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ABSTRACT 

Timely diagnosis of craniofacial syndromes as well as adequate timing and choice of 

surgical technique are essential for proper care management. Statistical shape models and 

machine learning approaches are playing an increasing role in Medicine and have proven its 

usefulness. Frameworks that automate processes have become more popular. The use of 2D 

photographs for automated syndromic identification has shown its potential with the 

Face2Gene application. Yet, using 3D shape information without texture has not been studied 

in such depth. Moreover, the use of these models to understand shape change during growth 

and its applicability for surgical outcome measurements have not been analysed at length.  

 This thesis presents a framework using state-of-the-art machine learning and computer 

vision algorithms to explore possibilities for automated syndrome identification based on shape 

information only. The purpose of this was to enhance understanding of the natural development 

of the Apert syndromic face and its abnormality as compared to a normative group. An 

additional method was used to objectify changes as result of facial bipartition distraction, a 

common surgical correction technique, providing information on the successfulness and on 

inadequacies in terms of facial normalisation. Growth curves were constructed to further 

quantify facial abnormalities in Apert syndrome over time along with 3D shape models for 

intuitive visualisation of the shape variations. Post-operative models were built and compared 

with age-matched normative data to understand where normalisation is coming short. 

 The findings in this thesis provide markers for future translational research and may 

accelerate the adoption of the next generation diagnostics and surgical planning tools to further 

supplement the clinical decision-making process and ultimately to improve patients’ quality of 

life.   
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IMPACT STATEMENT 

For many craniofacial syndromes, diagnosis is done unnecessary late which can cause 

irreversible functional problems. Moreover, the timing and type of surgical correction to 

normalise the face are little understood. Apert syndrome, a craniosynostosis syndrome with a 

strong facial component, usually requires corrective surgery at some point in life. The 

indications and timings of surgery for (cosmetic) correction are mainly subjective as decision 

making and outcome analysis based on objective measurements are limited. Based on this 

subjective analysis, it has shown that facial normalisation for this patient population is 

extremely challenging due to complex pattern of the deformity. In addition, the natural 

development of the facial deformity is mildly understood making it impossible to predict the 

outcomes of facial growth over time, either with or without surgical correction.  

To overcome this delay in diagnosis, lack of information on natural shape development 

during growth, and limited objective surgical outcome measurements, this thesis presents a 

framework that allows for automated syndrome identification and presents 3D statistical 

models to further understand the natural development of the Apert’s syndromic face enabling 

objective surgical outcome analysis and to ultimately improve surgical corrective care of this 

population. It attempted to narrow the gap between technology and clinical practice. 3D models 

of soft tissue and bone were made for the face and skull and provided new insights in 

postoperative outcome analysis and valuable information on the natural development of Apert 

syndrome, which on its turn aided to understand the regions for improvement.  

The presented models have an impact clinically, academically, and commercially. 

Clinically, it demonstrated the usefulness of 3D models for automated diagnosis and provided 

novel information on the natural development of Apert face growth. It also allowed for 
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objective surgical outcome analysis, which is a methodology that can be translated to numerous 

types of syndromes and surgical techniques.  It eluded on areas where, facial bipartition 

distraction, a surgical technique used at our Unit lacks to achieve facial normalisation. 

Moreover, the algorithms used in this thesis were validated and could be implemented in 

commercial software. The automated component of the experiments performed in this thesis, 

do not only provide an interesting line of future research but also that such tools can have an 

impact in clinical decision-making and surgical planning. The models presented in this thesis 

will help to take a step closer to computer–assisted diagnostics and aimed to contribute to 

making surgical planning more accurate, faster, and personalised. Future access to these types 

of tools in clinic can help to guide discussions with caregivers and patients in the surgical work-

up process.  

It is hoped that the work presented in this thesis will influence craniofacial practice, 

both technically and clinically.  
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Author’s note  

In this PhD thesis the term ‘normal’ is used to define healthy individuals without any 

craniofacial deformities. ‘Shape’ is defined as the geometrical information that remains when 

location, scale, and rotational effects are filtered out from an object.  
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1. INTRODUCTION 
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1.1. Introduction  

Apert syndrome (OMIM 101200) is a rare congenital craniofacial syndrome characterised 

by various craniofacial deformities and symmetric syndactyly of the hands and feet. (Figure 

1.1-1.2). It was first described by the French paediatrician E. Apert in 1906 (6). It is a rare 

syndrome that affects males and females equally and is estimated to occur in 1 in 65,000 to 

75,000 births, depending on the study cited (7, 8). The highest prevalence is found in Asia, 

where it is 1 in 45,000 live births. The incidence significantly increases with paternal age (9). 

The syndrome has complete penetrance, meaning that all individuals carrying the genetic 

mutation also manifest at the phenotypical level. Moreover, Apert has a variable expressivity, 

resulting in phenotypically mildly affected individuals, to severe deformities within the same 

family. It is an autosomal, dominant, inherited, craniosynostosis syndrome with a gain-of-

function missense mutation of fibroblast growth factor receptor (FGFR) 2 on chromosome 10q 

(10).  

Figure 1.1 Clinical photographs of Apert Syndrome. Two patients with Apert syndrome are 

presented here with frontal photographs. A) a 1-year-old unoperated female; B) an 8-year-old 

unoperated male. 
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Figure 1.2. Overview of clinical features. Here are the most common clinical features listed as 

described in literature.  

 

Due to its complexity, Apert syndrome is generally diagnosed in infancy, followed by a 

‘life’ long care management at a multidisciplinary, craniofacial Centre. Healthcare 

professionals involve in the care of these children comprise craniofacial surgeons, oral and 

maxillofacial surgeons, plastic surgeons, neurosurgeons, as well as orthodontists, radiologists, 

ophthalmologists, otolaryngologists, psychologists, specialised nurses, and speech and 

language therapists. The management is focused on protection of function in infancy and 

correction of deformity in childhood and adolescence. Functional problems seen in infancy 

require surgical management to protect from long term sequelae including raised intracranial 

pressure, airway issues, and eye exposure. Thus, early diagnosis of Apert syndrome is essential 

to deliver optimal care and long-term outcomes. However, screening pathways currently in 

place are inadequate and often result in delayed diagnosis. This, in turns, translates in 

Clinical features: 

• Biconcave face 

• Turribrachycephaly  

• Hypertelorism 

• Exorbitism due to shallow orbits  

• Downslanting palpebral fissures 

• Maxillary hypoplasia 

• Narrow upper dental arch 

• Class III malocclusion, anterior open bite, and dental crowding 

• Cleft palate with high arched palate can occur 

• Complex syndactyly of the hands and feet  
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irreversible functional impairments, such as visual failure, neurocognitive defects, and airway 

problems that could be avoided by timely diagnosis and treatment. An automated method to 

identify children with Apert syndrome might speed up the diagnostic process and provide 

clinicians with a chance for delivering better management.  

 The dominant drivers for surgery in infancy are functional problems, whilst correction 

of facial abnormalities plays a larger role in childhood and adolescence. Several surgical 

techniques exist to correct the craniofacial deformities aiming to ‘normalise’ facial appearance, 

with choice differing between Centres and are governed by the surgeon’s experience rather 

than objective outcome measurements.  

To assess ‘normalisation’ of surgical intervention, various 2-dimensional (2D) and 3-

dimensinal (3D) tools exist, mainly derived from traditional anthropometrics (11). 

Measurements for soft tissue or bone are inherently 2D in nature and are derived from sparse 

annotations – finite anatomical points on the skull or face – calculated using computerised 

tomography (CT) images, x-rays, or photographs (3, 12). While they can provide some insight 

into the shape of the human face, such analysis misses the extensive information that dense 3D 

analysis can offer. Dense 3D analysis, or statistical shape modelling (SSM), allows for the skull 

to be considered and analysed as a whole and  can provide greater insight into the shape of the 

skull in detail (13, 14).  

3D morphable models (3DMMs) are a common SSM approach and one of the most 

powerful statistical approaches for dense analysis and 3D shape modelling. These models are 

often constructed using principal component analysis (PCA), a dimensionality reduction 

algorithm which extracts shape modes by maximising the variance along orthogonal shape 

direction. Introduced in 1999, 3DMMs have proven to be adept at modelling the shape and 

variations within the human face and head shape, based on 3D photographs, thus relying on 



 30 

texture (4, 5, 14, 15). They have also been used in the orthopaedic surgical field for bone and 

muscle models from CT scans and for the more complex structures such as the human hand 

and ear (14, 16-20). The Large-Scale Face Model (LSFM), based on more than 10,000 faces, 

has demonstrated the 3DMM power for facial representation. Experiments showed that the 

model can also be used to infer the age and gender of a given subject (5), for 

craniomaxillofacial diagnosis, and for surgical simulation in patients undergoing orthognathic 

surgery (jaw surgery) (21).  

The recent introduction of convolutional mesh autoencoder models (CMAs), a deep 

neural network approach to 3D model construction, offers further potential for the construction 

of shape-based models (22, 23). These models learn to extract meaningful shape features from 

the input data and can consequently be used for classification tasks.  

In this thesis, these algorithms and tools will be used and further developed to 

understand the 3D shape of Apert syndrome, to explore the possibilities of such technologies 

for automated syndrome identification for early diagnosis, and to quantify surgical results with 

the ultimate aim of improving outcomes and care for this group of patients. 

All studies performed in this thesis are performed according to the Helsinki Act and 

have been approved by the Institutional Ethical Board; Joint Research and Development 

Office. These studies fall under R&D no. 14DS25. 

  

https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww2.reda.org.uk%2Freda3%2Fprojects%2FSearchPageLocator.aspx%3Fprojectid%3D11250%26locationid%3D2&data=02|01||cb56e062b6384a5dcd5008d7941ada51|1faf88fea9984c5b93c9210a11d9a5c2|0|0|637140715554606875&sdata=uHMiAND7C%2FsICyxEYnhXqUPhNOIm%2Fr14xTeHpfsf%2FwU%3D&reserved=0
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1.2. Aims and objectives 

The main aims of this thesis are: 

• Automatic diagnosis of Apert syndrome cases from 3D facial photography. 

• Analysis of the growing Apert’s face and its facial skeletal abnormalities. 

• Objective assessment of bipartition surgical outcomes in Apert’s facial correction. 

• Identification of areas in which the surgical technique might need improvement. 

 

 

 

 

 

To achieve these aims, the following objectives were identified: 

▪ Objective 1: To automatically identify Apert syndrome from a population of 

other FGFR-related craniosynostosis syndromes and from a normal population 

using 3D images and state-of-the-art 3DMM algorithms. 

3DMMs of Apert syndrome, other FGFR-related conditions and an age matched 

paediatric normal population need to be constructed from 3D images, to set up 

clustering experiments. The diagnostic power needs to be assessed for genetically and 

phenotypically similar syndromes, i.e. FGFR-related craniosynostosis syndromes such 

as Muenke and Crouzon.   

 

The main principal aim of this thesis is to apply 3D statistical shape methodologies 

to automatically identify Apert syndrome from 3D face images from genetically and 

phenotypically similar syndromes, and, once diagnosed, to evaluate the growing 

Apert’s face and its facial skeletal abnormalities pre- and post-surgical correction – 

ultimately to improve current surgical practice. 
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▪ Objective 2: To quantify 3D shape development in the growing Apert’s face and 

its facial skeletal abnormalities. 

3DMMs of the mean face of Apert will be compared to mean age-matched 

normal models to assess differences. 3DMMs of the normal paediatric facial skeleton 

and the Apert’s facial skeleton will be constructed providing information of the Apert 

face that might give new insights in natural shape development over time and facial 

areas that worsen or improve with age. 

 

▪ Objective 3: Define and apply the optimal quantification method to assess 

surgical outcomes in Apert’s corrective facial surgery. 

Once the models are built, the most accurate method to quantify shape differences 

will need to be determined. Once identified, the most accurate method is then applied 

to evaluate post-operative outcomes. 

 

▪ Objective 4: Evaluate facial normalisation after corrective surgery. 

The normal and Apert soft tissue models are used to evaluate the differences 

between the post-operative and age-matched healthy population. These differences can 

provide insight in the areas where the current surgical approach is successful and 

regions where normalisation might be lacking.  
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1.3. Outline of thesis 

The remainder of this thesis has the following structure: 

Chapter 2 provides background information on healthy craniofacial shape 

development and Apert syndromic abnormal growth. It presents a history of craniofacial 

morphometrics and describes the different types of surgical procedures known from literature 

to correct the facial deformities apparent in Apert syndrome.  

Chapter 3 describes face features of Apert syndrome compared to the normal 

population, using 3DMMs and heat maps. This model introduces the potential power of state-

of-the art algorithms for automated syndrome identification.  

Chapter 4 demonstrates that genetically and phenotypically similar syndromes to 

Apert syndrome, i.e. FGFR-related craniosynostosis syndromes (Crouzon and Muenke 

syndrome) can be identified both from each other and from normal faces, based on shape alone, 

demonstrating the powerful diagnostic value of this information. 

 Chapter 5 presents bone 3DMMs for a normal paediatric population (below 4 years 

of age). The model is validated by evaluating intrinsic model characteristics and by comparing 

with gold standard data from literature.   

Chapter 6 applies the bone model construction methodology from chapter 5 to an 

unoperated Apert population. In addition, growth curves on various midfacial and cranial 

measurements are provided and compared with normative data. 

Chapter 7 evaluates the surgical outcomes of facial bipartition distraction, a common 

surgical technique to correct Apert’s facial deformities, by analysing local shape changes of 

both soft tissue and bone. 
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Chapter 8 determines whether facial bipartition objectively normalises the Apert’s 

face, by comparing the post-operative face with generated normal faces. The method highlights 

where facial bipartition distraction is successful in normalisation and in what facial regions the 

surgical technique may require improvement to achieve a more normal appearance.  

Chapter 9 provides a summary of the main findings of this thesis, outlining the 

contribution to current understanding of facial shape changes in the growing Apert patients and 

their facial corrective surgical outcomes. Suggestions to improve clinical practice and for 

further research are presented, including some preliminary results of future studies. 
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2. BACKGROUND 
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This chapter describes Apert syndrome and introduces other FGFR-related craniofacial 

syndromes. An overview of prior studies on shape analysis in Apert syndrome is presented 

along with current concepts in modern morphometrics. Finally, the chapter outlines routine 

surgical approaches to correct the Apert’s face.  

 

2.1. Apert syndrome and FGFR-related craniosynostosis 

2.1.1. Genetical mutations 

In Apert syndrome, most cases are sporadic, although autosomal dominant inheritance 

can occur. The cause is found on FGFR2 gene on chromosome 10q in 99% of the cases (10). 

There are two known main subtypes, distinct by affecting different amino acids, namely 

FGFR2S252W (Ser252Trp) and FGFR2P253R (Pro253Arg) (10). Besides these mutations, a 

deletion and insertion in exon IIIc of FGFR2 have also been described as a rare cause (24). All 

these genetic changes have a gain-of-function effect, leading to abnormal expression of the 

altered FGFR2 splice form in the mesoderm derived mesenchyme of the coronal suture, 

inducing accelerated proliferation and differentiation of the mesenchymal cells causing 

osteogenesis. As a result, the coronal suture fails in its function to facilitate skull growth, and 

synostosis of the frontal bone to the parietal bone occurs (25-27). While these two subtypes 

cause similar facial deformities, cleft palate is more common in Ser252Trp patients. Syndactyly 

of hands and feet are significantly more present in patients with Pro253Arg mutation (28). 
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2.1.2. FGFR-related craniosynostosis 

Craniosynostosis is defined as premature fusion of cranial sutures, which can be due to 

primary or secondary causes. The premature closure of one or more sutures results in a distorted 

head shape owing to growth restriction along the affected suture and to compensatory 

perpendicular growth. FGFR-related craniosynostosis consists of FGFR1, FGFR2, and FGFR3 

mutations. Depending on the amino acids affected, various types of syndromes result. The most 

common syndromes from the FGFR2 related mutations are Apert, Crouzon, and Pfeiffer 

syndrome. Muenke and Crouzon with acanthosis nigricans result from the FGFR3 mutation. 

Pfeiffer can also derive from FGFR1 mutations. Associated features include facial hypoplasia 

and dysmorphology, ocular exposure, hydrocephalus, hearing problems, mental retardation, 

delayed speech, feeding problems, extracranial anomalies, and many other functional problems 

deriving from this. Apert syndrome accounts for between 4 to 5% of all patients with 

craniosynostosis (29).  

 

2.1.3. Face Appearance 

FGFR-related syndromes are characterised by typical craniofacial features, however 

large phenotypical variety can be seen between and within different syndromes. Pfeiffer 

syndrome is characterised by brachycephalic headshape (short head shape), maxillary 

hypoplasia (retruded midface) and exorbitism (protrusion of the eyeball), Crouzon syndrome 

by brachycephalic headshape, maxillary hypoplasia, hypertelorism (increased inter-orbital 

width), exorbitism with retruded supraorbital, infra-orbital and lateral orbital rims, and class 

III malocclusion. Muenke syndrome is characterised by brachycephalic head shape (short 

head), mild midface hypoplasia, downslanting palpebral fissures (lowered position of the 

opening between the eye lids), and mild ptosis (protruding eye), and Apert syndrome is 
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characterised by a turribrachycephalic head shape (short and tall head), hypertelorism, 

exorbitism, vertical compaction toward the nasofrontal suture, downslanting palpebral fissures, 

maxillary hypoplasia, class III malocclusion (protruded lower jaw relative to the upper jaw), 

anterior open bite and dental crowding (Figure 2.1) (30). 

 

 

Figure 2.1. Clinical photographs of unoperated patients with FGFR-related craniosynostosis. A) 

a 30-day old male patient with Pfeiffer syndrome; B) a 7-year-old female patient with Crouzon 

syndrome; C) a 1.3-year-old female patient with Muenke syndrome; D) a 17-year-old male patient with 

Apert syndrome.   
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2.2. Current concepts in Craniofacial morphometrics  

 

2.2.1. Traditional morphometric analysis 

Traditionally, analysis of the craniofacial shape has been performed using linear 

measurements based on lengths, angles and ratios, often acquired from 2D projection images 

(11). These measurements are referred to as traditional morphometric analysis. Although 

manual acquisition of anthropometric data is time consuming, and requires great precision and 

a degree of expertise to record, traditional morphometric techniques form the basis of our 

understanding of the proportions of the human face and, thanks to the pioneering work of Leslie 

Farkas and others, large amounts of normative 2D data are available (31). Traditional 

morphometric analysis is useful in corrective surgery and has revolutionised orthognathic 

surgery and orthodontics with the cephalometric analysis. Despite its success, 2D analysis has 

numerous drawbacks and cannot capture the full complexity of the head and facial features in 

3D.  

 

2.2.2. Geometric morphometric analysis  

More recently, geometric morphometric analysis has been introduced to study the 

human head shape, using Cartesian landmark coordinates in 3D and dense 3D analysis or 

statistical shape modelling (SSM). For this, a 3D shape of the head is required, acquired from 

CT scans, MRI, stereo photogrammetry, laser-scanning, handheld structured light scanners, or 

3D photographs. Dense 3D analysis can provide extensive information, in contrast to sparse 

annotations, which, being defined by a finite number of anatomical measurements, can only 

offer limited insight into the shape of the human skull or face. Additionally, in dense 3D 
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analysis, the shape is defined as the geometrical information that remains when translation, 

rotation, and scale effects are removed, thus removing overall size effects which may be 

predominant in the growing child (13, 14).  

 

2.2.3. 3D face models  

3DMMs are a common SSM approach. Blanz and Vetter pioneered the use of SSM for 

3DMMs in 1999 and have since then been applied to a variety of tasks (14). For over twenty 

years they have impacted 3D analysis with their ground-breaking approach and in the past few 

years, re-discovery has taken place in the context of deep learning.  

A 3DMM is a generative model for face shape and appearance that is based on two key 

points: 1) all faces are in dense point-to-point correspondence and 2) the facial shape and colour 

are separated and disentangled from external factors such as illumination and camera factors. 

They have advantage of the availability of depth information. When a statistical model of the 

distribution of the faces is made, this is traditionally done using PCA and has included other 

learning techniques in subsequent work, such as autoencoders.  

The leading assumption for the development of 3DMMs was that prior knowledge 

about object classes plays an important role in vision and helps to solve otherwise ill-posed 

problems. 3DMMs are designed to capture such prior knowledge and they are learned 

automatically from a set of examples. Prior to the time of Blanz and Vetter, Sirovich and Kirby 

in 1987 and Turk and Pentland in 1991 made an important influential paradigm shift with the 

Eigenfaces approach for 2D models. Grey-levels in the image domain were used and wrapping 

was performed using one single point, e.g. tip of the nose. PCA was performed and the 

eigenvectors could represent the main modes of variation in that space. However, with a 

drawback it being limited to a fixed pose and illumination and had no effective representation 
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of shape differences. The Eigenfaces approach was extended to the 3D face surfaces by Atick 

et al. 1996 to model shading variations in faces, having the same limitations (32). Other 

research groups proceeded by adding an Eigendecomposition of 2D shape variations between 

individual faces and used significantly more points for wrapping to obtain correspondence.  

Eigendecomposition is used to decompose a matrix into eigenvectors and eigenvalues, which 

can be used for PCA. In 1991, landmark-based face warping for image analysis was introduced 

by Craw and Cameron (33). The first statistical shape model was proposed in Active Shape 

models by Cootes et al. 1998 using about 200 landmarks (34). While this model used shape 

only, Active Appearance Models proposed a combination of shape and appearance and turned 

out to be very successful. Other groups computed dense pixel-wise image correspondences 

with optic-flow algorithms for modelling the facial shape variations (35, 36). In all these 

correspondence-based approaches, images are warped to a common template, and the 

appearance variation is then performed in the same way as the original Eigenfaces, but on the 

shape-normalized images. The shape model, on the other hand, provides a powerful and 

compact representation of shape differences by shifting pixels in the image plane. These 2D 

models were efficient to cover the shape variation for a fixed pose and illumination setting, but 

required many separate models, each limited to a small range of poses and illuminations. The 

introduction of 3D Computer Graphics in the 1990s demonstrated that variations in pose and 

illumination can easily be simulated. 3D models were used to manipulate existing images and 

2D algorithms were applied on 3D surfaces, as at the time image-based models were rather 

elaborate. With the initial face scanner delivering surfaces in a 2D cylinder parameterisation, 

all those steps were performed in 2D, and were replaced with their 3D equivalent only many 

years later. Interestingly, after the development towards 3D, the approach came back to 2D 

representations by using deep learning, and has now again evolved to 3D, e.g., by integrating 

3DMMs.  
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In the seminal work of Blanz and Vetter, they built a 3DMM of the human face by 

applying PCA to a dataset of 200 densely registered subjects, 100 males and 100 females of a 

similar ethnicity and age. Their dataset relied on laser scanning (37), which has a big 

disadvantage of  acquisition time, as only very few samples are gathered at any given time - 

even at very high frame rates, such systems require the subjects to sit still for several seconds. 

Following the model proposed by Blanz and Vetter, various have followed. Table 2.1 provides 

an overview of all available models of the human shape.  

 

Table 2.1. Overview on available shape and/or appearances models of human faces (38). 

model  geometry data comment 

Basel Face Model 

2009 (39) 

shape 200 individuals, each 

in neutral expression 

includes separate 

models for facial 

parts 

FaceWarehouse 

2014 (40) 

shape, expression 150 individuals, each 

with 20 expressions 

 

Global and local 

linear model (41) 

shape 100 individuals  

Multilinear Wavelet 

model 2014 (42) 

shape, expression 99 individuals, 25 

expressions 

 

Multilinear face 

model 2015 (43) 

 

shape, expression 2,500 scans (100 

individuals, 25 

expressions) 

 

Multilinear face 

model 2016 (44) 

shape, expression 2,510 scans (205 

individuals, up to 23 

expressions 

 

Large Scale Facial 

Model (LSFM) 2016 

(5) 

shape 9,663 individuals  

Surrey Face Model 

2016 (45) 

shape, expression 169 individuals multi-resolution 

Liverpool-York 

Head Model 

(LYHM) 2017 (4) 

shape 1212 individuals full head (no hair, no 

eyes) 

Faces Learned with 

an Articulated 

Model and 

Expressions 2017 

(46) 

shape, expression, 

head pose 

3,800 individuals for 

shape, 8,000 for 

head pose, 21,000 

frames for 

expression 

female, male, gender 

neutral model, full 

head (no hair) 
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Basel Face Model 

2017 (47)  

shape, expression 200 individuals for 

shape and 

appearance, a total 

of 160 expression 

scans 

full head and multi-

resolution 

York Ear Model 

2018 (18)  

shape 20 3D ear scans, 

augmented with 605 

landmark-annotated 

2D ear images 

ear only 

Multilinear 

autoencoder 2018 

(48) 

shape, expression 5,000 scans from 

195 individuals, 

500,000 after 

augmentation 

 

 

Convolutional Mesh 

Autoencoder 2018 

(22) 

shape, expression 12 individuals, 12 

extreme expressions, 

20,466 meshes in 

total 

full head (no hair) 

Combined Face & 

Head Model 2019 

(15)  

shape Merged from LYHM 

and LSFM models 

full head (no hair) 

Morphable Face 

Albedo Model 2020 

(49) 

- 73 individuals (50 

scanned + 23 from a 

3D relightable 

clinical database 

(50) 

 

 

Over the past years, 3DMMs were applied beyond faces. Models were built for the 

surface of the human body (51, 52) and for other specific parts of the body like ears (18) and 

hands (20). Moreover for animals (53, 54) and even cars (55).  

