressure and time, 

respectively. 

3.2. Adequacy checking 

The adequacy checking of the predicted models has been performed using different statistical 

analyses including ANOVA, coefficient of correlation (R2) and the lack of fit. The ANOVA results 

have been illustrated in Tables 2 and 3 for triglycerides and FFAs conversions, respectively. It has 

been reported highly significance of the both models with p-value of <0.0001 and 0.001 for 

triglycerides and FFAs conversions models, respectively. In addition, the R2 value has been reported 

for both models with 0.98 and 0.96 for triglycerides and FFAs conversions models, respectively. 

Finally, the lack of fit analysis has reported non-significant values for both models which demonstrate 

the significance of the developed models in representing the experimental data.  

  



Table 2. Analysis of variance of the developed model for triglycerides conversion  

Source Sum of 

Squares 

df Mean 

Square 

F-value P-value Significance 

Model 483.74 14 34.55 12.63 < 0.0001 HS 

A-MeOH:Oil 57.03 1 57.03 20.85 0.0004 HS 

B-Temperature 49.76 1 49.76 18.19 0.0007 HS 

C-Pressure 8.67 1 8.67 3.17 0.0953 NS 

D-Time 0.0343 1 0.0343 0.0126 0.9123 NS 

AB 106.29 1 106.29 38.85 < 0.0001 HS 

AC 0.8854 1 0.8854 0.3236 0.5778 NS 

AD 44.53 1 44.53 16.28 0.0011 HS 

BC 14.46 1 14.46 5.28 0.0363 S 

BD 1.78 1 1.78 0.6502 0.4327 NS 

CD 14.03 1 14.03 5.13 0.0388 S 

A2 2.67 1 2.67 0.9752 0.3390 NS 

B2 32.13 1 32.13 11.74 0.0037 S 

C2 114.01 1 114.01 41.68 < 0.0001 HS 

D2 61.81 1 61.81 22.59 0.0003 HS 

Residual 41.04 15 2.74    

Lack of Fit 40.49 10 0.654 0.03 0.765 NS 

Pure Error 0.5463 5 0.1093    

Cor Total 524.77 29     

 

Table 3. Analysis of variance of the developed model for free fatty acids conversion  

Source Sum of 

Squares 

df Mean 

Square 

F-value P-value Significance 

Model 30.51 14 10.18 20.34 0.0014 HS 

A-MeOH:Oil 1.90 1 1.90 3.02 0.1026 NS 

B-Temperature 3.44 1 3.44 5.47 0.0335 S 

C-Pressure 4.82 1 4.82 7.67 0.0143 S 

D-Time 5.44 1 5.44 8.65 0.0101 S 

AB 0.8032 1 0.8032 1.28 0.2761 NS 

AC 0.6608 1 0.6608 1.05 0.3215 NS 

AD 0.4731 1 0.4731 0.7526 0.3993 NS 

BC 0.2298 1 0.2298 0.3656 0.5545 NS 

BD 0.0977 1 0.0977 0.1555 0.6989 NS 

CD 0.0734 1 0.0734 0.1168 0.7373 NS 

A2 0.0109 1 0.0109 0.0174 0.8968 NS 

B2 0.1867 1 0.1867 0.2970 0.5938 HS 

C2 6.84 1 6.84 10.88 0.0049 HS 

D2 3.88 1 3.88 6.17 0.0253 S 

Residual 9.43 15 0.6286    

Lack of Fit 5.68 10 0.5680 0.7576 0.6694 NS 

Pure Error 3.75 5 0.7497    

Cor Total 39.94 29     

Where HS, S and NS means highly significant, significant and non- significant, respectively.  



3.3. Effect of process variables 

The present work has investigated the effect of four reaction variables and their interaction on the 

conversion of triglycerides and FFAs. In addition, the interaction effects between process variables 

have been discussed.  

3.3.1. Effect of methanol to oil molar ratio 

It is widely accepted that supercritical methanolysis requires huge excess of methanol during the 

reaction. The usage of excess of methanol is favourable for several reasons including the decrease of 

the critical conditions of the reactants mixture, shift the reaction equilibrium towards the product and 

enhance the solubility of oil and methanol [10]. In the present study, the range of the studied M:O 

molar was between 20:1 to 40:1 as shown in Table 1. It has been observed from the ANOVA results 

of the predicted models that M:O molar ratio has highly significant effect on triglycerides conversion 

as shown in Table 2. However, it has a non-significant effect on FFAs conversion. It is clearly 

observed from Figure 1 the negative effect of M:O molar ratio on triglycerides conversion where the 

increasing molar ratio of methanol decrease the conversion of triglycerides. Similar trend has been 

reported previously for the effect of M:O molar ratio on biodiesel yield on similar feedstock [8].  

On the other hand, the increasing effect of M:O molar ratio has positive effect on FFAs as shown in 

Figure 2. However, the increasing effect is not significant as reported in Table 3. The increasing effect 

of FFA conversion is about 2% from 25:1 to 35:1 M:O molar ratio. This might attribute to the 

stoichiometry of the esterification where only one mole of methanol is required to esterify 1 mole of 

fatty acid. These results are in agreement to previously reported studies [10–12]. 

3.3.2. Effect of reaction temperature 

Supercritical methanolyisis requires harsh conditions where the reaction should be operated at 

temperature higher than the critical temperature of methanol (240 oC). Increasing reaction 

temperature enhance the reaction rate and increase the productivity. However, high temperatures 

might cause thermal cracking or degradation of the chemical compounds. For instance, it has been 

reported that at temperatures higher than 280 oC, thermal degradation has been reported for FAME 

[2]. Hence, this study has investigated the effect of reaction temperature between 240 oC and 280 oC 

as shown in Table 1.  

