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Abstract: Online learning methods, similar to the online gradient algorithm (OGA) and exponen-
tially weighted aggregation (EWA), often depend on tuning parameters that are difficult to set in
practice. We consider an online meta-learning scenario, and we propose a meta-strategy to learn
these parameters from past tasks. Our strategy is based on the minimization of a regret bound. It
allows us to learn the initialization and the step size in OGA with guarantees. It also allows us to
learn the prior or the learning rate in EWA. We provide a regret analysis of the strategy. It allows to
identify settings where meta-learning indeed improves on learning each task in isolation.

Keywords: meta-learning; hyperparameters; priors; online learning; Bayesian inference; online
optimization; gradient descent

1. Introduction

In many applications of modern supervised learning, such as medical imaging or
robotics, a large number of tasks is available but many of them are associated with a small
amount of data. With few datapoints per task, learning them in isolation would give poor
results. In this paper, we consider the problem of learning from a (large) sequence of
regression or classification tasks with small sample size. By exploiting their similarities we
seek to design algorithms that can utilize previous experience to rapidly learn new skills or
adapt to new environments.

Inspired by human ingenuity in solving new problems by leveraging prior experience,
meta-learning is a subfield of machine learning whose goal is to automatically adapt a
learning mechanism from past experiences to rapidly learn new tasks with little available
data. Since it “learns the learning mechanism” it is also referred to as learning-to-learn [1]. It
is seen as a critical problem for the future of machine learning [2]. Numerous formulations
exist for meta-learning and we focus on the problem of online meta-learning where the tasks
arrive one at a time and the goal is to efficiently transfer information from the previous
tasks to the new ones such that we learn the new tasks as efficiently as possible (this has
also been refered to as lifelong learning). Each task is in turn processed online. To sum up,
we have a stream of tasks and for each task a stream of observations.

In order to solve online tasks, diverse well-established strategies exist: perceptron,
online gradient algorithm (OGA), online mirror descent, follow-the-regularized-leader,
exponentially weighted aggregation (EWA, also refered to as generalized Bayes etc.) We refer
the reader to [3–6] for introductions to these algorithms and to so-called regret bounds,
that control their generalization errors. We refer to these algorithms as the within-task
strategies. The big challenge is to design a meta-strategy that uses past experiences to
adapt a within-task strategy to perform better on the next tasks.

In this paper, we propose a new meta-learning strategy. The main idea to learn the
tuning parameters is to minimize its regret bound. We provide a meta-regret analysis for
our strategy. We illustrate our results in the case where the within-task strategy is the
online gradient algorithm, and exponentially weighted aggregation. In the case of OGA,
the tuning parameters considered are the initialization and the gradient steps. For EWA,

Entropy 2021, 23, 1257. https://doi.org/10.3390/e23101257 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4249-7337
https://doi.org/10.3390/e23101257
https://doi.org/10.3390/e23101257
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23101257
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23101257?type=check_update&version=2


Entropy 2021, 23, 1257 2 of 20

we consider either the learning rate, or the prior. In each case, we compare the regret
incurred when learning the tasks in isolation to our meta-regret bound. This allows us to
identify settings where meta-learning indeed improves on learning in isolation.

1.1. Related Works

Meta-learning is similar to multitask learning [7–9] in the sense that the learner faces
many tasks to solve. However, in multitask learning, the learner is given a fixed number
of tasks, and can learn the connections between these tasks. In meta-learning, the learner
must prepare to face future tasks that are not given yet.

Meta-learning is often referred to as learning-to-learn or lifelong learning. The authors
of [10] proposed the following distinction: “learning-to-learn” for situations where the
tasks are presented simultaneously, and “lifelong learning” for situations where they are
presented sequentially. Following this terminology, learning-to-learn algorithms were
proposed very early in the literature, with generalization guarantees [11–16].

On the other hand, in the lifelong learning scenario, until recently, algorithms were
proposed without generalization guarantees [17,18]. A theoretical study was proposed
by [10], but the strategies in that paper are not feasible in practice. This problem was
recently improved [19–26]. In a similar context, in [27], the authors propose an efficient
strategy to learn the starting point of OGA. However, an application of this strategy to
learning the step size do not show any improvement over learning in isolation [28]. The
closest work to this paper is [29] in which they also suggest a regret bound minimization
strategy. This paper indeed provides a meta-regret bound for learning both the initialization
and the gradient step. Note, however, that this paper remains specific to OGA, while our
work can be potentially applied to any online learning algorithm. Indeed, we provide
another example: the generalized Bayesian algorithm EWA, for which we learn the prior,
or the learning rate. To learn the prior is new in the online setting, to our knowledge. It can
be related to works in the batch setting [11,13,15,16], but the improvement with respect to
learning in isolation is not quantified in these works.

Finally, it is important to note that we focus on the case where the number of tasks
T is large, while the sample size n and algorithmic complexity of each task is moderately
small. When each task is extremely complex, for example training a deep neural network
on a huge dataset, our procedure (as well as those discussed above) will become too
expansive. Alternative approaches were proposed, based on optimization via multi-armed
bandits [30,31].

1.2. Organization of the Paper

In Section 2, we introduce the formalism of meta-learning and the notations that will
be used throughout the paper. In Section 3, we introduce our meta-learning strategy, and
its theoretical analysis. In Section 4, we provide the details of our method in the case of
meta-learning the initialization and the step size in the online gradient algorithm. Based
on our theoretical results, there are also explicit situations where meta-learning indeed
improves on learning the tasks independently. This is confirmed by experiments reported
in this section. In Section 5, we provide the details of our methodology when the algorithm
used within tasks is a generalized Bayesian algorithm: EWA. We show how our meta-
strategy can be used to tune the learning rate; we also discuss how it can be used to learn
priors. The proofs of the main results are given in Section 6.

2. Notations and Preliminaries

By convention, vectors v ∈ Rd are seen as d× 1 matrices (columns). Let ‖v‖ denote the
Euclidean norm of v. Let AT denote the transposition of any d× k matrix A, and Id the d× d
identity matrix. For two real numbers a and b, let a ∨ b = max(a, b) and a ∧ b = min(a, b).
For z ∈ R, z+ is its positive part z+ = z ∨ 0. Given a finite set S, we let card(S) denote the
cardinality of S.
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The learner has to solve tasks t = 1, . . . , T sequentially. Each task t consists in n rounds
i = 1, . . . , n. At each round i of task t, the learner has to take a decision θt,i in a decision
space Θ ⊆ Rd for some d > 0. Then, a convex loss function `t,i : Θ→ R is revealed to the
learner, who incurs the loss `t,i(θt,i). Classical examples with Θ ⊂ Rd include regression
tasks, where `t,i(θ) = (yt,i − xT

t,iθ)
2 for some xt,i ∈ Rd and yt,i ∈ R. For classification tasks,

`t,i(θ) = (1− yt,ixT
t,iθ)+ for some xt,i ∈ Rd, yt,i ∈ {−1,+1}.

