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Cities	are	arguably	the	most	complex	things	we	have	ever	built.	Most	of	humanity	now	
lives	peacefully	and	productively	in	groups	vastly	larger	than	our	natural	social	capacity	
would	allow,	and	as	this	proportion	only	continues	to	grow	(United	Nations	2019),	the	
problems	it	poses	for	those	responsible	for	designing	and	managing	the	city	are	equally	
great.	In	part	this	is	due	to	the	increasing	complexity	of	the	city	itself.	We	humans	are	
equipped	with	intuitions	about	spaces	we	can	see	in	a	glance	and	easily	traverse	on	foot,	
and	about	social	groups	of	less	than	200	people	(Dunbar	2014),	but	cities	are	well	
beyond	our	human	scale.	Historically,	we	have	often	managed	urban	growth	gradually,	
building	by	building	and	street	by	street,	but	we	can	now	construct	environments	for	
millions	of	people	almost	overnight,	without	feedback.	In	part	this	is	due	to	
unprecedented	technological	change.	We	do	not	have	sufficient	precedents	for	self-
driving	cars,	smart	homes,	or	the	setting	of	our	social	and	commercial	interactions	away	
from	the	streets	and	into	virtual	space,	yet	we	need	to	understand	the	nature	of	city	so	
that	we	don’t	plan	counter	to	it.	
	
What	we	do	have	is	access	to	data,	more	than	ever	before,	although	there	are	different	
approaches	to	how	we	can	use	it.	Traditional	scientific	research,	on	which	much	of	our	
understanding	of	cities	rests,	begins	with	theory	or	hypotheses.	The	field	of	Space	
Syntax,	for	example,	is	a	scientific	discipline	through	which	accurate	predictions	can	be	
made	about	the	effect	of	spatial	configuration	on	traffic	density,	crime,	social	
interaction,	property	values	and	other	complex	phenomena	(Penn	2003;	Hillier	2007;	
Silva	2017).	It	consists	of	a	set	of	theories	about	the	relationship	between	space	and	
society,	including	the	influence	of	space	on	the	natural	movement	of	people.	From	these,	
along	with	associated	representations	of	space	and	related	analytical	methods,	specific	
hypotheses	or	predictions	are	made,	which	can	then	be	tested	against	observations.	
Data	on	real	human	movement	and	behaviour	enters	this	scientific	process	last,	to	test	
the	hypothesis,	which	is	sometimes	corroborated,	and	sometimes	refuted,	thereby	
advancing	the	core	theory.	Importantly,	theories	themselves	are	valued	for	their	clarity,	
and	in	some	cases	the	stated	theory	necessarily	simplifies	what	patterns	are	in	the	data	
for	the	sake	of	this	clarity	and	understanding.	Sometimes,	complexities	in	the	pattern	
are	missed.		
	
Machine	learning	approaches	instead	begin	with	the	data,	and	attempt	to	discern	
patterns	from	within	it,	with	the	intent	that	these	patterns	will	reliably	inform	decisions	
we	make	about	the	city.	The	complexity	of	these	patterns	determines	how	they	do	so:	
where	they	are	clear	enough	for	us	to	articulate	they	may	guide	general	theory	and	
policy,	and	where	they	are	not	they	may	be	used	to	make	highly	contextual	predictions.	
The	essential	problem	of	machine	learning	is	that	of	picking	out	these	patterns.	As	
Jacobs	(1961)	articulated	in	the	early	days	of	complexity	science,	there	is	a	profound	
difference	between	the	“disorganised”	complexity	if	millions	of	independent	actions,	
which	might	be	treated	statistically,	and	the	“organised”	complexity	of	systems	(people,	
spaces,	data,	goods)	for	which	their	mutual	interactions	matter.	Cities	are	the	latter.					
	