It has been observed that the increasing rate of temperature has increasing effect on triglycerides 

conversion at lower M:O molar ratio. However, negative impact of increasing temperature has been 

reported at higher M:O molar ratio. These results indicates that at higher M:O molar ratio, thermal 

degradation could occur at temperature lower than 280 oC as the excess of methanol lower the critical 

point of the reactants mixture.  

3.3.3. Interactive effect of reaction temperature and methanol to oil molar ratio 

It has been reported in Table 2, a high significant interactive effect between reaction temperature and 

M:O molar ratio on triglycerides conversion. This highly significant effect could be demonstrated in 

Figure 1 where at low reaction temperature (250 oC), the increasing effect of M:O molar ratio slightly 

increase the conversion of triglycerides. However, at higher temperatures (270 oC), the increasing 

effect of M:O molar ratio has significant decreasing effect on the conversion of triglycerides.  

On the other hand, the interactive effect between reaction temperature and M:O molar ratio on FFAs 

conversion is not significant as reported in Table 3. It is clearly demonstrated in Figure 2 that the 

increasing effect of M:O molar ratio on FFA conversion is the same at different reaction temperature.  

3.3.4. Effect of reaction pressure 

The influence of the reaction pressure has been investigated between 85 and 185 bar as shown in 

Table 1. Increasing the reaction pressure has been performed using CO2 gas, which also acts as a co-

solvent for the reaction by enhancing the solubility of methanol in oil [13]. In the present study, the 

increasing effect of pressure has negative effect on both conversion of triglycerides and FFAs as 



shown in Figures 3 and 4, respectively. These results are in agreement with previous stud that reported 

negative effect of increasing the reaction pressure on biodiesel production [14].   

3.3.5. Effect of reaction time 

It has been observed that reaction time has non-significant effect on triglycerides conversion as 

reported in Table 2. It is clearly shown in Figure 3 that the increasing effect of reaction time decreases 

the conversion of triglycerides until 16 min and then has positive effect at longer reaction time. A 

similar trend of the effect of reaction time has been observed in Figure 4 on FFAs conversion. The 

increasing effect of reaction time has slightly increasing effect on FFAs conversion followed by 

negative effect at longer reaction time.  

 

  

Figure 1. Response surface for M:O molar ratio and reaction temperature versus triglycerides 

conversion 
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Figure 2. Response surface for M:O molar ratio and reaction temperature versus FFAs conversion 

 

 

Figure 3. Response surface for reaction pressure and time versus triglycerides conversion 
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Figure 4. Response surface for reaction pressure and time versus FFAs conversion 

 

3.4. Process optimisation  

Numerical optimisation using RSM has been extensively used in optimising biodiesel production 

[1,15–18] and different applications [19]. In the present study, numerical optimisation has been 

employed to minimise the process variables and to maximise the process responses. The optimisation 

targets for process variables and responses have been presented in Table 4.  

 

Table 4. Optimisation constraints used to predict optimum conditions for biodiesel production  

Factor Code Goal Limits 

 Lower Upper 

M:O (molar ratio) A Minimise 25 35 

Temperature (oC) B Minimise 250 270 

Pressure (bar) C Minimise 110 160 

Time (min) D Minimise 12 22 

Triglycerides conversion  Y1 Maximise 82.30 100 

FFAs conversion  Y2 Maximise 93.16 100 

 

Design Expert software has used the combination of the targets and developed 100 solutions where 

the solution with highest desirability has been selected. The highest desirability optimal conditions 

of 91% have been selected at M:O molar ratio, temperature, pressure and time of 25:1, 265 oC, 110 

bar and 18.5 min, respectively. The predicted optimal conditions have achieved 99.1% and 97.5% for 

overall conversions of triglycerides and free fatty acids (FFA), respectively. An experimental 

validation has been performed on the predicted optimal conditions resulting in very similar 

conversion with 0.19% relative error. 
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3.5. Reactor Simulation  

The experimental results have been used to simulate a reactor on Aspen HYSYS software to represent 

the reaction at the same experimental conditions. The developed kinetic data has been used to identify 

the kinetic simulation requirements including activation energy and frequency factor by 68.8 kJ/mol 

and 4.01 s-1, respectively. The reactor feed stream has been identified using the developed optimum 

conditions at 265 oC and 110 bar. The feed stream rate has been identified based on the M:O molar 

ratio with 250 kmol/h of methanol with 10 kgmol/h of oil. The volume of the reactor has been 

identified according to the reaction residence time and flow rate. Accordingly, the reactor has been 

successfully simulated and resulted in triglycerides and FFAs conversions of 99.3% and 98.5%.  

4. Conclusions 
The conversion of triglycerides and FFAs through supercritical transesterification/esterification has 

been analysed in this study. The effects of the controllable variables and their interactive effects on 

the process responses have been investigated. Two quadratic polynomial models have been developed 

to represent the responses function in the process variables. Numerical optimisation has been 

implemented to predict the optimal process parameters. The optimum conditions have been reported 

at 25:1 M:O molar ratio, 265 oC temperature, 110 bar pressure and 18.5 min reaction time where 

99.1% and 97.5% of overall conversions of triglycerides and FFAs have been achieved, respectively. 

The predicted optimal conditions have been validated experimentally. Finally, a kinetic reactor has 

been designed and simulated at the developed optimum conditions resulting in similar outcomes to 

the experimental conversions. 
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