Throughout the paper, we will assume that the learner uses, for each task, an online
decision strategy called within-task strategy, parametrized by a tuning parameter λ ∈ Λ
where Λ is a closed, convex subset of Rp for some p > 0. Example of such strategies include
the online gradient algorithm, given by θt,i = θt,i−1 − γ∇`t,i(θt,i−1). In this case, the tuning
parameters are the initialization, or starting point, θt,1 = ϑ and the learning rate, or step
size, γ. That is, λ = (ϑ, γ), so p = d + 1. The parameter λ is kept fixed during the whole
task. It is of course possible to use the same parameter λ in all the tasks. However, we
will be interested here in defining meta-strategies that will allow us to improve λ task after
task, based on the information available so far. In Section 3, we will define such strategies.
For now, let λt denote the tuning parameter used by the learner all along task t. Figure 1
provides a recap of all the notations.

Figure 1. The dynamics of meta-learning.

Let θλ
t,i denote the decision at round i of task t when the online strategy is used with

parameter λ. We will assume that a regret bound is available for the within-task strategy.
By this, we mean that there is a set Θ0 ⊂ Θ of parameters of interest, and that the learner
knows a function Bn : Θ×Λ→ R such that, for any task t, for any λ ∈ Λ,

n

∑
i=1

`t,i(θ
λ
t,i) ≤ inf

θ∈Θ0

{
n

∑
i=1

`t,i(θ) + Bn(θ, λ)

}
︸ ︷︷ ︸

=:Lt(λ)

. (1)

For OGA, regret bounds can be found, for example, in [4,6] (in this case, Θ0 =
Θ). Other examples include exponentially weighted aggregation (bounds in [3], here
Θ0 is a finite set of predictors while decisions Θ are probability distributions on Θ0).
More examples will be discussed in the paper. For a fixed parameter θ, the quantity
∑n

i=1 `t,i(θ
λ
t,i)−∑n

i=1 `t,i(θ) measures the difference between the total loss suffered during
task t, and the loss what one would have suffered using the parameter θ. It is thus called
“the regret with respect to parameter θ”, and Bn(θ, λ) is usually referred to as a “regret
bound”. We will call Lt(λ) the “meta-loss”. In [29], the authors study a meta-strategy that
minimizes the meta-loss of OGA. Indeed, if (1) is tight, to minimize the right-hand side is
a good way to ensure that the left-hand side, that is, the cumulated loss, is small. In this
work, we will focus on meta-strategies minimizing the meta-loss in a more general context.

The simplest meta-strategy is learning in isolation. That is, we keep λt = λ0 ∈ Λ for
all tasks. The total loss after task T is then given by:

T

∑
t=1

n

∑
i=1

`t,i(θ
λ0
t,i ) ≤

T

∑
t=1
Lt(λ0). (2)
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However, when the learner uses a meta-strategy to improve the tuning parameter at
the end of each task, the total loss is given by ∑T

t=1 ∑n
i=1 `t,i(θ

λt
t,i ). We will, in this paper,

investigate strategies with meta-regret bounds; that is, bounds of the form

T

∑
t=1

n

∑
i=1

`t,i(θ
λt
t,i ) ≤ inf

λ∈Λ

{
T

∑
t=1
Lt(λ) + CT(λ)

}
. (3)

Of course, such bounds will be relevant only if the right-hand side of (3) is not larger
than the right-hand side of (2), and is significantly smaller in some favourable settings. We
show when this is the case in Section 4.

3. Meta-Learning Algorithms

In this section, we provide two meta-strategies to update λ at the end of each task. The
first one is a direct application of OGA to meta-learning. It is computationally simpler, but
feasible only in the special case where we have an explicit formula for the (sub-)gradient of
each Lt(λ). The second one is an application of implicit online learning to our setting. In
Section 4, we provide an example where this is the case. The second meta-strategy can be
used without this assumption. In both cases, we provide a regret bound as (3), under the
following condition.

Assumption 1. For any t ∈ {1, . . . , T}, the function λ 7→ Lt(λ) is L-Lipschitz and convex.

3.1. Special Case: The Gradient of the Meta-Loss Is Available in Closed Form

As each Lt is convex, its subdifferential at each point of Λ is non-empty. For the sake
of simplicity, we will use the notation λ 7→ ∇Lt(λ) in the following formulas to denote
any element of its subdifferential at λ. We define the online gradient meta-strategy (OGMS)
with step α > 0 and starting point λ1 ∈ Λ: for any t > 1,

λt = ΠΛ[λt−1 − α∇Lt−1(λt−1)] (4)

where ΠΛ denotes the orthogonal projection on Λ.

3.2. The General Case

We now cover the general case, where a formula for the gradient of Lt(λ) might
not be available. We propose to apply a strategy that was first defined in [32] for online
learning, and studied under the name “implicit online learning” (we refer the reader to [33]
and the references therein). In the meta-learning context, this gives the online proximal
meta-strategy (OPMS) with step α > 0 and starting point λ1 ∈ Λ, defined by:

λt = argmin
λ∈Λ

{
Lt−1(λ) +

‖λ− λt−1‖2

2α

}
. (5)

Using classical notations, e.g., [34], we can rewrite this definition with the proximal
operator (hence the name of the method). Indeed λt = proxαLt−1

(λt−1) where prox is the
proximal operator given for any x ∈ Λ and any convex function f : Λ→ R,

prox f (x) = argmin
λ∈Λ

{
f (λ) +

‖x− λ‖2

2

}
. (6)

This strategy is feasible in practice in the regime we are interested in; that is, when n is
small or moderately large, and T → ∞. The learner has to store all the losses of the current
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task `t−1,1, . . . , `t−1,n. At the end of the task, the learner can use any convex optimization
algorithm to minimize, with respect to (θ, λ) ∈ Θ×Λ, the function

Ft(θ, λ) =
n

∑
i=1

`t,i(θ) + Bn(θ, λ) +
‖λ− λt−1‖2

2α
. (7)

We can use a (projected) gradient descent on Ft or its accelerated variants [35].

3.3. Regret Analysis

A direct application of known results to the setting of this paper leads to the following
proposition. For the sake of completeness, we still provide the proofs in Section 6.