The process of building a 3DMM consists of collecting and standardising a training set 

of objects; aligning the object to a common template by removing translation, rotation, and 

scale (alignment); bringing every object into dense correspondence (registration); and, finally, 

analysing the statistical distribution of the registered shapes. These models are often 

constructed using some form of dimensionality reduction, as described - typically by applying 

PCA, though convolutional mesh autoencoder models and generative adversarial network 

(GAN) for 3D faces have also been used (22, 48, 56, 57).  PCA is an algorithm that extracts 
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shape modes by maximising the variance along orthogonal shape directions. The construction 

of a 3DMM is feasible if and only if all meshes are re-parametrised into a consistent form 

where the number of vertices, the triangulation, and the anatomical meaning of each vertex are 

made consistent across all meshes. For example, if vertex i corresponds to the tip of the nose 

in one mesh, then in all other meshes the ith vertex also corresponds to the tip of the nose. When 

the above criteria are met, the meshes are said to be in dense correspondence.  

When 3D meshes are derived from CT scans, the triangulation, number of vertices, and 

the semantic meaning are inconsistent, which needs rectification prior to dense 

correspondence. This can be achieved by registering the index mesh with a mesh template of 

fixed topology. One of the most common approaches to achieve this is non-rigid iterative 

closest point algorithm (NICP) (Figure 2.2.), which has proven more accurate than other 

approaches such as UV-TPS (UV thin plate spine) or UV-OF (UV optical flow) (5, 58, 59). 

NICP can be achieved with or without landmarks. When NICP is performed without guidance 

of landmarks it makes use of non-linear transformation methods, such as Finite Elements, or 

define a non-linear transformation based on thin-plate splines of b-splines. Landmarked based 

NICP makes use of 3D landmarks that employ as a soft constraint to guide the registration 

process; several iterations are then required to achieve dense correspondence with the template 

mesh. NICP is a flexible version of rigid ICP. Rigid ICP is a method Horn in 1987 and Arun 

1987 that makes use of two sets of corresponding landmarks that computes a rotation and 

translation by employing a linear algebra. It is faster than NICP but has also proven to be less 

accurate (16). To date, most commercial navigational or in silico 3D surgical planning 

softwares, such as BrainLab and Metronic, still use rigid registration methods as these are much 

faster.   
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Figure 2.2. Simplified overview of non-rigid closest point algorithms. This illustration visualises 

landmark based NICP, the first image illustrates two objects one wants to align, step 2 makes use of a 

selected number of landmarks to guide the registration process to obtain that the tip of the nose will 

indeed be aligned with the tip of the nose of the template mesh. It requires multiple iterations before 

appropriate alignment is achieved, which is illustrated with the two noses in dense correspondence in 

the right image.  

 

2.2.4. Large Scale Facial Models 

To current data, LSFM is the largest 3DMM ever constructed (60). This model is 

trained on rich demographic information with a large variety of ages (the majority >4 years), 

gender (52% female), and ethnicity (82% White, 9% Asian, 5% mixed heritage, 3% Black, and 

1% other). The population is described by the mean face and its principal components of shape 

variation (eigenvectors) which describe a multidimensional face space or face manifold. There 

are several thousand possible eigenvectors within a facial model (as many as there are subjects 

in the dataset from which the model is constructed), but nearly all the facial variations of the 

population are described within the first 100 components. As the dataset used to build the 

model is very large and extremely diverse, bespoke models can be formulated such as models 
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for females and males (Figure 2.3) or models tailored to different age-groups (16 to 21, 21 to 

35, 35 to 50, and 50 to 90 years old) (Figure 2.4).  

Figure 2.3. Bespoke LSFM models for gender. The mean (µ) and first five principal components with 

+3 and -3 standard deviation are illustrated for the female (top row) and male (bottom row) population 

computed from the Large-Scale Face Model (LSFM) database. It illustrates the largest differences for 

the study population (7-90 years old). Facial lengthening (component 1) and midfacial prominence 

(component 2) are some of the main findings.  
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Figure 2.4. Bespoke LSFM models for age-groups. The mean (µ) and first five principal components 

with +3 and -3 standard deviation are illustrated for the 4 age-groups. These models include both 

genders and illustrate the main variations.  
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Various methods to analyse this 3D information exist, of which t-Distributed Stochastic 

Neighbour Embedding (t-SNE) is one of the most common and popular ones. t-SNE is a 

dimensionality reduction technique that allows the high dimensional shape vectors to be 

embedded in a lower dimensional space and can reveal hidden structures of the data (61). It 

gives each datapoint a location on a 2D map and produces good visualisation by reducing the 

tendency to crowd points together in the center of a map. When compared to other non-

parametric techniques for dimensionality reduction, it is shown to be better at creating maps 

that reveals structure at many different scales. A study by Maaten et al. compared t-SNE with 

7 other techniques, which can be found in (61).  

For the LSFM model clustering can be seen for age and ethnicity on the t-SNE plot 

(Figure 2.5). A clear trend from younger subjects grouped on the far left of the embedding, 

with a tendency towards older ages when moving further to the right and towards the edges of 

the main cluster. Distinct clusters are also observed for Asian and Black participants. These 

findings suggest a potential for the use for the use of 3DMMs, such as LSFM, for diagnostics. 

Figure 2.5. t-SNE embedding of the high-dimensional face manifold clustering for age and 

ethnicity. Two embeddings are shown in this figure, left: age embedding, demonstrating a clear trend 

for age, right: ethnicity embedding where three main groups are seen for different ethnicities. 
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2.2.5. Shape analysis of the unoperated Apert’s face 

Some of the earlier works analysing the Apert’s head and face are studies by Goldberg 

et al. 1981 and Cohen et al. 1993, which provided several growth charts for cranial 

measurements. Head circumference measurements and cranial configurations such as cephalic 

length, breadth, and cranial height were acquired from adult lateral and frontal cephalometric 

tracings and compared with the dimensions from a normal population (62, 63). Later, some 

CT-based studies were published utilising cephalometric measurements to analyse Apert 

populations ranging from 8 – 25 patients. Reitsma et al. 2012 reported larger SNB angles (the 

angle between sella, nasion, and B-point (point of the deepest concavity anteriorly on the 

mandibular symphysis), showing the anterior limit of the mandibular basal arch in relation to 

the anterior cranial base) for Apert syndrome than for controls, with decreasing differences in 

adulthood; the ANB angles (the angle between A-point (the deepest point on the curvature of 

the maxillary alveolar process), nasion, and B-point, showing the relationship between the 

maxilla and mandible)  increased over time as the Apert population developed a more severe 

Class III malocclusion (64). The inclination of palatal plane to the anterior cranial base was 

smaller than controls and the ratio of the lower anterior facial height and the total anterior facial 

height ratio was larger at all ages, with differences increasing in boys and decreasing in girls 

with age (Figure 2.6). In concordance with this study, a shorter anterior cranial fossa without 

widening of the anterior cranial fossa was also reported by Antonio Jorge et al. 2014. A shorter 

maxilla was noted with widths similar to that in controls (65).  
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Figure 2.6. Description of cephalometric measurements.  Lateral skull with landmark points. ANS 

= anterior nasal spine, Me = menton, N = nasion, PNS = posterior nasal spine, Point A = subspinale, 

the most posterior midline point in the concavity between ANS and prosthion (the most inferior point 

on the alveolar bone overlying the maxillary incisors); Point B = supramentale, the most posterior 

midline point in the concavity of the mandible between the most superior point on the alveolar bone 

overlying the mandibular incisors (infradentale) and pogonion (the most anterior point on the chin); S 

= sella, the geometric center of the pituitary fossa.   

 

A work by Posnick et al. 2007 studied CT scans from 8 patients (7 female) under the 

age of 2 years and demonstrated a widened inter-coronal distance (110%) and cranial width, 

widened anterior interorbital distance (117%), increased lateral interorbital distance (113%) 

increased intertemporal distance (122%), larger distance between zygomatic buttresses and 

inter zygomatic arch distance. Yet, a shorter maximal cranial length, shorter medial orbital wall 

distance (92%), and a shorter zygomatic arch length (79%) shortened was reported (66). 

Another study utilising cephalometric measurements by Lu et al. 2018 reported a retruded 

zygoma, a shorter maxilla, and an increased transverse width of the zygoma with a normal 

growth of the maxilla in transverse and vertical directions (67). Of these, the retruded zygoma 

was the most severely affected area, with effects persisting into adulthood. 

 Using statistical shape analysis, Heuzé et al. 2014 studied the facial skeletal shape 

variations in FGFR-related craniosynostosis syndromes, including Apert syndrome (n=20) 

(68). In this study, statistical shape analysis was performed on skull anatomical units, such as 

the upper facial skeleton. The shape variations between FGFR2252W and FGFR2P253R could not 
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be identified from each other, based on the mean skull shapes or based on the facial skeleton. 

Non-significant differences were noted for the deformity for FGFR2P253R as compared to 

FGFR2252W, which was in concordance with a much earlier conducted study by Park et al. 1995 

(69). 

 

2.3. Surgical correction of Apert’s facial deformities 

2.3.1. Transcranial approaches 

To address the midface concavity and hypertelorism seen in Apert syndrome, facial 

bipartition with or without a rigid external distraction (RED) is often the surgical technique of 

choice. This procedure is the product of a number of historical developments in craniofacial 

surgery. In 1987, Ortiz-Monasterio et al. built on previous descriptions by Firmin et al. in 1974 

and Tessier to develop the monobloc advancement, which has proven to be effective in the 

correction of midfacial hypoplasia and for increasing the orbital volume across the FGFR2 

family of craniofacial dysostoses (70-72). The monobloc allows for advancement of the frontal 

bone and midface en-bloc. It was traditionally a static advancement procedure; however, with 

a paradigm shift in cranio-maxillofacial surgery for distraction osteogenesis, the monobloc 

advancement with internal/external advancement was developed, and, using distraction, a more 

stable movement without the need for extensive grafting could be facilitated (73-75). (Figure 

2.7) 
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Figure 2.7. Internal distraction versus external distraction. A = pre-operative 3D object constructed 

from CT scan for a patient undergoing internal monobloc distraction; B = during distraction using 

internal distractors; C = pre-operative 3D construction from CT scan for patient undergoing external 

monobloc distraction; D = during distraction using external monobloc distraction. 

 

Monobloc distraction, however, failed to reduce the interorbital width seen in Apert 

syndrome and alternative surgeries were introduced. The median faciotomy, described by van 

der Meulen in 1979 and refined by Tessier, became the facial bipartition operation. This 

addresses the interorbital issue, providing the ability to rotate the orbits medially (76, 77) 

(Figure 2.8.). Originally used in the correction of hypertelorism, this approach suits the 

management of the complex Apert phenotypes. After the introduction of craniofacial 

distraction osteogenesis, the facial bipartition distraction with RED-frame was born. This 

procedure has the functional capacity to potentially relieve airway disfunctions, such as sleep 
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apnoea, and provide corneal protection, with the aesthetic component focussing on reduction 

of the interorbital width and addressing the midfacial biconcavity (78).  

Figure 2.8. Simplified overview of facial bipartition. A = pre-operative skull with simplified 

osteotomy markings in red; B = peri-operative skull, the red arrows reflect the movement of the 

osteotomised segments, the ‘X’ illustrates the interorbital bony wedge selected for removal; C = post-

operative skull with the newly positioned bone segments fixated with wires/plates and screws. 

 

2.3.2. Subcranial approaches 

In addition to the above transcranial approaches, subcranial techniques have also been 

described to treat Apert patients. Transcranial approaches have the benefit of simultaneous 

advancement of the frontal bone and midface; however, they are prone to complications related 

to the osteotomy that crosses the anterior cranial fossa floor creating a communication with the 

nasal cavity (79). Subcranial approaches for the correction of facial abnormalities derive from 

landmark studies on fractures of the skull performed by Rene Le Fort in 1901 (80). The Le Fort 

III osteotomy for the correction of craniofacial abnormalities was described by Tessier in 1967 

and derived from the classification from Rene Le Fort. It was initially introduced for functional 

problems, e.g. improving airway, occlusion, and globe protection, and later also for aesthetic 
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purposes - leaving the frontal bone undisturbed (81-86). A Le Fort III essentially moves the 

midface en bloc into a more ‘normal’ position. (Figure 2.9. and Figure 2.10) 

Figure 2.9. Design of Le Fort I, Le Fort II, and Le Fort III osteotomies. 

 

Figure 2.10. A Le Fort III advancement with rigid external distraction frame. A) illustrates clearly 

an hypoplastic midface and malocclusion, B) shows the how midface distraction using a Le Fort III 

osteotomy allows for facial profile normalisation and correction the occlusion. This illustration was 

used from the original work of (1) 

 

Important to note is that Apert syndrome is characterised by an abnormal face in an 

abnormal position; and therefore, the Apert’s face does not sufficiently benefit from an en-bloc 

repositioning alone. To solve this, a Le Fort II with zygomatic repositioning (LF2ZR) was 
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introduced by Hopper (2, 87) (Figure 2.11). It was designed to correct severe functional 

midface hypoplasia in which there are discrepancies in degree between the central and lateral 

components. It allows for correction of exorbitism and the midface in different magnitudes – 

less advancement is needed to correct the exorbitism as to correct the central midface, with 

anterior and superior repositioning of the zygomas for exorbitism correction, and central 

midface distraction for sagittal correction and vertical lengthening. The differential movement 

of the central midface has a beneficial effect on the medial canthus position, which is typically 

vertically compacted toward the nasofrontal junction in these conditions.  

 

Figure 2.11. Drawing of a Le Fort II midface distraction with external distraction with 

simultaneous zygomatic repositioning.  A) a skull with orbital deformity and retruded midface, the 

planned osteotomy cuts are illustrated in orange, B) following osteotomies and insertion of rigid 

external distraction frame, clearly is demonstrated that the central segment has can undergo larger 

distraction than the lateral parts (2). 

  

2.3.3. Post-surgical outcomes 

Various studies have attempted to evaluate surgical outcomes for the correction of the 

Apert’s face. The majority of these are based on measurements on cephalometric films or 



 56 

acquired from CT scans with the aim to analyse advancements and convexity changes in the 

facial region following surgery. Given the small number of patients included in these studies, 

it is impossible to draw conclusions on the most appropriate surgical approach; moreover, 

studies that assess facial normalisation in 3D are lacking. A study by Oberoi et al. 2012, using 

measurements on cephalometric films concluded that Apert patients undergoing Le Fort III are 

corrected with great reduction of the deformity. However, only information on the 

advancement was presented and no analysis was performed on facial normalisation, nor 

objective calculations on real improvement were performed (88). Some studies demonstrated 

significant advancement of the midface following surgery such as Le Fort III, LF2ZR or facial 

bipartition distraction, which can be expected from a distractive approach (66, 87, 89). A study 

performed by Hopper et al. 2013 evaluated the differences between Le Fort III and LF2ZR, 

using cephalometric type of measurements on CT scans, and found a significant difference in 

analysing the concavity results (87). This is an interesting study that demonstrated 

‘normalisation’ of facial convexity on worm’s eye view (view from below upwards from 

clinical photographs) of LF2ZR as compared to Le Fort III, which is a technique that 

translocates the surgical unit en-bloc. Le Fort III is a successful technique to advance the 

midface, however, it does not correct local shape abnormality and the patient is left with 

undesirable concavity of the midface and vertical compression. According to this study, the 

differential movements caused by LF2ZR resulted into facial ratios similar the normal controls. 

The study claimed that facial ratios were normalised, and that the surgery resulted in levelling 

of the palpebral fissure by inferior displacement of the medial canthi relative to the fixed lateral 

canthi as part of the independent inferior Le Fort II distraction vector. A study from our 

department at Great Ormond Street Hospital for Children (GOSH) by Ponniah et al. 2007 

demonstrated that facial bipartition distraction results in significant skeletal unbending of the 

face, which was measured on pre- and post-operative axial, coronal, and sagittal slides of CT 



 57 

scans (89). Another study by GOSH from Crombag et al. 2014 used geometric morphometrics 

to assess the corrective effects of facial bipartition distraction in a similar study population, 

which demonstrated midface advancement and inward rotation of the orbits, however, 

remaining differences were seen when comparing normative data to postoperative Apert scans. 

In their study they noted that the overall shape of the skull became wider, including the orbits, 

but the position of the orbits remained the same (90).  

A modified technique − a Le Fort III segment correcting corneal-malar relationship and 

a Le Fort I segment undergoing rotation-advancement to treat the anterior open-bite 

deformation − described by Takishima et al. 2006 was applied to two patients.  The orbital 

contour deformity was preserved and moved as one unit and resulted in independent occlusal 

correction without orbital distortion. This study was performed using cephalometric 

measurements (91).  

Many surgical techniques and modifications exist; yet no true 3D shape analyses have 

been performed to analyse post-operative outcomes and to evaluate facial normalisation for 

both soft tissue and bone, ideally, in order to guide decision-making on the surgical technique 

of choice. 

 

2.4. Summary   

Apert syndrome is a complex syndrome affecting the face and head, in addition to other 

deformities. Enhancement of early diagnosis, understanding of the natural development of 

Apert’s face and facial skeleton, and objective analysis of the surgical correction compared to 

normative data are the main topics of this thesis. The next chapter will focus on building a 
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3DMM of the Apert face to describe its 3D characteristics and compare the syndromic features 

with those from the normal population. 

 Key points: 

• Apert syndrome is a heterogenous, complex syndrome requiring early diagnosis for 

optimal outcomes. 

• 3DMMs might play an important role in enhancing automated diagnosis. 

• Surgical planning can benefit from better understanding of natural development of the 

growing Apert’s face. 

• No consensus exists for the most adequate surgical approach to correct the Apert’s 

facial deformities as it is governed by experience rather than objective outcome 

measurements.  



 59 

3. APERT FACIAL ANALYSIS 
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As introduced in chapter 1 and 2, 3DMMs may have clinically useful applications within 

craniomaxillofacial specialties, such as diagnostics. In this chapter, it is hypothesised that 

automated Apert syndrome identification can be performed using facial shape information 

alone. This chapter describes the methodology and proof-of-concept study for automated 

diagnosis of Apert syndrome, starting from the construction of a soft tissue 3DMM of the 

Apert’s face. The model is used to describe the Apert mean face and its variations in 3D, and 

to compare Apert features with those from normal population, or unaffected, individuals.  

 

3.1. Introduction  

The rarity, heterogeneity, and severity of craniofacial syndromes, including Apert, may 

make clinical diagnosis problematic. Delayed diagnosis can occur in phenotypically mild 

cases, risking irreversible functional impairments, such as visual failure, neurocognitive 

defects, and airway problems that can be avoided by timely diagnosis and treatment (92-96). 

The inadequacy of current screening paradigms, the importance of early triage and 

identification, and the phenotypical characteristics of different syndromes, make syndromic 

craniosynostosis a prime candidate for computer assisted diagnosis and referral (97). 3DMMs 

applied to the normal population have already demonstrated their potential to identify clusters 

of individuals with similar facial shape features. Knoops et al. 2019 demonstrated the use of 

3DMMs (LSFM) to identify patients undergoing upper jaw surgery (21). These models 

constructed from syndromic populations might therefore have potential for automated 

diagnostics and can be used to understand mean shape differences. Thus, the purpose of this 

chapter is to construct an Apert soft tissue face model and evaluate the mean differences 

between Apert and an unaffected population. This information can be used to explore the 

potential for automated identification of the Apert’s face from a normal population using only 
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shape information as a proof-of-concept for automated diagnostic applications. As described 

in chapter 2, LSFM is a strong model with a large variety of ages and ethnicity, however, lacks 

data of young children. Craniofacial syndromes are commonly diagnosed in infancy. 

Therefore, to test the diagnostic capacity of the state-of-the-art algorithms, a model of the 

paediatric face needs to be constructed.  

 

3.2. Methodology 

3.2.1. Data  

Apert syndrome 

All patients diagnosed with Apert syndrome at the Craniofacial Unit at GOSH and 

Department of Maxillofacial Surgery at Hôpital Necker – Enfants Malades, Paris, France 

(NEMH) between 2005 and 2018 were reviewed retrospectively for pre-operative 3D imaging. 

CT head scans were selected as the most suitable image modality for the assessment of the 

craniofacial anatomy and were collected following the inclusion and exclusion criteria reported 

in Table 3.1. Two subgroups were made: Apert <4 years old and Apert 4 – 17 (including 17) 

years old. Baseline characteristics were collected from corresponding medical charts. In 

addition, subtype gene mutation was recorded.  

 

Normative 

At NEMH CT scans of patients <4 years old without a history of craniofacial anomalies 

were assessed. Patients indicated for a CT-scan between 2011 and 2018 due to headaches, 

trauma or epilepsy were reviewed for inclusion. The scans were evaluated by two independent 
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reviewers: 1) a paediatric radiologist and 2) me, to exclude any scans with abnormalities such 

as fractures, brain tumours, brain damage or craniofacial anomalies. Henceforth, this database 

will be referred to as ‘normal <4’. 

For the normative data of 4-17 years of age, the original LSFM database was addressed, 

which derives from 3D photographs. 101 samples between the ages of 4 and 17 years were 

randomly selected to serve as a healthy control subgroup. This group will be referred to as 

‘normal 4 -17’. 

Table 3.1. Inclusion and exclusion criteria for dataset. Face models were constructed using CT scans 

for the Apert <4, Apert 4-17, and <4 normal group. Randomly selected meshes from LSFM were used 

for the 4-17 normal population. All Apert and normal < 4 samples were acquired via CT scan. The 

LSFM database was obtained using 3dMD™ photometric stereo capture device set-ups (4, 5) 

 

 Inclusion Exclusion 

CT head 

scans 

(2005-

2018)  

• Apert syndrome 

diagnosis, no age limits 

 

• Incomplete scans (full face 

required) 

• Movement artefacts or squished 

faces due to gel pads used for 

scanning.  

• Insufficient CT slices for 3D 

construction 

• Scans after any type of 

craniomaxillofacial surgery 

(2011-

2018) 

• Normal scans aged <4 

years. 

 

• CT visible abnormalities 

• Craniofacial diagnosis/ 

abnormalities 

• Incomplete scans (full face 

required) 

• Movement artefacts or squished 

faces due to gel pads used for 

scanning. 

• Insufficient CT slices for 3D 

construction 

LSFM • 3D meshes aged 4–17 

years, randomly selected 

• n/a 
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3.2.2. Image post-processing 

DICOM files of all Apert and control CT scans were exported and converted to 3D soft 

tissue meshes by applying standardised skin setting using Horos (98), an open source code 

(FOSS) program that is distributed free of charge under the LGPL license at Horosproject.org 

and sponsored by Nimble Co LLC d/b/a Purview in Annapolis, MD USA. The meshes were 

exported at standard tessellation language (STL) files (Figure 3.1.). The STL files were 

imported into Autedesk Meshmixer (99), an open source 3D visualisation software for working 

with triangle meshes, to undergo a cleaning process where redundant objects, such as draping 

and gel pads, back of the CT scanner, and lines and tubes, were removed. The files were saved 

as Object files (Obj.). Infants with a pacifier in their mouth at time of CT scan were imported 

to Materialise Mimics Inprint 3.0, a 3D software that allows to clean up rough data, (100) and 

underwent a semi-automated process to remove the pacifier from the mesh (Figure 3.2.). The 

files were saved as Obj. files. Patients with movement artefacts and/or squished faces due to 

external forces of gel pads used during CT scanning to constrain movement of the child (Figure 

3.2.), were excluded from the dataset.  

Figure 3.1. DICOM-files to 3D mesh conversion. The DICOM-files (left) were segmented to facial 

3D Obj. files (right). 
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Figure 3.2 Mesh construction issues. Some CT scans needed pre-processing or had to be removed 

from the database. Left shows a mesh where the patient is wearing a pacifier during scanning, this 

pacifier was removed using Mimics Software, this mesh was then added to the dataset for registration. 

Right is an example of a mesh that was excluded from the database, the mesh is disturbed by movement 

artefacts, squished soft tissue due to external pressure of gel pads, and a strong facial expression. 

 

3.2.3. Model building and intrinsic evaluation 

Soft tissue face 3DMMs models were constructed for the Apert population: 1) all ages, 

2) <4 years, and 3) 4-17 years. In addition, a new model was constructed for the unaffected <4-

year group and one for the 4-17 normal population.  