Phenomena	that	matter	most	in	a	city	do	not	lend	themselves	to	treatment	by	gross	
statistical	analysis,	precisely	because	of	these	interactions	between	many	parts.	While	
statistics	isolate	one	or	two	variables,	a	particular	demographic	of	the	population,	for	



example,	machine	learning	can	be	valuable	just	because	it	may	find	the	patterns	among	
many	variables,	perhaps	including	that	population’s	distribution	in	space,	movement	in	
time,	connection	via	technology,	and	so	on.	But	each	new	variable	potentially	interacts	
with	all	the	others,	potentially	increasing	the	complexity	of	the	system	to	be	studied	
exponentially.	The	essential	problem	in	such	an	analysis	is	in	understanding	whether	
there	exist	any	points,	scales	or	levels	of	representation,	at	which	a	meaningful	pattern	
can	be	extracted.	If	machine	learning	begins	with	the	data,	is	this	even	possible	with	
something	so	complex	as	a	city?	How	is	the	city	intelligible	to	the	machine?	
	
How	can	a	machine	understand	the	city?	
For	some	phenomena,	patterns	are	predictable	because	they	converge	with	increasing	
scale	or	time.	Agent	based	modelling	often	owes	its	effectiveness	to	the	fact	that	a	large	
population	is	used.	Turner	and	Penn’s	(2002)	exosomatic	visual	architecture	agents	
(EVAS),	for	example,	are	extremely	simplified	models	of	pedestrians	in	space,	which	
make	random	navigation	decisions	based	on	a	probability	weighted	by	how	far	they	can	
see	in	any	given	direction.	Their	individual	paths	are	entirely	unrealistic,	appearing	
often	to	walk	in	circles,	but	over	an	extended	time,	a	population	of	agents	will	converge	
very	closely	toward	the	distribution	of	real	people	in	a	space,	correlating	approximately	
76%	(Turner	and	Penn	2002)	with	observed	pedestrians.	The	result	illustrates	clearly	
that	individual	people	are	unpredictable,	but,	in	some	ways	at	least,	the	aggregate	is	
predictable.		
	
This	suggests	one	factor	that	makes	the	complexity	of	cities	intelligible:	the	fact	that	
useful	patterns	will	appear	at	a	sufficient	scale.	A	rank-size	relationship	is	one	“law”	that	
has	been	found	in	many	aspects	of	cities;	if	the	population	size	for	a	group	of	cities	is	
plotted	against	their	rank	on	a	logarithmic	scale,	the	result	is	nearly	linear	(Batty	2006;	
2008).	This	change	in	population	is	directly	relevant	to	social	factors,	in	that	total	
measured	values	of	variables	like	economic	output,	income,	patents,	as	well	as	crime,	all	
scale	reliably	with	population,	and	increase	at	a	rate	of	about	15%	more	than	linear;	
people	even	walk	faster	in	larger	cities	(Bettencourt	&	West	2010,	Bettencourt	et	al.	
2007).	The	same	scaling	pattern	appears	also	in	properties	closer	to	the	domain	of	the	
architect	and	planner,	such	as	the	heights	of	tall	buildings	(Batty	2008)	and	the	degree	
of	connections	between	streets	in	a	city	(Jiang	2009).	All	of	these	are	high-level	patterns	
that	apply	to	the	aggregate	only;	Batty	(2006)	has	shown	that	there	is	no	discernible	
regularity	as	to	where	an	individual	city	will	appear	in	the	size	ranking	over	time,	as	
their	dominance	rises	and	falls	randomly	over	centuries.	
	
Another	factor	is	that	some	of	these	high-level	patterns	involve	a	relationship	between	
the	variables	that	we	can	design	and	plan,	such	as	spatial	configuration,	and	the	social	
or	economic	factors	we	might	desire	in	cities.	The	angular	betweenness	centrality	of	
street	segments	within	a	given	urban	network	gives	a	theoretical	measure	of	how	much	
traffic	is	likely	to	pass	through	any	given	street	segment,	and	observations	confirm	that	
greater	centrality	corresponds	to	greater	pedestrian	and	vehicle	count,	and	that	the	
network	of	major	roads	can	be	reliably	found	in	any	network	(Hillier	2007).	But,	
depending	on	the	scale	used,	the	same	measurement	can	clearly	pick	out	the	location	of	
local	high	streets,	the	known	centres	of	local	neighbourhoods,	and	where	commercial	
activity	is	actually	located,	all	as	a	function	of	the	street	geometry	(Hillier	2007).	Local	
shops,	for	example,	will	tend	to	be	successful	in	zones	of	maximum	centrality	measured	
at	a	radius	of	about	1km;	we	can	know	this	even	for	streets	yet	to	be	built,	and	use	this	



