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Abstract

In adults, glucocorticoids act to match the supply and demand for energy during 
physiological challenges, partly through actions on tissue mitochondrial oxidative 
phosphorylation (OXPHOS) capacity. However, little is known about the role of the 
natural prepartum rise in fetal glucocorticoid concentrations in preparing tissues for the 
increased postnatal energy demands. This study examined the effect of manipulating 
cortisol concentrations in fetal sheep during late gestation on mitochondrial OXPHOS 
capacity of two skeletal muscles with different postnatal locomotive functions. 
Mitochondrial content, biogenesis markers, respiratory rates and expression of proteins 
and genes involved in the electron transfer system (ETS) and OXPHOS efficiency were 
measured in the biceps femoris (BF) and superficial digital flexor (SDF) of fetuses either 
infused with cortisol before the prepartum rise or adrenalectomised to prevent this 
increment. Cortisol infusion increased mitochondrial content, biogenesis markers, 
substrate-specific respiration rates and abundance of ETS complex I and adenine 
nucleotide translocator (ANT1) in a muscle-specific manner that was more pronounced 
in the SDF than BF. Adrenalectomy reduced mitochondrial content and expression of 
PGC1α and ANT1 in both muscles, and ETS complex IV abundance in the SDF near term. 
Uncoupling protein gene expression was unaffected by cortisol manipulations in both 
muscles. Gene expression of the myosin heavy chain isoform, MHCIIx, was increased 
by cortisol infusion and reduced by adrenalectomy in the BF alone. These findings 
show that cortisol has a muscle-specific role in prepartum maturation of mitochondrial 
OXPHOS capacity with important implications for the health of neonates born pre-term 
or after intrauterine glucocorticoid overexposure.

Introduction

In adults, glucocorticoids are stress hormones with 
metabolic actions on a wide range of tissues that maintain 
functions critical to survival in adverse environmental 
conditions and during normal physiological challenges 

to homeostasis-like exercise and pregnancy (Picard et  al. 
2018, Bartho et al. 2020, Casuro & Huertus 2020). Many of 
these functions require energy in the form of ATP, which is 
produced mainly by oxidative phosphorylation (OXPHOS) 
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in the mitochondria (Nunnari & Suomalainen 2012, 
Rodriguez-Cano et al. 2020). Mitochondria, therefore, have 
a key role in the response to both internal and external 
environmental cues and are known to be regulated  
by glucocorticoids in adulthood (Lee et  al. 2013,  
Lapp et al. 2019).

Mitochondria are dynamic organelles that respond 
to changes in energy demand by biogenesis, fusion/
fission and by alterations in the abundance of the electron 
transfer system (ETS) complexes and other proteins 
regulating ATP production (Goffat & Wiesner 2003, Liang 
& Ward 2006, Chandhol et  al. 2018). Utilising a range of 
metabolic substrates, ATP is produced by ATP synthase 
using the proton gradient across the inner mitochondrial 
membrane generated by redox reactions at ETS complexes 
with oxygen as the final electron acceptor. The efficiency 
of mitochondrial OXPHOS also depends on uncoupling 
proteins (UCPs) that dissipate the proton gradient when 
activated, and on transporters that shuttle adenine 
nucleotides across the mitochondrial membranes (Kimura 
& Rasmussen 1977, Nunnari & Suomalainen 2012). 
Glucocorticoids have been shown to influence many of 
these regulatory processes in mitochondria of several adult 
tissues, including skeletal muscle (Djouadi et  al. 1994, 
Rachamim et al. 1995, Weber et al. 2002, Du et al. 2009).

Glucocorticoids can also act as stress signals in the 
fetus but, during normal conditions in late gestation, their 
primary role is as a signal of impending delivery (Reynolds 
2013, Fowden & Forhead 2015). In most mammals studied 
to date, fetal glucocorticoid concentrations rise naturally 
towards term and switch fetal tissues from growth to 
differentiation in preparation for birth (Fowden et  al. 
1998). This prepartum glucocorticoid surge also activates 
many processes that have little or no function in utero 
but which are essential for neonatal survival such as 
breathing, thermogenesis, glucogenesis and locomotion 
(Fowden et al. 2016). All these new functions require extra 
energy but relatively little is known about the effects of 
glucocorticoids on mitochondrial function in fetal tissues 
during late gestation, particularly in species that are mobile 
from birth.

In several species, mitochondrial function is known 
to rise between fetal and neonatal life in several different 
tissues (Prieur et  al. 1998, Lehman et  al. 2000, Nakai 
et  al. 2002, Minai et  al. 2008, Rog-Zielinska et  al. 2015, 
Davies et  al 2020). Administration of potent synthetic 
glucocorticoids during rodent pregnancy has also been 
shown to affect the abundance of mitochondrial proteins 
in fetal tissues near term (Nakai et al. 2002, Prieur et al. 1998,  

Rog-Zielinska et  al. 2015). In addition, a recent study in 
fetal sheep has demonstrated that the natural prepartum 
cortisol surge closely parallels the increase in mitochondrial 
OXPHOS capacity of skeletal muscle towards term (Davies 
et al. 2020). However, whether these changes are the direct 
consequence of the fetal cortisol increment remains 
unknown. This study, therefore, examined the hypothesis 
that cortisol causes maturation of mitochondrial OXPHOS 
capacity in skeletal muscle towards term.

Methods

Animals

A total of 24 time-mated pregnant ewes and 6 newborn 
twin lambs were used in this study. Of the pregnant ewes, 
12 carried single fetuses while the remainder were twin-
bearing. Pregnant ewes were group-housed before surgery 
and singly housed within sight and sound of other sheep 
after surgery. They had free access to hay and water at 
all times except for 12–18 h before surgery when food 
was withheld. All animal procedures were carried out 
under the UK Animals (Scientific Procedures) Act 1986 
Amendment Regulations 2012 following ethical review by 
the University of Cambridge Animal Welfare and Ethical 
Review Body.

