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A greyscale erosion algorithm for tomography (GREAT) to
rapidly detect battery particle defects
A. Wade1,2, T. M. M. Heenan 1,2, M. Kok1,2, T. Tranter 1,2, A. Leach1,2, C. Tan1,2, R. Jervis 1,2, D. J. L. Brett1,2 and P. R. Shearing 1,2✉

Particle micro-cracking is a major source of performance loss within lithium-ion batteries, however early detection before full
particle fracture is highly challenging, requiring time consuming high-resolution imaging with poor statistics. Here, various
electrochemical cycling (e.g., voltage cut-off, cycle number, C-rate) has been conducted to study the degradation of Ni-rich NMC811
(LiNi0.8Mn0.1Co0.1O2) cathodes characterized using laboratory X-ray micro-computed tomography. An algorithm has been
developed that calculates inter- and intra-particle density variations to produce integrity measurements for each secondary particle,
individually. Hundreds of data points have been produced per electrochemical history from a relatively short period of
characterization (ca. 1400 particles per day), an order of magnitude throughput improvement compared to conventional nano-scale
analysis (ca. 130 particles per day). The particle integrity approximations correlated well with electrochemical capacity losses
suggesting that the proposed algorithm permits the rapid detection of sub-particle defects with superior materials statistics not
possible with conventional analysis.
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INTRODUCTION
The use of lithium-ion (Li-ion) batteries has increased dramatically
in recent years, especially in the automotive sector through their
use in battery electric vehicles (EV) and as such, the demand for
longer lasting and higher performance batteries has increased. To
meet this demand, much work is dedicated to developing the
materials of each component within the Li-ion cells, with notable
emphasis on understanding the degradation of cathode
materials1,2.
For EV applications, LiNixMnyCozO2 with a high nickel content

(i.e. where x > 0.5) can offer high-rate, high-capacity performance3;
moreover, the reduction of the cobalt content can circumvent
ethical, toxicity, and cost issues in the supply-chain4. As the
performance benefits generally scale with the nickel content,
chemistries with up to 80% nickel are of particular interest, e.g.
LiNi0.8Mn0.1Co0.1O2 or NMC811. However, despite its superior
performance, the NMC family suffers from a wide range of
degradation mechanisms, causing capacity losses that typically
become more severe as the nickel content increases5.
A desirable aspect of nickel-rich NMC materials is that higher

specific capacities can be accessed at lower cell potentials which is
often true for low cycle numbers. However, structural instabilities
prevent high reversible capacities in practice, causing significant
capacity fade6. For instance, undesirable phase transitions7–10,
increased transition metal dissolution11–14, gas release15,16, the
formation of micro-cracks17–19, and the presence of various
defects20 leading to an increased capacity fade21, have all been
reported in the operation of nickel-rich chemistries from
investigations occurring across multiple length-scales22,23. Crack-
ing is a significant issue for NMC811 and is a key point of interest
for both academic and industrial research.
In order to access increased capacity, the cathode can be cycled

with an increased upper cut-off voltage, however, this causes the
material to undergo a significant contraction of the c-lattice
(representing the inter-layer spacing between the transition metal

ion sheets in the crystal structure) at high voltages, which is
thought to be major source of micro-crack generation24 leading to
decreases in capacity retention25. Furthermore, during fast
charging, significant state of charge (SoC) and accompanying
lattice parameter heterogeneities can be observed, leading to
elevated crack formation within the active material from
mismatched strains26.
X-ray computed tomography (CT) has been widely used in Li-ion

battery research for many years27; providing a non-destructive
imaging platform that allows the cell microstructure to be resolved
at high resolutions whilst also yielding a large enough volume to
draw statistically significant results. To enable such large data sets
to be analysed, new methodologies are required which include the
use of computational algorithms. Petrich et al. 28 used such an
algorithm to automatically detect cracks within particles by looking
for particle pairs within datasets. It has been shown that tracking
defects within particles29 in combination with neural networks30

can allow broken particles to be identified. The quantification of
heterogeneous degradation through an electrode was achieved by
Yang et al. in 201931 through reporting the damage extent (cracks)
of particles at various locations and categorizing them into
damage groups. In these studies, relatively large defects/cracks
must be present within particles for automatic identification, while
smaller micro-cracks within particles are not considered. With all
studies, the quantification precision increases with spatial resolu-
tion assuming that there is a fractal-like dependency, or similar,
upon the feature analysed, i.e., smaller voxel lengths are required
to analyse smaller features32. Furthermore, the representative
accuracy of the quantification can be improved by analysing a
greater number of particles, i.e. larger volumes and more particles.
A trade-off must be drawn between the voxel size (resolution) and
total volume analysed, therefore there is motivation to develop
ways of accurately detecting features of interest within large
volumes, which would otherwise have required higher resolutions
(leading to commensurately smaller analysis volumes).
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In this work, we describe and apply a method for 3D particle
defect (large heterogeneous voids or cracks) detection within a Li-
ion battery cathode material, NMC811. Through the use of ex-situ
X-ray CT, our algorithm was applied to individual particles within
printed commercial electrode sheets taken from a comprehensive
electrochemical test matrix described elsewhere20. In doing so,
statistically significant correlations were extracted and particle
defects quantified. The trends displayed indicate the particle
integrity across the electrode, and provide an insight into the
degradation on a particle-by-particle basis. Significantly, this
method enables micro-crack detection, before full particle fracture
occurs, with the ability to infer cracks below the resolution of the
instrument (sub-200 µm in this instance), enabling early degrada-
tion to be quantified. This algorithm opens an avenue for particle
analysis with high statistical confidence that is not limited to Li-ion
batteries but may also be applied to the wider fields of research
such as geotechnical engineering33 and metal 3D printing34.