information	to	plan.	The	same	applies	across	far	larger	scales,	even	to	the	extent	of	
indicating	the	major	locations	of	commercial	and	economic	activity	on	international	
street	networks,	in	which	the	pattern	of	centrality	values	correlates	with	the	economic	
output	of	nations—the	higher	a	country’s	total	centrality,	the	higher	is	its	GDP	(Hanna	
et	al.	2013).	An	analysis	of	such	centrality	across	the	range	of	scales	(Krenz	2017)	
indicates	that	the	scale	hierarchy	seen	among	cities,	and	in	distances	between	them,	is	
also	a	property	of	the	network	itself.	It	is	not	matched	by	randomly	generated	networks,	
which	suggests	that	these	human	spatial	networks	may	be	optimised	for	patterns	of	
particular	human	activity.	
	
Cities	are	optimised	to	make	some	patterns	clear	
Some	patterns	of	cities	appear	to	be	discernible	simply	because	cities	are	optimised	to	
make	these	patterns	evident.	Of	the	many	possible	ways	of	arranging	roads,	spaces	and	
buildings	across	a	surface,	real	cities	are	a	quite	constrained	subset.	This	is	useful	in	any	
machine	search	for	regularities,	as	it	drastically	reduces	the	space	to	be	searched.	
	
The	agent	models	above,	just	like	individual	people,	have	a	view	only	of	their	immediate	
surroundings,	yet	the	movement	they	predict	strongly	resembles	that	of	global	
centrality	measures.	Is	the	pattern	one	of	the	small	scale	or	the	large?	Is	it	of	the	
cognitive,	phenomenological	properties	of	moving	pedestrians	or	of	the	structural	
properties	of	roads	and	space?	Causally,	these	appear	to	be	entirely	independent	of	one	
another,	and	it	has	been	noted	of	methods	that	study	the	structure	of	space	that	they	
“cannot	account	for	the	dynamics	of	movement”	(Batty	2001).	Those	who	analyse	street	
structure	have	argued	that	activity	in	a	city	is	driven	solely	by	the	properties	of	the	
network	(Ma	et	al.	2018),	whereas	others	who	look	at	individual	path	choice	see	
relevant	visual	cues	and	cognitive	factors	(Turner	2007,	Emo	2014).	The	evidence	
supports	both	claims,	not	because	they	are	necessarily	related,	but	quite	possibly	
because	cities	are	so	often	shaped	such	that	the	same	patterns	appear	at	both	scales.	
	
The	reasons	for	this	are	evident	when	considering	what	it	means	to	navigate	an	
unfamiliar	part	of	the	city	without	a	map.	Immediate	visual	cues	frequently	lead	us	
toward	longer,	wider	streets	where	our	visibility	is	greater,	and	most	of	us	can	normally	
rely	on	these	to	lead	efficiently	to	our	destination	because,	if	they	did	not,	we	would	be	
lost	in	a	labyrinth.	Where	natural	footfall	on	a	street	does	not	bring	many	people	in	
contact	with	a	shop,	that	shop	is	more	likely	to	fail	as	a	business	and	disappear.	The	
degree	to	which	the	large-scale	properties	are	conveyed	by	the	small	can	be	measured,	
as	in	the	space	syntax	measure	of	intelligibility	(Penn	2003),	which	gives	an	assessment	
of	how	effective	an	area	is	at	conveying	this	essential	information.				
	
Where	we	see	evidence	that	large	scale	structural	information	correlates	with	small	
scale	geometry,	it	need	not	take	the	complexity	of	the	human	visual	system	to	reveal	it.	
Agent	models	far	simpler	even	than	those	above	can	be	constructed	to	simulate	random	
walks	through	a	city	by	taking	the	street	segment	network	as	graph,	with	connections	
weighted	by	the	angle	at	which	streets	meet;	agents	walk	randomly	but	with	a	greater	
probability	of	continuing	straight	than	making	acute	angled	turns.	The	distribution	
converges	quite	rapidly,	within	20	to	30	“steps”,	to	approximate	that	of	observed	
pedestrians	and	vehicles	at	distances	ranging	from	neighbourhood	to	regional	scales	
(Hanna	2020).	This	simple	random	process	appears	to	mimic	all	the	complexity	of	a	city	
full	of	real	human	travellers.				