All meshes from all groups were manually landmarked with 68 facial landmarks 

derived from a cropped facial template from (60) using a landmarker server (see link 1. 

Appendix B2 for the webserver used for landmarking) to guide the dense correspondence 

process. Then, an optimal similarity alignment between mesh in question and the annotated 

template was performed using Procrustes analysis. Procrustes analysis is a form of statistical 

shape analysis used to analyse the distribution of a set of shapes. It is a rigid shape analysis that 

uses isomorphic scaling, translation, and rotation to find the ‘best’ fit between two or more 

landmarked shapes (101). NICP was then used to deform the template to take the shape of the 

input mesh, with the landmarks acting as a soft constraint, to achieve dense correspondence. 

For the Apert’s faces an extra step was needed to achieve dense correspondence as NICP was 

not sufficient because the shapes of Apert’s face differ greatly both from each other, and from 
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the samples used for the construction of facial 3DMM’s. As such, Gaussian Process regressions 

were applied to the Apert face template mesh. Gaussian Processes is a machine learning 

algorithm that allows for increase of deformation flexibility and improve the quality of the 

correspondences obtained. The resulting deformed templates are re-parameterized versions of 

each subject which are in correspondence with one another (Figure 3.3). Then, all models were 

derived by applying PCA to the corresponding datasets.  

 

Figure 3.3. mesh annotation to guide dense correspondence. All meshes (top) were landmarked 

using 68 landmarks (left) to guide the dense correspondence process (right). The example in this 

illustration is an Apert patient.  

 

The 3DMMs were evaluated for intrinsic characteristics using compactness, 

generalisation, and specificity (41, 43, 102).  

Compactness measures the percentage of shape variation explained by the model when 

a certain number of principal components are retained.  

Generalisation measures the ability of a model to represent novel instances of face 

shapes that were not encountered during training. Given the relatively small size of the dataset, 



 66 

generalisation was evaluated using a leave-one-out strategy. To calculate the generalisation 

error for a sample in the test set at a given number of model principal components, the average 

Euclidean distance (AED) between the sample and its corresponding model projection was 

computed on a per-vertex basis: 

𝐴𝐸𝐷 =  
∑ √(𝑥𝑖,𝐴 − 𝑥𝑖,𝐵)2 +  (𝑦𝑖,𝐴 − 𝑦𝑖,𝐵)2 +  (𝑧𝑖,𝐴 − 𝑧𝑖,𝐵)2     𝑛

𝑖=1

𝑛
 

Here, n is the number of mesh vertices, and x, y, and z represent the Cartesian coordinates of 

meshes A and B. The overall generalisation error at each principal component is then calculated 

as the mean per-vertex error over all meshes. 

Model specificity evaluates the validity of novel instances generated by the model. 

Again, this was evaluated using a leave-one-out system. To measure the model specificity, 

1,000 samples were randomly synthesised (generated) for each of the model principal 

components. The distance between each synthesised face and its nearest neighbour in the test 

set was then calculated as the average Euclidean distance over all mesh vertices. Figure 3.4 

provides a simplified overview on specificity and generalisation. 

Figure 3.4. Simplified illustration for specificity and generalisation. From left to right, the first 

image illustrates the reference 3D object. The blue area represents how well the index 3D object 

corresponds with the reference 3D object. In the second image the blue area fits the 3D object well, 
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however, does not cover the full area. In the third image, the blue selection covers the 3D object 

generously, but it is not specific. The final image illustrates a perfect fit, it is specific and general. 

 

3.2.4. Mean facial shape comparison. 

Mean faces were computed for each group (Apert <4, Apert 4-17 years, normal <4, and 

normal 4-17 years). The mean faces of corresponding age groups were compared by 

superimposition of the meshes to visualise shape differences using distance heatmaps: 

• The mean face of the normal <4 was superimposed with the mean Apert <4 years face. 

• The mean face of normal 4-17 was superimposed with the mean Apert 4-17 years face. 

3.2.5. Manifold Visualisation 

To assess the diagnostic capacity of the models, t-SNE was applied to the high dimension 

latent vector encodings for the Apert patients and unaffected controls. t-SNE embedding was 

done for the Apert all ages, normal <4, and normal 4-17 allowing the global manifold of these 

vectors to be embedded in a 2D space for visualisation. The aim of this experiment is to uncover 

distinct groupings, or clusters. For this experiment, all Apert cases were put into one group, 

whereas the normal subgroups remained separated as they derive from different datasets, CT 

for <4 and 3DMD for 4-17 years. All t-SNE embeddings were created using a perplexity of 30 

and run for 1,000 iterations. PCA was used to reduce the dimensionality to 30 to speed up the 

computation of pairwise distances between the data points and suppress some noise without 

severely distorting the interpoint distances. Each of the dimensionality reduction technique was 

used to convert the 30-dimensional representation to a 2D map and show the results as a 

scatterplot. For all the data sets, there is information about the class of each datapoint, but the 

class information is only used to select a colour for the map points (label). In this case the data 

was labelled with: Apert (green), normal <4 (yellow), normal 4-17 (red). 
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3.3. Results  

In total, 46 Apert patients could be included for model construction after applying the 

inclusion and exclusion criteria (Table 3.1.). Genetic subtype information was available for 32 

patients: 19 of these were affected by Ser252Trp mutation and 13 by Pro253Arg mutation. 

Gender and age information on the subgroups are tabulated in Table 3.2.  

Table 3.2. Population overview for face model construction. 

 

For Apert, models were constructed for Apert all ages, Apert <4, and Apert 4-17. Due 

to relatively low numbers for the subgroups Apert <4 and Apert 4-17, I will present the intrinsic 

model evaluations and visualisations of the mean shape and the first components for the Apert 

all ages model only. For the normal population, models were constructed for normal <4 and 

normal 4-17. As the normal 4–17-year data derived from the LSFM, which is described at 

length in chapter 2.2.4. and in (5), I will present the intrinsic model evaluations and 

visualisations of the mean shape and the first components for the normal <4 only. 

 

 n males Average age Age range 

Apert all 46 27 6.1 ± 6.2 years 48 days – 17 years 

Apert <4 25 16 1.1 ± 1.0 years 48 days – 4 years 

Apert 4-17  21 11 12.2 ± 3.7 years 4 years – 17 years 

Normal <4 142 79 1.9 ± 1.2 years 1 day – 4 years 

Normal 4-17 101 51 10.5 ± 4.0 years 4 years – 17 years 
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3.3.1. Intrinsic model evaluation 

The Apert all ages model can be considered reasonably compact; 90% of the model 

shape variance is captured within the first 10 principal components and 95% within the first 15 

components. The model reported low reconstruction errors when assessing accuracy and 

specificity. The generalisation error was 1 mm when 20 principal components were included, 

and 0.5 mm when all model components were utilised, indicating that the model generalises 

well to unseen face instances. Specificity values of <1.2 mm demonstrate that novel face 

instances generated by the model are realistic (Figure 3.5). 

Figure 3.5. Intrinsic model evaluation for the Apert face 3DMM. The presented are plots for 

generalisation, compactness, and specificity evaluation. A) generalisation plot, demonstrates the ability 

to describe the faces that were not used to construct the original model, and at 20 components is 1.0 

mm; B) compactness plot, the amount of variance retained for a certain number of principal 

components, is 94% at 10 components; C) specificity plot, measures how well synthetic faces resemble 

real faces, and is 0.30 mm ± 0.07 mm at 15 components. 

 

 For the normal <4 model, 90% of the model shape variance is captured within the first 

20 principal components and 95% within the first 25 components. Low reconstruction errors 

were seen for accuracy and specificity. The generalisation error was 1 mm when 30 principal 

components were included, and 0.4 mm when all model components were utilised, indicating 
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that the model generalises well to unseen face instances. Specificity values of <1.0 mm 

demonstrate that novel face instances generated by the model are realistic (Figure 3.6). 

Figure 3.6. Intrinsic model evaluation for the normal <4 face 3DMM. The presented are plots for 

generalisation, compactness, and specificity evaluation. A) generalisation plot, demonstrates the ability 

to describe the faces that were not used to construct the original model, and at 30 components is 1.0 

mm; B) compactness plot, the amount of variance retained for a certain number of principal 

components, is 90% at 20 components; C) specificity plot, measures how well synthetic faces resemble 

real faces, and is 0.30 mm ± 0.05 mm at 40 components. 

 

3.3.2. Mean facial shape comparison. 

Mean shape differences of Apert <4 with normal <4, and Apert 4-17 with normal 4-17 

are illustrated in (Figure 3.7). Looking at both age groups, differences for Apert are seen with 

increased facial width, (pre)maxillary/midfacial retrusion, inward positioning of the 

nasofrontal junction, upward positioned nasal tip, differences in canthus positioning, and globe 

protrusion can be noted. The magnitude of these differences is well presented in the heatmaps. 

For the <4 comparison, differences over 8 mm were computed for facial width and 

central midface retrusion (premaxillary hypoplasia). Yet, a large proportion of the face remains 

within differences of 1-2 mm. Very little differences are seen for the medial canthus (<1 mm) 

and large differences (up to 8 mm) for the lateral canthus.  

For the 4-17 comparison, for Apert, the nasofrontal junction is increased (5-6 mm) due 

to restricted growth as compared to the <4 model (2-4 mm). Differences for the facial width 

remained, with an increase of differences in eye lid positioning. On average, the Apert’s medial 
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canthus differs 5-6 mm from the normal and the lateral canthus differences remain similar (up 

to 8 mm). The nasal tip positioning normalises slightly in the 4-17 group (nasal tip differences 

in the <4 group are 2-5 mm, however, are 0-2 mm for the 4-17 group). Whereas the premaxilla 

differs on average more in the <4 group (6-8 mm) as compared the 4-17 group (5-6 mm). 

Although the lateral aspects of the forehead are severely wider in the <4 group as compared to 

the normal <4 group, generalised increase in shape differences can be noted for the 4-17 group 

for the facial upper third (Figure 3.8). 

 

Figure 3.7. Mean facial shape comparison for >4 and 4-17. Shape differences are illustrated for <4 

(top) and 4-17 (bottom) age-groups. Two mean facial meshes of each subgroup were superimposed to 

allow for assessment of the average differences apparent in the Apert <4 vs normal <4 and the Apert 4-

17 group vs normal 4-17. A) normal <4 mean facial mesh (red, 30% transparency) superimposed with 

Apert <4 mean face mesh (green), B) normal <4 mean facial mesh (red) superimposed with Apert <4 

mean face mesh (green, 30% transparency), C) normal 4-17 mean facial mesh (red, 30% transparency) 

superimposed with Apert 4-17 mean face mesh (green), D) normal 4-17 mean facial mesh (red) 

superimposed with Apert 4-17 mean face mesh (green, 30% transparency). 
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Figure 3.8. Heatmap mean facial shape comparisons. NICP was applied to create heatmaps. The 

colours that correspond to the differences between the meshes are in millimeters. Top) heatmap of index 

mesh of mean face normal <4 compared to Apert <4; bottom) heatmap of Apert 4-17 compared with 

normal 4-17. Natural development of the Apert’s face demonstrate mean worsening of the eyelid 

positioning and overall forehead deformity, slight less differences seem apparent for the (pre)maxilla 

retrusion. 
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3.3.3. Manifold visualisation 

The t-SNE embedding shows distinct clustering for all data sets, when samples were 

labelled for Apert (all ages) in green, normal <4 in yellow, and normal <4-17 in red (Figure 

3.9.) No false positive or false negative results were identified, suggesting a strong diagnostic 

capacity of the model. Distinct clustering between normal 4-17 and normal <4 was noted which 

was expected due to age and different imaging modality used, 3DMD and CT scanning. 

Figure 3.9. t-SNE embedding of the high-dimensional face manifold clustering. The t-SNE 

embedding in two dimensions was generated with randomly sampled LSFM faces, for visualisation 

purposes, and labelled according to normal 4-17 (red, n = 101), normal <4 (yellow, n = 178), and Apert 

all ages (green, n = 46) faces. Two distinct groups are identified without any false positive of false 

negative results.  

 

 

3.4. Discussion  

This study successfully constructed soft tissue 3DMMs of the Apert face and normal 

population and allowed to analyse the mean faces of the <4 and 4-17 age groups. As 

expected, large differences are seen between the mean normal and mean Apert’s faces 
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persisting into adulthood. While facial deformities can become milder over time for some 

craniofacial syndromes, this was not seen for Apert as increase of severity of most affected 

areas was noted. Interestingly, the forehead protrusion / retrusion of the nasofrontal sutural 

region is more extreme in the 4-17 group. Large differences are noted for the eyelids 

(positioning of the canthus). In concordance with literature, downslanting palpebral 

fissures are seen in both age groups (30). However, for the Apert <4 group the medial 

canthus is positioned within normal limits and the lateral canthus lower for up to 8mm, 

whereas for the Apert 4-17 group the medial canthus is not within normal limited anymore 

and is positioned higher than the medial canthus of the normal 4-17 group, resulting in a 

more abnormal palpebral fissure orientation. The findings of the relatively higher 

positioning of the medial canthus with age are not clearly stated in current literature. 

Differences of the premaxilla are noted less in the 4-17 group, suggesting slight 

normalisation with age, yet still significantly out of normal limits. The natural 

developments of the soft tissue with age have great value for diagnosis and surgical 

planning. The intrinsic model characteristics validated the accuracy and can therefore be 

considered to give true information about the anatomical differences. The deformity 

changes seen with age, of which some have not been described in literature before, may 

have implications for surgical correction. Moreover, the proposed normative models can 

be used to further understand where surgical correction might be lacking which will be 

addressed in chapter 7.  

The second part of this study applied a state-of-the-art framework to confirm the 

hypothesis that machine learning approaches can be successfully used to automatically 

identify Apert syndrome from an unaffected population. Machine learning techniques work 

best using large dataset, however craniofacial disorders rarely occur. Apert syndrome for 

example, has a prevalence of 1:65,000 to 75,000 births (8). Therefore, limited data is 
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available for model construction. Yet, using only 46 Apert cases to construct the face 

3DMM with a non-uniform distribution, promising results for automated syndrome 

identification were presented in this chapter. This indicates that automated syndrome 

identification might be possible using 3DMMs. Most craniofacial syndromes severely 

affect the face shape, such as Apert syndrome; however, they often manifest as head shape 

deformities caused by craniosynostosis. Therefore, the next chapter will focus on the 

expansion of this approach to genetically and/or phenotypically similar patient groups to 

re-evaluate the diagnostic power in a larger setting and will include also head shape 

information for a complete analysis. Moreover, the presented accurate statistical model in 

this chapter opens the possibilities for automatic diagnosis assessment of surgical outcomes 

and surgical design, which will be addressed in the upcoming chapters.  

 

3.5. Summary  

The Apert’s facial abnormalities are noted to increase with age. The algorithms and 

framework by Booth et al. (5) demonstrated excellent clustering for Apert from the 

unaffected population with potential for automated identification for a wider syndromic 

population and opens possibilities for assessment of surgical outcomes and design. 

 

Key points: 

• Mean abnormalities of the Apert’s face increase with age when compared to an 

unaffected population which may have implications for surgical correction.  

• Excellent clustering of Apert from the normal using described algorithms 

suggesting a potential for diagnostic application. 
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4.  AUTOMATED SYNDROME 

IDENTIFICATION  
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Chapter 3 described the construction of the Apert face 3DMM and proved its potential for 

automated identification on face shape information. Chapter 4 will apply this pipeline to 

genetically and phenotypically similar syndromes, i.e. FGFR-related craniosynostosis 

syndromes and include head shape information in addition to the face shape.  

 

4.1.  Introduction  

The recent introduction of convolutional mesh autoencoder models (CMAs), a deep neural 

network approach to 3D model construction, offers further potential for the construction of 

shape-based models  (4, 5, 14, 22, 23). This way of building morphable models is currently a 

very active area of research. These models learn to extract meaningful shape features from 3D 

meshes and can consequently be used for classification tasks. Neural networks are in use to 

solve a range of problems. For example, they can be used for object detection – feed the neural 

network an image and it will be able to identify locations of important objects in that image, 

language translation – feed a neural network with a sentence in English and it can deliver the 

equivalent in French, or audio classification – feed a neural network with a soundwave and it 

will determine the object that produces that sound, such as a dog barking. Other types of neural 

networks can generate information, which are called generative models, such as variational 

autoencoders. A better and more 'famous' example that revolutionize the discipline is 

generative adversarial network (GAN). A generative model learns to generate data from the 

same distribution of the training set. A generative model can be trained by large datasets and 

is able to generate unlimited outcomes based on the input data. Autoencoders play a role in this 

process. Autoencoders consists of two parts: the encoder network and the decoder network. 

The encoder takes an input sample and converts its information into some vector (a set of 

numbers), the decoder takes this vector and expands it out to reconstruct the input sample. The 



 79 

reason for doing this – generating the same output as the input by using autoencoders – is not 

because of the output samples, but for the vector constructed in the process. This vector is a 

representation of the input data with less dimensions (for example a 3D mesh defined by 50,000 

points, can be represented by a vector of 512 features) and but it can be fed to complex 

architectures to solve specific problems. An example of this is the interference of a location of 

a person based on that’s person’s social media post. In our case it might be usable for 

classifying the FGFR-related craniosynostosis. Among the more prominent examples of 

studies using deep convolutional neural networks is DeepGestalt, a facial identification tool 

based on tens of thousands of 2D images to identify facial phenotypes for genetic disorders 

(103) . Whilst such systems demonstrate impressive results, they are unable to take advantage 

of the rich geometric information in the face and cranium that may give critical insight into the 

phenotypical variations associated with different syndromes. Advances in 3D modelling and 

geometric deep learning have resulted in the introduction of a more shape-based approach 

craniofacial analysis (4, 5, 14, 22). Fernandez Abrevaya et al. 2018 was the first encoder-

decoder architecture to model the 3D geometry of faces (48), projecting the 3D face to a 2D 

image. Ranjan et al. 2018 proposed the first autoencoder architecture for the geometry of faces 

that performs convolutions in a 3D mesh space directly instead of going through a 2D image 

representation (22). This work was in 2019 extended by Zhou et al. 2019 to encode both texture 

and shape information jointly (104).  

A study by Hallgrimsson et al. 2020 attempted automated syndrome identification using 

parametric and machine learning approaches to phenotype the face; in this study, the authors 

included over 7,000 subjects (53% normal) and nearly 400 syndromes, including Apert (n≈25). 

They could distinguish syndromic from unaffected in 80% of their population using facial 

shape information. The overall classification rate to the correct syndrome was 71.8% and 

around 75% for Apert specifically (105). Hallgrimsson et al. 2020 also studied unaffected 
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relatives of syndromic cases and found that 23% of these relatives were classified as 

syndromic. After further investigation, most of those relatives turned out to be undiagnosed or 

had incomplete penetrance of the mutation.  

This chapter reports on a geometric deep learning approach using convolutional 

autoencoders for the characterisation and identification of FGFR-related craniosynostosis 

syndromes, i.e. Apert, Muenke and Crouzon from the normal. As in most craniofacial 

syndromes not only the face, but also the head shape is affected, models including also the 

calvarium were investigated to identify the most effective diagnostic tool for FGFR 

classification. 

 

4.2. Methodology 

4.2.1. Data 

Syndromic 

In addition to the Apert patients that were included in the model from chapter 3, all 

patients diagnosed with Crouzon or Muenke syndrome at the GOSH were reviewed 

retrospectively for pre-operative CT imaging. All CT scans were exported and included after 

applying the inclusion and exclusion criteria (Table 4.1.). Additionally, baseline characteristics 

were collected from the medical charts.  

Normative 

LSFM was used as a healthy control group for the subpopulation between the ages of 

4 and 17 years old. Of the subjects who met the desired age criteria, 196 samples were randomly 
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selected to provide this age matched reference (7 males, 7 females for each age). The <4 group 

described in chapter 3 was used for the normal <4 group. 

In addition to the face 3DMM constructed in chapter 3, the model described in this 

chapter also included the cranium. For the <4 and syndromic datasets, several samples used for 

the face models were omitted when constructing the head models as not all scans used for the 

face model captured the full cranium. Scans with incomplete cranium or those with previous 

calvarial surgery, such as posterior vault remodelling/expansion, were excluded.  

For additional head meshes that could not be provided from the LSFM dataset, data 

from the LYHM was used (4). This database consists of approximately 1,200 individuals 

between the age of 2 and 90. From LYHM, scans from those aged 4 to 17 were extracted to 

provide an age-matched reference for the full head scans from the syndromic dataset. See Table 

4.1. for inclusion and exclusion criteria for all datasets used. 

Table 4.1. Inclusion and exclusion criteria for data sources. Three different models were 

constructed: only face, only head (cranium), and face+head. As control data, external data sources were 

consulted. For the face model LSFM was used to generate meshes, for the head model LYHM was 

consulted to obtain age-matched normal controls. 

 Inclusion Exclusion 

Face    

CT head 

scans 

2005-2018 

• Apert diagnosis, no age 

limits 

• Crouzon diagnosis, no 

age limits 

• Muenke diagnosis, no age 

limits 

• Incomplete scans (full face 

required) 

• Movement artefacts or squished 

faces due to gel pads used for 

scanning.  

• Insufficient CT slices for 3D 

construction 

• Scans after any type of 

craniomaxillofacial surgery 
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 • Normal scans aged <4 

years. 

 

• CT-visible abnormalities 

• Craniofacial diagnosis/ 

abnormalities 

• Incomplete scans (full face 

required) 

• Movement artefacts or squished 

faces due to gel pads used for 

scanning. 

• Insufficient CT-slices for 3D 

construction 

LSFM • 3D meshes aged 4–17 

years, randomly selected 

7 male and 7 female per 

year-group. 

 

Cranium   

CT head 

scans 

(2005-

2018) 

 

• Apert diagnosis, no age 

limits 

• Crouzon diagnosis, no 

age limits 

• Muenke diagnosis, no age 

limits 

• Incomplete scans (full face 

required) 

• Movement artefacts or squished 

faces due to gel pads used for 

scanning.  

• Insufficient CT slices for 3D 

construction 

• Scans after any type of 

craniomaxillofacial surgery 

 • Normal scans aged <4 

years. 

 

• CT-visible abnormalities 

• Craniofacial diagnosis/ 

abnormalities 

• Incomplete scans (full cranium 

required) 

• Movement artefacts or squished 

faces due to gel pads used using 

CT scan. 

• Insufficient CT-slices for 3D 

construction 

LYHM • Head 3D meshes aged 4-

17 

 

 

4.2.2. Image pre-processing  

CT scan pre-processing and registration 
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CT datasets underwent the pipeline described in chapter 3.2. for model construction. 

Three types of mesh templates were used: a) face, b) head, and c) face+head. (Figure 4.1.) The 

cropped face template from (60) was used for construction of the face models as done in the 

previous chapter. For the head model registration, a template from (106) with 55 additional 

landmarks were used to encourage good correspondence around the ears. For the face+head 

models the template from (15) was used.  

 

 

 

 

 

 

Figure 4.1.: Mesh templates. These are the templates used to guide the correspondence process. a) 

face template, b) head template, and c) face+head template.  

 

Dense correspondence for the Syndromic dataset 

Dense correspondence was achieved as described in chapter 3.2.2. 

 

4.2.3. 3D Mesh Autoencoder Construction 

Once dense correspondence was achieved for all meshes (i.e. Crouzon, Muenke, Apert, 

and normal) (100%), the 3D models were created using mesh autoencoders. Nine models in 

total were constructed, – face, head, face+head - to assess the role of facial and cranial shape 

in the diagnosis of FGFR-related craniosynostosis: 

• <4: a model trained using all samples up to and including the age of three. 

a b c 
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• 4-17: a model trained using all normal samples between 4-17 years of age.  

• All ages: a model constructed from all available data. 

 

The autoencoder architecture applied here is similar to that described in (22) and for in-

depth explanation of this methodology I would like to refer to (107). In simplified words, 4 

convolutional and down-sampling/up-sampling layers were used for the encoder and decoder 

for construction of the head and face+head models. Five such layers were used for the face 

model as the template mesh for this model is far denser (28,431 vertices for the face model, 

compared to 7,505 vertices in the head model, and 17,039 vertices in the face+head). Encoder 

convolutional filter sizes of [16, 16, 32, 32, 32] were used for the face model, while encoder 

filter sizes of [16, 16, 32, 32] were used for the head and face+head models. These filter sizes 

were chosen based on the method used in (22). In both cases, decoder filter sizes were the 

mirror of the encoder. Each convolutional layer in the encoder was followed by a mesh down 

sampling layer by a factor of 4 - in the decoder, this was replaced with a layer to up sample the 

mesh by a factor of 4. An additional convolutional layer was added to the decoder to allow for 

the reconstruction of the 3D shape coordinates. An ELU (Exponential Linear Unit) activation 

function was applied after each convolutional layer, which is an activation function for neural 

networks. Model weights were initialised using Xavier initialisation and Adam optimisation 

was used. All models were trained for 300 epochs using a batch size of 16, similar to the 

approach of (22). 
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4.2.4. Intrinsic model evaluation 

The model was validated using the intrinsic model characteristic validation 

methodology evaluation compactness, specificity, and generalisation as described in chapter 

3.2.3 (41, 43, 102). 

