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Abstract—Tumours arise within complex 3D 

microenvironments, but the routine 2D analysis of tumours 

often underestimates the spatial heterogeneity. In this paper, 

we present a methodology to reconstruct and analyse 3D 

tumour models from routine clinical samples allowing 3D 

interactions to be analysed at cellular resolution. Our workflow 

involves cutting thin serial sections of tumours followed by 

labelling of cells using markers of interest. Serial sections are 

then scanned, and digital multiplexed data are created for 

computational reconstruction. Following spectral unmixing, a 

registration method of the consecutive images based on a pre-

alignment, a parametric and a non-parametric image 

registration step is applied. For the segmentation of the cells, 

an ellipsoidal model is proposed and for the 3D reconstruction, 

a cubic interpolation method is used. The proposed 3D models 

allow us to identify specific interaction patterns that emerge as 

tumours develop, adapt and evolve within their host 

microenvironment. We applied our technique to map tumour-

immune interactions of colorectal cancer and preliminary 

results suggest that 3D models better represent the tumour-

immune cells interaction revealing mechanisms within the 

tumour microenvironment and its heterogeneity. 
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I. INTRODUCTION 

Immune cells infiltrate into the tumour microenvironment 
and their spatial organization and heterogeneity have been 
known to have active role in cancer progression and clinical 
relevance regarding prognosis and response to certain 
immunotherapies for several human carcinoma types [1]-[3]. 
Thus, more and more studies are being carried out examining 
tumour-cell proliferation and survival, tumour angiogenesis 
and metastasis in accordance with the immune system [4]. 
As cell count alone might not be able to provide a complete 
picture of the immune landscape [5], tumour immunologists 
aim to uncover interactions between tumour and immune 
cells that may lead to more effective treatment strategies. In 
general terms, in the most common cancers, including 
colorectal cancer [6], a tumour microenvironment with a 
higher immune infiltration including CD8+ and FOXP3+ T 
cells or low CD4+/CD8+ cells ratio is associated with 
improved clinical outcomes or prolonged survival [7]-[12].  

Nevertheless, the majority of above methods use gene 
expression deconvolution techniques that lack spatial 
information. Thus, a comprehensive study of tumour 
microenvironment necessitates the application of multiplex 
imaging techniques. These allow the quantification of 
immune cell subsets as well as the identification of non-
tumoural and tumoural cell interactions. Focusing on 
multiplex immunofluorescence (mIF), this technique is based 
on the use of fluorophores to visualize the location of bound 
antibodies. In addition, mIF offers the advantage of large 
linear dynamic range of most fluorophores allowing the 
quantitation of marker intensity. Multiplex IF preserves the 
architectural features of the tumour and reveals the spatial 
relationships between tumour cells and immune cells. Hence, 
more recently, numerous studies based on the mIF and two-
dimensional (2D) cell models have further investigated the 
role of immune system aiming to predict and to improve 
patients’ responses to therapies [13]-[18]. These utilize 2D 
spatial analysis either counting the number of immune cells 
per slide or in a distance from the nearest tumour cell or 
estimating the distance between different types of cells or the 
distance between immune cells and tumour cells. 

However, as the tumour microenvironment is known for 
its complexity, both in its content as well as its dynamic 
nature, is difficult to study it using 2D cell models [19]. As 
such, there is considerable interest in 3D models [20], [21] of 
the tumour microenvironment toward 3D analysis and 
predicting and monitoring response to therapy. Three-
dimensional models offer better geometry, cells interaction 
representations and intra-tumoural heterogeneity. Moreover, 
three-dimensional architecture of the tumour 
microenvironment characterized by a heterogeneous 
distribution of cells and local features may have functional 
significance. To date, no generally applicable digital 
pathology approach has been proposed to generate 3D 
tumour microenvironment at cellular resolution from mIF 
image stacks. Towards this end, in this paper we propose a 
methodology for the generation and analysis of 3D models 
using mIF. More specifically, this paper makes the following 
contributions:  

• We introduce a methodology for the generation of 3D 
tumour microenvironment models at cellular resolution 
from mIF image stacks.  



• We compare 2D and 3D tumour-immune cell interactions 
and we investigate tumours with many immune 
subpopulations.  

Preliminary results suggest that 3D models can better 
represent the tumour-immune cells interaction and tumour 
microenvironment heterogeneity. To this end, the proposed 
3D models may assist in exploring further the link between 
immune cell infiltration and tumour prognosis and/or 
response to therapies.  