Surgical procedures

Between 114 and 119 days of gestational age ( dGA), surgery 
was carried out on 6 twin-bearing and 12 single-bearing 
ewes under isofluorane anaesthesia (1.5–2% in 5:1 O2:N2O 
mixture) with positive pressure ventilation. In twin-
bearing ewes, one fetus was adrenalectomised (AX) and its 
twin was sham-operated as a control (Barnes et  al. 1978). 
In the single-bearing ewes, catheters were inserted into the 
maternal dorsal aorta and the fetal dorsal aorta and caudal 
vena cava, via the femoral vessels, and exteriorised through 
the maternal flank (Fowden & Silver 1995). The ewes were 
monitored throughout surgery using a capnograph and 
pulse oximeter. At surgery, the ewes were given antibiotics 
(oxytetracycline, 20 mg/kg i.m., Allamycin, Norbrook 
Laboratories, Newry, UK and penicillin, Depocillin, 
Intervet international, Milton Keynes, UK, 15 mg/kg 
i.m. to mother and intra-amniotically or i.v. to fetus) and 
analgesia (1 mg/kg carprofen, s.c. Rimadyl, Zoetis, London 
UK). Penicillin treatment to the ewe continued for 2 days 
post-operatively.
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Experimental procedures

All catheterised animals were sampled daily to maintain 
catheter patency and to collect blood samples to measure 
blood gases and concentrations of metabolites and 
hormones. Following post-operative recovery for at least 
5 days, the catheterised fetuses were assigned randomly 
to receive a 5-day i.v. infusion of either saline (0.9% NaCl, 
3 mL/day, n = 6, control, 3 male M: 3 female F) or cortisol 
(2–3 mg/kg/day Solu-Cortef; Pharmacia, n = 6, 4M:2F). At 
the end of infusion (128–131 dGA), the ewes and fetuses 
were killed by administration of a lethal dose of anaesthetic 
(200 mg/kg sodium pentobarbitone, iv, Pentoject, 
Animalcare Ltd, York, UK) and tissues collected from the 
fetus. Similarly, at 141–145 dGA, the ewes with AX (4M:2F) 
and sham-operated fetuses (2M:4F) were euthanised with 
an overdose of anaesthetia as above and the fetuses were 
delivered in random order. A blood sample was taken from 
the umbilical artery of each fetus before administration of 
a lethal dose of sodium pentobarbitone (200 mg/kg) and 
tissue collection. At delivery, the two female AX fetuses 
had small adrenal remnants (80 mg and 180 mg) so neither 
was used for any subsequent analyses.

Umbilical arterial blood and skeletal muscle were 
also collected from twin fetuses of six unoperated ewes at  
102–105 dGA as described above. Tissue from only one 
fetus of each pair (2M:4F) was randomly selected for further 
study. In addition at 1–2 days of postnatal age, one lamb 
from six unoperated pairs of twins (3M:3F) was euthanised 
for tissue collection using sodium pentobarbitone  
(200 mg/kg) after collection of a blood sample from the 
jugular vein. All blood samples were collected into heparin-
coated tubes and, after centrifugation, the plasma was 
stored at −20°C for future hormone analysis. Immediately 
following euthanasia, the fetal and newborn lambs were 
weighed and measured.

Two hindlimb skeletal muscles with different postnatal 
functions in locomotion, the biceps femoris (BF) and 
superficial digital flexor (SDF), were immediately collected 
and weighed. The BF is a large powerful, multifunctional 
muscle producing mechanical power by shortening 
while the SDF is a small flexor muscle generating force 
predominately by isometric contraction (Fourie 1962, 
Biewener 1998). The BF controls locomotive gait through 
extension and abduction of the hindlimb whereas the 
SDF controls foot placement important for allowing the 
neonate to stand (Fourie 1962, Walker & Luff 1995). Both 
muscles are of mixed fibre type with a combination of 
slow-twitch type I and fast-twitch type II fibres (Davies 
2018). In late gestation, the SDF has proportionally more 

type I fibres than the BF, although both muscles still  
contain undifferentiated fibres at birth (Davies 2018, 
Davies et al. 2020).

Samples of these muscles were snap-frozen in liquid 
nitrogen before being stored at −80°C until required. 
Additionally, in the fetuses at 129 and 144 dGA, a small 
sample (≈100–200 mg) from the centre of each muscle 
was collected into ice-cold biopsy preservation solution 
(BIOPS; pH 7.1 solution containing 2.77 mM CaK2EGTA, 
7.23 mM K2EGTA, 20 mM imidazole, 20 mM taurine, 50 
mM MES, 0.5 mM dithiothreitol, 6.56 mM MgCl2.H2O, 
5.77 mM Na2ATP and 15 mM phosphocreatine; Pesta & 
Gnaiger 2012) before dissection for respirometry.

Respirometry

Respirometry measurements were made on the skeletal 
muscle samples from the AX, sham-operated, cortisol- 
and saline-infused groups of fetuses using the protocol 
described previously for this tissue (Kuznetsov et  al. 
2008, Pesta & Gnaiger 2012). Briefly, 2–3 mg pieces of 
tissue were dissected in BIOPS, bundles of 6–8 fibres were 
teased apart before incubating with saponin for 20 min 
to permeabilise the plasma membrane (100 µg saponin/
mL BIOPS). Samples were transferred into an isotonic 
respiration medium maintained at 37°C (MiR05; pH7.1 
solution containing 20 mM HEPES, 0.5 mM EGTA,  
3 mM MgCl2.6H2O, 10 mM KH2PO4, 20 mM taurine,  
110 mM sucrose, 60 mM K-lactobionate and 1g/l BSA; 
Pesta & Gnaiger 2012, Gnaiger et  al. 2000) in order to 
measure oxygen (O2) consumption using Clark-type 
oxygen electrodes (Strathkelvin Instruments, Glasgow, 
UK). Substrates were added into the chambers at saturating 
concentrations according to three protocols as previously 
described (Davies et  al. 2020). Malate (2 mM), glutamate 
(10 mM), ADP (10 mM) and succinate (10 mM) were 
added in sequence to give a measure of maximal ADP-
coupled oxygen consumption when electron entry to 
both complexes I and II of the ETS is saturated. The second 
protocol involved the addition of malate (2 mM), pyruvate 
(5 mM) and ADP (10 mM) was used to obtain a measure 
of oxidative capacity for pyruvate (Py), a derivative of 
glucose. Thirdly, malate (2 mM), palmitoyl-carnitine 
(PC, 40 µM) and ADP (10 mM) were added to provide a 
measure of fatty acid oxidation capacity. In all protocols, 
leak state was measured in the presence of substrates before 
the addition of ADP, and the experiment concluded with 
the addition of cytochrome c (10 µM) to check outer 
mitochondrial membrane integrity. Results were excluded 
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if there was a ≥15% increase in O2 consumption following 
cytochrome c addition. Additionally, data were excluded 
if the rate of O2 uptake over the baseline period before 
substrates were added, exceeded 0.001 µmol O2/min as this 
suggests insufficient plasma membrane permeabilisation 
(Kuznetsov et  al. 2008). Following respirometry, muscle 
fibres were extracted from chambers and dried for 48 h 
before being weighed, and results are presented as O2 
consumption/mg dry weight.