 

4.2.5. Manifold Visualisation 

t-SNE was applied to the high dimension latent vector encodings for the syndromic 

patients all ages and normal all ages, normal 4-17 and normal <4 normal meshes, to assess the 

diagnostic capacity of the models. Samples were labelled according to their syndromic class 

(normal, Apert, Crouzon, or Muenke) with the aim of uncovering distinct groupings, or 

clusters. In addition, a t-SNE embedding was applied to identify two subtypes of Apert. 

Samples were labelled with subtype: Ser252Trp, Pro253Arg, subtype unknown, and Crouzon 

(which was used as a control syndromic group). In addition, the age at time of scan was 

assessed to determine whether age played a role in the clustering behaviour of the two genetic 

subtypes. All t-SNE embeddings were created using a perplexity of 30 and run for 1,000 

iterations. 

 

4.2.6. Classification 

Autoencoders are often utilised for their ability to compress data into a much more 

compact format. This manifests as the latent vectors of the model. These latent vectors provide 

a natural means by which we can attempt to classify the data and determine its applicability as 

a diagnostic tool. Classification was performed using a Support Vector Machine (SVM) with 

linear kernel and balanced class weighting. A stratified data split with an 80%:20% train:test 
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proportion was used. The scikit-learn SVM implementation with default gamma and 

regularization parameters (C=1.0) was employed. The mean accuracy, specificity, and 

sensitivity were calculated following a Monte-Carlo cross-validation system where the training 

and test sets were randomly selected 10,000 times. 

 

4.3. Results 

A summary of the demographics for the subjects used in this study is provided in Table 

4.2. The models include data from four databases:  

1. CT data from 122 FGFR-affected patients (47 Apert, 61 Crouzon, and 14 Muenke), at 

a mean age of 5.0 ± 5.1 years 

2. CT data from 142 healthy infants at a mean age of 1.9 ± 1.2 years. 

3. Stereophotogrammetric face data from 196 healthy subjects from the LSFM dataset 

with a mean age of 10.5 ± 4.0 years (60). 

4. Stereophotogrammetric head data from 139 healthy subjects from the LYHM database 

at a mean age of 10.9 ± 3.8 years (4). 

 

Table 4.2. Overview of the face and cranium dataset of the included Syndromic Craniosynostosis 

and normal samples. All syndromic and infant samples were acquired via CT scan. The LSFM and 

LYHM databases were obtained using 3dMD™ photometric stereo capture device set-ups (4, 5) 

Type of SC Number of  

subjects 

Age at scan, 

years 

Age range at scan, 

years 

Male (%)  

Face      

Normal 4-17 196 10.5 ± 4.0 4 – 17  98 (50%) 

Normal <4 142 1.9 ± 1.2 0 – 3.9  79 (56%) 
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Apert 47 6.1 ± 6.2 0.1 – 20  28 (60%) 

Crouzon 61 5.3 ± 4.4 0.08 – 17  35 (58%) 

Muenke 14 1.6 ± 2.1 0 – 8  7 (50%) 

Total 460  0 – 20  247 (54%) 

     

Head     

Normal 4-17 139 10.9 ± 3.8  4 – 18  76 (55%) 

Normal <4 111 1.8 ± 1.1 0 – 3.9  59 (53%) 

Apert 39 6.5 ± 6.3 0.1 – 20  22 (56%) 

Crouzon 53 5.4 ± 4.4 0.4 – 17  30 (57%) 

Muenke 11 1.7 ± 2.3 0 – 8  6 (55%) 

Total 353  0– 20  193 (55%) 

 

 

4.3.1. Intrinsic Model Evaluation 

All ages models 

Using the available databases, all 9 models were built, with low reconstruction errors 

in terms of accuracy and specificity. For the face, head, and face+head models, the error values 

were 1.4 ± 1.2 mm, 3.8 ± 3.1 mm, and 2.9 ± 2.5 mm, respectively. Reconstruction error was 

higher for models that included the head shape, likely due to the greater degree of variation 

between subjects in this region. Model specificity assessment returned values of 2.7 mm, 4.3 

mm, and 3.9 mm for the face, head, and face+head models, respectively, indicating that the 

samples generated are realistic. 
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<4 models 

Low reconstruction errors were recorded for all models. For the face, head, and 

face+head models, these values were 1.9 ± 1.6 mm, 4.3 ± 3.4 mm and 3.0 ± 2.6 mm, 

respectively. Model specificity values of 2.9 mm for the face, 5.2 mm for the head, and 4.2 mm 

for face+head models. These values are higher than those recorded for the all ages model; this 

is expected, given the reduced number of samples used for model construction. 

 

≥4 models 

The reconstruction error for the face (1.3 ± 1.2 mm), head (3.0 ± 2.3 mm), and 

face+head models (2.3 ± 1.9 mm) were notably lower than the reconstruction errors observed 

for the complete model even though a reduced number of samples was used for model 

construction. This might be due to the reduced shape variations within the older individual 

dataset. Specificity values of 1.8 mm for the face, 3.6 mm for the head, and 3.4 mm for 

face+head models are again lower than values for the all ages models. 

 

4.3.2. Manifold Visualisation 

For the face model, clear clusters emerge between the normal and syndromic groups 

(Apert, Crouzon, and Muenke). For the normal groups, the samples from <4 and 4-17 are 

clustering separately, which can be caused due to age and/or due to different imaging 

modalities, <4 derives from CT scans and 4-17 from 3D photography. Within the syndromic 

cluster, the different syndromes are further subclustered.  The clusters formed for the head 

embeddings are not as distinct as those observed for the face cases; however, groups for Apert, 

Crouzon, Muenke, and normal individuals do emerge. When considering the model constructed 
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using the face+head template, again clear clusters can be seen forming for the different 

subgroups in the dataset. 

In all cases, even though the syndromic samples tend to group more tightly, the 

syndromes themselves seem relatively disentangled. The proximity of the Crouzon cluster to 

the normal cases in each of the embeddings indicates that this phenotype has a milder 

manifestation than either Apert or Muenke syndrome. For both the head and face+head 

embeddings, it can be noted that several Muenke and Crouzon samples cluster closer to the 

group of healthy cases.   

Figure 4.2. t-SNE embedding of the high-dimensional manifold clustering for the complete model.  

The t-SNE embedding in two dimensions was performed for a) face, b) head, and c) face+head models. 

Distinct clustering is seen for all models, with the least performance for the head only model. 

 

For the <4, distinct groups are formed for the syndromic and the normal population for 

each model. In all cases, the Crouzon patients cluster closest to the normal population, 

indicating that the physical manifestation of Crouzon syndrome is milder than that of either 

Apert or Muenke syndrome.  
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Figure 4.3. t-SNE embedding of the high-dimensional manifold clustering for the under-4 model.  

The t-SNE embedding in two dimensions was performed for a) face, b) head, and c) face+head models.  

Distinct clustering is seen for all models, with the least performance for the head only model. 

 

Also for the >4 model, again clusters are formed for each of the included groups (Figure 

4.4.). This is clearest for the face model; however, syndromic samples do still cluster separately 

from the unaffected samples in both the head and face+head models. Though there are few 

Muenke samples in this cohort (n=2), these are still separated from the normal population. 

Figure 4.4. t-SNE embedding of the high-dimensional manifold clustering for the ≥4 model.  The 

t-SNE embedding in two dimensions was performed for a) face, b) head, and c) face+head models. 

Distinct clustering is seen for all models, with the least performance for the head only model. 
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This method may outperform clinical expert assessment as proven by a case in this 

chapter (Figure 4.5): a 2-year-old male sibling of a male Crouzon patient was considered 

unaffected by the clinical team during a consultation when the relative accompanied the patient 

to clinic. However, the brother proved to have Crouzon syndrome as well, which was 

confirmed on genetic testing that was carried out as part of routine genetic testing for relatives 

from affected patients. For the sibling, a CT scan was performed, and this case was used as a 

sample to test whether the algorithm could pick up this seemingly unaffected case. The model 

was able to identify the sibling (labelled as atypical Crouzon in Figure 4.5) as part of the 

Crouzon cluster in the t-SNE plot. The atypical Crouzon was clustered as Crouzon in all three 

models, suggestion that model can identify clinically undetectable variations from the norm. 

Figure 4.5. t-SNE embedding of the high-dimensional manifold clustering for atypical Crouzon 

case. The t-SNE embedding in two dimensions was performed for a) face, b) head, and c) face+head 

models. Correct diagnostic clustering for this atypical and clinically undetected patient can be noted. 

 

4.3.4. Identification of Apert’s genetical subtypes 

No distinct grouping is seen for the Apert genetic subtypes. Across the Apert groups, 

age might play a larger role than the genetical mutation in terms of shape clustering (Figure 

4.6.). The ages at time of CT scan are labelled and suggests being an influencing factor for the 

clustering behaviour. The lower left cluster in Figure 4.6. is dominated by cases around the age 
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of 2-18 months with the majority under the age of 57 month. Two exceptions can be seen: one 

case of 214 months (Pro253Arg) and one case of 115 months (Ser252Trp). The top-center 

cluster in the t-SNE embedding is dominated by cases between 76 and 240 months of age (6-

18 years).  

Figure 4.6. t-SNE embedding of the high-dimensional manifold clustering of Apert subtype. The 

t-SNE embedding in two dimensions was performed for the face-only models and demonstrate clear 

clustering between Crouzon and Apert. No distinct groups are identified for the subtypes. The labelled 

numbers correlate with the age in months at time of scan. Grouping seems more driven by age than 

genetical subtype. 

 

4.3.3. Classification 

All ages models 

Classification was performed with all syndromic and unaffected scans. The mean 

sensitivity, specificity, and accuracy over all iterations for each of the assessed regions in the 

binary classification experiment for the complete model is presented in Table 4.3. The highest 

accuracy is seen for the face model (99.98%) with a specificity of 100%. The lowest accuracy 

of the three models (99.09%) was recorded for the head model.  
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Table 4.3. Classification results for the binary classification experiments for the all ages model. 

Model sensitivity, specificity and accuracy was calculated for all models. The face model outperformed 

the head model and the face+head model.   

Model Sensitivity (%) Specificity (%) Accuracy (%) 

Face 99.95 100.00 99.98 

Head 98.36 99.41 99.09 

Face+head 99.82 100.00 99.95 

 

Accuracies of >99% was seen for the assessment whether an individual belonged to 

either the syndromic group or normal group. The high sensitivity of the models indicates that 

very few syndromic cases were misidentified as normal (1:1000 for the face model, 16:1000 

for the head model, and 2:1000 for the face+head models). The inverse is also true; few healthy 

cases were seldom, if ever, misidentified as having a craniofacial syndrome as indicated by the 

high model specificity values (Figure 4.5.). 

The multi-class classification model endeavoured to predict whether a patient belonged 

to either the non-syndromic, Apert, Crouzon, or Muenke categories. Accuracies of 98.3% for 

face, 97.9% for head, and 98.2% for face+head model were observed. When considering the 

face model, Muenke patients were the most likely to be misdiagnosed; they also have the fewest 

instances of this syndrome in the database. When the head shape was considered for 

classification, Crouzon and Apert patients were most likely to be misidentified as each other. 

As with the binary classification, the poorest performance was seen for the head model. These 

results would indicate that the facial region contains valuable shape information for the correct 

diagnosis of FGFR-related craniosynostosis (Figure 4.7.). 
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Figure 4.7. Confusion matrices for the all ages models. Confusion matrices were performed for the 

face, head, and face+head models. Top row shows the confusion matrices for the binary classification. 

Bottom row shows the multi-class classification. 

 

<4 models 

For the <4 model, accuracies for binary syndrome classification yields >99% in all 

cases (Table 4.4.). As with the all ages models, the high model sensitivity indicates that few 

syndromic cases are misidentified as normal. The high specificity values demonstrate that the 

normal individuals are also highly unlikely to be misidentified as a syndromic patient. 

Multi-class classification accuracies of 97.8% (face model), 97.1% (head model), and 

97.7% (face+head model) are observed. Confusion matrices for the binary and multi-class 

classification for all <4 models are shown in Figure 4.8. 
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Table 4.4. Classification results for the binary classification experiments for all <4 models. Model 

sensitivity, specificity and accuracy was calculated for the <4 models. The face+head model 

outperformed the head model and the face model.   

Model Sensitivity (%) Specificity (%) Accuracy (%) 

Face 99.71 100.00 99.90 

Head 99.53 99.99 99.84 

Face+head 99.95 100.00 99.98 

  

Figure 4.8. Confusion matrices for the <4 models. Confusion matrices were performed for the face, 

head, and face+head models. Top row shows the confusion matrices for the binary classification. 

Bottom row shows the multi-class classification. 

 

≥4 models 

As with the all ages, and <4 models, binary classification accuracies for the ≥4 model 

are greater than 99%. Again, high sensitivity and specificity values are recorded (Table 4.5.). 

Multi-classification experiments demonstrate accuracies of 99.9%, 95.8%, and 96.2%. 

From these results, it is again observed that models that incorporate the face yield higher 
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classification accuracies, further indicating the importance of the facial region for the 

classification of FGFR-related craniosynostosis syndromes. Confusion matrices and multi-

class classification matrices for the ≥4 models are shown in Figure 4.9. 

 

Table 4.5. Classification results for the binary classification experiments for all ≥4 models. 

Model sensitivity, specificity and accuracy was calculated for the <4 models. The face and the head 

models demonstrated 100% for all classification experiments. 

Model Sensitivity (%) Specificity (%) Accuracy (%) 

Face 100.00 100.00 100.00 

Head 100.00 100.00 100.00 

Face+head 99.15 100.00 99.77 

 

Figure 4.9. Confusion matrices for the ≥4 models. Confusion matrices were performed for the face, 

head, and face+head models. Top row shows the confusion matrices for the binary classification. 

Bottom row shows the multi-class classification. 
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4.4. Discussion 

This chapter demonstrates the use of AI for FGFR-related syndrome identification with a 

state-of-the-art geometric deep learning approach. Machine diagnosis showed an accuracy of 

99.98%, sensitivity of 99.95%, and specificity of 100%. The diagnostic precision of this 

technique supports its potential inclusion in clinical decision support systems and indeed the 

algorithm outperformed expert clinical diagnosis in one example. Needing only a 3D input 

allows potentially deceptive texture information to be omitted, enabling the architecture to 

focus on the extraction of characteristic shape-based features to return an accurate diagnosis. 

Although, many more syndromes exist, these are encouraging results in a field where clinical 

diagnosis requires expert knowledge and a time when automated diagnosis is set to play an 

increasing role in healthcare.  

Utilising 3D topography in our models rather than the surface texture analysis, which is 

central to most other facial analysis techniques, lends itself to a unique integration with many 

forms of conventional diagnostic 3D imaging technologies, such as CT, MRI and ultrasound 

scans. The presented technique facilitates automatic segmentation of surfaces as well as 

syndrome identification and could therefore be used as a machine learning diagnostic tool to 

aid radiological diagnosis. Integration with ultrasound imaging is of particular interest, as this 

presents an opportunity for foetal detection of genetic disorders (108). The rising availability 

of 3D scanning applications and cameras on mobile devices presents further possibilities to 

introduce such a framework in primary and secondary care. In a discipline where timely 

diagnosis is necessary for appropriate management, the use of such technologies to detect 

syndromic children and other conditions will streamline assessment and could be pivotal to 

improving long-term health outcomes. 
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The model presented can be applied for binary classification (syndromic vs. healthy) and 

multi-class classification (Apert, Crouzon, Muenke, and healthy). The high sensitivity and 

specificity of the model make it suitable as a diagnostic aid in primary and secondary care 

settings ensuring reliable diagnosis with few false positive results. Muenke was most 

misdiagnosed, but also had the least number of patients included in their dataset (n=14). 

Increasing the study population size will most likely lead to increased accuracy for this patient 

group. The algorithm suggests outperformance over the expert’s human eye, which was 

demonstrated with an example case of an atypical Crouzon patient. However, the algorithm 

could not distinguish the Apert subtypes. One reason for this might be that the sample size was 

too small (Ser252Trp mutation, n = 10 and Pro253Arg, n = 13). Further, age seems to have a 

more dominant effect on the shape differences than genetics. Given these results, we conclude 

that there are no facial differences between the 2 subtypes, or, if there are, the facial differences 

are too subtle and the sample sizes too small for the algorithm to pick them up.  

A finding of note is that the face region seems to be more diagnostically relevant than 

the head shape for automated identification of FGFR-related craniosynostosis. While it might 

be suspected that the shape of the head contains the most valuable diagnostic information for 

children with craniosynostosis, and indeed this may be the case with non-syndromic 

craniosynostosis, for those subjects included in the analysis, much of the information required 

for accurate diagnosis appears to manifest in the facial region. One suspected cause for this is 

that Apert, Crouzon, and Muenke syndromes can be accompanied by the closure of similar 

sutures, and might, therefore, result in similar shaped heads, whilst the genetic differences 

between these syndromes may be more evident in the facial features.  

This framework was tested and validated for FGFR-related craniosynostosis syndromes, 

including Apert, Crouzon, and Muenke syndrome. The excellent classification results are 
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encouraging for further research into extending such models to craniofacial syndromes affected 

by other genes. Syndromes that also affect the facial shape could be included, such as 

craniofacial microsomia or Treacher Collins syndrome, or even to a wider population with 

syndromes that have very subtle facial deformities, as attempted in Hallgrimsson et al. 2020 

(105). At present, an easy-to-use toolbox is not yet available – nor in the assessments performed 

in this study, and neither in similar published studies (105). A future platform should consist 

of a more-user friendly open-source interface, removing the need for any programming 

expertise. Indeed, Face2Gene is one of the forerunners in this. Face2Gene is an application 

developed by FDNA and employs a ‘deep gestalt’ framework to extract features from 2D 

images and compares them to pre-learned 2D facial ‘gestalts’ constructed from 2D images of 

patients with known genetic disorders (109). Based on similarity to these gestalts, it prioritises 

candidate diseases for the individual. In contrast, the 3D shape analysis presented in this 

chapter are intended to facilitate diagnosis and outperform 2D analysis. Mattews et al. 2021 

very recently presented 3D growth curves; the authors did not aim at automated diagnosis, yet 

their work might be of use for future purposes by extracting confounding variation due to age 

and gender from training images and the new subject images being assessed (110). 

A limitation of this study is the lack of comparison to other methods that are currently 

available, either neural or non-neural paradigms. Other deep learning approaches such as GAN 

for 3D face modelling (56) could provide perhaps even better outcomes but are not described 

in this thesis. Further, the statistics of 3DMMs are limited to the face and do not include 

information on the eyes, intra-oral cavity, or hair. Combining various parts in one model is 

attempted by Ploumpis et al. 2019, however, turns out not to be straightforward (15). A strong 

limitation of this study is the lack of information on racial background of the included 

individuals. From other models, it is known that a strong racial bias towards white exists. This 

could be ameliorated by using data from across the world, or by allowing to generate and add 
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synthetic data to biased datasets. Another existing open challenge is to learn from 

inhomogeneous data, many datasets have different quality and resolutions, coverage, noise 

characteristics, and so on. In the studies presented in this thesis, the included data were limited 

to scans with >100 slides and <1 mm, however, it would be beneficial if also data with less 

quality could be included, considering the rarity of the study population. Lui et al. 2019 

attempts to address this problem by constructing models based on diverse raw scan data (111). 

Finally, the 2 groups of clustering noted between <4 and 4-17 may be influenced by the 

different data sources used – CT and surface scanning, respectively, however this has not been 

tested specifically.  

Future work is described in chapter 8 as the proposed models can be used for post-

surgical assessment.  

 

4.4. Summary 

In summary, an autoencoder framework was presented and demonstrated its diagnosis 

potential to assist in the identification of FGFR-related syndromic craniosynostosis using 

supervised machine learning. This framework can be applied to give a binary output indicating 

whether the presence of a syndromic craniosynostosis is likely and can be further applied for 

the identification of specific genetic mutations. Although the focus of this chapter was on three 

distinct mutations in the FGFR gene, namely Apert, Crouzon, and Muenke syndrome, given 

sufficient data, this framework could be readily extended to a greater variety of craniofacial 

syndromes. Extending the model to larger patient cohorts and a greater number of syndromes 

may lead to new diagnostic tools, facilitating low-cost analysis and identification of 

craniofacial disorders, and the subsequent management of such conditions, at an earlier stage. 
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Future applications could include diagnostics of post-operative outcome, surgical planning, 

and surgical outcome prediction. 

 

Key points: 

• An autoencoder framework might have a valuable future role in automated syndrome 

diagnosis.   

• These models relay on shape information only and could therefore be easily 

integrated with other types of imaging modalities, such as MRI, CT scan and 

ultrasound. 

• Facial abnormalities play a larger role than head shape information for automated 

identification. 

• Key differences in Apert face are suggested to be driven by age over genetical 

subtype mutation. 
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5. A SKULL MORPHABLE 

MODEL – based on a healthy 

paediatric population 

 

 

Part of the work described in this chapter has been published in: 
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A ‘normal’ paediatric skull 3d morphable model 
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Papaioannou, Maarten J. Koudstaal, Silvia Schievano, Roman Khonsari, David J. 

Dunaway.  

The Journal of Craniofacial Surgery (abstract) 

A paediatric soft tissue 3d morphable model 
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Schievano, Stefanos Zafeiriou, Roman Hossein, David J. Dunaway. Abstract 

publication. 

 

Rights from Elsevier for publication automatically granted under author permission. 

 

Part of this work was presented at: 
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In this chapter, the construction and validation of a normal paediatric skull model is 

presented. The soft tissue models, described in chapter 3, gave insight into the facial shape of 

various ages, and provided a comparison of the mean Apert’s face with an unaffected face. Yet, 

the 3D abnormalities of the architecture underneath the soft tissue are rather unknown. To 

further investigate the Apert’s face statistically, chapter 5 aims to first construct a normal skull 

model and validate this with published normative 2D and 3D measurements. With this 

validated normal model, an Apert skull model is constructed, described in chapter 6. The term 

‘skull’ used in chapter 5 and 6 are defined as the skeletal structures of the midface and 

calvarium without the mandible.  

 

5.1. Introduction 

Accurate modelling of the skull has grown to play an important role in surgical planning 

for craniomaxillofacial surgery, craniofacial diagnostics, surgical outcome analysis, and 

provides invaluable insight into growth and developmental patterns (21, 112-114). However, 

3D models of the paediatric normal skull are scarce and most normative datasets derive from 

2D information and measurements (3). Waitzman et al. 1992 and Delye et al. 2015 studied 

craniofacial skeletal measurements derived from CT scan data to provide relatively large 

datasets of normative data for a paediatric population (3, 115). These measurements include 

cephalic index, cephalic length, cephalic width, oblique cranial length ratio, lateral orbital 

distance, anterior orbital distance, intertemporal distance, inter-zygomatic buttress distance, 

zygomatic arch length, and inter-zygomatic arch distance. However, at present, no statistical 

model exists for the skull of the human child providing detailed 3D shape information that has 

generative capability. The human skull displays major structural and geometrical changes 
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during childhood, most prominently in the first years of life, and therefore 2D measurements 

and growth charts do not suffice to understand its natural development accurately (116). 

3D modelling of the craniofacial skeleton presents several challenges as the skull is a 

complex structure comprising many different facial and cranial bones. The cranial bones are 

loosely connected at birth and these expand and fuse as the infant grows, further complicating 

the modelling process. 3D models of the human adult skull exist and have commonly been 

applied for the reconstruction of the facial shape given only the skull (116). Lüthi et al. 2008 

have applied skull models to assist in the segmentation of the human skull from MRI images 

(117).  

 A statistical model of the human paediatric skull could be used to understand normal 

shape change in childhood and provide normative measurements; it can tailor the pre-operative 

(in silico) surgical plan towards patient-specific normative target values and can help in the 

design of osteotomies and cranioplasties, particularly when mirroring of the skull is not 

possible (118, 119). Studying growth patterns in children is important due to the timing and 

rate of growth of different parts of the skull. The way this leads to shape change, might have 

implications for the timing of surgery. To be valid and effective, in silico trials still relay on 

cohorts of real, clinical data (120). However, collecting and annotating large quantities of data 

to train and test the computational models is expensive and time-consuming, thus restricting 

the choice of evaluation and modelling algorithms that can be applied. Ethical considerations 

further limit the purposes for which datasets can be used. Conversely, generated synthetic data 

are easy to manipulate, fully user controlled and carry limited ethical concerns. The ability to 

generate new samples means that cohort size is not a limiting factor, overcoming statistical 

power issues and the burden of enrolling large cohorts of real patients (121). As such model, 

could also be used to compare post-surgical results with a normal age-matched skull and 
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understand where the current techniques is successful and where normalisation is lacking (122, 

123). 