	

	
Figure	1:	A	simulated	random	walk	on	the	street	network	of	London,	at	5,	26	and	100	iterations.	Agents	
begin	uniformly	distributed	(top)	but	aggregate	on	the	more	highly-trafficked	roads	after	a	short	time	
(bottom),	revealing	the	major	routes	and	areas	of	traffic	density.	
	
This	is	significant	because	the	route	decisions	made	are	entirely	local,	with	agents	
unable	to	“see”	beyond	their	current	intersection,	yet	the	model	predicts	real	movement	
similarly	to	others	that	explicitly	optimise	longer	range	routes.	Methods	such	as	
betweenness	centrality	(Hillier	Iida	2005),	which	calculates	optimal	paths	through	
graph	nodes,	and	network	analyses	of	continuity	lines	(Figueiredo	&	Amorim	2005)	or	
natural	streets	(Jiang	et	al.	2008),	which	group	together	sequences	of	segments	with	
minimal	angles	of	turn,	exploit	information	at	some	distance	across	the	city	to	model	
movement.	The	implication	is	that	some	longer-range	knowledge	of	the	network	is	
necessary	for	navigation,	and	that	people	optimise	their	routes	accordingly.	But	both	
these	longer-range	methods	and	the	locally	informed	random	walks	correlate	well	(with	
Pearson	coefficients	>	0.7)	with	movement,	and	with	one	another,	which	suggests,	at	
least	for	the	urban	networks	studied,	that	in	real	cities	there	is	a	rough	equivalence	
between	navigating	based	on	knowledge	of	the	street	map	and	navigating	based	on	
immediate	visual	cues,	and	that	the	geometry	of	the	street	network	is	optimised	such	
that	it	conveys	the	relevant	information	about	distant	routes	to	a	naive	traveller	at	any	
intersection	(Hanna	2020).	The	same	patterns	are	clear	at	both	large	and	small	scales.							



	
Explicit	optimisation	is	rarely	likely	to	have	been	the	cause	of	such	intelligibility.	In	the	
case	of	New	York’s	central	park,	for	example,	centrality	analyses	of	a	hypothetical	street	
grid	indicate	that	if	the	park	did	not	exist	the	streets	in	its	place	would	be	less	central	
and	rarely	used,	simply	due	to	asymmetries	in	the	shape	of	the	island	(Al	Sayed	et	al.	
2009).	Manhattan’s	planners	placed	the	park	exactly	where	modern	computational	
methods	would	recommend,	but	without	any	such	methods	being	available	at	the	time.	
The	causes	of	such	decisions	in	real	cities	are	often	too	complex	to	be	known	for	certain:	
market	forces	and	competition	might	determine	the	location	of	commercial	property	or	
of	parks;	cultural	precedents	might	suggest	resemblances	to	other	known	cities;	the	
political	pressures	on	design	and	planning	are	numerous.	But	to	the	extent	that	cities	
are	intelligible,	they	are	so	because	their	patterns	are	obvious	even	when	we	are	not	
certain	of	their	underlying	cause.				
	
Non-discursive	features	also	appear	in	data	
Many	of	the	qualities	relevant	to	us	in	our	own	experience	of	the	city	are	more	complex	
even	than	we	can	precisely	articulate.	The	style	of	buildings	in	a	particular	
neighbourhood	is	intuitively	recognisable	to	us	as	different	from	another,	yet	the	
precise	features	of	those	buildings	that	determine	the	difference	are	not	easily	
described.	It	might	seem	that	these	non-discursive	properties	are	elusive,	or	impossible	
to	quantify,	but	the	patterns	are	no	less	real	for	their	complexity,	and	also	there	to	be	
found	by	the	machine.	
	