Biochemical analyses

Hormone assays
Plasma cortisol concentrations were measured using a 
human ELISA (RE52061, Tecan, Männedorf, Switzerland), 
previously validated for sheep plasma (Vaughan et  al. 
2016). Intra- and inter-assay coefficients of variation for 
the cortisol assay were 3 and 5%, respectively, and the limit 
of detection was 5.2 ng/mL. Because cortisol increases fetal 
T3 concentrations towards term and thyroid hormones 
are known to affect O2 consumption by fetal tissues 
(Fowden & Silver 1995, Forhead et  al. 2006, Davies et  al. 
2020, 2021), total plasma T3 and T4 were also measured 
using radioimmunoassays (Kit numbers, 06B254215 and  
06B 254011, respectively, MP Biomedical, Eschwege, 
Germany), previously validated for sheep plasma (Fowden 
& Silver 1995). Intra- and inter-assay variations were less 
than 2 and 8% for T3 and 3 and 5% for T4. The limit of 
detection was 0.14 ng/mL for T3 and 11.3 ng/mL for T4.

Biochemical composition
Water content was calculated as a percentage by weighing, 
freeze-drying overnight and then re-weighing samples of 
frozen muscles. Following extraction from homogenised 
frozen tissue, protein content was measured using a 
bicinchoninic acid assay and expressed as mg protein 
per gram tissue (wet weight) or as mg protein per mg dry 
weight calculated using the percentage water content of 
the muscle.

Citrate synthase activity
Activity of citrate synthase (CS), an enzyme of the 
tricarboxylic acid cycle, is a putative marker of muscle 
mitochondrial content (Larsen et  al. 2012) and was 
measured spectrophotometrically in the skeletal muscles. 
Ten to thirty micrograms of homogenised protein was 
added to the assay buffer (pH 8) containing 0.1 mM 
5,5’-Dithio-bis(2-nitrobenzoic acid), DTNB, 1 mM 
oxaloacetate and 0.3 mM acetyl-CoA. CS activity was 
determined as the maximal rate of absorbance change 

at 412 nm over 3 min (a measure of the rate of 5-thio-2-
nitrobenzoic acid production). CS activity is expressed as 
per mg protein.

Western blotting
Frozen muscle samples (55 mg ± 10%) were homogenised, 
total protein extracted and diluted to 2.5 µg/µL in 8% 
SDS solution. Protein was electrophoresed on a 12% 
polyacrylamide gel, transferred to a nitrocellulose 
membrane and stained with Ponceau-S to allow for 
normalisation of protein loading. Membranes were 
incubated either with primary antibodies to ETS complexes 
I-IV and ATP synthase (OXPHOS antibody cocktail; 458099; 
Life Technologies; 1:1000), followed by an HRP-linked 
anti-mouse secondary antibody (NIF82; GE Healthcare; 
1:5000) or to ANT1 (Abcam, ab1002032, 1:1000), followed 
by HRP-linked donkey anti-rabbit IgG (GE healthcare; 
NA934V, 1:5000). ECL was used to visualise protein bands 
and quantified using ImageJ (http://rsb.info.nih.gov/ij/).

qRT-PCR
Frozen skeletal muscle samples were powdered and RNA 
extracted using TRIzol (Thermo Fisher) and chloroform, 
and the aqueous phase used in the RNeasy Plus kit (Qiagen). 
RNA concentration was measured using a Nanodrop 
ND-1000 spectrophotometer, diluted to 50 ng/µL  
and used for cDNA synthesis (High Capacity cDNA RT 
Kit; Applied Biosystems). qRT-PCR was performed using 
a MESA BLUE Mastermix (Eurogentec, Liège, Belgium) 
following the manufacturer's recommended protocol  
(5 min at 95°C followed by 40 amplification cycles of 15 s at 
95°C and 1 min at 60°C). The genes assayed, their encoded 
protein and function together with the primer sequences 
used are given in Table 1. Results were analysed using 2−ΔΔCt 
method (Schmittgen & Livak 2018) and expressed relative 
to the geometric mean of S15 and 18S housekeeper genes 
and set relative to the average of the relevant control group. 
All samples were run in triplicate and housekeeper gene 
expression did not differ significantly between groups.

Statistical analyses

Data are presented as mean ±s.e.m., and GraphPad Prism 
Version 6.05 (www.graphpad.com) was used for analyses. 
A one-way ANOVA was used to assess the developmental 
changes in CS and plasma cortisol concentration data 
followed by Tukey’s multiple comparison post hoc test. A 
t-test or non-parametric Mann–Whitney test, as appropriate, 
was used to compare the data between sham-operated 
and AX and between cortisol- and saline-infused fetuses.  

https://doi.org/10.1530/JOE-21-0171
https://joe.bioscientifica.com	 © 2021 The authors

Published by Bioscientifica Ltd.
Printed in Great Britain

This work is licensed under a Creative Commons 
Attribution 4.0 International License.

Downloaded from Bioscientifica.com at 06/20/2022 02:52:51PM
via University College London

http://rsb.info.nih.gov/ij/
https://doi.org/10.1530/JOE-21-0171
https://joe.bioscientifica.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


57

Research

K L Davies et al. Cortisol and fetal 
mitochondrial function

251:1Journal of 
Endocrinology

Where appropriate, a t-test of the significance of a single 
mean was used to assess the mean difference between the 
AX and sham-operated twin pairs. Pearson’s correlation 
coefficient was used to assess correlations between 
variables and log-transformed hormone concentrations. 
Partial correlation analysis was applied to determine the 
relationship between two variables controlling for a third. 
P ≤ 0.05 was considered significant throughout.