II. MATERIALS AND METHODS 

The proposed methodology for the mIF 3D tumour 
microenvironment reconstruction and analysis is shown in 
Fig. 1. Initially, data preparation and pre-processing were 
performed including an antibody panel selection followed by 
immune-staining application, scanning and spectral 
unmixing. Then, registration of the consecutive mIF samples 
and single-cell segmentation were applied. Finally, based on 
the previous steps, 3D reconstruction and three-dimensional 
cellular organisation analysis were performed. 

 

Fig. 1. The proposed workflow. 

A. Data preparation and pre-processing 

Consecutive tissue sections consisting of more than 
25,000 cells and an antibody panel consisting of MSH6, 
CD20, FOXP3, CD4, PANCK and CD8 were selected for 
the mIF assay (Table I). The Opal (Akoya) mIF automation 
kit was used which includes horseradish peroxidase (HRP) 
con-jugated secondary antibody, Opal fluorophores, DAPI 
stain, antibody diluents and blocking buffers. The 
manufacturer’s protocol was followed and immuno-staining 
performed using the Leica Bond RX autostainer (Leica 
Biosystems). Furthermore, a representative tumour section 
was labelled with Pan-CK primary antibody and with-out 
opal fluorophore to assess levels of background 
autofluorescence. The spectral unmixing library including 
endmember selection created using 5 epi-fluorescence filters 
(DAPI, FITC, Cy3, Texas red, Cy5) and thus, contribution of 
fluorophores to an image channel was expressed as follows: 

 ���� � ∑ ��	 
 ����� (1) 

where ���� is the measured spectrum, coefficients �� are the 
contribution of the fluorophores and ����  represents the 
spectral contribution of the fluorophores to every channel. 
Thus, the individual fluorescence signals were estimated by 
taking into account the total number of spectral channels and 
adopting a linear least squares approach minimizing the 
following: 

 
��‖���� � ������‖� (2) 

Following the removal of the estimated autofluorescence, 7 
channels were extracted corresponding to the selected 
antibodies and the DAPI stain (Fig. 2). 

 

Fig. 2. Data preparation and pre-processing. 

Table I Antibody Panel 

PANCK 
PanCK is expressed by all normal colon cells and colon 

cancer cells. PanCK is a cytoplasmic protein. 

MSH6 

Mismatch repair protein involved in repairing DNA base 

pair mismatches during cell division. MSH6 is a nuclear 

protein. 

CD20 

Marker of B lymphocytes. B lymphocytes form part of the 

immune system and produce antibodies. CD20 is a 

cytoplasmic protein. 

FOXP3 

Marker for T regulatory cells. T cells form part of the 

immune system. Tregs are a type of T cell have a role in 

suppressing other types of immune cells. FOXP3 is a 

nuclear protein. 

CD4 
Maker of T helper cells. These are a type of T cell that help 

other immune cells work. CD4 is a cytoplasmic protein. 

CD8 

Marker of cytotoxic T cells. CD8+ T cells are involved in 

killing infected cells and cancer cells by producing 

chemicals that destroy cells detected as foreign. CD8 is a 

cytoplasmic marker. 

B. Registration of multiplex immunofluorescence images 

In this workflow we aim to minimize the objective 
function ���� , �� , �� → 
��, where ��  is the reference image, 
�� is the warped image and t is the desired transformation. 
The proposed method consists of a pre-alignment step, a 
parametric registration following by a non-parametric 
registration. In the pre-alignment step, based on the selected 
channel images, the center of tissue samples or tumour 
microarrays (TMA) is determined by fitting a rectangular in 
the segmented tissue and estimating the center of it. Then, 
based on the estimated sizes of reference and template 
images and their detected centers, size adjustment, translate 
registration and rotation alignment was performed. In the 
next step, an affine deformation � of 6 degrees of freedom 
was applied. Based on the [22] we aimed to minimize the 
following criterion, with respect to these parameters, by an 
iterative procedure defined as: 

 ������ � �  "̅
‖ "̅‖ �  #̅�$�

‖ #̅�$�‖��
 (3) 

where, %�̅  and %�̅���  are the zero mean vectors of the 
reference vector ��  and the warped vector ����� respectively, 
�  is a vector of unknown parameters and ‖∙‖  denotes the 
Euclidean norm. To this end, it is considered that the 
objective function that must be maximized is the enhanced 
correlation coefficient: 

 '��� �  "̅(  ̅#�$�
‖ ̅"‖‖ ̅#�$�‖ (4) 