RESULTS
Tracking the radial density profile through each particle gives
valuable insights into the degree of inhomogeneity of each
particle, alongside the ability to show how the average particles
are affected by different extrinsic and intrinsic factors. This can be
tracked through the intensity value for each voxel within the
particle, with a higher value corresponding to a brighter or more
X-ray attenuating region.
The intensity of each voxel is related to the attenuation of the

material within that voxel via the Beer–Lambert law (Eq. (1)).

I ¼ I0 ´ e�μ ´ d (1)

With the incident beam intensity, I0, and sample thickness, d,
being relatively constant across all scans (since all samples were
similar size/thickness/porosity and the beam settings were the
same), the mass attenuation coefficient, µ, is the key variable for
determining the transmitted beam intensity, I. The transmitted
X-ray intensity is used to reconstruct 3D volumes via filtered back-
projection (FBP) algorithms producing a tomogram consisting of
many voxels (3D pixels) each with a greyscale value that
corresponds to the average X-ray attenuation of the material
within the volume of that voxel (Eq. (2)).

Iv ¼ I0 ´ e
�
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� �
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where the voxel length Lv is sufficiently small that the spatial
positioning of the constituent atoms is assumed to have negligible
effect upon the incident X-ray intensity for that atom within the
voxel, I0. The mass density of the voxel, ρv, is taken as the average
of all constituent materials within the voxel volume. The
mass attenuation coefficient is calculated as it would be for
any mixture of materials, using the wight fraction, wi, of the ith
atomic constituents and each with their own mass attenuation
coefficient, μρ−1.
A low greyscale value corresponds to a low X-ray attenuation

(i.e. high X-ray transmission); consequently, voxels that contain the
pore phase of an electrode have a significantly lower greyscale
intensity than those containing NMC material. If a voxel contains
both NMC and pore, i.e., is under-resolved with regards to spatial
resolution, the greyscale intensity will be reduced from the
theoretical value of NMC but would not be as low as a voxel that
contains exclusively pore space; this mechanism is typically
referred to as partial averaging, or the partial volume effect35.
Damage within particles (e.g., cracking) is therefore also repre-
sented by a reduction in the greyscale intensity, a feature which
can be leveraged in order to obtain information beyond the
spatial resolution of the imaging instrument20 and forms the basis
of the algorithm presented below.

As a preliminary trial and proof of concept, individual particles
of interest were manually identified from the reconstructed image,
by selecting particles with visual defects (cracks, voids or radial
greyscale variations). These particles were cropped to size, and
imported into FIJI36 where two 1D line profiles were computed for
the central slice through the particle centre at 90° to one another,
i.e. in orthogonal x−y and x−z planes. Following this, the data was
smoothed to remove excess noise, with the particle ortho-slices
and their respective line profiles shown in Fig. 1a–c. This
methodology enables clear detection of voids (Fig. 1c) due to
the large intensity decrease at the centre. However, more complex
features (micro-cracks or radial gradients) are indistinguishable
using this method, likely due to lack of data per particle (i.e. poor
materials statistics). Furthermore, the time-consuming nature of
hand selecting particles is not feasible for large data-sets,
presenting a requirement for automated multi-particle analysis.
Due to this manual method’s inability to capture the intensity
values throughout the full particle (because only two orthogonal
planes are examined), and the highly time consuming require-
ment of finding, cropping, and exporting individual particles
(manual isonaltion and segmentation), an improved algorithm
was developed in MATLAB that allowed greyscale analysis in all
directions (not limited to two planes) for multiple particles at once.
The aim of this algorithm is to ensure more information about the
intensity is preserved, while still reducing the processing time,
allowing morphological features characteristic of degradation to
be more easily found and quantified with statistical confidence.
The updated algorithm scans each voxel of a tomogram to find

particles, and assigns a unique number to each particle, based on
its spatial location (similar to geographical co-ordinates). From
this, an aerial loading map can be produced, and the surface of
each particle is known. Utilizing the greyscale tomogram (Fig. 2a),
the intensity value for each point of the surface of the particle is
found, and averaged for the entire surface, to produce a singular
intensity value. Following this step, iterative morphological
erosion takes place, repeating n times until the core of the
particle is reached, producing a greyscale value with respect to
particle position. Finally, the surface area between particle and
pore, alongside the particles volume is recorded and tracked.
Naturally, a larger number of voxels are required to comprise a

structure with a larger surface area; consequently, the number of
data points taken at the particle’s surface (i.e. iteration 1) is higher
than at the particle core (i.e. iteration n), thus random noise
increases drastically as the algorithm approaches the nth iteration,
i.e. at the particle core. Therefore the values for the greyscale at
the particle core are not traditionally considered for analysis,
however, all other values can be considered, and when compared
to many other particles, e.g. hundreds or thousands of others,
greyscale values (g) and local greyscale variations (Δg) due to
noise can be removed and functions determined, e.g., g= f(r) and
Δg= f(r).
To enable the algorithm to correctly detect the particle surface,

two masks are created, via interactive thresholding and smoothing
if necessary. The first contains all active materials (Fig. 2b), and the
second contains any pores/internal voids within the data set
(Fig. 2c). These masks are superimposed over the greyscale data to
guide the search process and ensure erosion only takes place at
exterior surfaces. Due to the imperfect nature of segmentation, a
sensitivity analysis on this features has been completed and is
discussed below.
To ensure that segmentation is not influencing the results, a

sensitivity analysis on these functions has been completed on the
pristine sample. Segmented data sets with 5% over or under
segmentation have been computed, compared to the best
segmentation effort. Figure 3a displays this information, for
particles >6 µm, and Fig. 3b for particles between 3 and 4 µm. It
is clear that there are three distinct bands, each is associated with
a segmentation method. An over segmentation, labelling pore
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space as particle, results in the outer surface having a lower
intensity than expected, so when normalizing the interior to this
surface, the interior appears at a greater relative intensity. The
opposite can be said for under segmentation. Over segmentation

has a larger deviation from the “ideal” scenario, and therefore
when segmenting it is advised to err on the side of an under
segmentation. From this we can conclude that the segmentation
is critical to achieving accurate results, and care should be taken to