This chapter describes the construction and validation of a normative skull model for 

children <4 years of age and it provides a paediatric skull model that can be used for many 

applications, and in this thesis, for comparison with Apert syndrome.  

 

5.2. Material and methodology 

5.2.1. Data 

The <4 dataset of chapter 3 was used for the construction of the healthy skull model 

(see methods chapter 3.2). All CT scans that met the inclusion and exclusion criteria listed in 

Table 5.1 were included.  

Table 5.1. Eligibility criteria for CT-data. The <4 dataset was used for model construction; this 

table presents and overview of inclusion and exclusion criteria. 

 Inclusion Exclusion 

CT head 

scans 

2011-2018 

Normal scans aged 0–4 

years. 

>150 slices and/or 

≤1mm. 

 

 

• CT-visible abnormalities 

• Craniofacial diagnosis/ 

abnormalities 

• Incomplete scans (full skull 

required) 

• Artefacts due to movement or metal 

(e.g. braces) 

• Insufficient CT-slices for 3D 

construction 
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5.2.2. Image processing 

All CT scans underwent the following workup to convert the DICOM files to skull 

meshes usable for model construction (Figure 5.1.): 

1. DICOM files were imported in Mimics Inprint 3.0 for segmentation, carried out 

by thresholding with default bone-setting grey scale values (I). 

2. The skull was isolated from other structures captured by CT scanning, i.e. 

mandible, vertebrae, and extra-cranial objects such as the back of the CT scanner, 

using a foreground and background tool (II), leaving the mesh as one continuous 

object (III). 

3. The segmented skull was converted to 3D and saved as Obj. file. (IV). 

 

 

Figure 5.1. 3D mesh construction. This is an overview providing the segmentation process. After the 

DICOM files are imported the first step consists of thresholding using bone default setting (I), then the 

mandible is omitted using foreground and background tools (II), then the mesh is isolated (III), and 

finally converted to a 3D object (IV) and saved as Obj. file. 
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5.2.3. Skull template 

For the 3D craniofacial skeletal model construction, all skull meshes needed to be in 

dense correspondence; in a similar process to the soft tissue model construction described in 

chapter 3.2. A normalised mesh template of fixed topology was used to put all skulls in dense 

correspondence using NICP (58) with a set of 29 anatomical landmarks. (Figure 5.2. and Table 

5.2.) A literature review was conducted using PubMed/MEDLINE database to review articles 

describing validated landmarks with little error. A search strategy was performed using 

Medical Subject Headings (MeSH) terms on the 19th of November 2019. See Appendix B.1. 

for the search term used and Appendix B.2. for the included articles with their published inter- 

and intraclass correlations for each landmark.  

 

Figure 5.2. Annotation template for model construction. A total of 29 landmarks were used to guide 

dense correspondence. The landmarks are shown from a) lateral view, b) frontal view and c) cranial 

view.  
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Table 5.2. Landmark definitions. These landmarks were used to guide the correspondence process. 

R indicates the right-hand side of the skull, whereas L indicates the left-hand side. 

Landmark 

number 

Anatomical 

reference 

Definition 

0 Nasion Midpoint of the nasal frontal suture 

1 Anterior nasal spine 

(ANS) 

Most anterior mid-point of the pointed projection formed by the 

protrusion of the maxilla at the nose base 

2 A point Point of the maximum concavity anteriorly of the maxillary 

alveolar process in the midline  

3 Prosthion Most anterior point of the maxillary alveolar process in the midline  

4 Basion Most inferior point of the midpoint of the anterior curvature of the 

foramen magnum 

5 Opisthion Most inferior point of the midpoint of the posterior curvature of the 

foramen magnum 

6 Zygomatic Arch R Most latero-inferior point on the zygomaticotemporal suture R 

7 Jugale R Intersection of the zygoma, maxilla and sphenoid R 

8 Foramen infra-orbitale R Midpoint on the superior margin of the infraorbital foramen R 

9 Nasal cavity R Latero-inferior point in the curvature of the nasal cavity R 

10 Nasal cavity L Latero- inferior point in the curvature of the nasal cavity L 

11 Foramen infra-orbitale L Midpoint of the superior margin of the infraorbital foramen L 

12 Jugale L Intersection of the zygoma, maxilla and sphenoid L 

13 Zygomatic Arch L Most latero-inferior point on the zygomaticotemporal suture L 

14 Orbitale L Most antero-inferior point on the inferior orbital margin L 

15  Frontozygomatic suture L Mid-anterior point on the lateral curve of the orbit on the 

intersection of the zygoma and frontal bone L 

16  Supra-orbitale L Anterolateral point of the supra-orbital notch of the supra-orbital 

rim L 

17  Orbitale R  Most anteroinferior point on the inferior orbital margin R 

18 Frontozygomatic suture R Mid-anterior point on the lateral curve of the orbit on the 

intersection of the zygoma and frontal bone R 

19  Supraorbitale R Antero-lateral point of the supraorbital notch of the superior orbital 

rim R 

20 Rhinion Most antero-inferior point of the nasal bone 

21 Pterion R Most antero-inferior point of the parietal bone on the intersection 

of the frontal, parietal, and sphenoid bones R 

22 External auditory meatus 

superior R 

Most latero-superior point of the external auditory canal R 
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23 External auditory meatus 

inferior R 

Most latero-inferior point of the external auditory canal R 

24 Mastoid process R Most inferior point of the mastoid process R 

25 Pterion L Most antero-inferior point of the parietal bone on the intersection 

of the frontal, parietal, and sphenoid bones R 

26 External auditory meatus 

superior L 

Most latero-superior point of the external auditory canal L 

27 External auditory meatus 

inferior L 

Most latero-inferior point of the external auditory canal L 

28  Mastoid process L Most inferior point of the mastoid process L 

 

The dataset included many samples with an open fontanelle and varying levels of suture 

closure, as expected at this age. To prevent problematic registrations for these samples, a 

“stiffness” factor was added to the template mesh in the region of the opening to facilitate the 

registration process and prevent inwards collapse of the template mesh in this region. This 

prevented inwards collapse of the template mesh in this region. 

 

5.2.4. Skull model validation 

The 3D mean anatomical skull shape was computed based on all the densely registered 

meshes. PCA was applied to build the 3DMM and detect key contributors to 3D shape 

variability in the population. The first 5 principal components, representing the key 3D shape 

features of the input population, were visualised as -3SD to +3SD deformations from the mean 

shape.  

The intrinsic characteristics of 3DMMs were evaluated using compactness, 

generalisation, and specificity as described in chapter 3.2. This was achieved by randomly 

generating 1,000 skull samples from the skull model using all principal components.  
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The mean shape was validated via a 10-fold cross validation approach – to ensure that 

the final shape was not overly influenced by adding of leaving out a specific subject – and 

using a geometric approach – to demonstrate that the 3D mean shape was representative of the 

study cohort (124). For the 10-fold cross validation, the study population was divided randomly 

into 10 subset folds. The mean shape was then computed using 9 of the folds, until each fold 

had been omitted once. The mean and standard deviation vertex difference between the original 

3D mean shape and cross validated shapes was then calculated.  

For geometric approach, the distances from Waitzman et al. 1992 (Table 5.2) and the 

additional 2D morphometric lengths and ratios (transcranial length (AS1, AS2), cephalic index, 

height index, oblique cranial length ratio) measured from the 3DMM mean shape were 

compared to the mean values calculated from the input population; deviations <5% were 

considered acceptable for the mean shape to represent the population with a good 

approximation. All measurements and ratios were then calculated for each of the synthesised 

skull samples. A two-tailed t-test was used to compare the mean of the generated samples to 

the mean values of the real <4 dataset for each of these metrics. A value of 0.05 was considered 

for statistical significance. 

5.2.5. Manifold visualisation  

t-SNE was applied to the high dimension latent vector encodings for the study 

population to assess age from shape. The population was labelled for age. The t-SNE 

embedding was created using a perplexity of 30 and run for 1,000 iterations. 
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5.3. Results  

To construct the skull model, 178 unique scans of healthy children <4 years old were 

included, 55% were male. Scans were taken at mean age of 20.3 ± 12.9 months, Figure 5.3).  

Figure 5.3. Study population for model construction and model validation. The <4 skull data (blue) 

was used for model construction. The model was validated using published data from Waitzman et al. 

1992 (3). The age and gender distributions are presented in this figure.   

 

5.3.1. Linear anthropometric measurements  

The means and standard deviations of the <4 population for the assessed anthropometric 

measurements are shown in Table 5.3. where they are compared with data from Waitzman et 

al. 1992 (3), showing similar values and thus validating the selected cohort as representative 

of the <4 population. The greatest difference between the two datasets is observed for the inter 

orbital and temporal distance. Age group split downs on the included measurements are 

tabulated in Tables 5.4-5.6.    
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Table 5.3. Means and standard deviations for the anthropometric measurements. Measurements 

were acquired for real skulls and compared with samples generated using the model presented above. 

Values from the Waitzman et al. 1992 (W et al.) (3) were collected from their paper. AS= transcranial 

length, OCLR = oblique cranial length ratio. 

Anthropometric 

Measure 

W et al. 

[n=166] 

<4 dataset 

[n=178] 

Mean shape (% 

deviation from 

population 

mean) 

Synthetic samples (<4 

dataset vs. synthetic p 

values) [n=1,000] 

Lateral orbital 

distance 

74.18 ± 5.71 78.12 ± 5.33 78.77 (-0.83) 78.96 ± 3.54 (0.044) 

Anterior inter orbital 

distance 

18.30 ± 1.93 15.91 ± 1.52 16.06 (-0.92) 16.16 ± 1.52 (0.046) 

Intertemporal 

distance 

64.80 ± 5.21 75.97 ± 5.24 76.61 (-0.84) 76.77 ± 3.80 (0.054) 

Inter-zygomatic 

buttress distance 

70.20 ± 6.35 71.73 ± 6.58 72.14 (-0.57) 72.25 ± 2.25 (0.296) 

Zygomatic arch 

length 

42.64 ± 4.78 38.04 ± 4.76 38.05 (-0.03) 38.05 ± 1.88 (0.982) 

Inter-zygomatic arch 

distance 

86.86 ± 8.07 92.75 ± 8.82 93.24 (-0.53) 93.34 ± 2.64 (0.379) 

Inter-coronal 

distance 

101.11 ± 8.87 104.53 ± 8.42 105.31 (-0.74) 105.49 ± 5.09 (0.143) 

Cranial length 157.79 ± 

14.82 

151.77 ± 15.73 152.01 (-0.15) 152.35 ± 6.51 (0.631) 

Cranial width 121.93 ± 

10.09 

128.43 ± 10.60 128.38 (0.04) 129.79 ± 6.71 (0.102) 

Cranial height --- 131.05 ± 11.24 130.56 (0.37) 132.18 ± 5.03 (0.187) 

AS1 --- 143.24 +- 12.41 143.889 (-0.453) 144.36 ± 5.60 (0.239) 

AS2 --- 141.85 +- 12.53 142.232 (-1.437) 142.75 ± 5.60 (0.346) 

Cephalic index --- 85.04 ± 6.34 84.46 (0.68) 85.38 ± 6.25 (0.500) 

Height index --- 86.60 ± 4.25 85.89 (0.82) 86.88 ± 4.16 (0.422) 

OCLR --- 1.03 ± 0.03 1.01 (2.00) 1.03 ± 0.03 (0.503) 
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Table 5.4. Means and standard deviations for the cranial vault measurements. Measurements were 

acquired for samples generated from the skull model. Values from Waitzman et al. 1992 study were 

collected and collated for the desired age range. Skull model = data derived from current study; W et 

al. = data derived from Waitzman et al. 1992(3) 

Age 

(months) 

 Inter-coronal distance, mm Cephalic length, mm Cephalic width, mm 

 <4 dataset W et al. <4 dataset W et al. <4 dataset W et al. 

0-3 96.36 ± 8.35 88.2 ± 6.5 119.07 ± 9.11 136.9 ± 6.7 105.60 ± 7.66 102.3 ± 5.5 

4-6 104.06 ± 10.44 95.4 ± 6.6 129.98 ± 6.10 144.0 ± 7.4 119.14 ± 7.24 115.0 ± 5.8 

7-9 105.17 ± 8.85 96.9 ± 5.0 142.08 ± 6.47 152.5 ± 9.9 122.80 ± 5.01 116.8 ± 6.7 

10-11 102.68 ± 3.96 99.9 ± 4.4 140.30 ± 8.20 150.2 ± 6.3 126.26 ± 4.85 121.7 ± 7.0 

12 – 23 105.81 ± 5.45 101.7 ± 6.6 153.98 ± 8.89 163.3 ± 8.5 128.36 ± 6.22 124.8 ± 7.3 

24 – 35 112.28 ± 6.96 106.6 ± 9.3 160.84 ± 8.03 165.4 ± 15.8 135.09 ± 8.07 129.8 ± 4.9 

36 – 47 112.06 ± 5.44 109.7 ± 5.0 164.83 ± 6.77 173.7 ± 7.7 135.26 ± 7.07 128.9 ± 7.1 

Total 107.21 ± 8.21 102.61 ± 9.30 150.59 ± 15.56 160.51 ± 15.42 127.83 ± 10.56 123.31 ± 10.24 

 

Table 5.5. Means and standard deviations for the orbital measurements. Measurements were 

acquired for samples generated from the skull model. Values from Waitzman et al. 1992 were collected 

and collated for the desired age range. Skull model = data derived from current study; W et al. = data 

derived from Waitzman et al. 1992 (3) 

Age 

(months) 

 Lateral orbital distance Anterior interorbital distance Intertemporal distance 

 <4 dataset W et al. <4 dataset W et al. <4 dataset W et al. 

0-3 75.43 ± 7.76 65.4 ± 4.8 15.84 ± 2.09 17.4 ± 2.1 72.53 ± 6.15 58.5 ± 4.5 

4-6 78.51 ± 7.50 69.9 ± 6.3 16.60 ± 1.90 17.9 ± 1.6 76.84 ± 6.42 63.1 ± 6.0 

7-9 79.58 ± 5.64 72.9 ± 4.0 16.45 ± 1.64 18.6 ± 2.1 76.90 ± 6.09 64.0 ± 3.7 

10-11 76.92 ± 3.17 73.5 ± 2.9 15.77 ± 1.38 17.8 ± 1.9 74.48 ± 3.77 64.1 ± 3.6 

12 – 23 78.73 ± 3.58 74.7 ± 4.0 15.96 ± 1.47 18.2 ± 1.9 77.15 ± 3.50 65.1 ± 4.8 

24 – 35 82.42 ± 3.16 77.7 ± 3.9 16.92 ± 1.16 18.4 ± 1.7 80.28 ± 3.47 66.5 ± 4.7 

36 – 47 84.52 ± 3.66 79.1 ± 3.6 16.46 ± 1.66 19.3 ± 1.7 80.98 ± 3.82 68.3 ± 4.1 

Total 80.13 ± 5.25 75.30 ± 6.18 16.32 ± 1.55 18.59 ± 2.13 77.92 ± 5.00 65.48 ± 5.46 
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Table 5.6. Means and standard deviations for the zygoma measurements. Measurements were 

acquired for samples generated from the skull model. Values from Waitzman et al. 1992 were collected 

and collated for the desired age range. Skull model = data derived from current study; W et al. = data 

derived from Waitzman et al. 1992 (3) 

Age 

(months) 

 Inter-zygomatic buttress 

distance 

Zygomatic arch length Inter-zygomatic arch distance 

 <4 dataset W et al. <4 dataset W et al. <4 dataset W et al. 

0-3 64.98 ± 6.70 63.2 ± 6.9 32.30 ± 3.52 33.3 ± 3.4 82.21 ± 7.60 73.5 ± 5.6 

4-6 68.97 ± 5.91 67.9 ± 7.4 33.59 ± 3.22 38.4 ± 3.0 88.02 ± 7.40 80.8 ± 6.7 

7-9 71.53 ± 4.30 67.9 ± 4.8 36.02 ± 1.77 41.6 ± 3.6 90.87 ± 5.73 83.1 ± 3.2 

10-11 69.64 ± 3.29 70.8 ± 4.4 35.36 ± 1.80 43.3 ± 3.3 90.79 ± 3.66 85.9 ± 4.2 

12 – 23 72.33 ± 3.65 69.8 ± 5.5 39.05 ± 2.38 44.2 ± 3.3 94.18 ± 4.26 87.3 ± 5.6 

24 – 35 77.20 ± 3.53 73.0 ± 4.5 41.92 ± 2.45 45.6 ± 2.9 100.45 ± 4.70 92.5 ± 5.6 

36 – 47 80.08 ± 3.69 74.4 ± 5.5 43.87 ± 2.15 45.6 ± 2.8 103.35 ± 4.99 95.5 ± 4.8 

Total 73.52 ± 5.94 71.27 ± 6.71 38.96 ± 4.30 43.22 ± 4.76 95.05 ± 7.90 88.76 ± 8.98 

 

The greatest percentage difference between the cohort mean and the computed template 

was observed for OCLR (2.0%), though it is noted that the template is more symmetric in shape 

than the population average (Table 5.5.). The template was considered validated as a 

representative mean shape for the study cohort. 

 

5.3.2. Skull 3DMM characteristics 

The mean shape and the first five principal modes of shape variation are shown in 

Figure 5.4. The first principal component, accounting for 37.5% of the shape variation in the 

population (Figure 5.5.a) captures clear differences in overall skull length, width and height. 

The aerial images demonstrate the variations in the roundness of the skull, from a globally 

rounded shape to a more elongated in the antero-posterior direction. Large variations are seen 

for the midfacial length and protrusion and orbital shape, especially the lower orbital rim. The 

second component highlights shape variations localised mainly in the facial part with focus on 

the orbital size and zygoma and maxilla. Albeit variations in skull length are also visible. The 
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third and fourth component show an asymmetrical shape difference in the posterior portion of 

the cranium (aerial view). Moreover, moderate variations are seen for the midfacial width. The 

fourth components also capture variations in frontal bone positioning (frontal bossing/retruded 

forehead), notable in lateral view. The fifth component demonstrated more subtle differences 

in the skull height anterior / posterior proportions, orbital size and shape, and protrusion of the 

mid-face. 

 

Figure 5.4. Visualisation of the <4 skull 3DMM. The mean shape, µ, and the first five principal 

components are shown. The principal components are visualised as either an addition or a subtraction 

from the mean shape with a weight of ±3σ, where σi is the standard deviation of the ith principal 

component. Each model instance is shown at a 45° angle, from anterior, and from lateral.   
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Intrinsic model characteristics are shown in Figure 5.5. With 90% of the model shape 

variance captured within the first 10 principal components, and 95% of the variance captured 

within the first 20 principal components, the model can be considered reasonably compact. The 

generalisation error was 1 mm when 15 principal components were included, and of 0.47 mm 

when all model components were utilised, indicating that the model generalises well to unseen 

skull instances. Specificity values of less than 0.7 mm demonstrate that novel skull instances 

generated by the model are realistic. 

 

 

Figure 5.5. Intrinsic model evaluation for the Under-4 skull 3DMM. The presented are plots for 

compactness, generalisation, and specificity evaluation. A) compactness plot, the amount of variance 

retained for a certain number of principal components, is 95% at 20 components; B) generalisation plot, 

demonstrates the ability to describe the faces that were not used to construct the original model, and at 

20 components is 1.0 mm; C) specificity plot, measures how well synthetic faces resemble real faces, 

and is 0.70 mm ± 0.02 mm at 40 components. 

 

The generative abilities of the 3DMM are further validated by a good agreement across 

all measurements comparing the synthetic data with the real <4 population (Table 5.4.). Smaller 

standard deviations are observed for the generated samples; this can likely be attributed to the 

omission of size effects from the model. For the means of the real and synthetic data there are 

no significant differences but for the anterior interorbital distance and the lateral orbital 

distance, and it can be concluded that the means of the two populations not different. The mean 
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measurement of the assessed population demonstrates good agreement with those of the 

Waitzman et al. cohort, validating the study population as representative. 

 

A trend for age can be noted on the t-SNE age embedding for the real population. A 

slight upper right distribution to lower left clustering can be seen in Figure 5.6. driven by 

increase in age. This means that the age of the patient can be identified by analysing the shape 

only. 

Figure 5.6. t-SNE embedding labelled for age in months. This embedding suggests a pattern for 

age based on skull shape information.  

 

5.4. Discussion 

The skull shape is constantly developing throughout life and these changes are related 

to numerous anatomical and functional factors such as skeletal growth, sinus development, and 

airway volume increase. This development is particularly pronounced during early childhood 

as the face and head undergo rapid growth. The pace of these skeletal changes, coupled with 

the difficulty of collecting sufficient normative 3D skull data for a young age group, have 
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presented challenges to large-scale shape analysis and therefore a true 3-dimensional 

understanding of skull-based shape changes of this group was previously unknown.  

This chapter presented a 3DMM constructed from 178 scans of the <4 normative 

dataset and demonstrated its capability for generating valid novel skull instances. This model 

can be applied as an alternative to the limited availability of skull data for 3D analysis and 

might open doors to many applications where access to data is currently a limiting factor, such 

as forming a reference for surgical planning or diagnostics for rare craniofacial syndromes like 

Apert syndrome.  

The 3DMM was validated using published reference data from the work of Waitzman 

et al. 1992, which is the most comprehensive literature available on bone measurements (i.e. 

cranial and midfacial standardised measurement) in a healthy paediatric population. Validation 

was performed for both the raw data meshes and for newly generated meshes from the 3DMM. 

A strong agreement between the CI, OCLR, and all assessed skull measurements is observed 

in both cases. These results, combined with the intrinsic evaluation of the 3DMM for 

compactness, generalisation, and specificity, confirm the model to be useful and robust. 

This model, which contains information about the dominant 3D skull shape variations, 

can be used for a variety of applications including surgical planning, post-operative assessment, 

and syndrome identification. In cases where mirroring of a pre-operative scan for surgical 

planning is not an option due to bilateral craniofacial abnormalities, an age and gender matched 

surgical reference template derived from this model could be a realistic solution in the future. 

However, prior to this, gender matched references should be constructed, which is not included 

in this thesis.  

No objective post-operative assessment tool exists to evaluate the aesthetic success rate 

or degree of ‘normalisation’ of children undergoing surgical correction of craniofacial 
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anomalies. At present, the outcome is judged by the operating surgeon and the 

patients’/caregivers’ view which is generally biased and can be influenced by subjectivity. 

With the use of an age matched bone reference 3D object, an objective post-operative 

assessment could be performed. This model could also be used to compare the post-operative 

outcome with the “ideal” outcome, providing an outcome of the closest possible normalised 

skull to understand the minimum surgical change required. This analysis can inform the 

surgeon on the skeletal regions where the outcome matches the ideal ‘normalised’ outcome, 

and, perhaps more importantly, it can indicate which regions of the skull require greater 

changes to resemble the generated outcome more closely. These evaluations are currently 

performed in research settings and using the presented model, could be developed into a 

clinically useful software. Building an easy-to-use interface for the use of these algorithms in 

clinical practice should be part of the next steps, removing the need for programming expertise 

and allowing clinicians without a computer vision background or technical skills to use these 

tools.  

The diagnostic experiments that demonstrated excellent results for the soft tissue 

models in chapter 3 and 4 could also be applied to the bone models and expended to various 

syndromes across a range of different age groups to enhance radiologic diagnostics. This would 

require the construction of bone models for all these specific groups. In addition to diagnostics, 

they could facilitate greater understanding of the growth and shape changes within an 

unoperated syndromic population. This might help to better indicate the timing of treatments 

and surgical correction of the abnormalities alongside indicators deriving from functional 

concerns. A 3DMM of Apert will be addressed in the next chapter to address the diagnostic 

power and increase understanding of natural skeletal development.  

Craniofacial surgery relating to functional problems, such as midfacial advancement 

for airway issues, posterior vault expansion or cranial remodelling for raised intracranial 
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pressure, is typically performed in the first years of life. Conversely, surgical intervention for 

aesthetic reasons tends to occur later in life as this type of corrective surgery is ideally 

performed after maturation of the skeleton and eruption of dentition. These surgeries include 

upper jaw advancement, monobloc advancement, and midface advancement. A model useful 

for post-operative assessment for the latter indication would require an adult skull model. The 

construction of a model including patients above age 4 has been initiated but is not included in 

this thesis.  

Lastly, this model could form the base of a comprehensive and a more detailed model. 

The existing soft tissue model could be fused for a robust combined model. Brain models could 

be made, the vascular system could be added, as well as a model of the mandible to enhance 

the usability, which on its own could be useful for pre- and post-operative analysis as well as 

analysis on mandible shape and airway problems. To date, it has been challenging to combine 

models from different regions, a first combined model for the face and head has been proposed 

by Ploumpis et al. 2019 (15).  