Results

Hormone concentrations, morphometry and body 
composition

In line with previous findings (Barnes et al. 1978, Fowden 
et  al. 1998), cortisol concentrations increased in control 
animals towards term and on into the immediate neonatal 
period (Fig. 1A). Relative to saline-infused fetuses at 
129 dGA, cortisol infusion significantly increased the 

cortisol concentration to values similar to those seen in 
the older sham-operated controls at 144 dGA (Fig. 1A). In 
contrast, AX prevented the normal prepartum rise in fetal 
cortisol concentrations; the mean value in AX fetuses 
was significantly lower than the concentrations in sham-
operated controls at 144 dGA and similar to control values 
at the earlier gestational ages (Fig. 1A). Fetal plasma T3 
concentrations were significantly higher in cortisol – than 
saline-infused fetuses but were not significantly affected by 
AX, although values had a tendency to be lower in the AX 
than sham-operated fetuses (P = 0.057, Table 2). There were 
no changes in fetal plasma T4 concentrations with cortisol 
infusion or AX (Table 2).

Neither cortisol infusion nor AX had a significant 
effect on fetal morphometric measurements or muscle 
weights compared with their respective controls (Table 2).  
Water content was significantly lower in the BF of 
cortisol-infused than saline-infused fetuses at 129 dGA 
and significantly higher in both muscles of AX compared 

Table 1 Forward and reverse primer sequences used for SYBR qRT-PCR.

Target gene, encoded protein and function Primer sequences Reference

Ribosomal protein S15 (RPS15) F: ATCATTCTGCCCGAGATGGTG Yates et al. 2016
R: TGCTTCACGGGCTTGTAGGTG

18S rRNA F: GTAACCCGTTGAACCCCATT Byrne et al. 2010
R: CCATCCAATCGGTAGTAGCG

Peroxisome proliferator-activated receptor gamma 
coactivator 1 alpha (PPARGC1A)

 PGC1α protein F: GAGATGTGACCACCGAGAATGAG Myers et al. 2008
 Regulator of Mitochondrial biogenesis R: GCTGTTGACAAATGCTCTTCGC

R: CACCGCCGAATAATTCACTT
Mitofusin 2 (MFN2)
 MFN2 protein F: CATCAGCTATACTGGCTCCAACT Davies et al. 2020
 Regulator of mitochondrial membrane fusion R: AATGAGCAAAAGTCCCAGACA
Dyamin-related protein1 (DRP1)
 DRP1 protein F: ATGCCAGCAAGTCCACAGAA Reddy et al. 2016
 Regulator of mitochondrial membrane fission R: TGTTCTCGGGCAGACAGTTT
Uncoupling protein 2 (UCP2)
 UCP2 protein F: AAGGCCCACCTAATGACAGA Davies et al. 2020
 Mitochondrial uncoupling R: CCCAGGGCAGAGTTCATGT
Uncoupling protein 3 (UCP3)
 UCP3 protein F: GAAAGGAATTCTGCCCAACA Kelly et al. 2011
 Mitochondrial uncoupling R: TCCAAAGGCAGAGACGAAGT
SLC25A4
 Adenine nucleotide translocase 1 (ANT1) protein F: TGGTGTCCTACCCCTTTGAC Kelly et al. 2011
 Transport of ADP and ATP across mitochondrial 

membranes. Mild mitochondrial uncoupling
R: CAGGCGCCTTTGAAGAAAGC

Myosin heavy chain 7 (MHY7)
 MHCI protein F: GAGATGGCCGCGTTTGGGGAG Yates et al. 2016
 Muscle contraction R: GGCTCGTGCAGGAAGGTCAGC
MHY2
 MHCIIa protein F: ACCGAAGGAGGGGCGACTCTG Yates et al. 2016
 Muscle contraction R: GGCTCGTGCAGGTGGGTCATC
MHY1
 MHCIIx protein F: AAAGCGACCGTGCAGAGCAGG Yates et al. 2016
 Muscle contraction R: GGCTCGTGCAGGTGGGTCATC
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to sham-operated fetuses at 144 dGA (Table 2). Cortisol 
infusion had no effect on protein content of either muscle, 
whereas AX reduced the protein content of the BF alone 
when expressed per gram wet weight but not per gram dry 
weight (Table 2). Cortisol infusion has no effect on the fetal 
blood gas status or concentrations of glucose and lactate 
during the infusion period before tissue collection (data 
not shown).

Muscle mitochondrial content

In control fetuses, CS activity increased towards term with 
a further increase after birth in both muscles (Fig. 1B and 
C), consistent with previous findings in the BF (Davies et al. 
2020). Cortisol infusion had no effect on CS activity in the 
BF but significantly increased activity in the SDF relative to 
saline-infused control values (Fig. 1B and C). In contrast, 
CS activity was significantly less in AX than sham-operated 
fetuses near term in the BF but not in the SDF when 
comparing group means (Fig. 1B and C). However, a paired 
comparison between the AX fetus and its sham-operated 
twin showed CS activity was significantly less in the AX 
twin than its sibling for both the BF (−0.090 ± 0.006 μmol/
min/mg protein, n = 4, P < 0.01) and SDF (−0.040 ± 0.008 
μmol/min/mg protein, n = 4, P < 0.05, t-test for significance 
of single mean, both muscles).

When data from all the groups were combined 
irrespective of age or treatment, there were significant 
positive correlations between CS activity and the 
concentrations of both cortisol and T3 in each muscle 
(Table 3). As the cortisol and T3 concentrations were also 
correlated (r = 0.720, n = 33, P < 0.001), partial correlation 
analyses were used to determine the relative importance 
of the two hormones when the confounding effect of 
the other was taken into account. This showed that both 
hormones have significant influences on CS activity with 
plasma T3 as the more statistically significant factor in both 
muscles (Table 3).

Muscle mitochondrial biogenesis and 
membrane dynamics

Consistent with the changes in mitochondrial density, 
manipulating fetal cortisol concentrations had  

Figure 1
Individual and mean (±s.e.m.) values of (A) fetal cortisol concentration and 
the activity of citrate synthase (CS) in (B) the biceps femoris (BF) and (C) 
superficial digital flexor (SDF) muscles of unoperated newborn lambs (n = 6) 
and fetal sheep delivered either unoperated at 104 days of gestational age 
( dGA, n = 6), at 129 dGA after infusion with saline (S-I, n = 6) or cortisol  
(C-I, n = 6) for 5 days before delivery at 129 dGA or at 144 dGA after 
adrenalectomy (AX, n = 4) or sham operation (Sham, for cortisol n = 6, for 
CS n = 5 BF, n = 6 SDF) at 114–119 dGA. Mean (±s.e.m.) values for control 

animals (104 dGA, S-I, sham-operated and newborn animals) are shown 
with white columns while those for animals with cortisol concentrations 
that were manipulated experimentally (C-I and AX) are shown with grey 
columns. Control columns with different letters as superscripts are 
significantly different from each other (one-way ANOVA, P < 0.05). An 
asterisk indicates a significant difference from the respective control group 
(*P < 0.05, **P < 0.01, t-test or Mann–Whitney Rank sum test).
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muscle-specific effects on gene expression of PGC1α and 
MFN2. Expression of PGC1α was significantly higher in the 
SDF of cortisol – than saline-infused fetuses, but not in the 
BF, and was reduced significantly by AX in both muscles 
near term (Fig. 2A and B). Expression of MFN2 in the BF was 
unaffected by varying cortisol concentrations (Fig. 2C). In 
contrast in the SDF, MFN2 expression was upregulated by 
cortisol infusion and down-regulated by AX relative to 
their respective controls (Fig. 2D). In both muscles, varying 
cortisol concentrations had no significant effect on DRP1 
expression (Fig. 2E and F).