Fig. 1 1D line scans through particles and their respective intensities. 1D line scans through individual particles for an intact particle (a),
cracked particle (b), and particle with an internal void (c), and their respective greyscale variations through the radius of the particle. The scale
bar is 10 µm for each particle.

Fig. 2 Stages of image processing for GREAT. Stages of image processing, greyscale (a), segmented particles (b), and segmented pore and
void space (c). The scale bar is 60 µm for each volume.

A. Wade et al.
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ensure the most accurate segmentation possible. It should also be
noted that a 5% increase in segmentation is a large error, and as
such is far outside the expected user error possible when
completing this stage in the process. It is also important to note
that this method may be applied for automated particle
segmentation; the sequential application of this GREAT algorithm
with local segmentation can serve for the basis of a fully
autonomous segmentation package. Finally, the focus of this
work are defects below the surface, which do not heavily rely on
surface mapping, and that any SEI present on the cathode will
have negligibly effect on the surface intensity due to its low X-ray
attenuation.

If we plot all particles >6 µm in diameter, from the pristine
electrode, we can see there are three major trends (Fig. 3c). The
intensity of some particles fall rapidly towards the centre, the
majority stay constant, and some increase. It is likely that some of
the aggressively decreasing particles are due to internal voids
within the particles, alongside some showing distinct changes in
density. Clearly, to plot all particles from every electrode in this
fashion would lead to nonsensical volumes of information in
single plots. Therefore, an average is taken for each Euclidean
distance from the surface, for setting size-bounds. The pertinent
question is then, does the selection of these size bounds influence
the results? To evaluate this, three bounding regimes were used,

Fig. 3 The requirement for careful segmentation and bound size selection. Comparison of segmentation and separation methods from the
pristine sample for a particles larger than 6 µm and b particles between 3 and 4 µm. c all particles larger than 6 µm from the pristine sample
(each particle represented by a different shade of grey).

A. Wade et al.
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as described in Table 1, and the influence from these bounds can
be evaluated via analysis of the number of particles in each bound
and the standard deviation of the final values.
A balance must be found between small bounds that have a

more even split of particles, and having enough particles within
each bound for the results to be significant. For the small bounds,
there are very limited numbers of particles in the larger bounds,
with the reverse happening for the larger bounds, with the hybrid
approach providing a middle ground.
The standard deviation of every averaged point within a bound

can be found, giving the spread of intensity values for each point,
then divided by the original value to give the percentage
deviation that is present at each point. The average standard
deviation for the entire bound can then be found, and has been
done for the pristine sample with the three bounds described
above, and displayed in Table 2. Each bounding method produces
a similar trend, with the variation being largest for the smallest
particles, when they are the most particles present. Using the
smallest bounds gives the lowest variation, however, this is likely
since the minimal number of particles present in the largest size
bounds.
The hybrid approach is used for the remainder of the results to

reduce the effect of lone particles and more equally distribute the
particles throughout the bounds, but as shown above, the choice
of bound should not have a minimal impact on the overall result
(full standard deviation for the hybrid bounds is shown in
Supplementary Fig. 2).

Electrochemical cycling
In this study, eight electrodes have been studied, each with a
unique electrochemical history, seven of which have been cycled
against graphite, and one sample, the pristine, has never been
inside a cell. The control sample has been cycled to 4.2 V at a
charging rate of 0.5C for 5 cycles and is the baseline for all cycled
samples. Subsequent samples have been cycled to either
increased upper voltage limits, (4.3 V, 4.4 V or 4.5 V), increased
C-rates (2C or 5C), or an increased number of total cycles (100
cycles), with the full electrochemical history described in the
methodology section. Cycling at 5C, 4.4 V, 4.5 V or 100 cycles will
be classified as ‘aggressive’. The variation in cycling parameters
enables the condition that causes the largest effect on degrada-
tion to be identified. At the end of charging, CV holds were carried
out until the C-rate was below C/20, with all discharge conducted
at 0.5C (1 d.p.) to 3.0 V (detailed cycling history is shown in
Supplementary Fig. 1).
During the formation cycles all cells performed similarly,

reaching a capacity between 182–202mAh g−1 after the first

formation charge, and 149–170mAh g−1 after the second forma-
tion charge, as shown in Fig. 4a. The decrease in capacity is as
expected as lithium loss due to SEI formation will be present
during these two formation cycles to 4.2 V. All cells cycled to a
higher voltage than they were formed at display an increase in
capacity during their first cycles, as would be expected since the
higher voltage enables more lithium ions to be removed and
therefore a greater capacity to be reached. All cells experienced
large losses in capacity between the first and second cycles. This is
to be expected and is due to both kinetic limitations within the
electrodes, alongside parasitic irreversible side processes [37]. The
losses are large for the highest charging rate (~15% decrease
compared to ~11% for the control), indicating kinetic limitations
could be a major contributing factor. Cells taken to higher
voltages see the greatest decreases in capacity, a 28% decrease
for the 4.4 V cell and 27% for the 4.5 V. This is expected since the
extra lithium removal would likely lead to further SEI formation on
the anode, reducing the Li+ inventory for subsequent cycles.
Another factor causing the large losses is the potential for the
initiation of a host of degradation mechanisms, such as surface
restructuring, micro-cracking and/or transition metal migration. By
investigating further cycling, the effects of any degradation
mechanisms on the cell can be observed, without the ability to
pinpoint the underlying causes of the losses.
The capacity losses as a percentage of the first and second cycle