To	investigate	properties	of	building	form	in	Athens	and	London,	Laskari	(Laskari	et	al.	
2008)	used	the	shape	of	the	combined	footprint	of	buildings	within	an	urban	block	as	
the	unit	for	comparison,	which	captured	essential	properties	of	building	width,	density	
and	uniformity	in	the	shape	and	size	of	the	internal	courtyards	hidden	away	from	the	
street	facade.	Fourteen	different	measurements	were	taken	for	each	unit,	including	
straightforward	values	of	perimeter	and	area,	and	more	complex	ones	such	as	fractal	
dimension	and	quantities	derived	from	the	lines	of	sight	within	the	courtyard	spaces.	All	
such	measurements	are	legible	automatically,	using	no	more	than	rudimentary	machine	
vision,	to	yield	a	fourteen-dimensional	data	point	for	each	building	block.	When	these	
are	compared,	25	points	for	each	of	four	neighbourhoods	in	Athens,	in	addition	to	
Bloomsbury	in	London,	clear	clusters	of	points	were	seen	to	differentiate	one	
neighbourhood	from	the	next.	While	these	are	not	perfectly	separable,	with	some	points	
overlapping,	the	differences	coincide	well	with	our	own	intuitive	assessments	of	
building	style	or	type.	The	clusters	within	Athens	are	closer	to	one	another	than	any	of	
them	is	to	London,	and	those	neighbourhoods	of	a	similar	age	are	closer	than	those	built	
a	century	apart.	The	result	quantifies,	for	the	machine,	just	those	complex	aesthetic	
properties	that	we	would	find	so	hard	to	describe.		
	



	
Figure	2:	Building	footprints,	which	differ	from	neighbourhood	to	neighbourhood,	naturally	form	distinct	
clusters	associated	with	these	neighbourhoods	in	the	space	given	by	various	automated	measurements	of	
their	shape.	(Image:	redrawn	from	Laskari	et	al.	2008).	
	
Although	its	judgements	coincide	with	our	own	perception	of	stylistic	categories,	most	
of	the	measurements	do	not	resemble	something	a	human	observer	would	notice.	The	
machine	“sees”	the	buildings	in	a	plan	view	of	the	entire	block,	a	view	which	is	not	given	
to	its	occupants	or	passers-by.	The	measure	of	fractal	dimension	might	be	thought	of	as	
a	degree	of	complexity	of	this	plan,	but	only	approximately.	Some	measures	of	the	lines	
of	sight	of	the	courtyards	could	be	considered	as	a	degree	of	convexity,	but	only	
approximately.	The	fact	that	machine	and	human	judgements	of	the	categories	agree	
despite	this	difference	between	human	vision	and	machine	measurement	suggests	that	
such	patterns	are	not	dependent	upon	the	selection	of	particular	features	to	be	used	as	
inputs,	and	that	they	are	likely	to	be	found	with	relative	ease	regardless	of	which	
method	is	used.				
	
Such	a	result	is	exactly	what	we	would	hope	if	we	are	concerned	with	a	machine’s	
capacity	to	pick	out	these	relevant	clusters,	because	we	needn’t	be	too	concerned	about	
choosing	the	correct	input	features.	The	best	strategy,	in	this	case	at	least,	seems	simply	
to	have	as	many	different	features	as	possible.	When	analyses	are	compared	using	
different	groups	of	features	(Hanna	2010),	the	correct	clusters	become	more	clearly	
differentiated	as	more	features	are	used.	This	is	not	a	case	of	having	more	dimensions	in	
which	to	divide	the	classes,	as	is	done	in	supervised	learning;	a	fixed	number	of	
principal	components	is	used	to	ensure	each	clustering	is	made	in	a	space	of	equal	
dimensions.	The	results	show	that	different	machines	classifying	the	sets	of	buildings	
converge	both	with	one	another,	and	with	the	correct	identification	of	neighbourhoods,	
with	greater	numbers	of	inputs.	The	relevant	patterns	appear	readily	in	the	data	drawn	
from	the	buildings,	regardless	of	the	particular	representation	used.												
	