Muscle oxygen consumption

The ADP-coupled rates of O2 consumption by the two 
muscles are shown in Fig. 3 for the three different respiratory 
protocols. In the BF, cortisol infusion had no effect on 
maximal OXPHOS or PC-supported oxidative capacity 
but significantly increased Py-supported O2 consumption 
relative to saline-infused values (Fig. 3A, B and C). In 
contrast, in the SDF, cortisol infusion significantly 
increased maximal OXPHOS and PC-supported oxidative 
capacity together with a tendency for higher rates of 
Py-supported respiration compared to saline-infused 

values (P = 0.064, Fig. 3D, E and F). In both muscles, AX had 
no significant effect on respiratory rates using any of the 
substrates, although there was a tendency for lower BF rates 
of Py-supported respiration after AX (P = 0.093, Fig. 3B).

When the respiratory data were combined for all 
fetuses irrespective of treatment or gestational age for 
each substrate separately, there were significant positive 
correlations between the BF rate of Py-linked respiration 
and the concentrations of both cortisol and T3, although 
partial correlation showed no significant correlations with 
either hormone alone (Table 3). There were no significant 
correlations between the BF respiratory rates with the 
other substrates and either hormone concentration  
(Table 3). In the SDF, cortisol concentrations were  
positively correlated with PC-linked respiration and 
maximal OXPHOS but not Py-linked respiration while T3 
levels were positively correlated to all three respiratory 
rates (Table 3). Partial correlation of the SDF data showed 
no effect of either cortisol or T3 alone on PC-linked 
respiration but a statistically dominant effect of T3 on 
maximal OXPHOS (Table 3).

In the BF, leak state respiration, a measure of O2 
consumption for processes other than ATP production, was 
unaffected by manipulating fetal cortisol concentrations, 

Table 2 Hormone concentrations, morphometry and biochemical composition. Mean (±s.e.m.) values of T3 and T4 
concentrations, morphometric measurements and muscle biochemical composition of the biceps femoris (BF) and superficial 
digital flexor (SDF) muscles of sheep fetuses delivered either at 129 days of gestational age (dGA) after a 5-day infusion of cortisol 
(n = 6) or saline (n = 6) or at 144 dGA after adrenalectomy (n = 4, AX) or sham operation (Sham, n = 6) at 114–119 dGA.

129 dGA 144 dGA
Saline-infused Cortisol-infused Sham AX

Thyroid hormone concentrations
 Plasma T3 (ng/mL) 0.43 ± 0.03 0.70 ± 0.14a 0.51 ± 0.09 0.23 ± 0.03b

 Plasma T4 (ng/mL) 122.0 ± 9.5 131.6 ± 4.0 98.0 ± 19.0 101.3 ± 13.1
Morphometry
 Body weight (kg) 3.1 ± 0.1 3.0 ± 0.1 3.63 ± 0.27 3.91 ± 0.29
 Crown-rump length (cm) 43.3 ± 0.6 43.8 ± 0.5 48.1 ± 0.9 48.8 ± 1.1
 Abdominal girth (cm) 33.4 ± 0.6 33.2 ± 1.0 35.3 ± 1.2 37.4 ± 2.5
 BF weight (g) 13.07 ± 0.61 12.30 ± 0.87 15.2 ± 1.5 15.2 ± 1.2
 BF:BW (g/kg) 4.28 ± 0.09 4.14 ± 0.14 4.1 ± 0.1 3.9 ± 0.3
 SDF weight (g) 2.06 ± 0.17 1.97 ± 0.09 2.5 ± 0.3 3.5 ± 0.6
 SDF:BW (g/kg) 0.67 ± 0.03 0.67 ± 0.03 0.7 ± 0.05 0.9 ± 0.2
Muscle biochemical composition
 BF water content (%) 82.1 ± 0.2 80.5 ± 0.2c 79.1 ± 0.3 80.8 ± 0.2a

 BF protein content
  (mg/g wet weight) 44.0 ± 1.2 47.5 ± 2.6 52.5 ± 2.9 40.8 ± 4.3a

  (mg/mg dry weight) 0.25 ± 0.01 0.24 ± 0.02 0.25 ± 0.01 0.21 ± 0.02
 SDF water content (%) 80.9 ± 0.3 79.8 ± 0.5 79.5 ± 0.2 81.2 ± 0.2a

 SDF protein content
  (mg/g wet weight) 51.1 ± 2.1 50.9 ± 2.3 30.4 ± 0.8 28.9 ± 0.5
  (mg/mg dry weight) 0.27 ± 0.01 0.25 ± 0.01 0.15 ± 0.003 0.15 ± 0.002

Significantly different from the value in the control fetuses at the same gestational age where aP < 0.05; bP = 0.057 (t-test or non-parametric Mann–Whitney 
test as appropriate); cP < 0.01. 
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irrespective of substrate (data not shown). In the SDF, 
leak state respiration with PC was significantly higher in 
cortisol – (1.30 ± 0.21 nmolO2/min/mg dry weight, n = 5) 
than saline-infused fetuses (0.69 ± 0.17 nmolO2/min/mg 
dry weight, n = 6, P < 0.05) but not with the other substrates 
(data not shown). Adrenalectomy had no significant 
effect on the SDF leak state respiration using any of the 
substrates (data not shown). There were no significant 
correlations between any of leak state respiratory rates and 
the concentrations of either hormone (P > 0.05, all cases).