capacities can be seen in Fig. 4b, c. The control cell (4.2 V, 0.5C),
shows a 12.8% decrease in capacity through its test, with 11.1%
occurring after the first cycle, with a 1.7% loss thereafter. An
increase in the charging rate causes capacity losses of 13.1% and
16.6% for 2C and 5C, respectively, with the losses after the first
cycle being once again small, at 2.4% and 1.9%, respectively,
indicating little degradation. Moving to the higher voltage studies,
where in particular 4.4 and 4.5 V experience not only extremely
large first cycle losses, but large capacity fade through the
subsequent cycles (last charge at 121.3 and 113.5 mAh g−1,
respectively), experiencing further losses of 9.4% and 6.3% of
their total losses in the latter cycles. Finally, the cell cycled 100
times displays similar performance as the control cell for the first 5
cycles, as would be expected, but the higher number of cycles
does cause large capacity losses, and by the 100th cycle, the cell
has lost 25.9% of its original capacity, with a specific capacity of
99.9 mAh g−1, with 16.6% of the total loss being experiences after
the second cycle.
It is expected that high voltage or cycle number would lead to

larger capacity losses18, as does the higher charging rate of 5C38,
as seen in Table 3. Correlating capacity losses to specific
degradation mechanisms is challenging, and undoubtedly, a

Table 1. Description of each size bound used and the average number of particles found within the bounds.

Name Maximum particle size
(µm)

Step size
(µm)

Average number of particles for
all sizes

Average number of particles
>5 µm

Average number of particles
<5 µm

Small 8 0.5 52 13 111

Big 6 1.0 130 38 223

Hybrid 7 1.0 and 0.5 78 29 111

Table 2. Standard deviation (%) for each bounding method for various particle sizes.

Particle size bound 2.0 µm 2.5 µm 3.0 µm 3.5 µm 4.0 µm 4.5 µm 5.0 µm 5.5 µm 6.0 µm 6.5 µm 7.0 µm 7.5 µm 8.0 µm

Small 2.0% 2.2% 2.1% 1.8% 1.7% 1.6% 1.5% 1.5% 1.8% 1.3% 1.0% 0.9 % 0.9 %

Big 2.3% 2.3% 2.1% 2.1% 1.8% 1.8% 1.7% 1.7% 1.6% 1.6% 1.6 % 1.6 % 1.6 %

Hybrid 2.0% 2.2% 2.1% 1.8 % 1.8% 1.8% 1.7% 1.7% 1.7% 1.7% 1.3 % 1.3 % 1.3 %
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number of degradation mechanisms contribute to these losses,
such as transition metal migration and Li+ inventory loss. Here,
using X-ray CT we aim to investigate the capacity fade with
respect to particle cracking and other microstructural defects.
More specifically, identifying micro-cracks and defects from a large
number of particles at a resolution above the typical size of these
features. The methodology for the scanning and post processing
is extensively discussed in the “Methods” section.

Traditional metrics. Initial calculations of morphological informa-
tion, such as particle sizes and volumes, along with their
distributions was conducted for each sample (imaging parameters
can be found in the “Methods” section). The particle size
distributions (PSD) for each of the electrodes can be found within
Fig. 5a. For all samples, a similar trend is observed; with particles
between 6 abd 9 µm being most common. Apart from the
increase in particles sized between 3 and 6 µm in the 5C study,
potentially caused by the breakdown of larger particles (between
9 and 15 µm), little information can be gained from this analysis.

The distributions are wholly similar, and offer limited explanations
as to why certain cells display far larger capacity fades than others.
The surface area to volume ratio (SAV) can theoretically indicate

the presence of cracks, since a highly cracked particle will have a
larger ratio than a non-cracked particle, due to the fresh surface
exposed by the crack. As can be seen in Fig. 5b, the SAV for all
samples are very similar, highlighting its inability to discriminate
damaged from pristine particles.
The two methods highlighted above display an inability to

detect degradation via basic microstructure analysis. Furthermore,
both rely of large fractures to be present within particles in order
for the methods to properly function; these are therefore unable
to detect smaller micro-cracks within a particle. This motivates the
current study, to enable early crack detection within a particle’s
interior, and thus indicating the integrity of the particles.

Intensity through particles. The normalized intensity profiles for
selected size bounds are displayed in Fig. 6a–c, with the remaining
size bounds in the supplementary information. For each particle
studied, a region below the surface is present with a sharp increase
in intensity, before the normalized intensity falls. This can be
quantified by inspecting the first sub-surface regions, ca. 2 µm
below the designated surface. The cause of this layer is most likely
to be due to partial averaging effect due to the primary
particle roughness 20. Initially, it was also believed to be due to
uncertainty over the true particle surface, with binder surrounding
the particles 39, however, since even the under segmented pristine
sample displays this layer, the most likely cause is a roughness
leading to decrease intensity values at the surface. This leads our
particle surface to yield a lower intensity value than would be true,
thus creating a potentially artificial increase for the subsequent
voxels. The size of this layer is independent of the size of the
particle, consistently being in the size range of 2.0–2.5 µm.
Furthermore, this layer decreases in intensity after cycling has
occurred, for all particles, indicating some level of smoothing due
to cycling being present. Continuing through the radii of the

Table 3. Electrochemical data for initial and final capacities and the
overall lost percentage.