More	complex	patterns	can	be	learned	
When	the	relevant	patterns	do	not	so	readily	fall	out	of	the	data	but	are	a	more	complex	
function	of	the	input	dimensions	available,	machine	learning	can	be	used	to	find	them.	
Like	the	form	of	building	plans	above,	the	local	configuration	of	roads	differs	depending	
on	the	land	use,	but	the	precise	features	relevant	to	these	differences	are	not	obvious.	In	
recent	analyses	of	the	UK	road	network,	Tasos	Varoudis	has	used	a	type	of	neural	
network	known	as	an	auto-encoder,	which	is	trained	to	extract	the	principle	non-linear	
variances	in	the	data	from	local	samples	of	streets,	and	thereby	map	them	to	a	subspace	



in	which	the	most	relevant	differences	are	clear.	The	data	are	not	pre-processed	by	
taking	any	pre-determined	measurements,	but	are	instead	presented	directly	to	the	
network	as	street	graphs,	represented	as	adjacency	matrices.	The	natural	clusters	of	
similarity	that	appear	correspond	almost	exactly	with	the	land	use	regions	designated	
as	urban	areas,	farmland,	or	natural	landscapes	in	surveys	such	as	the	Corine	Land	
Cover	Inventory	(2018).		
	

	
Figure	3:	Differences	in	road	morphology	are	clearly	distinguished	by	a	neural	network,	here	revealing	
natural	clusters	which	correspond	with	actual	land	use	designations.	(Image:	Varoudis	and	Penn,	2020).	
	



If	the	relevant	classes	or	features	we	are	looking	for	are	known	beforehand,	but	there	is	
complexity	in	the	input,	supervised	methods	can	be	used	to	train	the	machine	learning	
algorithm.	Much	larger	urban	graphs	have	been	classified	using	their	graph	spectra,	
which	represents	the	entire	city	as	a	vector	in	many	more	dimensions	than	the	local	
samples	above.	Clustering	cities	in	this	high-dimensional	space	results	in	very	little	
discernible	pattern,	but	the	geographical	location	of	the	cities	can	be	used	to	tell	the	
supervised	learning	algorithm	what	to	look	for.	In	Hanna	(2009),	a	training	set	of	cities	
is	presented	as	input	to	a	support	vector	machine,	identifying	each	one	as,	for	example,	
a	European,	or	Asian,	or	North	American,	city.	Once	trained,	the	algorithm	correctly	
classifies	new	cities	with	an	accuracy	between	75%	to	85%,	based	entirely	on	their	
form.	
	
Complexity	often	comes	not	from	the	scale	of	the	sample,	but	from	a	considerable	
overlap	in	the	input	dimensions.	In	Thirapongphaiboon	and	Hanna	(2019),	centrality	
measures	at	varying	scales	were	seen	to	correspond	to	different	types	of	urban	land	use.	
Commercial	buildings	tend	to	be	located	on	street	segments	with	high	values	of	
closeness	centrality	at	low	radii,	under	1.8	km,	whereas	business	and	industrial	
buildings	correspond	to	higher	radius	measures	from	1.8	to	7.2	km,	but	node	count,	or	
density	of	streets,	is	a	more	relevant	measure.	Residential	use,	by	contrast,	is	marked	by	
low	centrality	across	the	full	range	of	radii.	With	much	overlap,	no	single	measure,	scale,	
or	selected	group	of	such,	makes	the	distinction	between	these	uses	clear	in	itself,	but	
supervised	learning	uses	the	known	classes	(in	this	case	commercial,	business	or	
residential)	to	derive	a	particular	spatial	signature	that	best	describes	each	class.	With	
this,	the	proportion	of	land	use	can	be	predicted	using	a	multi-layer	perceptron	for	
street	segments	with	an	accuracy	of	more	than	80%	(Thirapongphaiboon	and	Hanna,	
2019).		
	
Much	more	specific	land	uses	can	also	be	identified	by	such	spatial	signatures,	such	as	
particular	business	types,	or	even	locations	of	an	individual	chain.	Silva	(2017)	used	a	
random	forest	algorithm	to	predict,	for	a	range	of	centrality	measures	of	a	given	street	
segment,	whether	it	is	likely	to	contain	types	of	business	such	as	pubs,	cafes	or	travel	
agencies,	each	of	these	being	correctly	identified	more	than	70%	of	the	time.	Some	
particular	business	chains,	such	as	Waterstones’	bookshops,	could	not	be	placed	any	
better	than	chance,	but	Starbucks	locations	(and	solicitors)	were	positively	predicted	at	
a	rate	of	more	than	80%.		
	