ETS and other mitochondrial OXPHOS 
regulatory proteins

In the BF, cortisol infusion significantly increased protein 
abundance of ETS complex I but had no effect on any of the 
other complexes or ATP synthase (Fig. 4A). Complexes I-IV 
and ATP synthase were also unaffected by cortisol infusion 
in the SDF (Fig. 4B). In contrast, AX had no significant effect 
on protein abundance of complexes I-IV or ATP synthase 
in the BF but reduced complex IV abundance alone in 
the SDF relative to sham-operated values (Fig. 4C and D). 
Gene expression for the uncoupling proteins, UCP2 and 

UCP3, was unaffected by treatment in both muscles (Fig. 
5A, B, C and D). In the SDF, cortisol infusion significantly 
increased both gene expression and protein abundance 
of ANT1 whereas, in the BF, it had no significant effect on 
either ANT1 measure, although there was a tendency for 
higher protein abundance relative to saline-infused values 
(P = 0.095, respectively, Fig. 5E, F, G and H). Adrenalectomy 
reduced gene and protein ANT1 levels significantly in both 
muscles (Fig. 5E, F, G and H).

Muscle expression of myosin heavy chain 
(MHC) isoforms

The effects of manipulating the fetal cortisol concentration 
on fibre composition of the two muscles was assessed by 
quantifying MHC isoform expression for the type 1 slow-
twitch, oxidative fibres with abundant mitochondria 
(MHCI) and the type II fast-twitch fibres that have fewer 
mitochondria and are either oxidative/glycolytic, MHCIIa, 
or predominantly glycolytic, MHCIIx (Yates et  al. 2016). 
In both muscles, cortisol infusion had no significant 
effect on expression of the MHCI or MHCIIa isoforms (Fig. 
6A, B, D and E). In contrast, MHCIIx expression in the BF 

Table 3 Correlation and partial correlation analyses between hormone concentrations and citrate synthase activity and 
mitochondrial oxidative phosphorylation (OXPHOS) rates of the fetal biceps femoris (BF) and superficial digital flexor (SDF) muscles. 
For each muscle, data were combined from the cortisol infused and adrenalectomised and their respective control  
groups of fetuses.

Muscle Hormone Citrate synthase Py-linked OXPHOS PC-linked OXPHOS Maximal OXPHOS

Correlations
 BF Log10 cortisol r = 0.735

P < 0.01
n = 33

r = 0.482
P < 0.05
n = 22

r = −0.050
P > 0.05
n = 19

R = 0.263
P > 0.05
n = 22

Log10 T3 r = 0.803
P < 0.001
n = 33

r = 0.460
P < 0.05
n = 22

r = 0.272
P > 0.05
n = 19

R = 0.304
P > 0.05
n = 22

 SDF Log10 cortisol r = 0.701
P < 0.001
n = 32

r = 0.203
P > 0.05
n = 21

r = 0.507
P < 0.05
n = 19

r = 0.421
P < 0.05
n = 21

Log10 T3 r = 0.801
P < 0.001
n = 32

r = 0.428
P < 0.05
n = 21

r = 0.446
P = 0.050
n = 19

r = 0.566
P < 0.01
n = 21

Partial correlations
 BF Log10 cortisol r = 0.387

P < 0.05
r = 0.350
P > 0.05

Not required Not required

Log10 T3 r = 0.582
P < 0.01
n = 33

r = 0.310
P > 0.05
n = 21

Not required Not required

 SDF Log10 cortisol r = 0.424
P < 0.05

Not required r = 0.390
P > 0.05

r = 0.215
P > 0.05

Log10 T3 r = 0.506
P < 0.01
n = 32

Not required r = 0.279
P > 0.05
n = 19

r = 0.478
P < 0.01
n = 21

Significant correlations and partial correlations are shown in bold (P ≤ 0.05).
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was increased by cortisol infusion and decreased by AX  
relative to their respective controls (Fig. 6C). No change 
in MHCIIx expression was seen in the SDF with either 
treatment (Fig. 6F).

Discussion

The results show that variations in fetal cortisol 
concentrations within the physiological range affect 
mitochondrial OXPHOS capacity in ovine skeletal 
muscles near term. The effects were muscle-specific 
and were associated with changes in mitochondrial 
content, biogenesis markers and abundance of specific 
ETS complexes and ANT1. They were accompanied by 
substrate-specific alterations in respiratory function. In 
addition, there were muscle-specific changes in MHC 
isoform expression in response to altering fetal cortisol 
concentrations. The cortisol-dependent changes in 
mitochondrial function are summarised in Table 4 for the 
two muscles. Collectively, they indicate that the normal 

prepartum rise in fetal cortisol concentrations has a key role 
in maturing mitochondrial capacity in preparation for the 
increased energy demands of skeletal muscle postnatally.

In the current study, mitochondrial content was 
reduced in both muscles when the normal prepartum 
cortisol surge was prevented by fetal AX. In rats, 
suppressing fetal corticosterone concentrations close to 
term by maternal AX and metopirone treatment reduces 
mitochondrial content of the fetal kidney but not the 
liver or heart (Prieur et  al. 1998). Short-term maternal 
administration of a potent synthetic glucocorticoid, 
dexamethasone, near term, restored the normal renal 
mitochondrial density in these glucocorticoid-deficient 
rat pups and also increased the volume density of 
mitochondria in type II pneumocytes of normal fetal 
rabbits (Snyder et al. 1992, Prieur et al. 1998). In the current 
study, raising cortisol level to prepartum values by cortisol 
infusion before the normal surge increased mitochondrial 
content, specifically in the SDF. In a recent study, longer-
term treatment of pregnant ewes with cortisol for the last  
25 days of pregnancy reduced mitochondrial DNA 

Figure 2
Mean (±s.e.m.) relative gene expression of PGC1α 
(panels A and B), MFN2 (panels C and D) and DRP1 
(panels E andF) in the biceps femoris (BF, panels A, 
C and E) and superficial digital flexor (SDF, panels B, 
D and F) muscles of fetal sheep either at 129 days 
of gestational age (dGA) after 5 days of infusion of 
saline (S-I, n = 5 BF, n = 6 SDF) or cortisol (C-I, 
n = 6, both muscles) or at 144 dGA after 
adrenalectomy (AX, n = 4, both muscles) or sham 
operation (Sham, n = 6, both muscles) at 114–119 
dGA. An asterisk indicates a significant difference 
from the respective control group (*P < 0.05, t-test 
or Mann–Whitney Rank sum test).
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content of the fetal BF and heart at term (Joseph et  al. 
2020). Similarly, maternal corticosterone treatment of 
rats at mid-pregnancy decreased placental mitochondrial 
density (Bartho et al. 2019). In the current study, muscle 
mitochondrial content increased between 104 and 
129 dGA in the absence of any cortisol increment. 
This coincides with a major period of muscle fibre 
differentiation and suggests that factors other than 
circulating cortisol, such as growth factors and receptor 
abundances, may be involved in mitochondrial 
development earlier in gestation (Florini et  al. 1991, 
Walker & Luff 1995, Bloise et al. 2018). Collectively, these 
findings suggest that glucocorticoids are required for 
normal mitochondrial biogenesis near term in specific 
fetal tissues but that, earlier in gestation, their actions may 
depend not only on the tissue and its stage of development 
but also on the duration, timing, route and type of  
glucocorticoid exposure.