A limitation of the model in its current state, is that there is no easy-to-use interface 

available yet. In order to use the model, some technical skills of the user are required. 

Moreover, the interpretability of the representations could be improved. PCA, the most 

commonly used method to perform statistics on 3D faces, as also used in this chapter, is an 

unsupervised method, the principal components do not coincide with attributes that humans 

would use to describe the face/skull. Moreover, the morphable models do not include size and 

would require to be re-scaled prior to surgical planning use. This could be addressed by 

building a user-friendly interface for the use of clinicians in their preoperative work-up.  
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5.5. Summary 

A skull model was successfully constructed for a healthy population under 4 years of age. 

Linear anthropometric measurements were compared to gold standard data derived from 

literature to validate the model. The model provides large normative data and many potential 

applications for a generative skull model were outlined.  

 

Key points  

• Successful construction of a normative <4 skull model.  

• Large normative data available due to generatability. 

• Model applications include automated syndrome identification, in silico surgical 

planning, objective post-operative and normalisation assessments.  

• Model is not user-friendly yet. 
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6. AN APERT SKULL MODEL 
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Following the introduction of a normative paediatric skull model (<4) that provides a large 

set of normative measurements, this chapter will focus on the Apert skull, describing the 

construction of a 3DMM and analysing growth curves and skeletal shape changes of the 

unoperated Apert population.  

 

6.1. Introduction  

Statistical modelling of the craniofacial skeleton has been pursued for a few craniofacial 

disorders, including Crouzon-Pfeiffer syndrome and Craniofacial Microsomia, where PCA of 

3D meshes derived from CT scans was applied for skeletal assessment, facial skeleton and 

mandible respectively (114, 125). These models were utilised to understand the shape changes 

and variations of the syndrome with age. Some other studies compared syndromic with age-

matched healthy individuals to those, however, analyses were based on small cohorts and 

mostly based on cephalic measurements on CT scans and lack information on growth patterns. 

The details of these studies are presented in more details in chapter 2.2.5 where the few studies 

that attempted to objectify the facial features were summarized (62-66). This chapter 

demonstrates the construction and validation of an Apert skull 3DMM and provides growth 

charts for an unoperated population to further understand the natural growth patterns. It also 

aims to test the radiological diagnostic capability for automated identification using facial bone 

shape information.  
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6.2. Methods  

6.2.1. Data sources 

All patients diagnosed with Apert Syndrome between March 1994 to February 2020 at 

GOSH and between August 2007 to July 2019 at NEMH were reviewed for preoperative head 

CT scans and were included following the inclusion and exclusion criteria (Table 6.1). Baseline 

characteristics were collected from (electronic) medical charts.  In case a patient had multiple 

CT scans available, only one CT scan with the highest quality for 3D construction was selected. 

In case more than one scan had sufficient quality for 3D conversion, a selection took place 

based on age to obtain a consistent age-distribution throughout the dataset to minimise 

selection bias.  

To match the normal <4 model, a subgroup of the Apert data was made consisting only 

scans <4 years. Another group was made that included Apert all ages, to compare with the 

Waitzman et al. 1992 (3) data that includes normal data from individuals 0-17 years of age.  

 

6.2.2. Model construction 

CT scans of the Apert were processed as described in chapter 5.2 for model 

construction. Two models were built: 1) Apert <4 and 2) Apert all ages. The intrinsic 

characteristics of 3DMMs were evaluated using compactness, generalisation, and specificity 

(41, 43, 102) as described in chapter 3.2. 
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Table 6.1. Inclusion and exclusion criteria for Apert skull model. 

 Inclusion Exclusion 

CT-head 

scans 

• Diagnosis Apert syndrome  

• High quality scans (≤1 mm or 

≥150 slices) 

 

• Incomplete scans (full head scan 

required, scans missing parts of the 

maxilla or cranium were omitted). 

• Scans with movement artefacts 

disturbing bone 3D construction. 

• Insufficient DICOM slices for 3D 

construction. 

• History of craniomaxillofacial surgery. 

 

6.2.3. Intrinsic skull morphometrics 

Registered mesh data were used for measurements and construction of growth charts. 

Growth charts were plotted for: 1) the Apert <4 against the normal <4, 2) the Apert all ages 

against normal <17 (i.e. Waitzman et al. 1992 (3) data.) 

Based on the measurements considered in Waitzman et al. 1992 (3), the following 

distances were considered for comparison and construction of growth charts: zygomatic arch 

length, inter zygomatic arch width, inter zygomatic buttress distance, inter lateral orbital wall 

distance, inter inferior rim distance, cephalic width, cephalic length, and inter coronal distance. 

A template for automated distance calculations was constructed to mimic the anatomical points 

that were used to calculate the above named distances as described in Waitzman et al. 1992 (3) 

(Table 6.2 and Figure 6.1). 

For the comparison of Apert <4 and normal <4, distances were automatically measured 

using the landmark template from Figure 6.1, and a logarithmic fit for the data was plotted.  

   For comparison of the Apert all ages group with normal <17, the data from Apert all 

ages were plotted using automated calculations of distances from the landmark template and a 
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logarithmic fit was plotted, for the measurements from Waitzman et al. 1992 the means and 

standard deviations were plotted with a line of fit between the means.  

 

Table 6.2. Landmarks used for skull 

measurements. These landmarks were used 

for distance measurements. R indicates the 

right-hand side of the skull, whereas L 

indicates the left-hand side. 

Figure 6.1. Landmark template for skull measurements. In this figure the landmarks indicated in 

Table 6.2 are visualised, this template was used for automated distance calculations for the registered 

meshes of Apert <4 and normal <4.  

 

6.3.4. Manifold visualisation of Apert skull 3DMM 

t-SNE was applied to the high dimension latent vector encodings for the Apert all ages 

and the normal <4 bone meshes. Due to lack of normative bone meshes of age >4 years, 

embedding was performed using only the normal <4 as control group. t-SNE embedding was 

created using a perplexity of 30 and run for 1,000 iterations. 

 

Landmarks Definition  

0-1  Inter lateral orbital walls distance 

2-3 Inter anterior medial orbital walls 

distance 

4-6 Zygomatic arch length R 

5-7 Zygomatic arch length L 

8-9 Inter zygomatic arch width 

10-11 Inter coronal distance 

12-13 Inter zygomatic buttress distance 
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6.3. Results  

Fifty-two skull meshes from unoperated Apert patients were included for intrinsic skull 

measurements and model construction. The majority of the patients were <4 years of age 

(Figure 6.2) with a second subgroup notable between 11-17 years. More males (63.5%) than 

females were included.  

Figure 6.2. Age and gender distribution Apert skull 3DMM. A total of 52 unoperated Apert patients 

were included for intrinsic skull measurements and model construction.  

 

6.3.1. Anthropometric linear measurements 

Abnormal facial growth in Apert syndrome in childhood (<4) 

Unambiguous differences are seen for the zygomatic arch length. The data suggest that the 

growth curve does not follow the curve of normality as it misses the initial growth spurt 

occurring within the first year of life. The width of the zygomatic arches, however, seems 

within the lower range of normality, resulting in an overall short zygomatic arch with a strong 

curvature. Moreover, the distance between the left and right zygomatic buttress is larger in 

Apert and increases with age. As expected, large differences are seen for the lateral orbital wall 

distance and the distance between the inferior orbital rims. Whereas the distance between the 

inferior orbital rim seem to flatten over time, the distance between the lateral orbital walls only 

increases more. Up to five months of age, the cephalic width in patients with Apert is similar 
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to that from normative data; however, a wider head is seen for the growing Apert child. This 

trend is similar to that of the inter coronal distances which can be noted in the plot. The cephalic 

lengths measured for the Apert patients start off in the lowest range of its normal reference and 

appear to follow the same growth pattern as the healthy population (Figure 6.3).   
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Figure 6.3. Comparison of craniofacial measurements for the Apert <4 with normal <4. Growth 

charts are provided for zygomatic arch length, inter zygomatic arch width, inter zygomatic buttress 

distance, inter lateral orbital wall distance, inter inferior orbital rim distance, inter coronal distance, 
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cephalic width, and cephalic length. The zygomatic arch length misses its initial growth spurt and 

remains up to 10 mm shorter than its age-matched normal. A wider maxilla is noted as demonstrated 

by the overall larger distances between the zygomatic buttresses. The inter orbital distances are 5-8 mm 

larger in the first weeks of life and deviate from the normal with age. The cephalic width increases more 

than the normal after 5 months of age, which is confirmed by a similar pattern for the inter coronal 

distances. The cephalic length starts off in the lowest range of normal and appears to normalise over 

time.  

 

How does the abnormal growth persist into adulthood? 

Clear differences are seen and were expected for the zygomatic arch length. As noted in 

more detail in the <4 age group, the zygomatic arch deviates from the normal curve starting at 

some of the youngest scans onwards. Whereas an Apert patient has an average length of 40 

mm at age 13, this is 55 mm in the unaffected population. The zygomatic width is initially 

plotted on the lower border of normal, whereas it shifts to the wider border of normal at an 

older age. The zygomatic buttress distance persists to be on the larger range of normal. The 

distances between the lateral orbital wall are clearly different between normal and Apert, which 

is demonstrated from the youngest scans up to the oldest meshes included. In the normal data 

80 mm is expected for a 2-year-old, where this is 93 mm in the Apert population, and later in 

life, at age 16 years, 95 mm for normal is measured whereas this is calculated as 110 mm for 

Apert. The anterior medial orbital wall is measured larger for the Apert population in the first 

4 years of life, however, seem to vary extremely for the adult subgroup, with measures below 

and above the normal fit of means. Also, for the healthy population, large variations are seen 

for this parameter (note the large standard deviations in Figure 6.4). The cranium continues to 

widen more as compared to normal and although initially the cephalic length seems to follow 

a normal growth pattern, obvious shortening of the head is plotted for the complete dataset 

(Figure 6.4).   
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Figure 6.4 Comparison of craniofacial measurements of Apert all ages with normative data from 

literature (0-17 years). Growth charts are provided for zygomatic arch length, inter zygomatic arch 

width, inter zygomatic buttress distance, inter lateral orbital wall distance, inter inferior orbital rim 

distance, inter coronal distance, cephalic width, and cephalic length. The zygomatic arch length 
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continues to deviate from the normative curve and the distance between the lateral orbital walls continue 

to deviate from the normal curve as well. The cranium continues to widen more as compared to normal 

and although initially the cephalic length seems to follow a normal growth pattern, obvious shortening 

of the head is plotted for the complete dataset.   

 

6.3.2. Apert 3DMM 

Figure 6.5 (top) illustrates the mean and first 5 principal components of the Apert <4 

and Apert all ages model. For the Apert <4 model the first component highlights large 

differences of the frontal bone with frontal bossing (pronounced bulging of the frontal bone) is 

most apparent in the -3SD of component one and +3SD of component 5. The orbital shape is 

strongly variated in shape and size, which is characterized by a more pronounced supra orbital 

rim vs retruded supra orbital rim in either SD, and variations in the position of the infra orbital 

rim. Moreover, the cranial shape shows large variations with severe brachycephalic head shape 

in the -3SD. The second component shows mainly variations of the orbital width, orbital size, 

and moderate variations of frontal bossing. The third component highlights variations in cranial 

shape asymmetry, moderate variations in brachycephaly, and underdevelopment of the supra 

orbital rim. Moreover, hypoplasia of the maxilla for the +3SD with a protrusion of the maxilla 

in the -3SD relative to the upper third of the facial skeleton. The fourth component illustrates 

variations of the cranial width and position of the vertex (highest point of the skull), also 

moderate variations can be noted for the supra orbital rim. The fifth component demonstrates 

variations of the frontal bone from severe frontal bossing to a declined frontal bone. Moreover, 

again, variations of the positioning and development of the supra and inferior orbital rim can 

be noted, in a lesser extent than the former components. In all components, a tall frontal bone 

is noted.  
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The Apert all ages model, illustrated in Figure 6.5 (bottom), where similar outcomes of 

the components can be noted as the Apert <4 model. However, with more extreme variations 

for the components. 

 

Figure 6.5. Visualisation of the Apert skull 3DMMs for <4 and all ages.  The top model consists of 

the Apert <4 data, where large variations can be noted for the positioning (development) of the frontal 

bone, retrusion of the supraorbital rim, location of the infra orbital rim, maxillary protrusion/hypoplasia, 

cranial asymmetry, width and length. Similar outcomes are highlighted for the all ages model (bottom) 

in a more extreme extent.  

Apert all ages model 

<4 Apert model  
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The Apert <4 model has a compactness of 95% at 15 components, good generalisation 

of 2.5 mm at 20 components and a reasonable specificity of 1.2 mm ± 0.05 mm at 20 

components. For the Apert all ages model, this was 95% at 15 components for compactness, 

2.5 mm at 20 components for generalisation, and 1.3 mm ± 0.05 mm at 20 components for 

specificity. (Figure 6.6 -6.7) 

 

Figure 6.6 Intrinsic model evaluation for the <4 Apert skull 3DMM. The presented are plots for 

compactness, generalisation, and specificity evaluation. A) compactness plot, the amount of variance 

retained for a certain number of principal components, is 95% at 15 components; B) generalisation plot, 

demonstrates the ability to describe the faces that were not used to construct the original model, and at 

20 components is 2.5 mm; C) specificity plot, measures how well synthetic faces resemble real faces, 

and is 1.2 mm ± 0.05 mm at 20 components. 

 

Figure 6.7 Intrinsic model evaluation for the 0-240 months Apert skull 3DMM. The presented are 

plots for compactness, generalisation, and specificity evaluation. A) compactness plot, the amount of 

variance retained for a certain number of principal components, is 95% at 15 components; B) 

generalisation plot, demonstrates the ability to describe the faces that were not used to construct the 

original model, and at 20 components is 2.5 mm; C) specificity plot, measures how well synthetic faces 

resemble real faces, and is 1.3 mm ± 0.05 mm at 20 components. 
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6.3.3. Classification 

Clear clustering can be seen for the Apert all ages bone meshes following t-SNE 

embedding with the normal <4 meshes (Figure 6.8). Classification of Apert all ages versus 

normal demonstrate clear clustering following t-SNE embedding. This confirms that 3DMMs 

can not only be used for automated diagnosis for Apert for soft tissue as described in chapter 

3, but also for identification based on bone meshes. 

Figure 6.8 Normal and Apert t-SNE embedding. Clear clustering is seen for the unoperated Apert 

skulls from the normative data, suggesting automated diagnosis can also be made on a bony level. 

 

6.4. Discussion 

This chapter described the construction of an unoperated Apert skull model and gave 

insight into the natural and abnormal development of the skull size and shape utilising 3D 

analysis and growth curves. Comparison of Apert syndrome with normative data provided 

information on the natural development and reported standard craniofacial measurements.  

Interestingly, the model for all ages demonstrated similar outcomes as the Apert <4 model 

for the components, however, in a larger degree. This more obvious increase in deformity over 

time was also seen for soft tissue (chapter 3) and contains information that has, to my 

knowledge, not been described in literature. This increase in abnormality might also teach us 
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something for the correction of the face and might perhaps open new discussions on the most 

suitable approach for surgical correction. For example, even though the zygomatic arch lacks 

growth from the very young, it does grow somewhat with age. Moreover, a clear hypertelorism 

is seen in youngsters, yet a very disperse variation is seen for those aged 12-17 years old, which 

could infer that some children might grow into an orbital distance within normal limits and 

others, maintain above the normal curve. These findings could have direct clinical implications 

by justifying or even encourage delay in surgery until maturation to identify the best surgical 

approach for that specific patient and thereby potentially avoid sequential reoperations. 

Growth curves can be useful for surgical planning by understanding the natural course for 

this patient populations’ shape development. In combination with the visualisation of the 3D 

shapes it provides even more information and a better understanding of the shape changes. 

Using this data, any type of measurements can be calculated on demand by simply defining the 

landmarks that captures the region of interest: the distances can be calculated automatically 

from all meshes included in the dataset. As mentioned in chapter 5, a future study has been 

initiated to expand the input data to adulthood, so this model could potentially replace the 

Waitzman et al. 1992 graphs as 3D data might provide more accurate and interactive growth 

charts (3). Ideally, an easy-to-use software with access to the meshes should be available for 

clinicians to select their measurements of choice.  

Future additions to these measurements might include the use of 3DMMs for volumetric 

analysis based on airway dimensions, the mandible, and other craniofacial regions of interest. 

Moreover, constructing skull models for other types of craniofacial syndromes might benefit 

clinicians for the abovementioned reasons.  

3DMM of the Apert population can potentially aid with automated diagnostics on a skeletal 

level; this might however be of less clinical value than automated diagnosis based on soft tissue 
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meshes as the goal would be to avoid radiating a vulnerable population such that of craniofacial 

patients. However, a combined model might provide insight into the relationship between bone 

and soft tissue in the growing Apert’s face. 

 

Limitations 

As raw data was lacking for analysis of the normal >4, published means and standard 

deviations were used from Waitzman et al. 1992 (3), which is to date the gold standard due to 

lack of more recent normative databases including 3D information, for this age group. As 

mentioned, a study has been initiated to overcome this problem, but was not included in this 

thesis. Moreover, this study included little data for the age group between 5 and 12 years of 

age. Yet, it could still give some insight into the growth patterns of specific areas of the Apert’s 

face and cranium, mainly based on the line of best fit. However, to fully study the growth and 

shape change of the Apert’s face, more and better distributed data is needed. The reason for 

this unbalanced distribution of the data is due to the timing of surgery, which is either 

performed during infancy or around the age of 15-17 years. CT scans are generally acquired 

before surgery; therefore, no CT scans were available for the remaining age groups. 

Collaboration with other craniofacial units could provide an opportunity to saturate this model 

as they might perform scans more frequently or indicate surgery at a different age than done at 

GOSH and NEMH. 

 

6.5. Summary 

A 3DMM of an unoperated Apert population was presented. Growth chart were constructed 

and compared to a healthy population. Most measured parameters deviate from the normal 
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growth curve and increase in abnormality was noted. 3D analysis provided valuable insight 

into the shape differences of the growing Apert versus a normal model. 

Key points 

• Apert skull 3DMM was successfully constructed. 

• Growth charts were provided with comparison for normative data. 

• Increase in abnormal growth and shape deformity is apparent. 

• Manifold visualisation demonstrated value for automated radiological 

identification. 

• Potential future applications were outlined. 
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7. FACIAL SURGICAL 

OUTCOMES 
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Chapters 3-6 addressed soft tissue and skull 3D models to understand shape, shape changes 

over time, and reported growth charts for the Apert and normal paediatric population. This 

chapter will focus on the local 3D shape changes induced in Apert patients by craniofacial 

surgery, with the aim to identify in which areas the surgical technique might be lacking to 

achieve facial normalisation.   

 

7.1. Introduction 

Adequate assessment of facial changes following craniofacial surgery is essential to 

improve surgical techniques, choice of procedure, and surgical planning. At GOSH, patients 

with Apert syndrome undergo mostly facial bipartition distraction with RED-frame (FB-RED), 

with or without a nasal bone graft to correct their facial deformity. The choice for FB-RED at 

GOSH is based on the unique facial deformity of Apert syndrome, where not only the midface 

is retruded, but also the intrinsic shapes are radically distorted as described in chapters 3 and 

6. FB-RED makes use of osteotomies that change the shape of the midface and orbits in contrast 

to a Monobloc or Le Fort III distraction, which moves the osteotomised region en-bloc. 

 Facial bipartition distraction and Le Fort II with zygomatic osteotomies (described in 

chapter 2.3) both represent attempts to treat the intrinsic flatness of the Apert midfacial skeleton 

and address other abnormalities such as hypertelorism and the disproportionate midfacial 

height.(71, 75-77) These intrinsic changes in midfacial bone structure are difficult to quantify 

using conventional cephalometric and anthropometric measurements, several have attempted 

to do this as described in chapter 2.3. However, these methods rely on a few facial landmarks 

and do not allow for a holistic analysis of the shape changes (126). Analysis of facial shape 

change is further complicated by the fact that the overlying soft tissues are abnormal, such as 

the positioning of the canthi, and might not move in a conventional relationship with the 
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underlying bones. At GOSH, the choice of FB-RED for the correction of Apert syndrome is 

mainly driven by surgeon’s experience and by outcomes of some studies that attempted to 

quantify the surgical outcomes. 

Automated methodologies that do not rely on facial landmarks have also been used to 

analyse the soft tissue and skeletal deformations (127). Almukhtar et al. 2018 made use of the 

rigid ICP registration algorithm to align the pre- and post-operative 3D reconstructions for the 

analysis of the mandible following jaw surgery. The 3D shape displacements were then 

evaluated by determining the closest point-to-point correspondences between pre- and post-

operative surface pairs, regardless of their anatomical correspondences. However, closest point 

correspondences have been reported not to accurately represent the true displacements of 

different anatomical features (128). To obtain the true anatomical point-to-point 

correspondences (i.e. anatomical correspondence, or dense correspondence), a more flexible 

version of rigid ICP, non-rigid ICP (described in chapter 3.2.) can be applied to the 3D bone 

and soft tissue reconstructions. NICP has been used for soft tissue analysis for patients 

following upper jaw surgery (Le Fort I) in a study by Knoops et al. 2019 (21), yet, it is rather 

new in the evaluation of surgical outcomes on a skeletal level for patients undergoing 

craniofacial surgery. In other fields, NICP has been used for intra-operative navigation for 

brain tumor resection or identifying the smallest region for intra-operative radiation in spinal 

surgery (129, 130). Introducing this technique for skeletal level evaluation could allow for not 

only the analysis of rigid movements (e.g., advancements and rotations due to the RED-frame 

distraction), but also the smaller, more localised, ‘intrinsic’ changes resulting from the 

distraction. Prior studies on this topic analysed the rigid displacements and rotations that occur 

following RED-frame distraction, leaving the intrinsic, local bony changes due to distraction 

unknown (78, 89, 131-133). While the soft tissue changes following these skeletal movements 

have been studied, the soft tissue response to the skeletal movement on a local level is unclear. 
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Some studies have highlighted the challenges in determining how soft tissue displacements are 

driven by the skeletal movements, and non-linear relationships between bone and soft tissue 

displacements have been described (21, 132, 134).  

This chapter presents a 3D morphometric analysis using a NICP workflow methodology. 

It quantifies the complex changes in hard and soft tissue topography, giving the surgeon a better 

insight into the changes resulting from FB-RED in Apert syndrome.  

 

7.2. Material and methodology 

 

Pre- and post-operative CT scans of patients with Apert Syndrome who underwent FB-

RED at GOSH between 2005 and 2019 were collected. CT scans of insufficient image quality, 

such as those with a limited number of slices (<100 slices), too thick slices (>1 mm), or 

movement artefacts, were excluded, as were patients who did not have both pre- and post-

operative CT scans available. Baseline characteristics were collected, including gender, 

craniofacial surgical history, age at time of surgery, and time between pre-operative CT scan, 

FB-RED, and post-operative CT scan. 

A pipeline was created for the semi-automated 3D quantification of bone and intrinsic soft 

tissue changes following craniofacial surgery. All 3D bone and soft tissue reconstructions from 

CT scans were constructed and cleaned using Mimics Inprint 3.0. as described in chapter 3.2.2. 

and 5.2.2. The 3D bone meshes were further processed to leave only the FB-RED surgical site, 

i.e. frontal bone, orbits, midface and zygomatic arch. Therefore, the mandible and vertebrae 

were semi-automatically removed by applying the foreground/background tool as described in 

chapter 5.2.2, whilst the posterior part of the calvarium was removed by a vertical plane cut 
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approximately 1 cm posterior from the coronal suture, for the pre-operative 3D bone mesh, and 

1 cm posterior from the frontal bone osteotomy, for the post-operative 3D bone mesh. This was 

done using Meshmixer (99). The reason for removing the back of the head was to ensure only 

registration on the front of the face/skeleton, where the region of interest lies in this study. 

 

Local changes 

As this chapter aims to quantify the local bone and soft tissue changes following distraction, 

the post-operative 3D meshes were aligned (superimposed) on the pre-operative maxilla. This 

was done so that the overall midfacial distraction rigid displacement was removed from the 

analysis and the quantification could focus solely on the local changes of the bone and soft 

tissue. The maxilla was chosen as the alignment area for all pre- and post-operative 3D meshes, 

as this bone segment experiences the greatest displacement in terms of rigid advancement 

during facial bipartition distraction. Prior studies have also shown that the central part 

undergoes more distraction than the lateral areas (78, 89). The alignment was achieved using a 

rigid transformation (Figure 7.1). To obtain this rigid alignment, the maxilla (i.e. area for 

alignment) was landmarked with the 6 points shown in  Figure 7.2 on both pre- and post-

operative meshes using Materialise 3-matic software (135). The same rigid transformation used 

to align the bone meshes was applied to the soft tissue, so that bone and corresponding soft 

tissue 3D meshes moved as a single entity.  
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Figure 7.1. Illustration on rigid alignment. This illustration demonstrates the rigid alignments used 

in this study. Whereas with alignment on the skull base the facial bipartition distraction itself can be 

analysed (which has been done in prior studies), for this study the subjects were aligned on the maxilla 

(third image) to allow for evaluation of the local movements resulting from the procedure.   