Cycling condition Initial capacity
(mAh g−1)

Final capacity
(mAh g−1)

Capacity
lost (%)

0.5C to 4.2 V × 5
(Control)

196 139 29

2C to 4.2 V × 5 202 142 30

5C to 4.2 V × 5 198 129 35

0.5C to 4.3 V × 5 196 139 29

0.5C to 4.4 V × 5 182 100 45

0.5C to 4.5 V × 5 202 121 40

0.5C to 4.2 V × 100 195 114 42

Fig. 4 Electrochemical data for cycled coin cells. Electrochemical data: a cell charging capacity (mAh g−1) for each sample at each cycle,
b capacity loss as a percentage of first charge, and c capacity loss as a percentage of second cycle.

A. Wade et al.
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particles, the intensity values decrease, and can reach values below
that of the surface. The following section will discuss the impact of
size and cycling conditions on the radial intensity profiles.
With decreasing particle size, the normalized intensity is higher

than that of large particles, and this may be down to two reasons.
Firstly, the sub-surface layer takes up a larger percentage of the
particle, with its higher intensities, resulting in not enough radial
space post this layer to fall to surface levels. Secondly, smaller
particles are more resistant to fracture damage, and therefore
experience less mechanical degradation than their larger counter-
parts, likely due to more uniform internal state of charge, resulting
in less stress placed on the primary particle boundaries due to
anisotropic volume changes. Although the small particles have
higher intensity values, the variation due to cycling conditions are
present throughout the size bounds, albeit to a lesser extent. This is
most prominent in Fig. 6c, where the particles from the 100 cycle
electrode display lower intensities than the rest of the samples.
The cycling conditions that particles are exposed to have a large

impact on the normalized intensities, with significant variation
present between samples, as seen in Fig. 6a. The pristine sample
consistently displays the highest normalized intensity values, as
would be expected due to a lack of particle defects. Particles from
the control, 4.3 and 4.4 V electrode display similar behaviour
throughout the different particle sizes with only the 4.4 V electrode
containing regions below the surface intensity. The electrode
cycled at 2C consistently has a higher intensity value than the
previous group, but displays very similar decay through the radius.
The 100 cycle cell, although only present in the smaller bound
groups, consistently shows the lowest intensity values, signifying a
large number of defects. Cycling to 4.5 V and 5C causes notable
decreases in large particles, with both samples reaching normalized
intensities of less than unity. However, as the particle size
decreases, both these samples have higher intensity values,
indicating minimal internal degradation.
To further assess the radial gradients present within the particles,

the differential intensity with respect to radius is calculated
(Fig. 6d–f), allowing the rate of change of intensity to be tracked,
enabling the effect of segmentation inaccuracies to be mitigated.
There are two key features on these figures: (1) the point at which
each sample crosses the x-axis (spatial location where the intensity
is decreasing); and (2) the magnitude and duration spent below the
x-axis (how much the increase or decrease is and for what length

through the particle). Differential normalized intensity for the
remainder of the size bounds is shown in Supplementary Fig. 4.
From these figures, the pristine sample regularly crosses the x-axis

with the largest voxel value, indicating that pristine samples stay at a
higher intensity for longer. For the largest particles, once again 4.5 V
shows the most intensity changes, having both the most negative
value and crossing the x-axis first. As the particle size decreases, it
can be seen that although the 5C sample displays the lowest
intensity values, the 4.5 V sample has very similar rates of change. As
particles get smaller, noticeably at 3.5–4.0 µm size bound, there is a
large difference between pristine and the cycled cells, with 100
cycles displaying the highest radial variations, followed by 4.5 V.
When using the average values, it is worth noting that towards

the ends of the bounds (within the final 0.5–1.0 µm), the values start
showing large variations, as seen in the standard deviation and by
the wide spread in Supplementary Fig. 2. This is not surprising, since
the bound contains particles of different sizes, and the final voxel for
a certain sized particle is not the centre for another, therefore the
lowered core value is countered by the larger particles’ raised non-
core value, leading to the high variability. The result is that the
averaging method is good for the bulk of the particle, to assess a
general trend, but becomes less useful towards the centre of the
particle. Furthermore, this analysis is unable to give an exact
quantification to the degree of damage, instead gives a picture of
the full electrode. Since defects often originate from the centre,
further analysis should and is done, discussed below.
To ensure that differently sized particles within bounds do not

influence the results, the average value from each particle can be
calculated, with the value then averaged for each bound and
plotted in Fig. 7a. As such, it can be seen that the pristine samples
have a much higher average intensity, with cycling conditions
playing a large role on the values. As seen previously, for large
particles, the 4.5 V and 100 cycle electrode are heavily damaged,
along with the 4.4 V electrode when the particle size is smaller. This
confirms the trends observed earlier, and can give a tangible
number to quantify the level of degradation present within a
particle and/or electrode.
To assess the core of each particle, a new average can be taken,

the average normalized intensity of the core for each particle within
a size bound. Doing this enables the core of every particle to be
calculated, without the effect of slightly larger or smaller particles
influencing the result. This result is shown in Fig. 7b, for all particle

Fig. 5 Traditional morphological characterization. Existing morphological quantification via a Particle size distribution and b surface area:
volume ratio.
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sizes, and larger or smaller than 5 µm. The values for the under
segmented case are also included, to show the robustness of this
final method. Pristine samples have the highest values for all size
ranges, as is expected, and this is the case for under segmented
particles with one exception. The three cells that experience the
largest capacity fades also have the lowest core intensities when

considering all particles. As seen previously, high voltage or C-rate
has a significant effect on the largest particles, with 4.5 V and 5C
displaying the lowest values. For the smaller particles, once again
the 100 cycled cell has the lowest values, followed the 4.4 V. Smaller
particles are once again seen to be more robust against
microstructural defect formation, yielding higher values.