 Finally, the non-parametric demons algorithm [23] that 
combines performance and computational efficiency was 
used in order to improve the registration outcomes. In the 
demons algorithm, the forces are inspired by the optical flow 



equations [24] and the regularization by a Gaussian 
smoothing [25]. More specifically, the displacement )′ 
between the warped image (+) and the reference image (�) 
was computed by using the iterative formula as follows: 

 )′�,, -� � � �.#
�/��0,1�2."�0,1��∇."�0,1�

�∇."�0,1��45�.#
�/��0,1�2."�0,1��4 (5) 

where ��
�6�

 is the warped image of iteration � , ∇��  is the 
gradient of the reference image and �,, -� is the location of 
each pixel. Afterwards, ) was updated and regularized by a 

Gaussian filter, while ��
�6�

 was interpolated using )�6� �
)�627� + )′ , constructing the image  �9

�657�
, until the 

maximum number of iterations �  was met. For both 
parametric and non-parametric registrations, a 
computationally multiscale pyramid efficient scheme was 
used (5 levels were used). This in combination with the 
Gaussian filter regularization makes the proposed method 
robust to autofluorescence noise and beneficial for the 
registration of mIF data. 

C. Cell segmentation 

 For the cellular level analysis, in this study we introduced 
a fluorescence cell segmentation approach named ORION 
(FluORescence cell segmentatION) for multispectral 
immunofluorescence imaging. The proposed method uses an 
ellipsoidal model [26] to identify individual cells aiming to 
keep good balance between the estimated cells’ shape and 
overlapping parts of touching cells. For this, we introduce a 
single validation criterion that aims to exclude noise and 
non-cell objects. Initially, the unmixed spectral signatures 
underwent a Gaussian filter with a 5 
 5 kernel, an adaptive 
thresholding method and morphological operations aiming to 
suppress small artifacts. Then, we estimated the distance 
transformation of the binary image ;  of �  pixels that 
represents the connected cells and we estimated the regional 
maxima of this. Then, based on the hypothesis that cells can 
be spatially modelled as ellipsoids �< , the pixels of cells 
were then modelled using a Gaussian distribution estimating 
the mixture parameters using the expectation-maximization 
(EM) algorithm.  

 Having estimated the ellipsoidal model of cells, we need 
to reject any erroneous seeds from the candidate list and re-
estimate the ellipsoidal models for the remaining seeds. For 
this study, we developed a new fitness validation criterion 
taking into account the overall combination of ellipses of 
candidate seeds. More specifically, the proposed criterion 
aims to keep the cells well-separated and takes into account 
the binary areas that are included in the estimated ellipses, 
the total area of the extracted ellipses, as well as the 
background area that is included in the estimated ellipses and 
the overlapping parts of the ellipses of the touching cells. 
Subsequently, we introduced an intensity-based parameter 
=. based on the intensity variance of each estimated ellipse 
aiming to separate the touching cells with different intensity. 
To this end, the number of candidate seeds and the estimated 
ellipsoidal components are defined by maximizing the 
following fitness degree of the 2D cell data mask:  

 Fitness � 
�D EFG2FH2FI2JK
L M (6) 

where the total area covered by the estimated ellipses is � �
∑ �<���$∈O , the foreground area of the binary image ; that 

is included in the estimated ellipses is PQ �
∑ ;���$R7 ���� , the area of the background area of the 

binary image ; that is included in the estimated ellipses is 

PS � ∑ [1 � ;���]$R7 ���� and the overlapping parts of the 

ellipses of the touching cells for the total number of the 
identified ellipses is defined as PW � ∑ ∑ �<X���$R7 ∩�R7
�<Z���, [ � 1, [ ≠ �. The final segmentation of the clustered 

cells was performed by applying Bayesian classification 
which assigns each pixel � to cluster ��  with the maximum 
posterior probability. 

D. Three-dimensional reconstruction and spatial analysis 

For the 3D rendering and visualization, Avizo software 
was used. More specifically, once images were processed 
then both the initial images and the masks of the segmented 
cells were used to obtain a 3D representation of the immune 
infiltration and geospatial correlations. For the 3D 
reconstruction a cubic interpolation method was used. We 
performed spatial analysis counting the number of immune 
cells of each subtype within the vicinity of each tumour cell. 
More specifically, we used the localized segmented cell 
centres and a radius ] � 25μ
  in order to quantify the 
number of immune cells. We chose this radius as a 
biologically relevant distance for interaction between tumour 
cells and immune cells [27]. Thus, we counted the number of 
the different immune cells that were identified within this 
radius of each segmented tumour cell. 