Figure 7.2 Landmarks used for rigid alignment on the maxilla. Six landmarks were used to 

superimpose the post-operative mesh on the pre-operative bone mesh, the soft tissue moves along as 

one entity.   

 

Following rigid transformation, the meshes were landmarked to guide the NICP to obtain 

anatomical correspondence using the 16 landmarks presented in Figure 7.3.The corresponding 

soft tissue mesh followed the same non-linear transformation as the bone mesh.  
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Figure 7.3 Landmarks used to guide the NICP. Sixteen landmarks were used to guide the NCIP 

registration. The soft tissue mesh followed with the same vector as the bone mesh. 

 

Anatomical point-to-point distances were quantified and visualised using an arrow-map for 

the bone and a heatmap for the soft tissue. An arrow map was used to demonstrate the 

anatomical point-to-point movements of the bone as a result of the surgery in terms of local 

movements – as mentioned, the rigid displacements of the midface were removed from the 

analysis - where the arrows reflect the vector of the local differences from pre- to post-operative 

3D Mesh. A heatmap was used to illustrate the absolute soft tissue displacements following 

surgery. Changes of less than 2 millimetres (mm) were considered negligible and are shown in 

green (Figure 7.5). As the nasal bone graft was not present in pre-operative skeletal 3D meshes, 

anatomical dense correspondence could not be achieved in this area, and the bone graft was 

therefore omitted from the analysis.  

 Measurements for displacements were automatically measured for bone and soft tissue 

according to the landmarks places as visualised in Figure 7.4. 
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Figure 7.4. Landmarks used for intrinsic changes for bone (L) and soft tissue (R).  Sixteen 

landmarks were used for bone and eight to determine the local changes.  

 

7.3. Results 

From a total of 23 patients that underwent FB-RED between 2005 and 2019, 9 patients met 

the inclusion criteria and were included in the construction and validation of the methodology. 

Eight patients underwent surgery at 17 +/- 4 years of age. An additional patient aged 2 years 

old was also included. The median time between pre-operative CT scan and post-operative CT 

scan was 477 days (range, 108 – 764), the median time between pre-operative CT scan and FB-

RED (at time of insertion RED-frame), and FB-RED and post-operative CT scan was 158 days 

(range, 39 -566) and 198 days (range, 32 – 470), respectively (Table 7.1.). 
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Table 7.1. Study population FB-RED   

SD = standard deviation, FB-RED = facial bipartition distraction with RED-frame, + = with, - = without 

Study 
case  

Gender Age at time 
of FB-RED, 

years 

FB-RED 
+/- nasal 

bone graft 

No. of days 
between pre-
operative CT 

scan and MBD-
RED  

No. of days 
between FB-

RED and post-
operative CT 

scan 

No. of days 
between pre- 

and post-
operative CT 

scan 

1 Female 21 + 76 32 108 
2 Female 23 - 158 56 214 
3 Male 17 + 40 470 510 
4 Female 13 - 223 421 644 
5 Male 17 + 483 169 652 
6 Female 12 + 132 345 477 
7 Male 18 + 566 198 764 
8 Female 13 + 389 56 445 
9 Female 2 - 39 295 334 

Total 

F:M 
 

Median 
Age, years 
(age range, 

SD) 

Nose 
bone 

graft, % 

Median time, 
days (range, 

SD) 

Median time, 
days (range, 

SD) 
Median time, 

days (range, SD) 

 6:3 17 
(2 – 23, 6.2) 

5/9 
(55.6%) 

158 
(39 – 566, 198) 

198 
(32 – 470, 164) 

477 
(108 – 

764, 
214) 

 

 

7.3.1. Local movements  

Skeletal movements 

The mean absolute displacements for the 18 landmarks for each patient were calculated 

as 3.3 mm with SD 2.1 mm for the mildest case (patient 1), 6.9 mm with SD, 3.4 mm for the 

average case (patient 7) and 12.8 mm with SD 7.3 mm for the most severe case (patient 2). 

Landmarks 4,5,6 and 10,11,12 (right/left upper lateral orbital rim, superior orbital rim, and 

upper medial orbital rim, respectively) demonstrate the largest point-to-point movements. The 

zygomatic arches also underwent large point-to-point displacements with repositioning up to 

17.8 mm observed at landmark 18 for patient 2 (Table 7.2). The local bone movements (after 

excluding the rigid facial advancements) show an overall upward and inward motion of the 
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supraorbital rim, and a similar upward rotation of the zygoma. Overall, the arrows report an 

inward motion of the frontal bone, with displacements ranging from mild to severe over the 

cohort patients. Patient 2, the most severe case of the study-population, underwent the largest 

local movements from pre-to-post-operative state (Figure 7.5). 

  

Soft tissue deformations in response to the skeletal movements 

The mildest changes were seen in patient 1 with displacements of 2.5 mm and 4.6 mm 

for the right and left lateral canthus; 1.7 mm and 1.4 mm for the right and left medial canthi, 

respectively, were observed. For the average case, patient 7, this was calculated as 8.3 mm and 

8.0 mm, and 11.0 mm and 4.6 mm of displacement for left and right lateral canthi, and left and 

right medial canthi, respectively. As with the bone movements, the largest displacements were 

again observed for patient 2. 

Although some of the largest local bone movements are seen in the zygomatic arch, the 

heatmaps show minor changes for the soft tissue in this region (Figure 7.5.) Thus, relatively 

large bone movements in the zygomatic arch do not directly translate to an equivalent change 

in the corresponding soft tissue. Figure 7.5 also demonstrates that certain areas, such as the 

cheekbone and peri-ocular region seem to translate in a different ratio from bone to soft tissue 

movement than other areas, such as the forehead, where a smaller ratio from bone to soft tissue 

movement is suggested. 

For the most part, the largest soft tissue changes were observed at landmarks 1 and 4, 

i.e. the right and left lateral canthi, closely followed by the corresponding medial canthi. A 

larger degree of change was typically observed in the frontal bone; this is particular evident 

with patient 2, the most severe case in the study cohort. 
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Table 7.2. Overview bone landmarks and distance calculations. RLC = Right Lateral Cantus, RMC 

= Right Medial Cantus, LMC = Left Medial Cantus, LLC = Left Lateral Cantus, Nose = Nose Tip, RM 

= Right Mouth Corner, LM = Left Mouth Corner. SD = Standard Deviation mm = millimetre. 

Landmark Semantic Distance (mm) 

  1 2 3 4 5 6 7 8 9 

1 RLC 2.5 16.1 9.4 11.4 17.9 11.5 8.3 9.5 7.8 

2 RMC 1.7 9.1 6.9 6.5 12.3 7.5 11.0 8.5 7.9 

3 LMC 1.4 17.2 7.2 4.9 7.8 14.1 4.6 8.1 7.3 

4 LLC 4.6 23.3 6.5 8.4 12.4 11.7 8.0 10.8 10.8 

5 Nose 5.3 8.1 7.2 9.2 7.4 2.3 2.7 1.9 1.4 

6 RM  4.6 3.8 8.6 6.2 11.5 4.1 4.4 2.9 0.9 

7 LM  4.3 10.8 9.1 3.4 8.4 6.4 2.5 2.0 2.9 

8 Chin 8.4 10.1 8.4 9.5 14.9 9.2 6.8 3.6 6.8 

Total           

Mean  4.1 12.3 7.9 7.4 11.6 8.3 6.0 5.9 5.7 

SD  2.3 6.2 1.1 2.7 3.7 4.0 3.0 3.7 3.6 

 

Table 7.3. Overview soft tissue landmarks and distance calculations. RO A-F= Right Orbit A-F; 

LO A-F = Left Orbit A-F, RZ A-C =Right Zygoma A-C, LZ A-B = Left Zygoma A-C. SD =Standard 

Deviation; mm = millimetres. 

Landmark Semantic Distance (mm) per patient 

  1 2 3 4 5 6 7 8 9 

1 RO A 1.4 4.5 5.3 5.5 6.5 4.7 4.9 2.9 3.1 

2 RO B 0.6 3.0 3.8 3.1 7.2 4.6 3.0 1.0 2.5 

3 RO C 1.3 7.9 6.0 7.6 10.0 6.2 4.8 2.8 2.1 

4 RO D 1.3 7.2 9.2 9.2 13.4 7.6 5.9 5.6 3.7 

5 RO E 2.8 15.0 8.7 7.4 12.3 4.3 8.1 5.2 4.6 

6 RO F 3.1 21.8 7.2 8.7 9.2 7.5 10.6 2.9 2.2 

7 LO A 3.4 10.2 3.5 5.3 5.5 4.2 4.1 3.7 2.7 

8 LO B 1.5 8.6 3.1 4.5 3.4 4.0 2.4 1.2 2.5 

9 LO C 3.2 15.8 3.9 6.6 3.5 6.0 2.9 4.4 5.9 

10 LO D 3.1 19.7 6.4 6.6 5.3 7.9 5.7 5.5 7.8 

11 LO E 3.0 27.8 5.8 6.4 5.7 7.6 8.9 6.9 5.0 

12 LO F 3.5 24.5 9.9 5.0 5.7 4.3 8.8 5.9 4.2 

13 RZ A 1.6 0.8 6.4 7.8 12.2 4.6 3.6 3.4 5.5 

14 RZ B 4.6 4.3 4.5 9.1 12.0 5.5 5.3 2.9 8.4 

15 RZ C 7.0 6.6 7.9 11.2 9.1 10.1 13.8 5.1 10.5 

16 LZ A 3.4 17.2 3.4 7.2 3.3 6.7 6.2 3.4 10.6 

17 LZ B 7.5 17.6 6.2 7.3 6.1 6.5 12.8 1.8 13.9 

18 LZ C 7.2 17.8 10.8 10.5 11.4 9.8 12.6 6.7 15.5 

Total           

Mean  3.3 12.8 6.2 7.2 7.9 6.2 6.9 4.0 6.2 

SD  2.1 7.3 2.2 2.2 3.8 2.8 3.4 2.6 3.9 
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Figure 7.5. Heat and arrow maps of local bone and soft tissue changes following facial bipartition 

distraction. Four cases are presented here with various degrees of deformation severity. Patient 2, the 

most severe patient of the dataset is illustrated at the top with a personalised legend for the colours 

representing the distances. Patient 3 demonstrates mild local changes and a homogenous change of the 

upper face Patient 5 visualised relatively large posterior movement of the frontal bone /forehead and 

obvious changes of the periocular/peri-orbital region. Notably, is the asymmetric correction of the cheek 

on the right side, which has been advanced less than the patients’ left side. Patient 7 is the average case 

of the study set, demonstrating a unilateral movement of the right cheek with moderate changes of both 

eyelids, relative backward movement of the frontal bone is seen with remaining prominent supra-orbital 

rims. Notably, is the asymmetric correction of the cheek on the right side, which has been advanced 

less than the patient’s left side. 

 

7.4. Discussion 

A semi-automated workflow was developed for the quantification of bone and soft tissue 

changes for craniofacial procedures. The constructed pipeline was applied to a dataset of 9 

Apert patients who underwent facial bipartition distraction with RED-frame. To quantify the 

intrinsic bone changes and corresponding soft tissue motion, the overall forward displacements 

achieved by the surgery and RED-frame distraction were omitted from the analysis. This was 

achieved by aligning the 3D bone meshes rigidly on the maxilla and applying the same 

transformation to the soft tissue so that both moved together. The maxilla therefore acted as a 

reference for the regions of interest for quantification of the local movement, i.e. the zygomatic 

arches, nasal bone, orbits, and frontal bone. After removal of the facial advancement, the largest 

deformations were observed in the upper lateral to medial orbital rim on the skeletal level which 

coincides with the aim of FB-RED; namely to correct the hypertelorism and the counterrotated 

orbits seen in Apert syndrome. This methodology provides information on the vectors of the 

skeletal differential movements, visualised in the arrow map. Due to different positioning of 

the mandible at time of pre- and post-operative CT, this study did not describe displacements 

in this region. For two cases, clear asymmetric advancement was seen for the maxilla. One 

reason could be a registration issue, however this was not noted in the data processing phase, 

another reason could be that one part of the maxilla was advanced more than the other side, 
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which is more likely the case. This study did not analyse if this asymmetric movement resulted 

in a more symmetric outcome, i.e. correcting facial asymmetry by advancing one half of the 

maxilla more than the other half. However, the next chapter will dive further into normalisation 

analyses.  

The relationship between bone and soft tissue movement varied. This might be due to 

various degree of decoupling of soft tissue as a result of dissection, ancillary procedures such 

as lateral canthopexy and midfacial suspension causing different shape changes post-

operatively for bone as for soft tissue.  

The time between pre- and post-operative CT scans varied from 108-764 days, and factors 

such as growth may therefore have played a role in the final measurements and point-to-point 

correspondences described in Table 7.2. At GOSH, patients currently undergo a standardised 

pre-operative and follow-up CT scan protocol, consisting of a CT scan module with high-

quality imaging especially for craniofacial patients pre-operatively, one week post-operatively 

and only in case of clinical concerns, a subsequent CT scan as the aim is to limit radiation as 

much as possible in children. Many patients underwent FB-RED prior to introduction of this 

standardised protocol and therefore did not have ideal CT scans timings for the analysis of the 

bone and soft tissue movements. Others could not be included in this study due to the limited 

quality of the CT scan for 3D reconstruction. Henceforth, this study could only include a 

relatively small number of FB-RED cases as compared to the numbers that were in fact 

performed at GOSH. The several patients that did meet the quality and inclusion criteria were 

less preferable in terms of CT scan timings. The fact that surgery is performed at different ages 

and post-operative scans were performed at different intervals was a real challenge and from 

the point of view for this study has significantly downgraded the quality of the data. It is 

however a result of the GOSH philosophy on (fronto/mid)facial advancement surgery. 

Midfacial advancement is performed only when there is a clinical need or the expectation of 
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need for functional or psychological reasons rather than as part of an age dependant 

reconstructive protocol. Similarly, late post-operative CT scans are only undertaken to answer 

clinical questions in situations where they could alter management.  

Literature suggests that the mean facial growth spurt corresponds to an age of 14.35 years 

for boys and 11.52 years for girls (136). The majority of the subjects included in this study 

population were beyond this growth peak and it is therefore unlikely that growth on its own 

played a large factor in the observed deformations. One case included in the analysis, however, 

was 2 years old at the time of FB-RED and had 334 days between their pre- and post-operative 

CT scans. The deformations quantified for this young case were inevitably not only due to the 

surgery but also attributed to skull growth during this period. As the new CT-protocol is now 

in place, future studies could benefit from more timely quantification. 

The proposed methodology uses the absolute distances (vectors) between corresponding 

points to display the deformation in a heatmap. This is different from the approach presented 

in a prior study where 3 heatmaps were used per patient to illustrate the movements in the x 

(medio-lateral), y (vertical) and z (anterio-posterior) directions (127). With the methodology 

proposed in this chapter, the bone (arrow map) and soft tissue (heat maps) can be jointly 

considered and obtain a more intuitive understanding of the overall displacements. 

In addition to solving functional issues – being the indication for surgery mostly in 

youngsters - the surgery studied here aims to ‘normalise’ the patient’s appearance and address 

psychosocial problems deriving from cosmesis concerns. Optimisation of the surgical approach 

would require full understanding of the shape changes by objective analysis of the true surgical 

movements and by comparison of the post-operative outcomes with a normal match reference. 

However, the ‘normal face’ that one might aim to achieve with surgery is not unique for a given 

individual, but falls within a wide range of acceptable shape features as demonstrated well by 
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LSFM (5, 21). Indeed, Knoops et al. 2019 described how LSFM can be used to describe the 

surgical outcome of pre- to post-operative state after Le Fort I surgery where the orthognathic 

patients were compared to an age matched group of normal peers (21). Using a similar 

approach, chapter 8 will analyse the effect of FB-RED in relation to an age-matched group of 

healthy peers. The combination of a 3D understanding of the local tissue and bone movements 

provided by the presented methods, with an understanding of how results compare to the 

healthy LSFM population can potentially play a role in a personalised and quantified treatment 

approach. 

The flexibility of the presented methodologies lends itself to applications to other types of 

craniofacial surgery and could be used to facilitate real-time monitoring of a patient undergoing 

RED-frame distractive surgery at time of distraction. This approach could also be applied to 

other surgical techniques other than FB-RED, as it can provide additional information about 

how the bone is moving in response to the RED-frame and allow for the opportunity to 

simultaneously adjust the distraction protocol accordingly. Moreover, in case sequential post-

operative imaging is available, this methodology could be used to determine post-operative 

relapse in terms of the quantity and direction of the relapse. This information could, in turn, be 

used for surgical decision making and planning, and might influence the direction or quantity 

of distraction.  

Ultimately, this methodology can give us accurate insight into the localised changes 

resulting from surgery regarding hard tissue and soft tissue. Although it does not give direct 

answers on how to improve surgery, it provides information to understand how shape changes 

have occurred which may lead to alterations in technique. Some initial steps on this are 

described in the next chapter.  
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7.5. Summary 

Local changes of the bone and soft tissue after facial bipartition distraction in Apert 

syndrome were evaluated in a semi-automated fashion and are characterised by an upward 

inward rotation of the orbits, upward rotation of the zygoma and relative posterior motion of 

the frontal bone. The largest soft tissue movements are seen at the lateral canthi. No hard 

conclusions can be drawn given the varied cohort.  

 

Key points 

• A semi-automated workflow to determine bone and soft tissue changes following 

FB-RED was introduced and can be readily applied to other craniofacial 

abnormalities and surgeries. 

• Local changes are seen by means of upward inward rotation of the orbits, upward 

rotation of the zygoma and relative posterior motion of the frontal bone. 

• Relatively large movements of the zygoma result in relatively small changes of 

the soft tissue. 
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8. CORRECTED BUT 

NORMALISED? 
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In chapter 3, the main differences of the Apert’s unoperated face from the normal 

population face were highlighted, showing clear clustering between these two study 

populations. Chapter 7 analysed postsurgical outcomes and evaluated local face changes 

resulting from surgery in a 3D fashion. The next chapter will focus on evaluating the surgical 

results in comparison to the normal population, aiming to understand if surgery normalises the 

face and if not, in which areas this technique might be lacking.  

 

8.1. Introduction 

At GOSH, the correction of the Apert’s face is commonly addressed with a facial bipartition 

distraction as described in chapter 7. To my knowledge, no in-depth studies exist on patient’s 

aesthetical satisfaction, however, from clinical experience most patients and indeed most 

caregivers’ mention to be pleased with the improvements. One study by Tovertjärn et al. 2012 

followed up on 28 adult Apert patients and reported significantly lower education, social life 

including friendships, marital state, and sexual relationships. They stated that this could be the 

result of an abnormal appearance, however, could also be due to less practiced social skills 

because of the time-consuming treatments of these patients in childhood and adolescence 

(137). Moreover, to the best of my knowledge no studies exist on objective 3D normalisation 

analysis for soft tissue. Two studies mention evaluation of the bone abnormalities pre- and post 

FB-RED, using linear measurements and geometric analysis by means of rigid ICP (90, 138). 

Both studies were performed at GOSH. A study by Crombag et al. 2014 demonstrated inward 

rotation of the orbits and reduction of the intraocular distance and a forwardly moved maxilla 

(90). When compared to normative CT scans remaining deformities were seen, mainly the 

orbits seemed to have remained in the same position. Similar results were seen in a study by 

Glass et al. 2018 that concluded a partially correction of the midfacial width and correction of 
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the interorbital distance and inadequate correction of upper midfacial height (138). Further 

improvements were suggested such as a combination of facial bipartition with a LF2ZR, which 

would however increase the complexity of the surgery to an unacceptable degree and diminish 

stability and control. It was suggested that early manipulation of the skull base may address 

some of these issues. In their study the following was proposed: 1) bipartition distraction to 

correct midfacial retrusion and ‘unbend the face’, 2) further bony surgery to correct the 

occlusion and facial height, width, and asymmetry; a. Le Fort I or bimaxillary surgery, b. 

zygomatic osteotomies or onlays, and 3) final adjustments: a. rhinoplasty, b. soft tissue 

procedures. This suggested protocol would require a long-term surgical plan of many years 

with multiple surgeries.  

FB-RED is a surgical procedure built on the monobloc distraction by adding a 

straightforward vertical osteotomy, which does not seem to increase operating time or 

morbidity (78). It is designed to correct hypertelorism, exorbitism, midfacial contour, and 

canthal positioning. This chapter aims to evaluate the Apert FB-RED’s post-operative 

outcomes in comparison to normative data in order to understand if normalisation is achieved 

for soft tissue. It also aims to discuss the topics ‘what we do well’, ‘what can we do better’ and 

finally ‘when is it good enough’.  

 

8.2. Material and methodology 

8.2.1. Data sources 

The 23 patients that were initially considered for analyses in chapter 7 were addressed 

and those with pre- and post-operative scans available with sufficient quality for soft tissue 

mesh reconstruction were included. All DICOM-files from pre- and post-operative CT scans 
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underwent the pipeline described in chapter 3 (i.e. soft tissue mesh conversion, mesh clean-up, 

and annotation to guide NICP registration). Age matched meshes were selected from the LSFM 

dataset as perform as normative control group.   

 

8.2.2. Normalisation experiments 

Two types of experiments were performed: 

• Mean face comparison of the pre-operative and post-operative face compared with 

a normal face.  

• t-SNE embedding labelled for pre-operative, post-operative, and normal.  

 

Mean face comparison 

For the mean face comparison, three mean meshes were constructed: 

1) A mean face mesh of the pre-operative Apert patients. 

2) A mean face mesh of the post-operative Apert patient (following facial bipartition). 

3) A mean face mesh of the LSFM dataset (aged matched with mean mesh 1) and 2)). 

 

The mean pre-operative and the mean post-operative Apert face meshes underwent NICP 

registration with the mean normal face and heatmaps were computed allowing for visualisation 

of differences. This experiment aimed to give more insight into the facial areas where FB-RED 

was successful and areas where normalisation might be lacking.  
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Manifold visualisation  

All included pre-operative and post-operative meshes were be labelled with 1) preop 

and 2) postop, and an equal number of normal meshes were selected and labelled with ‘normal’. 

t-SNE was applied to the high dimension latent vector encodings for the study population with 

the aim to evaluate if the post-operative subgroup would cluster within the normal population, 

thereby confirming normalisation following FB-RED. The t-SNE embedding was created 

using a perplexity of 30 and run for 1,000 iterations. 

 

8.3. Results 

Seventeen patients could be included for analysis. The patients had a mean age of 15.68 

years (range, 12.18 – 20.44 years) at time of surgery, of those nine were female. Eight patients 

were indicated for surgery for solely aesthetic reasons, the remainder for (a combination of) 

functional problems. When indicated for aesthetic and functional concerns, these included 

respiratory concerns such as obstructive sleep apnoea and proptosis.  

Mean face comparison illustrates differences up to 15 mm (dark red coloured) for the peri-

ocular region and to 10 mm for the premaxilla. The white regions presented in the figures that 

reach 2 mm differences are considered clinically neglectable and include the nasal tip and nasal 

labial folds; they are therefore comparable to the mean normal pre-operative. Post-operatively, 

increase in abnormality is seen for these areas, reporting differences of 3-4 mm for the nasal 

tip and nasal labial folds, as well as differences up to 6 mm for the glabella, which was closer 

to mean normal before any treatment. The (pre)maxilla and the eyelid positions improved. Pre-

operatively mean differences of 8-10 mm can be noted whereas post-operatively this was 

reduced to 2-4 mm. Significant improvements were observed for the medial canthi, while a 

lesser degree of normalisation was seen for the lateral canthi. The lateral aspect of the eyebrows 
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improved whereas medially worsening is apparent. The glabella and forehead were also further 

from the normal as compared to pre-operative analyses.  

 

Figure 8.1. Heatmaps of Apert pre and postoperative means compared with mean normal.  Left 

mean Apert pre-operative mesh superimposed with normative mean. Main differences are seen for the 

upper lip, periorbital region and the forehead. Right post-operative mean Apert face superimposed with 

normal mean. Main improvements are seen for the medial canthi, upper lip, and lateral aspect of the 

eyebrows. Worsening is seen for the nasal tip, forehead, and medial aspect of the eyebrow.  

 

Figure 8.1 demonstrates that FB-RED does contribute towards normalisation based on 

soft tissue evaluation. Yet, after applying the t-SNE embedding, none of the post-operative 

cases was clustered within the normal population rejecting a hypothesis that FB-RED might 

achieve objective normalisation of the Apert’s face (Figure 8.2).  
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Figure 8.2. t-SNE embedding of the high-dimensional manifold clustering for post-operative 

analysis. This plot demonstrates that post-operative Apert meshes (black labels) are not embedded 

within the normal population (red labels), the post-operative group however, clusters close to the pre-

operative group (green labels) and seems to subgroup within the whole. 