Fig. 6 GREAT results for different particle sizes. Normalized intensity values for a particles larger than 7 µm, b particles between 5 and 6 µm,
and c between 3.5 and 4.0 µm. Differential normalized intensity values for d particles larger than 7 µm, e particles between 5 and 6 µm, and
f between 3.5 and 4.0 µm.
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From the combination of X-ray micro-CT, segmentation and
MATLAB codes, the intensity within each particle has been
calculated, and analysed in a range of ways. Through combining
the results from all the intensity analysis, and electrochemical data, a
picture of the integrity of the particles can be built up. Aggressive
cycling, leads to particles with lower intensities, less dense cores, and
particles that display large radial variations. As particle size
decreases, the particles become more resistant to defects, observed
in all electrodes.

DISCUSSION
Aggressive cycling conditions contribute to creating particles with
lower intensity cores, as seen above, which correlates with a
decrease in the electrochemical charge capacity of the cell. The
intensity change, is a proxy for defects or cracks within the
particles, which have been known to plague high-nickel content
electrodes. These have previously been observed through nano-
scale tomography20, where the increased resolution enables
micro-cracks to be directly visualized. The widths of cracks, as

seen from SEM images17 can be significantly smaller than 0.2 µm
and are therefore often below the resolution of the X-ray
instruments, include that which was employed in this study.
Traditional metrics (Fig. 5a, b) are unable to detect micro-cracks at
this resolution, and therefore the presented methods have been
applied. Since a crack has a lower attenuation than the active
material phase, its presence can be inferred from the partial
volume/averaging effect. The low intensity region within the
particles is caused, in-part by the presence of multiple micro-
cracks or defects, lowering the average intensity of the region;
these defect and/or cracks are not present in the pristine sample
indicating that they arise from electrochemical cycling rather than
electrode manufacturing. The lowered intensities observed
towards the centre of particle cores, indicates crack growth
initiates here, as discussed by Schweidler et al. 40, Sun et al. 19. This
methodology enables the comparison of multiple electrodes prior
to particle fracture, giving an insight into the cause of capacity
fade and health of each electrode as a whole.
The largest uncertainty within this study comes from errors

arising from segmentation, due to an inability to detect the true

Fig. 7 Average and final intensities for all samples. a Average normalized intensities for each particle bound and b core normalized intensity
including the undersgmented pristine sample for comparison.
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particle surface. An under-segmentation, resulting in an artificially
higher surface intensity, lowers the sub-surface layer and creates a
core with an inaccurately low normalized intensity. Even if this
were to happen at an extent of 5%, the difference between the
pristine and cycled cells is so large that there is still a significant
difference for most electrodes. GREAT is essentially a data
reduction algorithm and is not designed to improve automatically
through experience, it therefore cannot be classed as machine
learning (ML) and no ML has been developed or applied in this
article; however, the authors envisage two key opportunities that
exist for the integration of ML in future studies: (1) pre-processing
of tomograms (for GREAT input data) via improved ML image
segmentation would allow lower quality data to be analysed,
permitting shorter data acquisition times and higher data analysis
throughput, thus improved materials statistics. (2) Post-processing
of the GREAT output data via ML to further explore trends in
particle defect creation and development could identify new
degradation mechanisms that are not visible via manual inspec-
tion. This future development will complement the presented
algorithm workflow by removing the uncertainty around surface
detection and could be integrated into the algorithm code.
However, at present, any machine learning segmentations have
not reached maturity and are unable to usurp conventional
segmentation protocols.
As mentioned, a compelling quality of this method is its ability

to capture a large number of particles and use averaging
techniques to simplify the data into key metrics, a method of
data reduction. In doing so, a certain level of confidence in the
spread of the data can be extracted. After calculating the standard
deviation of all average points within the hybrid bounds, only
three points had a percentage standard deviation above 5.0%,
with the majority of averaged values falling between 1.0% and
2.5%, as can be seen in the supplementary information
(Supplementary Fig. 2).
The capacity fade observed can be correlated to the intensity

variations observed through the algorithm results, to enable a full
picture of electrode health to be constructed. The pristine cell,
should be, and is the electrode with the least defects, shown by its
consistently high normalized intensity, even if significantly under-
segmented. Charging to 4.2 V at 0.5C, five times (the control
sample) leads to a decrease in the normalized intensity, both
through the surface layer, bulk and in the core, indicating an
increase in defects due to this cycling history. Increasing the
voltage to 4.3 V results in slightly more damage, particularly in the
core. The increase to 2C does not result in dramatic capacity
losses, nor does it result in large intensity variations, indicating
that the particles are in good health and can perform well.
With an increase up to 5C, the capacity fade is more severe than