Proposition 1. Under Assumption 1, using either OGMS or OPMS with step α > 0 and starting
point λ1 ∈ Λ leads to

T

∑
t=1

n

∑
i=1

`t,i(θ
λt
t,i ) ≤ inf

λ∈Λ

{
T

∑
t=1
Lt(λ) +

αTL2

2
+
‖λ− λ1‖2

2α

}
. (8)

The proof can be found in Section 6.

4. Example: Learning the Tuning Parameters of Online Gradient Descent

In all this section, we work under the following condition.

Assumption 2. For any (t, i) ∈ {1, . . . , T}× {1, . . . , n}, the function `t,i is Γ-Lipschitz and convex.

4.1. Explicit Meta-Regret Bound

We study the situation where the learner uses (projected) OGA as a within-task
strategy; that is, Θ = {θ ∈ Rd : ‖θ‖ ≤ C} and, for any i > 1,

θt,i = ΠΘ[θt,i−1 − γ∇`t,i(θt,i−1)]. (9)

With such a strategy, we already mentioned that λ = (ϑ, γ) ∈ Λ ⊂ Θ×R+ contains
an initialization and a step size. An application of the results in Chapter 11 in [3] gives
Bn(θ, λ) = Bn(θ, (ϑ, γ)) = γΓ2n/2 + ‖θ − ϑ‖2/(2γ). So

Lt((ϑ, γ)) = inf
‖θ‖≤C

{
n

∑
i=1

`t,i(θ) +
γΓ2n

2
+
‖θ − ϑ‖2

2γ

}
. (10)

It is quite direct to check Assumption 1. We summarize this in the following proposition.

Proposition 2. Under Assumption 2, assume that the learner uses OGA as an inner algorithm.
Assume Λ = {ϑ ∈ Rd : ‖ϑ‖ ≤ C} × [γ, γ̄] for some C > 0 and 0 < γ < γ̄ < ∞. Then
Assumption 1 is satisfied with

L :=

√
n2Γ4

4
+

4C2

γ2 +
4C4

γ4 . (11)

So, when the learner uses one of the meta-strategies OGMS or OPMS, we can apply
Proposition 1 respectively. This leads to the following theorem.

Theorem 1. Under the assumptions of Proposition 2, with γ = 1/nβ for some β > 0 and γ̄ = C2,
when the learner uses either OGMS or OPMS with
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α =
C
L

√
4 + C2

T
(12)

(where L is given by (11)), we have:

T

∑
t=1

n

∑
i=1

`t,i(θ
λt
t,i ) ≤ inf

θ1,...,θT∈Θ

{
T

∑
t=1

n

∑
i=1

`t,i(θt) + C(Γ, C)

[
n1∨2β

√
T +

(
n1−β + σ(θT

1 )
√

n

)
T

]}
(13)

where C(Γ, C) > 0 depends only on (Γ, C) and where:

σ(θT
1 ) =

√√√√ 1
T

T

∑
t=1

∥∥∥∥∥θt −
1
T

T

∑
s=1

θs

∥∥∥∥∥
2

. (14)

Let us compare this result with learning in isolation, as defined in (2); that is, solving
the sequence of tasks with a constant hyperparameter λ = (ϑ, γ). For the usual choice
ϑ = 0 and γ = c/

√
n where c is a constant that does not depend on n nor T, OGA leads to

a regret in O(
√

n). After T tasks, learning in isolation thus leads to a regret in T
√

n. Our
strategies with β = 1 lead to a regret in

n2
√

T +
(

1 + σ(θT
1 )
√

n
)

T. (15)

The term n2
√

T is the price to pay for meta-learning. In the regime we are interested in
(small n, large T), which is smaller than T

√
n. Consider the leading term. In the worst case

scenario, this is also T
√

n. However, there are good predictors θ1, . . . , θT for tasks 1, . . . , T,
respectively, such that σ(θT

1 ) is small, and in this case we see the improvement with respect
to learning in isolation. The extreme case is when there is a good predictor θ∗ that predicts
well for all tasks. In this case, regret with respect to θ1 = · · · = θT = θ∗ is in n2

√
T + T,

which improves significantly on learning in isolation. Note however that, using a different
meta-strategy, specifically designed for OGA, Ref. [29] obtain a better dependence on T
when σ(θT

1 ) = 0.
Let us now discuss the implementation of our meta-stategy. We first remark that under

the quadratic loss, it is possible to derive a formula for Lt, which allows to use OGMS. We
then discuss OPMS for the general case.

4.2. Special Case: Quadratic Loss

First, consider `t,i = (yt,i − xT
t,iθ)

2 for some yt,i ∈ R and xt,i ∈ Rd. Assumption 2 is
satisfied if we assume, moreover that all |yt,i| ≤ c and ‖xt,i‖ ≤ b, with Γ = 2bc + 2b2C. In
this case,

Lt((ϑ, γ)) = inf
‖θ‖≤C

{
n

∑
i=1

(yt,i − xT
t,iθ)

2 +
γΓ2n

2
+
‖θ − ϑ‖2

2γ

}
. (16)

Define Yt = (yt,1, . . . , yt,n)T and Xt = (xt,1| . . . |xt,n)T . The minimizer of ∑n
i=1(yt,i −

xT
t,iθ)

2 + ‖θ − ϑ‖2/(2γ) with respect to θ is known as the ridge regression estimator:

θ̂t =

(
XT

t Xt +
Id
2γ

)−1(
XT

t Yt +
ϑ

2γ

)
. (17)

This also coincides with the minimizer in the right-hand side of (16) on the condition
that ‖θ̂t‖ ≤ C. In this case, by plugging θ̂t in (16), we have a close form formula for
Lt((ϑ, γ)), and an explicit (but cumbersome) formula for its gradient. It is thus possible to
use the OGMS strategy to update λ = (ϑ, γ).
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4.3. The General Case

In the general case, denote λt−1 = (ϑt−1, γt−1), then λt = (ϑt, γt) is obtained by minimizing

Ft(θ, (ϑ, γ)) =
n

∑
i=1

`t,i(θ) +
γΓ2n

2
+
‖θ − ϑ‖2

2γ
+
‖ϑ− ϑt−1‖2 + (γ− γt−1)

2

2α
(18)

with respect to θ, ϑ, γ. Any efficient minimization procedure can be used. In our experi-
ments, we used a projected gradient descent, the gradient being given by:

∂Ft

∂θ
=

n

∑
i=1
∇`t,i(θ) +

θ − ϑ

γ
, (19)

∂Ft

∂ϑ
=

ϑ− θ

γ
+

ϑ− ϑt−1

α
, (20)

∂Ft

∂γ
=

Γ2n
2
− ‖θ − ϑ‖2

2γ2 +
γ− γt−1

α
. (21)

Note that even though we do not stricto sensu obtain the minimizer of Ft, we can
get arbitrarily close to it by taking a large enough number of steps. The main difference
between this algorithm and the strategy suggested in [29] is that it is obtained by applying
the general proximal update introduced in Equation (7), while they decoupled the update
for the initialization step and the learning rate.