III. RESULTS 

For the evaluation of the proposed workflow, we 
conducted tests using a numerous of consecutive and non-
consecutive mIF images. The goal of this experimental 
evaluation is three-fold. Initially, we aim to demonstrate that 
the introduced registration pipeline outperforms state-of-the-
art approaches. Secondly, a detailed experimental evaluation 
of the proposed immunofluorescence single-cell 
segmentation is performed. Finally, through the proposed 
workflow tumour-immune interactions of colorectal cancer 
are analyzed and compared between two and three 
dimensions. 

A. Registration of multiplex immunofluorescence tissue 

images 

 Evaluation of the quality of the registration was 
conducted on 19 mIF image pairs taken from colorectal 
specimens. To this end, we manually set seven landmarks in 
each of the 20 images and Median Relative Target 
Registration Error (MrTRE) of one image pair was estimated 
based on all landmarks.  

 ;�`]� � 
a)��� bcdef2deIc4
gI h (7) 

where Dij  and DiW  are the reference landmarks and warped 
template landmark. The )W  is the diagonal length of the 
template image. Then, Median of MrTRE and Average of 
MrTRE throughout all pre-defined landmarks of image pairs 
were calculated [28]. For the registration and estimation of 
the registration parameters, DAPI-stained images were used. 
For the registration of the rest markers the previously 
estimated parameters were applied. 



 Fig. 3 shows the evaluation results and the reduction of 
the error of the registration pipeline. After the registration, 
landmark errors are equal to ;;�`]� � 0.27%  and 
P;�`]� � 0.33%  in contrast to the median and average 
errors before the registration that were equal to ;;�`]� �
5.46% and P;�`]� � 6.61. In terms of qualitative visual 
results, Fig. 4 illustrates the visual comparisons of the 
contribution of each step of the registration approach 
proposed in this paper.  

 

Fig. 3. Median Relative Target Registration Error (Median and Average) 

rates before alignment and after each registration step. 

(a) 
 

(b) 

(c) 
 

(d) 

Fig. 4. Qualitative registration results for a pair of images that represents 

tumour cells before alignment and after each registration step: a) before 

registration, b) after pre-alignment step, c) after parametric registration, d) 

after non-parametric registration. 

B. Multiplex immunofluorescence single-cell segmentation 

 To evaluate the performance of the proposed cell 
segmentation method, we conducted tests using a mIF 
dataset and compared with 4 independent widely-used cell 
segmentation approaches. More specifically, the dataset of 
MSI tumours created for this study consists of 400 cells of 
multiplex IF images. To validate the efficiency of the 
proposed method we used Jaccard Similarity Coefficient 
(JSC), as well as Dice false positive (Dice FP) and Dice false 
negative (Dice FN) values in order to measure over-
segmentation and the under-segmentation respectively. 
Furthermore, Hausdorff distance and mean absolute contour 

distance (MAD) were used to evaluate the contour of 
detected cells. It is worth mentioning that the proposed cell 
segmentation method of different markers was carried out 
based on nuclear staining or combining DAPI and 
cytoplasmic staining due to lack of clear cell boundaries (e.g. 
CD4+ cells).  

Table II 
Comparison results on the mIF Dataset 

JSC MAD Hausdorff DiceFP DiceFN 

Otsu [29]  81.4 5.8 17.5 3.9 17.1 

RFOVE 

[30] 
87.1 4.5 7.1 4.8 9.6 

Watershed 

[31] 
85.1 4.9 10.1 4.9 10.3 

Mask R-

CNN [32] 
83.7 5.1 10.7 5.2 11.8 

ORION 

(Proposed) 
88.2 4.2 6.2 4.5 8.8 

 The experimental results (Table II) show that the 
proposed method outperforms four widely-used approaches 
that have been used in the past for cell segmentation. The 
introduction of the fitness criterion for the identification of 
the number of cells in conjunction with the accurate 
identification of cells’ boundaries keep low the Hausdorff 
rate of the proposed method. On the other hand, the classic 
watershed algorithm leads to higher oversegmentation 
results, while the Mask R-CNN which was trained on [32] 
and fined-tuned on the annotated mIF dataset, needs a higher 
number of mIF annotated cells in order to perform better. 