The changes in muscle mitochondrial density seen 
in response to varying fetal cortisol levels in the current 

study tracked closely with the expression of the key 
regulator of mitochondrial biogenesis, PGC1α (Table 4).  
Alterations in PGC1α expression were more pronounced 
in the SDF than BF and were accompanied by parallel 
changes in SDF expression of MFN2, a gene essential for 
normal membrane dynamics and OXPHOS function that 
is regulated by PGC1α (Liang & Ward 2006). Previous 
studies on rodents have shown that PGC1α expression 
is glucocorticoid sensitive and increases towards term in 
fetal heart and adipose tissue (Rog-Zielinska et  al. 2015, 
Chen et  al. 2020). Deletion of PGC1α expression in fetal 
mice also impairs mitochondrial OXPHOS function and 
the metabolic response to glucocorticoids in developing 
cardiomyocytes (Rog-Zielinska et al. 2015). Conversely, over-
expression of PGC1α promotes mitochondrial biogenesis 
and O2 consumption in neonatal cardiomyocytes in vitro 
(Lehman et al. 2000). However, no prepartum upregulation 
of PGC1α expression was seen in fetal ovine BF, despite a 
concomitant increase in mitochondrial density towards 
term (Davies et al. 2020).

Figure 3
Mean (±s.e.m.) maximal (panels A and D), pyruvate 
supported (Py, panels B and E) and palmitoyl-
carnitine supported (PC, panels C and F) rates of 
oxygen consumption by the biceps femoris (BF, 
panels A, B and C) and superficial digital flexor 
(SDF, panels D, E and F) muscles of fetal sheep 
either at 129 days of gestational age (dGA) after 5 
days of infusion of saline (S-I, n = 6, both muscles) 
or cortisol (C-I, n = 4–6 BF, n = 5–6 SDF) or at  
144 dGA after adrenalectomy (AX, n = 3–4, both 
muscles) or sham operation (Sham, n = 6 BF, 
n = 5–6 SDF) at 114–119 dGA. An asterisk indicates 
a significant difference from the respective 
control group (*P < 0.05, **P < 0.01, t-test or 
Mann–Whitney Rank sum test). A hash tag 
indicates a trend towards a significant difference 
from the respective control group (#P < 0.10, t-test 
or Mann–Whitney Rank sum test).
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Previous rodent studies have shown increases in 
mitochondrial respiration and/or expression of complex 
IV and ATP synthase in heart, liver and brain of fetal and 
neonatal pups in response to dexamethasone treatment 
(Prieur et al. 1998, Lehman et al. 2000, Nakai et al. 2002, 
Rog-Zielinska et  al. 2015). In the present study, raising 
cortisol levels within the physiological range increased 
mitochondrial OXPHOS capacity in both fetal skeletal 
muscles but in a substrate-specific manner. In the BF, 
cortisol stimulated respiration with pyruvate by 30% 
but not with the other substrates. This occurred without 
any significant change in mitochondrial content but 
was accompanied by a similar percentage increase in 
complex I abundance, consistent with pyruvate being an 
electron donor to this complex via NADH (Kuznetsov et al. 
2008). There was, however, no accompanying increase 
in maximal OXPHOS capacity, supported by saturating 
concentrations of substrates for complex I and complex 
II, which may be due to limitations at the Q-junction for 
electron entry to complex III, which did not increase in 

abundance. Cortisol-induced upregulation of Py-linked 
respiration in the BF was also accompanied by greater 
MCHIIx expression consistent with the increased BF 
abundance of MCHIIx glycolytic fibres seen previously 
towards term (Davies et al. 2020). Collectively, the current 
findings in the BF may suggest that the mitochondrial 
content of its oxidative fibres increases in response 
to cortisol infusion. In contrast, in the SDF, cortisol 
infusion resulted in significant rises in PC-linked and 
maximal OXPHOS capacity together with a tendency 
for higher rates of Py-supported respiration (Table 4). 
These respiratory changes occurred without alteration 
in MHC expression but concomitantly with increased 
mitochondrial biogenesis and content. However, 
preventing the prepartum fetal cortisol surge by AX had 
no significant effect on mitochondrial respiration in 
either muscle irrespective of substrate, despite decreased 
expression of MHCIIX in the BF and lower mitochondrial 
density and PGC1α expression in both muscles.  
Thus, cortisol appears to act on mitochondrial OXPHOS 

Figure 4
Mean (±s.e.m.) relative protein abundance of the electron transfer system complexes (CI-IV) and ATP synthase (CV) in the biceps femoris (BF, panels A and 
C) and superficial digital flexor (SDF, panels B and D) muscles in fetal sheep either at 129 days of gestational age (dGA) after 5 days of infusion of saline 
(white columns, n = 5 BF, n = 6 SDF) or cortisol (grey columns, n = 6, both muscles) in panels A and B or at 144 dGA after adrenalectomy (AX, grey 
columns, n = 4, both muscles) or sham operation (white columns, n = 6, both muscles) at 114–119 dGA in panels C and D. An asterisk indicates a 
significant difference from the respective control group (*P < 0.05, **P < 0.01, t-test or Mann–Whitney Rank sum test). A full colour version of this figure is 
available at https://doi.org/10.1530/JOE-21-0171.
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in utero through different muscle-specific mechanisms, 
which may also depend on gestational age.