4.4. Experimental Study

In this section we compare simulated data for the numerical performance of OPMS
w.r.t learning the task in isolation with online gradient descent (I-OGA). To measure
the impact of learning the gradient step γ, we also introduce mean-OPMS that uses the
same strategy as OPMS but only learns the starting point ϑ (it is thus close to [27]). We
present the results for regression tasks with the mean-squared-error loss, and then for
classification with the hinge loss. The notebooks of the experiments can be found online:
https://dimitri-meunier.github.io/ (accessed on 26 September 2021).

4.4.1. Synthetic Regression

At each round t = 1, . . . , T, the meta learner sequentially receives a regression task that
corresponds to a dataset (xt,i, yt,i)i=1,...,n generated as yt,i = xT

t,iθt + εt,i, xt,i ∈ Rd. The noise
is εt,i ∼ U ([−σ2, σ2]) and the εt,i are all independent, the inputs are uniformly sampled on

the (d− 1)-unit sphere Sd−1 and θt = ru + θ0, u ∼ U
(
Sd−1

)
, θ0 ∈ Rd, r ∈ R+. We take

d = 20, n = 30, T = 200, σ2 = 0.5 and θ0 with all components equal to 5. In this setting, θ0 is
a common bias between the tasks, σ2 is the inter-task variance and r characterizes the tasks
similarity. We experiment with different values of r ∈ {0, 5, 10, 30} to observe the impact of
task similarity on the meta-learning process. The smaller r, the closer are the tasks and for
the extreme case of r = 0 the tasks are identical, in the sense that the parameters θt of the
tasks are all the same. We draw attention to the fact that a cross-validation procedure to
select α (the parameter of OGMS or OPMS, see Equation (5)) or γ is not valid in the online
settings, as it would require having knowledge of several tasks in advance for the former
and several datapoints in advance for each task for the latter. Moreover, the theoretical
values are based on worst-case analysis and lead in practice to slow learning. In practice,
to set these values to the correct order of magnitude without adjusting the constants led
to better results. So, for mean-OPMS and OPMS we set α = 1/

√
T, for OPMS and I-OGA

we set γ = 1/
√

n. Instead of cross-validation, one can launch several online learners in
parallel with different parameter values to pick the best one (or aggregate them). That is
the strategy we use to select Γ for OPMS. Note that the exact value of Γ is usually unkown
in practice; its automatic calibration is an important open question. To solve (18), after
each task we use the exact solution for mean-OPMS and projected Newton descent with 10

https://dimitri-meunier.github.io/
https://dimitri-meunier.github.io/
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steps for OPMS. We observed that not reaching the exact solution of (18) does not harm
the performance of the algorithm and 10 steps are sufficient to reach convergence. The
results are displayed in Table 1 and Figure 2. On Figure 2, for each task t = 1, . . . , T, we
report the average end-of-task loss MSEt = ∑n

i=1 `t,i(θt,n)/n averaged over 50 independent
runs (with their confidence intervals). Table 1 reports MSEt averaged over the 100 most
recent tasks. The results confirm our theoretical findings: learning γ can bring a substantial
benefit over just learning the starting point, which in turn brings a considerable benefit with
respect to learning the tasks in isolation. Learning the gradient step makes the meta-learner
more robust to task dissimilarities (i.e. when r increases) as shown in Figure 2. In the
regime where r is low, learning the gradient step does not help the meta-learner as it takes
more steps to reach convergence. Overall both meta learners are consistently better than
learning the task in isolation since the number of observation per task is low.

Figure 2. Performance of learning in isolation with OGA (I-OGA), OPMS to learn initialization (mean-OPMS) and OPMS
to learn initialization and step size (OPMS). We report the average end-of-task MSE losses at the end of each task, for
different values of the task-similarity index r ∈ {0, 5, 10, 30}. The results are averaged over 50 independent runs to get
confidence intervals.

Table 1. Average end-of-task MSE of the 100 last tasks (averaged over 50 independent runs).

r = 0 r = 5 r = 10 r = 30

I-OGA 6.24 6.44 7.06 13.60
mean OPMS 0.05 0.27 0.93 7.93

OPMS 0.07 0.15 0.49 3.72

4.4.2. Synthetic Classification

At each round t = 1, . . . , T, the meta learner sequentially receives a binary classifi-
cation task with the Hinge loss that corresponds to a dataset (xt,i, yt,i)i=1,...,n. The binary
labels {−1, 1} are generated as a logistic model P(y = 1) = (1 + exp(−xtθt))−1. The task
parameters θt and the inputs are generated as in the regression setting. To add some noise,
we shuffle 10% of the labels. We take d = 10, n = 100, T = 500, r = 2. For mean-OPMS and
OPMS we set α = 1/

√
T, for OPMS and I-OGA we set γ = 1/

√
n. For the optimisation

of Ft (18) with both OPMS and mean-OPMS we use a projected gradient descent with
50 steps.
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On Figure 3, for each task t = 1, . . . , T, we report the regret on the end-of-task
losses: R(t) = 1

nt ∑t
k=1 ∑n

i=1 `k,i(θk,n), averaged over 10 independent runs (with their
confidence intervals). As the for regression setting, the results confirm our theoretical
findings: by learning γ (OPMS), we reach a better overall performance than just learning
the initialization (mean-OPMS) and a substantially stronger than independent task learning
(I-OGA). Note that, in the classification regime, there is no known closed formed expression
for the meta-gradient; therefore, OGMS cannot be used.

Figure 3. Performance of learning in isolation with OGA (I-OGA), OPMS to learn the initialization
(mean-OPMS) and OPMS to learn the initialization and step size (OPMS) on a sequence of classifica-
tion tasks with the Hinge loss. We report the meta-regret of the Hinge loss. The results are averaged
over 10 independent runs (dataset generation) to get confidence intervals.

5. Second Example: Learning the Prior or the Learning Rate in Exponentially
Weighted Aggregation

In this section, we will study a generalized Bayesian method, exponentially weighted
aggregation. Consider a finite set Θ0 = {θ1, . . . , θM} ⊂ Rd. EWA depends on a prior
distribution π on Θ0, and on a learning rate η > 0, and returns a decision in Θ =
conv(θ1, . . . , θM) the convex envelope of Θ0. In this section, we work under the follow-
ing condition.