the control, but the cell performs significantly better than the
other aggressive samples. However, there is evidence of
significant degradation, especially for larger particles. It would
be expected that the increased C-rate would lead to inhomoge-
neous states of charge within particles, resulting in stress between
primary particles and micro-crack generation26,41,42. It is also
probable that in smaller particles, the SOC inhomogeneity is less
significant, and therefore less micro-cracks are present, which is
also observed. By looking at the full range of particles, the internal
damage is only slightly worse than the control cell, and the
capacity fade is again only slightly more severe. This would
suggest that despite the large particles experiencing large defects,
the smaller particles are able to perform well at a high C-rate,
potentially due to smaller SOC heterogeneity, corroborated by the
good capacity retention. This would support the ongoing research
into single crystal particle morphologies, which are more resistant
to cracks43, due to their smaller size and lack of internal grain
boundaries.
When the voltage is increased to 4.4 and 4.5 V, there will be

capacity losses due to the anode side of the cell. The increased de-

lithiation of the cathode, compared to the formation, will result in
more SEI growth and potential lithium plating, resulting in-part to
the large decrease in capacity. However, some capacity loss will
undoubtedly be due to degradation of the cathode particles.
Cycling at high voltage increases the de-lithiation of the cathode
leading to the c-lattice parameter collapse, increasing the stress
on each particle, and hence leads to the increased micro-crack
generation44. The increased defects within the 4.4 V cell are not
severe in any size regime, however, when observing all particles,
this sample displays the second worst intensity values, indicating a
high degree of damage across all particle sizes. For the 4.5 V, the
large particles display significant variations and low intensity
values, indicating a considerable degree of damage. It is proposed
that the capacity fade observed is likely due to a combination of
increased SEI formation, alongside significant damage to particles
of multiple sizes throughout both electrodes, as detected via this
methodology.
Finally, the cell cycled 100 times is a clear indication of the

usefulness of this methodology. With modest cycling parameters
(voltage and C-rate), the observed degradation will not have come
from excess lithium deposition or SEI formation, but via a
breakdown in the cathode particles, potentially causing harmful
side reactions and loss of active material. The particles from this
cell, although the smallest measured, paint a picture of large
internal degradation, consistently presenting the lowest intensity
values and largest radial variations. Thus, there is a clear link
between the performance of the cell, and the health of each
particle for this sample.
We have successfully cycled, scanned, and analysed electrodes

from eight different electrochemical histories, using X-ray micro-
CT to detect the presence of micro-cracks within individual
particles. Cycling using different parameters enabled the compar-
ison in both cell performance and degradation between upper
voltage limits, cycling rate and the numbers of cycles, revealing
that more aggressive conditions lead to an increased capacity
fade (as expected) but can also be correlated with increased
particle defect and/or cracking via the observation of a reduced
internal particle density. Two algorithms have been presented:
one-dimensional line scans and a ‘GREAT’ methodology, to reveal
information regarding the density of particles due to their relative
intensities. Line profiles are able to reveal information about
particle morphology, such as voids, but do not sample a large
enough region of the particle to display cracks or density
gradients. The GREAT algorithm enables the full profile of a
particle to be assessed. Doing so reveals radial trends in particles,
and enables micro-crack generation to be observed before full
particle fracture. Particle size bounds revealed that the same trend
occurs in smaller particles, but it is more difficult to see due to the
larger relative size of the surface layer.
This methodology enables particle degradation to be detected

before large-scale cracking and full fracture of the particle occurs,
and can be detected using lower resolutions that permit faster
scans. Cycling for 100 cycles leads to the most severe particle
degradation and capacity losses, followed by 4.4 V (for 5 cycles).
Cycling at high voltages, 4.4 or 4.5 V causes mechanical damage to
particles, but a proportion of the capacity fade must be attributed
to losses on the anode side that may be improved via higher
anode:cathode balancing ratios. Finally, high C-rate cycling,
particularly at 5C, leads again to damage of large particle but
smaller particles remain relatively intact and results in the full
electrode profile showing limited mechanical degradation, as seen
by the relatively good cycling performance compared with high
voltage operation.
Overall, all electrodes displayed lowered intensities than the

pristine cell, confirming that this methodology has the ability to
detect defects and can be used to estimate the integrity of
particles within various electrodes and evaluate the degree of
damage an electrode has undergone. This methodology can be
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applied to other, non-spherical particles such as LFP tablets or
graphite45, with an algorithm detecting the centre of particles,
performing surface distance mapping and subsequent distance
weighted erosion steps. Further use of this presented algorithm
will be to study longer duration cycling, with a half-cell
configuration, alongside in situ imaging to correlate the moment
of cell failure (e.g. the ‘knee-point’) with an increase in particle
cracking and/or defects. In-stiu 4D imaging will also enable the
distinction between pre-existing defects, formed during electrode
fabrication, and electrochemical cycling induced failures. As more
data is acquired, machine learning methodologies, either in
segmentation or classification could be applied to reveal deeper
underlying trends in defect formation, growth and detection.

METHODS
Materials
The LiNi0.8Mn0.1Co0.1O2 (NMC811) particles analysed in this work were from
printed electrode sheets purchased from a commercial supplier (NEI
Corporation, Summerset, USA). To de-lithiate and re-lithiate the
NMC811 structure via electrochemical cycling, 10 mm diameter disks were
punched from the commercial cathode sheets to assemble into coin cells.
Seven coin cells were assembled in total, each with a 10mm graphite
anode (NEI Corporation, Summerset, USA), ca. 100 µL of Li-ion electrolyte
consisting of 1 M LiPF6 in a 3:7 ratio of EC and EMC (Soulbrain, Northville,
Michigan, USA), and a Celgard separator (Celgard, LLC, Charlotte, NC, USA).
All coin cell assembly was completed inside an argon-filled glovebox
(MBRAUN, Garching, Germany). The mass and capacities given in Table 1.