 Finally, we estimated the True Detected Rate in order to 
determine the ratio of segmented cells number to the total 
number of annotated cells. Ιt is worth mentioning that the 
True Detected Rate for the proposed methods was estimated 
to be equal to 98.9%. Qualitative results of the proposed 
method are shown in Fig. 5. 

Input Segmented output 

  
(a) 

  
(b) 

Fig. 5. Qualitative cell segmentation results of the proposed fluorescence 

cell segmentation approach on the mIF Dataset. 

C. Three-dimensional spatial analysis 

 Using the workflow detailed here and the 3D tumour 
microenvironment reconstructions (Fig. 6), we were able to 
both quantify tumour-immune cell interactions and their 
spatial patterns within the tumours. Thus, we analyzed the 
geospatial correlations of more than 25,000 tumour and 
immune cells and we compared the tumour-immune cell 
interactions in the neighbourhood of each tumour cell 
between two and three dimensions. More specifically, taking 
into account the two-dimensional analysis, each tumour cell 
has on average 0.09 CD20 cells, 0.22 FOXP3 cells, 0.22 
CD4 cells and 1.49 CD8 cells in its neighbourhood area 
while for three-dimensional model each tumour cell has on 
average 0.042 CD20 cells, 0.09 FOXP3 cells, 0.11 CD4 cells 
and 0.46 CD8 cells in its neighbourhood area (Table III).  



 Further to this analysis as previously has been reported, 
low CD4+/CD8+ ratio in the tumour-infiltrating 
lymphocytes significantly contributes to higher five-year 
survival in patients [10]. Thus, we compared this ratio 
between two-dimensional and three-dimensional models. 
Counting the average ratio value that is associated with 
improved clinical outcomes, CD4+/CD8+ for two-
dimensional models is 0.15 and for three-dimensional 
models is 0.24. This indicates that three-dimensional analysis 
provides additional information about the tumour immune 
microenvironment which may have prognostic implications 
if validated in larger studies. 

Table III 
Tumour-immune cell interactions (normalized values) 

CD20 FOXP3 CD4 CD8 

2D spatial 

analysis 
0.09 0.22 0.22 1.49 

3D spatial 

analysis  
0.042 0.09 0.11 0.46 

 

 

Fig. 6. Three-dimensional tumour microenvironment reconstruction. 

 Finally, based on the neighbourhood analysis we counted 
the number of different immune cells within the radius of 
each tumour cell. Thus, we compared the immune cells 
correlations between two-dimensional and three-dimensional 
models aiming to reveal the immune landscape in colorectal 
cancer. To this end, the Pearson correlation coefficient was 
used. More specifically, Fig. 7 presents that in both two-
dimensional and three-dimensional models there is a 
moderate to strong association between FOXP3 and CD4 
cells, consistent with the presence of a population of 
regulatory T-cells. In contrast, there was no correlation 
captured between CD20 and FOXP3 or between CD20 and 
CD4 within the vicinity of each tumour cell in two-
dimensional modelling.  

 

(a) 

 
(b) 

Fig. 7. Comparison of immune cells correlations in (a) two-dimension and 

(b) three-dimension analysis. 

 However, in three-dimensional models there was 
moderate correlation. This correlation can be also validated 
from the 3D reconstruction in Fig. 8, which show that CD20, 
FOXP3 and CD4 are present in nearby regions of the 
examined tumour. This suggests that 3D models can better 
represent the tumour-immune cells interaction and tumour 
microenvironment heterogeneity. However, further studies 
are needed to clarify the scientific mechanism behind these 
results and insights on tumour immunity in colorectal cancer. 

 

Fig. 8. Three-dimensional reconstruction for: A) CD4, B) FoxP3 and C) 

CD20. 

IV. CONCLUSION 

 In this paper, we presented a digital pathology 
methodology for mIF three-dimensional tumour 
microenvironment reconstruction and analysis allowing high 
detail 3D tumour-immune interactions to be visualised and 
analysed at cellular resolution. The main advantage of the 
proposed workflow is that tumour-immune interactions are 
mapped and analyzed in three dimensions allowing better 
identification of tumour-immune interactions patterns within 
their host microenvironment. We applied our technique to 
colorectal cancer microenvironment and preliminary results 
show that 3D models can better represent the tumour-
immune cells interaction and tumour microenvironment 
heterogeneity. In the future, more mIF data will be collected. 
This will allow us to study anti-tumour immune responses 
inside patients' tumours and to compare between treatment 
responders and non-responders. 
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