Assumption 3. There is a B ∈ R∗+, such that for any (t, i) ∈ {1, . . . , T} × {1, . . . , n}, the
function `t,i is Θ→ [0, B] and convex.

We will sometimes use a stronger assumption.

Assumption 4. There is a C ∈ R∗+, such that for any (t, i) ∈ {1, . . . , T} × {1, . . . , n}, the
function θ 7→ exp(−`t,i(θ)/C) is concave.

Examples of a situation in which Assumption 4 is satisfied are provided in [3]. Note
that Assumption 4 implies Assumption 3.

5.1. Reminder on EWA

The update in EWA is given by:

θt,i = ∑
θ∈Θ0

pt,i(θ)θ (22)

where pt,i are weights defined by

pt,i(θ) =
exp

[
−η ∑i−1

j=1 `t,j(θ)
]
π(θ)

∑ϑ∈Θ0
exp

[
−η ∑i−1

j=1 `t,j(ϑ)
]
π(ϑ)

. (23)
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The strategy is studied in detail in [3]. We refer the reader to [36] and the references
therein for connections to Bayesian inference. We recall the following regret bounds
from [3]. First, under Assumption 3,

n

∑
i=1

`t,i(θt,i) ≤ min
θ∈Θ0

 n

∑
i=1

`t,i(θ) +
ηnB2

8
+

log 1
π(θ)

η

. (24)

Moreover, under the stronger Assumption 4,

n

∑
i=1

`t,i(θt,i) ≤ min
θ∈Θ0

[
n

∑
i=1

`t,i(θ) + C log
1

π(θ)

]
. (25)

In Section 5.2, we work in the general setting (Assumption 3), and we use our meta-
strategy OPMS or OGMS to learn η. In Section 5.3, we use OPMS or OGMS to learn π
under Assumption 4.

5.2. Learning the Rate η

Consider the uniform prior π(θ) = 1/M for any θ ∈ Θ0. Then, the regret bound (24)
becomes:

n

∑
i=1

`t,i(θt,i) ≤ min
θ∈Θ0

n

∑
i=1

`t,i(θ) +
ηnB2

8
+

log M
η

(26)

and it is then possible to optimize it explicitly with respect to η. The value minimizing the
bound is η = (2/B)

√
2 log(M)/n and the regret bound becomes:

n

∑
i=1

`t,i(θt,i) ≤ min
θ∈Θ0

n

∑
i=1

`t,i(θ) + B

√
n log M

2
. (27)

In practice, however, while it is often reasonable to assume that the loss function
is bounded (as in Assumption 3), very often one does not know a tight upper bound.
Thus, one may use a constant B that satisfies Assumption 3, but that is far too large. Even
though one does not know a better upper bound than B, one would like a regret bound
that depends on the tightest possible upper bound.

In the meta-learning framework, define:

Lt(η) = min
θ∈Θ0

n

∑
i=1

`t,i(θ) +
ηn
[
maxϑ∈Θ0,1≤i≤n `t,i(ϑ)

]2
8

+
log M

η
(28)

for η ∈ Λ = [1/n, 1]. It is immediately necessary to prove that this function is convex and
L-Lipschitz with L = n2 log(M) + nB2/8. So, Assumption 1 is satisfied, allowing for the
use of the OPMS or OGMS strategy without needed a tight upper bound on the losses.
Note that, in this context, the OGMS strategy is given by:

ηt =
1
n
∨
[

ηt−1 − α

(
n
[
maxθ∈Θ0,1≤i≤n `t,i(θ)

]2
8

− log M
η2

t−1

)]
∧ 1.

Theorem 2. Under Assumption 3, using OGMS or OPMS on Lt(η), as in (28) with η1 = 1,
L = n2 log(M) + nB2/8 and

α =
1
L

√
2
T

(29)
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we have

T

∑
t=1

n

∑
i=1

`t,i(θ
ηt
t,i) ≤

T

∑
t=1

min
θ∈Θ0

n

∑
i=1

`t,i(θ) + bT

√
n log(M)

2

+ T log(M) +
b2T

8
+

(
n2 log M +

nB2

8

)√
2T (30)

where
b = max

θ∈Θ0,1≤t≤T,1≤i≤n
|`t,i(θ)|. (31)

Let us compare learning in isolation with meta-learning in this context. When learning
in isolation, the hyperparameter η is fixed (as in (2)). If we fix it to the value η0 =
(2/B)

√
2 log(M)/n as in (27), the meta-regret is in BT

√
n log(M)/2. On the other hand,

meta-learning leads to a meta-regret in bT
√

n log(M)/2+ n2 log M
√

2T +O(nB2
√

T + T).
In other words, we replace the potentially loose upper bound B by the tightest possible
bound b, at the cost of an additional n2 log M

√
2T +O(nB2

√
T + T) term. Here again,

when T is large enough with respect to n, this term is negligible.

5.3. Learning the Prior π

Under Assumption 4, we have the regret bound in (25). Without any information on
Θ0, it seems natural to use the uniform prior π on Θ0 = {θ1, . . . , θM}, which leads to

n

∑
i=1

`t,i(θt,i) ≤ min
θ∈Θ0

n

∑
i=1

`t,i(θ) + C log M. (32)

If some additional information was available, such as, for example: “the best θ is
always either θ1 or θ2”, one would rather chose the uniform prior on {θ1, θ2}, and obtain
the bound:

n

∑
i=1

`t,i(θt,i) ≤ min
θ∈Θ0

n

∑
i=1

`t,i(θ) + C log 2. (33)

Unfortunately, such information is generally not available. However, in the context of
meta-learning, we can take advantage of the previous tasks to learn such information.

Thus, let us define, for any task t,

θ∗t = argmin
θ∈Θ0

n

∑
i=1

`t,i(θ) (34)

and

Lt(π) =
n

∑
i=1

`t,i(θ
∗
t ) + C log

1
π(θ∗t )

(35)

for π = (π(θ1), . . . , π(θM)) ∈ Λ with

Λ =

{
x ∈ (R+)

M:
M

∑
h=1

xh = 1 and xh ≥
1

2M

}
. (36)

It is important to check that Lt is convex and L-Lipschitz with L = 2CM on Λ; this
allows us to use OPMS (or OGMS).