Putting	the	patterns	to	use	
If	the	preceding	examples	have	focused	entirely	on	the	search	and	understanding	of	
regularities	in	the	data	rather	than	the	task	of	managing,	intervening	in,	or	designing	the	
city,	it	is	in	part	because	this	pattern	recognition	is	the	strength	of	machine	learning.	But	
it	is	also	because	pattern	recognition	is	such	a	natural	and	intuitive	part	of	our	own	
cognition	that	its	importance	is	overlooked,	and	because	the	necessity	of	coping	with	
novel,	larger	and	more	complex	patterns	in	cities	has	never	been	more	acute.	The	
rapidly	changing	requirements	of	cities,	and	the	speed	of	their	construction	mean	that	
decisions	are	more	costly	than	ever—not	only	in	the	present	but	also	long	term	socially	
and	economically.	The	ability	to	project	these	patterns	into	new	scenarios	allows	them	
to	be	tested	in	silico	before	committing,	to	use	this	knowledge	to	place	a	business	where	
natural	footfall	will	mean	it	will	thrive,	to	target	changes	to	streets	so	that	the	city	can	



be	navigated	effectively,	or	build	new	sections	of	the	city	that	remain	naturally	
connected	and	vibrant.	
	
The	apparent	limitlessness	of	complexity	may	seem	to	be	a	problem	in	that	we	will	
always	find	more	of	it,	if	we	look	deeper,	if	we	have	more	data.	The	examples	above	
predict	only	the	long-term	behaviour	of	many	individuals,	but	individual	behaviour	
(thankfully)	and	many	lower	level	patterns	may	be	forever	beyond	our	ability	to	
determine.	It	is	fortunate,	then,	that	the	scale	of	the	regularities	we	are	able	to	discover	
happens	to	coincide	with	the	scale	of	our	intervention.	We	design	for	aggregates	of	
many	people,	not	for	single	individuals.	We	design	for	the	climate	over	the	span	of	
years,	not	for	the	weather	of	a	single	day.	Even	to	the	extent	that	we	could	in	principle	
forecast	individual	behaviour,	as	we	might	with	increased	access	to	large	sets	of	
personal	data,	this	is	not	the	level	at	which	our	design	and	planning	decisions	are	made.	
The	aim,	for	example,	to	design	cities	that	bring	diverse	individuals	into	contact	with	
one	another,	is	a	higher-level	goal,	which	requires	descriptions	of	many	people	in	many	
spaces	over	extended	times,	and	this	is	the	level	of	description	of	complexity	with	which	
we	need	to	contend.	These	complex	patterns	of	the	aggregate,	which	are	most	
important,	are	also	those	which	are	most	easily	found	in	the	data.		
	
This	trait	suggests	the	reason	why	machine	learning	is	useful	in	the	context	of	the	
complex	city,	a	reason	too	easily	overlooked	in	the	day	to	day	training	of	learning	
models,	which	are	judged	on	their	success	in	prediction.	The	problem	with	prediction,	
in	the	sense	of	foretelling	the	outcome	of	specific	events,	is	that	it	is	not	possible	in	the	
context	of	the	wicked	problems	of	the	complex	city,	nor	should	we	aspire	to	it.	What	is	
more	useful	to	us	is	understanding,	which,	in	the	best	case,	is	what	the	patterns	
extracted	by	machine	learning	will	provide.	Like	the	theory-led	approach,	the	data-led	
approach	can	give	us	models	that	generalise	sufficiently	to	tell	us	how	the	phenomena	
we	care	about,	including	social	interaction,	economic	activity,	movement	and	more,	will	
occur	in	new	and	different	urban	environments.	When	faced	with	complexity,	the	
recognition	of	patterns	otherwise	invisible	due	to	the	scale	or	form	of	data	in	which	they	
appear	is	a	way	of	seeing	the	city	more	clearly,	of	extending	the	limits	of	our	own	
natural	understanding,	and,	ideally,	a	means	to	inform	better	decisions.	
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