Electrochemical testing
The coin cells were cycled using a Novonix high precision electroche
mical cyclers and environmental chamber (NOVONIX Limited, Bedford,
Canada) at a temperature of 25.1 °C, all cells underwent the same
formation step twice: a constant-current (CC) charging rate of C/20 (e.g. ca.
7.75 × 10–2 mA) followed by a constant voltage (CV) hold at 4.2 V (vs.
graphite) until the current declined below 3.875 × 10–2 mA (i.e. ca. C/40),
then a CC discharge to 3 V at C/20 (e.g. ca. 7.75 × 10–2 mA) and a voltage
hold at 3 V for 10min. The operational cycling parameters varied between
cells and is summarized in Table 4. They all followed a CC-CV protocol, at
ca. 24.9 °C, and were cycled with a discharge current of 1 C to a lower cut-
off voltage of 3 V.
An aerial loading of 2.0 mAh cm−1 was calculated using the sample 6

X-ray data. This had a volume of 6.86 × 10–7 cm3, of which 41.3% was NMC,
giving 2.8 × 10–7 cm3 of NMC. Using a density of 4.8 g/cm3 the mass of
NMC is 1.359 × 10–6 g. With a capacity of 200mAh g−1, the capacity of this
sub-volume is 2.718 × 10–4 mAh. Since the nominal mass loading is 10mg
cm−2, the area of NMC is therefore 1.359 × 10–4 cm2. This can then give a
final areal capacity of 2.00mAh cm−2.

X-ray micro-computed tomography
X-ray micro-CT was conducted using a Versa 520 X-ray instrument (Zeiss
Xradia 520 Versa, Carl Zeiss., CA, USA) employing an accelerating tube
voltage of 120 kVp and a stationary tungsten anode on a copper substrate
that produces a polychromatic beam with a characteristic emission peak at

58 keV (W-Kα). The number of projections, exposure time and voxel size
can be found in Table 5.
After acquisition, the 2D radiographs were reconstructed into 3D

tomograms using commercial software employing cone-beam filtered-
back-projection (FBP) algorithms (‘Reconstructor Scout-and-Scan’, Carl
Zeiss., CA, USA), producing tomograms with isotropic voxel lengths of ca.
200 nm (see Table 2). Visualization and segmentation of the reconstructed
tomograms was achieved using Avizo Fire (Avizo, Thermo Fisher Scientific,
Waltham, Massachusetts, USA). In an effort to reduce effects due to
artefacts at the tomogram edges, a central region of interest (RoI) was
selected within each sample tomogram for the post-processing. Sub-
volumes of dimension ca. 140 µm × 140 µm × 35 µm was used for all cycled
samples, and ca. 180 µm × 180 µm × 20 µm for the pristine sample.
Segmentation of the active material (NMC811 particles) from all other
material (current collector, carbon, binder and void-space) was achieved
using the threshold function, accompanied, where necessary, with the use
of either a non-local means or Gaussian filter, to reduce the noise of some
samples. Finally, three datasets (greyscale and binary and pore-binary) with
the same RoI and voxel size were exported as 3DTIFF files for subsequent
analysis using the algorithm. The first dataset contained raw greyscale
values that corresponded to the X-ray attenuation at that location (i.e.
lower values represent lower attenuation)46 and the second and third
datasets contained information regarding the size, shape and spatial
location of the particles, with binder and void phases being assigned a
value of 0.

Data processing
The output of the algorithm is two files, particle morphology (1) and
greyscale erosion data (2). The first has the; surface area and volume, along
with the particles unique tracking number. The diameter is calculated via
the volume (Volume3d function in Avizo) with the following formula:

diameter; d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 ´ Volume3d

π

3
r

(3)

Thus enabling the particle size distributions to be calculated. The second
file contains the particle tracking number and the intensity profile of each
particle.
Particles are re-ordered by size, followed by normalizing the intensity values

by the surface value for each particle for each voxel. Following this, the

Table 4. Operational cycling parameters for the 7 coin cells.

Sample Mass loading
cathode (g cm−2)

Mass loading
anode g (cm−2)

Aerial Capacity
cathode (mAh cm−2)

Aerial Capacity anode
(mAh cm−2)

Upper cut-off
limit (V)

Charging C-rate
(mAmAh−1)

Cycles

1 6.99 10.48 2.31 1.94 4.2 0.5 100

2 6.67 10.83 2.20 2.00 4.2 0.5 5

3 6.57 10.69 2.17 1.98 4.2 5.0 5

4 7.02 10.97 2.32 2.03 4.3 0.5 5

5 6.60 10.67 2.18 1.97 4.4 0.5 5

6 6.65 11.24 2.19 2.08 4.5 0.5 5

7 6.58 9.68 2.17 1.79 4.2 2.0 5

Table 5. X-ray imaging parameters for the seven samples.

Sample Exposure
time (s)

Projections Reconstructed voxel length
(µm)

Pristine 50 801 0.199

1 50 701 0.206

2 40 401 0.206

3 55 801 0.207

4 40 401 0.180

5 48 401 0.217

6 55 801 0.180

7 58 801 0.202
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differential intensity with radius is calculated for each particle at every voxel. At
this stage, the radial intensity variations within every particle can be mapped,
however to enable easier comparisons and to limit anomalies averages are
taken for each size bound. Within the selected bounds, the average intensity
of all particles is taken at every voxel within the particle, leading to the
creation of an average particle encompassing all intensities. This average value
is then plotted against the radius as line/scatter plots (Figs. 6 and 7).
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