Theorem 3. Under Assumption 4, using OPMS onLt(π) as in (35) with π1 = (1/M, . . . , 1/M),
L = 2CM and

α =
1

2CM
√

T
, (37)
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define I∗ = {θ∗1 , . . . , θ∗T} where each θ∗t is as in (34) and m∗ = card(I∗). We have

T

∑
t=1

n

∑
i=1

`t,i(θ
πt
t,i ) ≤

T

∑
t=1

n

∑
i=1

`t,i(θ
∗
t ) + CT log(2m∗) + 2CM

√
T. (38)

When learning in isolation with a uniform prior, the meta-regret is TC log(M). On
the other hand, if m∗ is small (that is, many of the θ∗i s are similar), meta-learning leads to
a meta-regret in CT log(2m∗) + 2CM

√
T. For a T that is large enough, this is an impor-

tant improvement.

5.4. Discussion on the Continuous Case

Let us now discuss the possibility of meta-learning for generalized Bayesian methods
when Θ0 is no longer a finite set. There is a general formula for EWA, given by

ρt,i(dθ) = argmin
ρ

{
Eθ∼ρ

[
i−1

∑
j=1

`t,j(θ)

]
+
K(ρ, π)

η

}
(39)

where the minimum is taken over for all probability distributions that are absolutely contin-
uous with π, and where π is a prior distribution, η > 0 a learning rate andK is the Kullback–
Leibler divergence (KL). Meta-learning for such an update rule is proven in [10,37] but
usually does not lead to feasible strategies. Online variational inference [38,39] consists in
replacing the minimization on the set of all probability distributions by minimization in a
smaller set in order to define a feasible approximation of ρt,i. For example, let (qµ)µ∈M be a
parametric family of probability distributions, Thus, we define:

µt,i = argmin
µ∈M

{
Eθ∼qµ

[
i−1

∑
j=1

`t,j(θ)

]
+
K(qµ, π)

η

}
. (40)

It is discussed in [40] that, generally, when µ is a location-scale parameter and `t,j is
Γ-Lipschitz and convex, then ¯̀t,i(µ) := Eθ∼qµ

[`t,j(θ)] is 2Γ-Lipschitz and convex. In this
case, under the assumption that K(qµ, π) is α-strongly convex in µ, a regret bound for such
strategies was derived in [39]:

n

∑
i=1

Eθ∼qµt,i
[`t,i(θ)] ≤ inf

µ∈M

{
Eθ∼qµ

[
n

∑
i=1

`t,i(θ)

]
+

η4Γ2n
α

+
K(qµ, π)

η

}
. (41)

A complete study of meta-learning of the rate η > 0 and of the prior π in this context
is an important objective (possibly, with a restriction that π ∈ {qµ, µ ∈ M}). However, this
raises many problems. For example, the KL divergence K(qµ, qµ′) is not always convex
with respect to the parameter µ′. In this case, it might help to replace it by a convex
relaxation that would allow for the use of OGMS or OPMS. This relates to [41,42], who
advocate going beyond the KL divergence in (39); see also [36] and the references therein.
This will be the object of future works.

6. Proofs

We start with a preliminary lemma that will be used in the proof of Proposition 1.

Lemma 1. Let a, b, c be three vectors in Rp. Then:

(a− b)T(b− c) =
‖a− c‖2 − ‖a− b‖2 − ‖b− c‖2

2
. (42)

Proof. expand ‖a− c‖2 = ‖a‖2 + ‖c‖2 − 2aTc in the r.h.s, as well as ‖a− b‖2 and ‖b− c‖2.
Then simplify.
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We now prove Proposition 1 separately for the general OGMS strategy, and then
for OGMS.

Proof of Proposition 1 for OPMS. As mentioned earlier, this strategy is an application to
the meta-learning setting of implicit online learning [32,33]. We follow here a proof from
Chapter 11 in [3]. We refer the reader to [43] and the references therein for tighter bounds
under stronger assumptions.

First, λt is defined as the minimizer of a convex function in (5). So, the subdifferential
of this function at λt contains 0. In other words, there is a zt ∈ ∂Lt−1(λt), such that

zt =
λt−1 − λt

α
. (43)

By convexity, for any λ, for any z ∈ ∂Lt−1(λt),

Lt−1(λ) ≥ Lt−1(λt) + (λ− λt)
Tz. (44)

The choice z = zt gives:

Lt−1(λ) ≥ Lt−1(λt) +
(λ− λt)T(λt−1 − λt)

α
, (45)

that is,

Lt−1(λt) ≤ Lt−1(λ) +
(λ− λt)T(λt − λt−1)

α

= Lt−1(λ) +
‖λ− λt−1‖2 − ‖λ− λt‖2

2α
− ‖λt − λt−1‖2

2α

= Lt−1(λ) +
‖λ− λt−1‖2 − ‖λ− λt‖2

2α
− α
‖zt‖2

2
(46)

where we used Lemma 1. Then, note that

Lt−1(λt−1) = Lt−1(λt) + [Lt−1(λt−1)−Lt−1(λt)]

≤ Lt−1(λt) + ‖λt−1 − λt‖L

≤ Lt−1(λt) + α‖zt‖L. (47)

Combining this inequality with (46) gives

Lt−1(λt−1) ≤ Lt−1(λ) +
‖λ− λt−1‖2 − ‖λ− λt‖2

2α
+ α

(
‖zt‖L− ‖zt‖2

2

)
. (48)

Now, for any x ∈ R, −x2/2 + xL− L2/2 ≤ 0. In particular, ‖zt‖L− ‖zt‖2/2 ≤ L2/2
and so the above can be rewritten:

Lt−1(λt−1) ≤ Lt−1(λ) +
‖λ− λt−1‖2 − ‖λ− λt‖2

2α
+

αL2

2
. (49)

Summing the inequality for t = 2 to T + 1 leads to:

T

∑
t=1
Lt(λt) ≤

T

∑
t=1
Lt(λ) +

‖λ− λ1‖2 − ‖λ− λT+1‖2

2α
+

αTL2

2
. (50)

This ends the proof.