 

8.4. Discussion 

FB-RED aims to normalise the face within existing anatomical restrictions. This chapter 

evaluated facial normalisation in a most objective manner and attempted to understand where 

this surgery is successful from a facial normalisation point of view.  

Based on t-SNE clustering, it can be stated that FB-RED does not normalise the face from 

a shape analysis perspective. It also indicates that there is still a long way to go in order to 

achieve normalisation. An important question might be, if human perception for normalisation 
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assesses the same things as a statistical model does. Does human perception and geometric 

morphometrics agree on what a ‘good’ result is? Our perception might prioritise features such 

as facial symmetry and appearance of the eyes over other facial features, whereas the model 

might pick up more clear differences of the prominence of the brows and nose. To answer this 

question a study on human perception and geometric facial normalisation should be performed. 

 This study looked at soft tissue normalisation outcomes, and did therefore not analyse the 

type and size of the nasal bone graft that some might have had at time of FB-RED. The use of 

a nasal bone graft at GOSH is a decision that is usually made on table peri-operatively when a 

stronger facial profile is subjectively indicated by the operating surgeon. The size and position 

of insertion of this bone graft (which is generally not objectified prior to insertion) will have 

contributed to the shape variations seen for the nose on soft tissue evaluation. Thus, hard 

conclusions can be drawn on the variations of the nose postoperatively. It would be interesting 

to compare those that did not receive a bone graft with those that did to understand whether 

this contributes to normalisation.  

In this chapter a significant larger number could be included for analysis than the study 

population presented in chapter 7 as usable soft tissue meshes can be constructed from lower 

quality meshes than those needed for bone meshes. Ideally, bone and soft tissue are analysed 

jointly, as was performed in chapter 7, enabling detailed analysis on the bone movements and 

its translation to soft tissue changes. The reasons why datasets with high quality data and ‘right’ 

timings for adequate assessment are often quite small were outlined in chapter 7. 

Apert’s facial deformities are challenging to treat due to the complex and commonly severe 

phenotype. As presented in the results of this chapters, FB-RED improves some of the facial 

shape but at the expenses of others. A study by von Gernet et al. 2000 recognised that the 

outcomes of fronto-orbital advancement in S252W patients are more challenging to correct the 
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shape and had better results when correcting the P253R mutation (139). They suggested that 

genotype should be considered for individual planning of the surgical procedure to achieve the 

best treatment for the patient. Although at GOSH an anterior-first approach is avoided and a 

posterior expansion would be the first treatment of choice to increase the cranial vault, it is an 

interesting finding that one subtype seemed more challenging to correct over the other. In this 

thesis, I did not find any facial shape differences for the two subtypes, however, it is possible 

that this is due to lack of sufficient data for adequate analysis. A future, potentially 

collaborative study to increase the dataset, could allow for not only the analysis of various 

techniques used in the correction of Apert syndrome, but also to sub divide the groups in their 

genetic subtypes and ascertain whether this plays a role in surgical outcomes. 

 

8.4.1. What are we doing well? 

As found by Cromberg et al. 2014 and Glass et al. 2018 FB-RED advances the midface 

well, decreases the inter orbital distance and rotates the orbits inwards as they studied on a 

skeletal level  (90, 138). Chapter 7 and this chapter showed that relative backward movements 

are seen for the forehead, resulting in a less obvious frontal bone protrusion and better location 

for the eyebrows, especially for the lateral aspect. It showed an improved location of the canthi 

and correction of exorbitism. Moreover, an improved positioning of the upper lip was 

quantified. However, none of these regions fully reached the mean matched normal face.  

 

8.4.2. What can we do better?  

This thesis identified the facial region that are on average not fully corrected, however 

it was not studied which areas are in fact most important to achieve facial normalisation 
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objectively and subjectively. Information on what regions to prioritise in the surgical approach 

might give a better idea on how to design improved operative approaches addressing the key 

deformations. Although the FB-RED surgically removes a wedge of bone between the orbits 

and rotation of the bone segments results in improvement of the temporal region and lateral 

aspect of the brow, the surgery seems to have a lesser impact on the shape of the forehead, 

especially at the level of the frontonasal suture. Albeit that the lateral aspect of the brows seems 

to have improved, prominent brows remain and are most likely the direct results of the 

protruding supraorbital rims. 

Interestingly, in chapter 6 it was noted that some Apert patients grow into inter-orbital 

distances that are within normal limits, or even below. Thus, awaiting for surgery until full 

maturation might avoid unnecessary medialisation, or in case, orbital medialisation is indeed 

indicated, can provide information on the ‘right’ amount required to achieve normalisation.   

The models demonstrated that large distances remain between the lateral orbital rims and they 

clearly visualised the deformity of the infra-orbital walls that are not corrected by FB-RED. To 

address this, newer techniques, such as personalised lay-ons could potentially be a solution.  

Based on the heterogeneity seen within the Apert population a personalised surgical 

planning technique should be in place enabling a customized surgical approach. Future 

approaches could include the design and use of customised and improved types of distractors 

with pre-planned vectors and distraction distances per facial region.   

 

8.4.3. When is it good enough?  

There is no doubt that complete normalisation of the Apert’s face is extremely complex 

and might be an impossible task to achieve. The studies presented in this thesis did not include 

any evaluation on patients’ or caregivers’ satisfaction, the wishes, and goals they had pre-
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operatively, and their main areas of concern. This thesis focused on objective analysis of the 

abnormal shapes and critically assessed the current surgical approach in place at GOSH for its 

correction. Unfortunately, the studies presented did not include any other types of surgical 

interventions nor patients’/caregivers’ viewpoint. It could be of interest to include these 

parameters in any future studies and collaborative studies with other craniofacial institutions 

utilising for example LF2ZR as pioneered by Hopper and its group at Seattle Children’s 

Hospital, United Stated of America, or the Monobloc advancement as done by NEMH to truly 

assess whether other approaches might be more successful in correcting particular areas of the 

face. Clinical reconsiderations for the surgical technique of choice to correct the facial 

deformities might adept based on such objective analysis.  

 As technology becomes increasingly part of daily clinical practice, the voice of the 

patients should too. Indeed, psychologists are getting a more prominent place in the pre-

operative work up for craniofacial patients wanting to undergo aesthetic facial corrective 

surgery. They play a significant role in psychosocial assessment to understand whether the 

patient’s needs, and wishes can be reached by a surgical treatment. Unfortunately, no real-time 

surgical decision-making format exists which allows for the visualisation of outcomes of 

specific types of surgeries. For the patient to see how they might look like after surgery at a 

preoperative consultation would highly improve the decision-making process. Not included in 

these studies are complications occurring after surgery. These should also be part of this 

decision-making process so that a well-informed shared decision can be made which is tailored 

to every unique patient. Although this thesis mainly described mean faces and its variations 

from the Apert population, the end goal is to use this technology for a personalised care 

management approach by implementing patient specific parameters. Taking psychosocial 

factors into account, is perhaps nowadays more important than ever as young adults grow up 

in an era where they are exposed not only to social pressure at school or outside but are also 
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constantly exposed to social media and internet, which has shown to have an enormous impact 

on mental health (140).  

 

8.5. Summary 

Objective facial normalisation is not achieved with FB-RED described by the 

methodologies presented in this work. Improvement towards normalisation is noted and areas 

that might require surgical adjustments – where technically possible – were described. 

 

Key points 

▪ Facial bipartition changes the face of Apert syndrome, however, does not achieve 

normalisation of the face. 

▪ It is unknown whether geometrical normalisations prioritise the same regions as 

human perception. 

▪ There is need for patient specific surgical planning. 
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9. CONCLUSIONS 
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This chapter summarises the main findings and outcomes of this thesis, drawing from all 

previous chapters, and describes in detail how the application of computer vision has 

contributed to achieve the aim of this thesis. The limitations are discussed, as are directions for 

future research and final remarks.  

 

9.1. Overview 

The aim of this thesis was to apply 3D methodologies for automatic identification of Apert 

syndrome from genetically and phenotypically similar syndromes, and, once diagnosed, to 

evaluate the growing Apert’s face and its facial skeletal abnormalities, and pre- and post-

surgical correction with an ultimate aim of improving current practice. The first objective was 

to automatically identify Apert syndrome from other FGFR-related craniosynostosis 

syndromes and from the normal population using state-of-the-art algorithms. The second 

objective was to quantify shape development in the growing Apert’s face and its facial skeletal 

abnormalities. The third objective was to define and apply the optimal quantification method 

to assess surgical outcomes in Apert’s corrective facial surgery. The final objective was to 

evaluate facial normalisation after corrective surgery. 

 

9.2. Detailed outcomes 

Chapter 3 – Apert facial shape analysis  

3DMMs of the Apert’s face and one of a paediatric healthy population were constructed 

using state-of-the-art algorithms and tested for the application of automated diagnosis by 

employing embedding experiments. Excellent clustering was noted for the Apert’s face from 
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the normal implying that this approach can have valuable clinical applications for automated 

syndrome identification. Moreover, a mean analysis was performed on two age sub-

populations which demonstrated that the Apert facial abnormalities worsen with age.  To 

summarise: 

1. Successful construction of Apert’s face 3DMM and healthy paediatric population was 

noted which might have potential for automated syndrome identification.  

2. Apert’s facial deformities increase with age when assessing the mean faces, however, 

need more detailed analysis on how the natural shape develops over time.  

 

Chapter 4 – Automated syndrome identification  

In chapter 4, the use of computer vision for automated identification was further explored 

for genetically and phenotypically similar syndromes to Apert. Head shape information was 

added and with the use of convolutional autoencoders 3 types of models were constructed, face, 

head, and face+head. Clustering experiments outperformed clinical observation and it was 

demonstrated that although head shape information is useful information, the model performs 

best for face shape only. Given sufficient data, this framework could be readily extended to a 

greater variety of craniofacial syndromes. Extending the model to larger patient cohorts and a 

greater number of syndromes may lead to new diagnostic tools, facilitating low-cost analysis 

and identification of craniofacial disorders. This could benefit in the subsequent management 

of such conditions, at an earlier stage.  The main outcome of this study was:  

3. Using the described framework, FGFR-related craniofacial syndromes can be 

automatically identified from one another and from the normal.  
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4. Face shape information outperformed face+head models, or head models for the given 

dataset. Although all models presented had excellent classification results, face shape 

information suffices for automated identification.  

 

Chapter 5 – a skull morphable model 

In chapter 5, following construction of soft tissue 3DMMs, a paediatric 3D skull model <4 

years of age was constructed and validated with gold standard measurements from literature. 

In addition to the understanding of shape change and the information this model can provide, 

it also has applications for in silico surgical planning, post-operative analysis, and could 

become part of a more comprehensive model in the future. As all meshes are in dense 

correspondence, selected distances can easily be calculated from raw data, providing a large 

amount of normative growth curves for the facial skeleton. In summary: 

5. A normative skull model of an <4 population was constructed, and its applications 

were outlined.  

6. True and generated data can provide large normative measurements and growth 

curves which might benefit a clinician for understanding the natural course of 

development and for surgical planning. 

 

Chapter 6 – an Apert skull model   

Chapter 6 described the construction of an Apert skeletal model and presented the mean 

and eigenvectors for two bespoke models (<4 and all ages). Growth curves were constructed 

and demonstrated the main differences of the Apert’s skull from the normal for various ages. 

In conclusion: 



 172 

7. An Apert skull 3DMM was successfully constructed. 

8. Growth charts were provided with comparison of normative data. 

9. Most measured parameters deviate from the normal growth curves. 

10. Potential future applications were outlined. 

 

Chapter 7 – facial surgical outcomes 

Chapter 7 showed the local changes made by facial bipartition distraction using a semi-

automated approach. These changes are characterised by an upward inward rotation of the 

orbits, upward rotation of the zygoma and relative posterior motion of the frontal bone. The 

largest soft tissue movements were seen at the lateral canthi. The method to analyse these 

changes was demonstrated useful and can be applied to other types of surgical outcome 

analysis. To summarise the findings in this chapter: 

11. Anatomical point-to-point correspondence (NICP) is a useful approach to analyse 

surgical outcomes in 3D.  

12. The relationship of movement of bone relocation to the soft tissue changes were mostly 

noted for the zygomatic arch, where relatively larger movements of the zygoma result 

in small changes of the soft tissue. 

 

Chapter 8 – corrected but normalised? 

 Chapter 8 objectively analysed facial normalisation following facial bipartition 

distraction. The mean faces of preoperative and postoperative Apert patients were compared 

with the mean face of normative data and demonstrated that the surgery improves but does not 
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normalise the face fully. Improvement towards normalisation is noted and areas that might 

require surgical adjustments – where technically possible – were described. 

13. Objective facial normalisation is not achieved with FB-RED described by the 

methodologies presented in this work. 

 

9.3. Limitations and future directions 

 

9.3.1. Sample size and data 

One of the major limitations of this thesis is the relatively small sample sizes in the 

syndromic databases. In any single center study of rare syndromes, small sample sizes are a 

limitation. This was experienced when using the GOSH data for chapter 3, 7 and 8. Chapter 6 

included data from NEMH as well, which enlarged the dataset significantly. To provide further 

evidence for the findings in this thesis would require collaboration with multiple large 

craniofacial units, ideally where sequential imaging is routinely taken, including CT scans and 

3D photography. Prospective large-cohort studies and overall standardization of data 

acquisition protocols would enable for larger studies and more homogenous studies. This 

would necessitate large scale sharing of information across international borders, which holds 

data sharing problems and was a in particular an issue during COVID-19 times.  

An added difficulty to the rarity of the syndromes and therefore small sample sized 

studies is the reliance on data produced by ionising CT scans and the understandably 

conservative imaging protocols in place at most craniofacial institutions. Exposure to ionising 

radiation is kept to a minimum with CT scans taken pre-operatively to aid surgical assessment 
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and planning, but at GOSH, follow-up CT scans are often not taken unless there are clinical 

pressing reasons, such as complications or pre-operative assessment for further surgery. The 

lack of follow up imaging or unacceptable time lag between operative procedure and post-

operative imaging led to the exclusion of a large number of patients. Low-quality imaging that 

was available for a part of the study population was another reason for exclusion. The advent 

of ultra-low dose 3D CT scanning and black bone MRI protocols could ameliorate these 

problems (141). However, the problem of repeated anaesthesia, which is usually needed for 

infants undergoing scanning, in the developing child remains. 3D photography might be the 

answer for soft tissue analysis, yet in silico pre-operative planning would still require 3D 

reconstructions derived from scanning slices that captured the bone.  

 

9.3.2. Impact of COVID-19 

Though most of this work could be performed digitally, COVID-19 did have an impact 

to what has been presented in this thesis. From a positive perspective, it encouraged for more 

frequent online meetings with the research team, yet international collaborations were 

restricted and data transfer between centers was impeded. In a field where one works with 

patient sensitive data, new collaborative studies could not be performed. Collaborative studies 

on for example comparing other types of surgical approached or adding more data to existing 

datasets would have strengthened the studies presented and allowed for further evaluation, 

potentially providing more answers to the questions proposed in this thesis. I am hoping to 

maintain the strong collaborative research teams that are in place and the reintroduction of 

onsite collaborative work as we were able to do prior to COVID-19 times. 
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9.3.3. Future directions  

Combined model  

A certain valuable next step would include the construction of a combined model. For 

the <4 group, bone and soft tissue models are built and readily available. Merging of these 

models would allow for a more intuitive evaluation of abnormality and in silico surgical 

planning. It would require expanding the included age group into adulthood and by adding in 

the mandible, which are studies that have been initiated. However, as described in the thesis 

and detailed in (38), combining models from different regions, various imaging modalities 

comes with many challenges.  

 

Sub analysis of th 

 

Surgical outcome prediction  

We can learn from what has already happened. A preliminary study by our research group 

under the lead of Dr. Athanasios Papaioannou has demonstrated that retrospective data can be 

used to predict surgical outcomes (142). Using a machine learning methodology as described 

in (142) various types of surgical techniques could be analysed and various potential outcomes 

visualised which might aid the shared decision-making process. These projects are very much 

in the beginning stage, however, seem promising for future analysis.  

 

Prenatal analysis  

Dalll’Asta et al 2017, performed a quantitative analysis of fetal facial morphology 

using 3D ultrasound, and demonstrated potential for the use of face shape information to 
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enhance pre-natal diagnosis (108). A study between GOSH and Boston Children’s Hospital, 

Boston, Unites States was commenced in 2020 to use prenatal MRI scans to understand the 

foetal face shape development in healthy and in syndromic patients, which could potentially 

enhance prenatal diagnostics. Due to COVID-19 restrictions, this study is currently on hold.  

 

Model sharing  

The scientific and clinical community might benefit from access to large normative 

databases with generative ability. Difficulties to access normative data is not uncommon and 

is an avoidable problem when forces are joint. A list of currently available models for scientific 

use are outlined in (38) and the collaborative use of these might enable more and better 

research. 

 

9.4. Conclusions 

This thesis presented successful approaches in which the use of modern technology aids to 

answer clinical questions. State-of-the-art algorithms were applied to evaluate automated 

syndrome identification and expanded its scope to skeletal models. The generative abilities of 

the presented models were proven, and various growth charts were presented, with the option 

to construct any type of measurements of the facial skeleton on demand by selecting facial 

landmarks on a template mesh. Using a modern approach, the post-surgical outcomes were 

analysed, and clinically valuable information was presented on facial normalisation analysis. 

Future lines of research were suggested, including the merging of the skull and soft tissue 

model for in silico operative planning purposes. While this thesis was focused on Apert 
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syndrome, the methodologies presented can be applied to any type of craniofacial syndrome 

and/or analysis of any surgical approach.  

To conclude, this thesis has introduced the use of computer vision methodologies to enable 

automated syndromic identification, with the aim to enhance and speed up diagnosis. It 

provided large normative data and growth curves on the growing Apert’s face, it also proposed 

a 3D methodology for accurate soft tissue and bone analysis and has presented some of the 

many potential applications that might positively change care management of craniofacial 

patients.  
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B.1. Search terms for validated landmarks 

((((("Algorithms"[Mesh] AND "Anatomic Landmarks"[Majr]) AND "Image Processing, 

Computer-Assisted"[Majr]) AND "Imaging, Three-Dimensional/methods"[Majr]) AND 

"Reproducibility of Results"[Mesh]) AND "Skull/diagnostic imaging"[Majr]) OR 

(((("Anatomic Landmarks/diagnostic imaging"[Mesh]) AND "Imaging, Three-

Dimensional"[Mesh]) AND "Skull"[Mesh]) AND "Reproducibility of Results"[Mesh])) OR 

((((( "Cephalometry/methods"[Mesh] OR "Cephalometry/statistics and numerical 

data"[Mesh] )) AND "Reproducibility of Results"[Mesh]) AND ( "Imaging, Three-

Dimensional/methods"[Mesh] OR "Imaging, Three-Dimensional/statistics and numerical 

data"[Mesh] )) AND "Anatomic Landmarks"[Mesh]) OR (((("Anatomic Landmarks"[Majr] 

AND ("Imaging, Three-Dimensional/methods"[Mesh] OR "Imaging, Three-

Dimensional/statistics and numerical data"[Mesh])) AND "Skull"[Majr]) AND 

"Reproducibility of Results"[Mesh]) AND "Cephalometry"[Mesh]) 
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B.2. Intra- and interclass correlations for skull landmarks 

Intra- and interclass correlations with a value less than 0.5 indicate poor reliability, values 

between 0.5 and 0.75 moderate reliability, values between 0.75-0.9 good reliability and values 

greater than 0.9 indicate excellent reliability (143). Table B.2.1. provides an overview of mean 

intra- and interclass correlation in X-, Y-, Z- and XYZ-axis per landmark found in the 3 

included studies: 

 

Liberton et al. 

Liberton DK, Verma P, Contratto A, Lee JS. Development and Validation of Novel Three-

Dimensional Craniofacial Landmarks on Cone-Beam Computed Tomography Scans. J 

Craniofac Surg. 2019;30(7):e611-e5. 

 

Da Neiva et al.  

Neiva MB, Soares AC, Lisboa Cde O, Vilella Ode V, Motta AT. Evaluation of cephalometric 

landmark identification on CBCT multiplanar and 3D reconstructions. Angle Orthod. 

2015;85(1):11-7. 

 

Lemieux et al. 

Lemieux G, Carey JP, Flores-Mir C, Secanell M, Hart A, Lagravere MO. Precision and 

accuracy of suggested maxillary and mandibular landmarks with cone-beam computed 

tomography for regional superimpositions: An in vitro study. Am J Orthod Dentofacial 

Orthop. 2016;149(1):67-75. 
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Table B.2.1. Overview of mean intra- and interclass correlations. The correlations are provided in 

X-, Y-, Z- and XYZ-axis per landmark: ICC <0.5 indicate poor reliability (red), 0.5 and 0.75 moderate 

reliability (yellow), 0.75-0.9 good reliability (seagreen) and > 0.9 indicate excellent reliability (green). 

L is left and R is right. 

 
 

 

  Mean Intraclass Correlation 

(ICC)  

Mean Interclass Correlation 

(ICC) 

Landmark X Y Z XYZ X Y Z XYZ 

Nasion 0,99 1,00 0,89 0,96 0,96 0,99 0,89 0,95 

Prosthion 0,74 0,91 0,65 0,77 0,81 0,97 0,80 0,86 

A Point 0,90 0,95 0,78 0,88 0,91 0,94 0,79 0,88 

ANS 0,88 0,91 0,94 0,91 0,93 0,93 0,96 0,94 

Orbitale R 0,86 0,87 0,97 0,90 0,80 0,86 0,96 0,87 

Orbitale L 0,76 0,85 0,97 0,86 0,77 0,87 0,95 0,86 

Supraorbitale R 0,88 0,89 0,90 0,89 0,32 0,79 0,76 0,62 

Supraorbitale L 0,62 0,83 0,87 0,77 0,20 0,51 0,84 0,52 

Frontozygomatic suture R 0,95 0,96 0,95 0,95 0,94 0,98 0,94 0,95 

Frontozygomatic suture L 0,95 0,93 0,91 0,93 0,89 0,96 0,94 0,93 

Zygomatic arch R 0,96 0,86 0,94 0,92 0,98 0,87 0,96 0,94 

Zygomatic arch L 0,96 0,70 0,95 0,87 0,98 0,78 0,96 0,91 

Jugale R 0,75 0,88 0,85 0,83 0,67 0,93 0,87 0,82 

Jugale L 0,71 0,87 0,79 0,79 0,73 0,89 0,89 0,84 

Nasal cavity R 0,71 0,91 0,91 0,84 0,68 0,94 0,96 0,86 

Nasal cavity L 0,58 0,90 0,85 0,78 0,77 0,95 0,92 0,88 

Infradentale mandible 0,86 0,99 0,95 0,93 0,91 0,99 0,91 0,94 

B point 0,92 0,98 0,89 0,93 0,94 0,92 0,89 0,91 

Pogonion 0,90 0,97 0,94 0,93 0,94 0,92 0,93 0,93 

Gnathion 0,94 0,91 0,68 0,84 0,94 0,81 0,69 0,81 

Menton 0,93 0,97 0,98 0,96 0,94 0,92 0,95 0,94 

Coronoid process R 0,96 0,97 0,98 0,97 0,95 0,95 0,98 0,96 

Coronoid process L 0,97 0,97 0,97 0,97 0,98 0,95 0,98 0,97 

Condylion R 0,45 0,62 0,96 0,68 0,49 0,60 0,98 0,69 

Condylion L 0,75 0,95 0,97 0,89 0,80 0,96 0,98 0,91 

Articulare R 0,82 0,99 0,92 0,91 0,66 0,98 0,93 0,86 

Articulare L 0,62 0,98 0,91 0,84 0,76 0,97 0,95 0,89 

Gonion R 0,76 0,77 0,93 0,82 0,76 0,74 0,96 0,82 

Gonion L 0,98 0,96 0,94 0,96 0,96 0,95 0,95 0,95 

Infraorbital foramen R 1,00 0,99 1,00 1,00 1,00 0,99 0,98 0,99 

Infraorbital foramen L 1,00 1,00 1,00 1,00 1,00 0,99 1,00 0,99 

Mental foramen R 1,00 1,00 1,00 1,00 1,00 1,00 0,99 1,00 

Mental foramen L 1,00 1,00 0,98 0,99 1,00 0,99 0,99 1,00 
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B.4. Weblinks  

Link B.4.1. This is the weblink used to for annotation of the soft tissue meshes for the 

construction of the face 3DMMs: 

https://www.landmarker.io/#server=https%3A%2F%2F5c2ec5e8.ngrok.io 

 

https://www.landmarker.io/#server=https%3A%2F%2F5c2ec5e8.ngrok.io