The discrepancy between the effects of cortisol on 
respiratory rates at 129 and 144 dGA may reflect, in part, 
differences in the duration of cortisol exposure between 
the single infused and twin sham-operated fetuses as 
activation of the fetal hypothalamic–pituitary–adrenal 
axis, and the rise in fetal cortisol concentrations occurs 
more rapidly and closer to term in twin than single sheep 
fetuses (Edwards & McMillen 2002). Since cortisol activates 
the deiodinases converting T4 to T3 (Forhead et al. 2006), the 
current findings that fetal T3 concentrations were increased 
by 5 days of cortisol infusion but did not differ significantly 
between sham-operated and AX fetuses later in gestation 
would be consistent with a shorter period of cortisol 

exposure in the sham-operated twin fetuses. Thyroid 
hormones are known to affect mitochondrial function in 
adult tissues and their fetal deficiency has recently been 
shown to impair mitochondrial OXPHOS capacity of the 
fetal ovine BF and brain (Lombardi et al. 2015, Bloise et al. 
2018, Davies et al. 2020, 2021). Indeed, the current findings 
suggest that both cortisol and T3 are important factors in 
regulating mitochondrial content and OXPHOS capacity 
of skeletal muscle during late gestation. The prepartum 
maturational effects of cortisol on mitochondrial function 
in skeletal muscle may, therefore, be mediated, in part, 
by T3 as occurs with other metabolic processes which are 
essential for neonatal survival (Forhead & Fowden 2014).

The current findings in AX fetuses indicate that the 
prepartum cortisol increment increases mitochondrial 

Figure 5
Mean (±s.e.m.) relative gene expression of UCP2 
(panels A and B), UCP3 (panels C and D), and ANT1 
(panels E and F) and of ANT1 protein abundance 
(panels G and H) in the biceps femoris (BF, panels 
A, C, E and G) and superficial digital flexor (SDF, 
panels B, D, F and H) muscles of fetal sheep either 
at 129 days of gestational age (dGA) after 5 days 
of infusion of saline (S-I, n = 5 BF, n = 6 SDF) or 
cortisol (C-I, n = 6, both muscles) or at 144 dGA 
after adrenalectomy (AX, n = 4, both muscles) or 
sham operation (Sham, n = 6, both muscles) at 
114–119 dGA. An asterisk indicates a significant 
difference from the respective control group  
(*P < 0.05, **P < 0.01, t-test or Mann–Whitney 
Rank sum test). A hash tag indicates a trend 
towards a significant different from the respective 
control group (#P < 0.10, t-test or Mann–Whitney 
Rank sum test). A full colour version of this  
figure is available at https://doi.org/10.1530/
JOE-21-0171.
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content in both muscles. However, earlier in gestation when 
muscle fibres were still differentiating, the effects of cortisol 
are more complex and appear to be muscle and possibly 
fibre-type specific. In the SDF, cortisol infusion increased 
mitochondrial biogenesis, content and maximal OXPHOS, 
but with no apparent increase in ETS complex abundance. 
In the BF, cortisol infusion had no effect on mitochondrial 
content or maximal OXPHOS, but specifically increased 
complex I capacity and altered the relative contribution 
of the different muscle fibres to the mitochondrial pool. 
In both muscles, there were no changes in ATP synthase 
or UCPs with experimental manipulation of the fetal 
cortisol concentration that would explain the changes in 
OXPHOS functional capacity, although UCP expression 
may not reflect the activity. This contrasts with the known 
effects of cortisol in upregulating UCP abundance in 
fetal ovine adipose tissue near term (Mostyn et  al. 2004, 
Gnanalingham et  al. 2008). In general, ANT1 levels were 
increased by cortisol infusion and reduced by AX in both 
muscles in the current study. As well as functioning as a 

mitochondrial ADP-ATP exchanger, ANT1 can induce mild 
mitochondrial uncoupling in adult tissues, particularly in 
response to fatty acids (Kimura & Rasmussen 1977, Brand 
et al. 2005, Sparks et al. 2016). This is consistent with the 
current finding of greater ANT1 abundance concurrently 
with increased SDF rates of both PC-linked leak and 
OXPHOS respiration in cortisol-infused fetuses. In adult 
rat liver, dexamethasone has been shown to increase ANT1 
content and simultaneously enhance both mitochondrial 
uncoupling and OXPHOS capacity (Arvier et al. 2007). The 
prepartum rise in cortisol may, therefore, act to stimulate 
mitochondrial biogenesis and, thus, the capacity for 
neonatal ATP production while minimising the potential 
for oxidative stress, in part through dissipating the proton 
gradient. Other factors may then activate the increase 
in mitochondrial OXPHOS after birth when the ATP  
demand rises with the new metabolic activities (Fowden & 
Forhead 2015).

In summary, the current findings show that cortisol 
is an important regulator of mitochondrial OXPHOS 

Figure 6
Mean (±s.e.m.) relative gene expression of MHCI 
(panels A and D), MHCIIa (panels D and E), and 
MCHIIx (panels C and F) in the biceps femoris (BF, 
panels A, B, C) and (C) superficial digital flexor (SDF, 
panels D, E, F) muscles of fetal sheep either at  
129 days of gestational age ( dGA) after 5 days of 
infusion of saline (S-I, n = 5 BF, n = 6 SDF) or 
cortisol (C-I, n = 6, both muscles) or at 144 dGA 
after adrenalectomy (AX, n = 4, both muscles) or 
sham operation (Sham, n = 6, both muscles) at 
114–119 dGA. An asterisk indicates a significant 
difference from the respective control group  
(*P < 0.05, t-test or Mann–Whitney Rank sum test).
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capacity in the ovine skeletal muscle during late gestation. 
Its effects were muscle-specific and involved changes 
in mitochondrial biogenesis and respiratory function. 
Indeed, these prenatal cortisol-induced adaptations may 
explain, in part, the adult mitochondrial dysfunction 
observed after adverse conditions during pregnancy that 
raises fetal glucocorticoid concentrations (Reynolds 2013, 
Khamoui et  al. 2018, Chen et  al. 2020, Gyllenhammer 
et  al. 2020). While glucocorticoids are known to affect 
adult mitochondrial function through both the nuclear 
and mitochondrial genomes (Lapp et  al. 2019), further 
studies are needed to determine the specific molecular 
mechanisms by which cortisol induces mitochondrial 
maturation in skeletal muscle fibres. Greater knowledge 
of these developmental processes will be beneficial 
for the metabolic health of infants under- or over-
exposed to glucocorticoids prenatally due to stress,  
prematurity or maternal treatment with synthetic 
glucocorticoids for threatened pre-term delivery or 
other clinical conditions.
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