Proof of Proposition 1 for OGMS. The beginning of the proof follows the proof of Theo-
rem 11.1 in [3].
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Note that we can rewrite (4) as{
λ̃t = λt−1 − α∇Lt−1(λt−1)
λt = ΠΛ(λ̃t)

rearranging the first line, we obtain:

∇Lt−1(λt−1) =
λt−1 − λ̃t

α
. (51)

By convexity, for any λ,

Lt−1(λ) ≥ Lt−1(λt−1) + (λ− λt−1)
T∇Lt−1(λt−1) (52)

= Lt−1(λt−1) +
(λ− λt−1)

T(λt−1 − λ̃t)

α
, (53)

that is,

Lt−1(λt−1) ≤ Lt−1(λ)−
(λ− λt−1)

T(λt−1 − λ̃t)

α
. (54)

Lemma 1 gives:

(λ− λt−1)
T(λt−1 − λ̃t) =

‖λ− λ̃t‖2 − ‖λ− λt−1‖2 − ‖λt−1 − λ̃t‖2

2

=
‖λ− λ̃t‖2 − ‖λ− λt−1‖2 − α2‖∇Lt−1(λt−1)‖2

2
(55)

≥ ‖λ− λt‖2 − ‖λ− λt−1‖2 − α2‖∇Lt−1(λt−1)‖2

2
, (56)

the last step being justified by:

‖λ− λ̃t‖2 ≥ ‖λ−ΠΛ(λ̃t)‖2 = ‖λ− λt‖2 (57)

for any λ ∈ Λ. Plug (56) in (54) to get:

Lt−1(λt−1) ≤ Lt−1(λ) +
‖λ− λt−1‖2 − ‖λ− λt‖2

2α
+

α‖∇Lt−1(λt−1)‖2

2
(58)

and the Lipschitz assumption gives:

Lt−1(λt−1) ≤ Lt−1(λ) +
‖λ− λt−1‖2 − ‖λ− λt‖2

2α
+

αL2

2
(59)

sum the inequality for t = 2 to T + 1 to get:

T

∑
t=1
Lt(λt) ≤

T

∑
t=1
Lt(λ) +

‖λ− λ1‖2 − ‖λ− λT+1‖2

2α
+

αTL2

2
. (60)

This ends the proof of the statement for OGMS.

We now provide a lemma that will be useful for the proof of Proposition 2.

Lemma 2. Let G(u, v) be a convex function of (u, v) ∈ U ×V. Define g(u) = infv∈V G(u, v).
Then g is convex.



Entropy 2021, 23, 1257 15 of 20

Proof. indeed, let λ ∈ [0, 1] and (x, y) ∈ U2,

g(λx + (1− λ)y) = inf
v∈V

G(λx + (1− λ)y, v) (61)

≤ G(λx + (1− λ)y, λx′ + (1− λ)y′) (62)

≤ λG(x, x′) + (1− λ)G(y, y′) (63)

where the last two inequalities hold for any (x′, y′) ∈ V2. Let us now take the infimum
with respect to (x′, y′) ∈ V2 in both sides, this gives:

g(λx + (1− λ)y) ≤ inf
x′∈V

λG(x, x′) + inf
y′∈V

(1− λ)G(y, y′) (64)

= λg(x) + (1− λ)g(y), (65)

that is, g is convex.

Proof of Proposition 2. Apply Lemma 2 to u = (ϑ, γ), v = θ, U = Λ, V = Θ and

G(u, v) =
n

∑
i=1

`i,t(θ) +
γΓ2n

2
+
‖ϑ− θ‖2

2γ
. (66)

This shows g(u) = Lt((ϑ, γ)) is convex with respect (ϑ, γ). Additionally, G is differ-
entiable w.r.t u = (ϑ, γ), so

∂G
∂ϑ

=
ϑ− θ

γ
, and

∂G
∂γ

=
nΓ2

2
− ‖ϑ− θ‖2

2γ2 . (67)

As a consequence, for (θ, ϑ) ∈ Θ2 and γ ≤ γ ≤ γ,∥∥∥∥∂G
∂ϑ

∥∥∥∥2
≤ 4C2

γ2 , and
∣∣∣∣∂G

∂γ

∣∣∣∣2 ≤ n2Γ4

4
+

4C4

γ4 . (68)

This leads to

‖∇uG(u, v)‖ =

√∥∥∥∥∂G
∂ϑ

∥∥∥∥2
+

∣∣∣∣∂G
∂γ

∣∣∣∣2 (69)

≤
√

n2Γ4

4
+

4C2

γ2 +
4C4

γ4 =: L, (70)

that is, for each v, G(u, v) is L-Lipschitz in u. So, g(u) = infv∈V G(u, v) is L-Lipschitz
in u.

Proof of Theorem 1. Thanks to the Assumption 2, we can apply Proposition 2. That is,
Assumption (1) is satisfied, and we can apply Proposition 1. This gives:

T

∑
t=1

n

∑
i=1

`t,i(θ
λt
t,i ) ≤ inf

θ1,...,θT∈Θ
inf

(ϑ,γ)∈Λ

{
T

∑
t=1

[
n

∑
i=1

`t,i(θt)

+
γΓ2n

2
+
‖θt − ϑ‖2

2γ

]
+

αTL2

2
+
‖ϑ− ϑ1‖2 + |γ− γ1|2

2α

}
. (71)
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We use direct bounds for the last two terms: ‖ϑ − ϑ1‖2 ≤ 4C2 and |γ − γ1|2 ≤
|γ− γ|2 ≤ γ2 = C4. Then note that

T

∑
t=1
‖θt − ϑ‖2 = T

∥∥∥∥∥ϑ− 1
T

T

∑
s=1

θs

∥∥∥∥∥
2

+
T

∑
t=1

∥∥∥∥∥θt −
1
T

T

∑
s=1

θs

∥∥∥∥∥
2

(72)

= T

∥∥∥∥∥ϑ− 1
T

T

∑
s=1

θs

∥∥∥∥∥
2

+ Tσ2(θT
1 ). (73)

Upper bounding the infimum on ϑ in (71) by ϑ = 1
T ∑T

s=1 θs leads to

T

∑
t=1

n

∑
i=1

`t,i(θ
λt
t,i ) ≤ inf

θ1,...,θT∈Θ
inf

γ∈[γ,γ]

{
T

∑
t=1

n

∑
i=1

`t,i(θt) +
γΓ2nT

2

+
Tσ2(θT

1 )

2γ
+

αTL2

2
+

C2(4 + C2)

2α

}
. (74)

The right-hand side of (74) is minimized with respect to α if α = C
L

√
4+C2

T , which is
the value proposed in the theorem, and we obtain:

T

∑
t=1

n

∑
i=1

`t,i(θ
λt
t,i ) ≤ inf

θ1,...,θT∈Θ
inf

γ∈[γ,γ]

{
T

∑
t=1

n

∑
i=1

`t,i(θt) +
γΓ2nT

2
+

Tσ2(θT
1 )

2γ
+ CL

√
(4 + C2)T

}
. (75)

The infimum with respect to γ in the r.h.s is reached for

γ∗ =

(
γ ∨

σ(θT
1 )

Γ
√

n

)
∧ γ. (76)

First, note that

γ∗Γ2nT
2

≤
(

γ ∨
σ(θT

1 )

Γ
√

n

)
Γ2nT

2
(77)

≤
(

γ +
σ(θT

1 )

Γ
√

n

)
Γ2nT

2
(78)

=
Γ2Tn1−β

2
+

σ(θT
1 )ΓT

√
n

2
, (79)

using γ = n−β. Then,

Tσ2(θT
1 )

2γ∗
≤

Tσ2(θT
1 )

2

(
1
γ
∨ Γ
√

n
σ(θT

1 )

)
(80)

≤
Tσ2(θT

1 )

2

(
1
γ
+

Γ
√

n
σ(θT

1 )

)
(81)

=
Tσ2(θT

1 )

2C2 +
σ(θT

1 )ΓT
√

n
2

(82)

≤
Tσ(θT

1 )

C
+

σ(θT
1 )ΓT

√
n

2
, (83)

using γ = C2 and σ(θT
1 ) ≤ 2C. Plugging (77), (80) and the definition of L into (75) gives
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T

∑
t=1

n

∑
i=1

`t,i(θ
λt
t,i ) ≤ inf

θ1,...,θT∈Θ

{
T

∑
t=1

n

∑
i=1

`t,i(θt) + C

√(
n2Γ4

4
+ 4C2n2β + 4C4n4β

)
(4 + C2)T (84)

+
Γ2Tn1−β

2
+ σ(θT

1 )T
(

Γ
√

n +
1
C

)}
(85)

= inf
θ1,...,θT∈Θ

{
T

∑
t=1

n

∑
i=1

`t,i(θt) + C

√
(4 + C2)

(
n2Γ4

4n2∨4β
+

4C2n2β

n2∨4β
+

4C4n4β

n2∨4β

)
n1∨2β

√
T (86)

+

[
Γ2

2
n1−β +

(
Γ +

1
nC

)
σ(θT

1 )
√

n
]

T

}
(87)

≤ inf
θ1,...,θT∈Θ

{
T

∑
t=1

n

∑
i=1

`t,i(θt) + C

√
(4 + C2)

(
Γ2

4
+ 4C2 + 4C4

)
n1∨2β

√
T (88)

+

[
Γ2

2
n1−β +

(
Γ +

1
C

)
σ(θT

1 )
√

n
]

T

}
(89)

≤ inf
θ1,...,θT∈Θ

{
T

∑
t=1

n

∑
i=1

`t,i(θt) + C(Γ, C)

[
n1∨2β

√
T +

(
n1−β + σ(θT

1 )
√

n

)
T

]
(90)

where we took

C(Γ, C) = max

(
C

√
(4 + C2)

(
Γ2

4
+ 4C2 + 4C4

)
,

Γ2

2
, Γ +

1
C

)
. (91)

This ends the proof.

Proof of Theorem 2. A direct application of Proposition 1 gives

T

∑
t=1

n

∑
i=1

`t,i(θ
ηt
t,i) ≤ inf

η≥ 1
n

{
T

∑
t=1

min
θ∈Θ0

[
n

∑
i=1

`t,i(θ)

+
ηn
[
maxϑ∈Θ0,1≤i≤n `t,i(ϑ)

]2
8

+
log M

η

]
+

αTL2

2
+

(η − 1)2

2α

}
. (92)

Thus, we have

T

∑
t=1

n

∑
i=1

`t,i(θ
ηt
t,i) ≤ inf

η≥ 1
n

{
T

∑
t=1

min
θ∈Θ0

[
n

∑
i=1

`t,i(θ) +
ηnb2

8
+

log M
η

]
+

αTL2

2
+

(η − 1)2

2α

}
. (93)

Now, plugging in the right-hand side

η =
1
n
∨
(

2
b

√
2 log M

n

)
∧ 1, (94)

we obtain:

T

∑
t=1

n

∑
i=1

`t,i(θ
ηt
t,i) ≤

T

∑
t=1

min
θ∈Θ0

[
n

∑
i=1

`t,i(θ) +
b2

8
+ b

√
n log(M)

2
+ log(M)

]
+

αTL2

2
+

1
2α

. (95)
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Now, we see that the value α =
√

2/(TL2) leads to:

T

∑
t=1

n

∑
i=1

`t,i(θ
ηt
t,i) ≤

T

∑
t=1

min
θ∈Θ0

[
n

∑
i=1

`t,i(θ) +
b2

8
+ b

√
n log(M)

2
+ log(M)

]
+ L
√

2T. (96)

Rearranging terms, and replacing L by its value,

T

∑
t=1

n

∑
i=1

`t,i(θ
ηt
t,i) ≤

T

∑
t=1

min
θ∈Θ0

n

∑
i=1

`t,i(θ) + bT

√
n log(M)

2
+

b2T
8

+ T log(M)

+

(
n2 log M +

nB2

8

)√
2T, (97)

that is the statement of the theorem.

Proof of Theorem 3. An application of Proposition 1 leads to

T

∑
t=1

n

∑
i=1

`t,i(θ
πt
t,i ) ≤ min

π∈Λ

{
T

∑
t=1

[
n

∑
i=1

`t,i(θ
∗
t ) + C log

1
π(θ∗t )

]
+

αTL2

2
+
‖π − π1‖2

2α

}
(98)

and so

T

∑
t=1

n

∑
i=1

`t,i(θ
πt
t,i ) ≤ min

π∈Λ

{
T

∑
t=1

[
n

∑
i=1

`t,i(θ
∗
t ) + C log

1
π(θ∗t )

]
+

αTL2

2
+

1
2α

}
(99)

define πI∗ such that πI∗(θj) = 1/(2m∗) if j ∈ I∗ and πI∗(θj) = 1/(2(M−m∗)) otherwise.
We have π∗I ∈ Λ and thus

T

∑
t=1

n

∑
i=1

`t,i(θ
πt
t,i ) ≤

T

∑
t=1

[
n

∑
i=1

`t,i(θ
∗
t ) + C log(2m∗)

]
+

αTL2

2
+

1
2α

. (100)

Replace L and α by their values to get the theorem.

7. Conclusions

We proposed two simple meta-learning strategies together with their theoretical
analysis. Our results clearly show an improvement on learning in isolation if the tasks are
similar enough. These theoretical findings are confirmed by our numerical experiments.
Important questions remain open. In [27], a purely online method is proposed, in the sense
that it does not require storing all of the information of the current task. In the case of OGA,
this method allows us to learn the starting point. However, its application to learn the step
size is not direct [28]. An important question is, then: is there a purely online method that
would provably improve on learning in isolation in this case? Another important question
is the automatic calibration of Γ. However, as mentioned in Section 5, we believe that a
very general and efficient meta-learning method for learning priors in Bayesian statistics
(or in generalized Bayesian inference) would be extremely valuable in practice.
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