
Algorithm and Hardware Co-design for
Reconfigurable CNN Accelerator

Hongxiang Fan∗, Martin Ferianc†, Zhiqiang Que∗, He Li‖, Shuanglong Liu‡, Xinyu Niu§, Wayne Luk∗
∗ Dept. of Computing, School of Engineering, Imperial College London, UK

{h.fan17, z.que, w.luk}@imperial.ac.uk
† Dept. of Electronic and Electrical Engineering, University College London, UK, martin.ferianc.19@ucl.ac.uk

‖ Dept. of Engineering, University of Cambridge, Cambridge, UK, he.li@ieee.org
‡ Hunan Normal University, Changsha, China, s.liu13@imperial.ac.uk
§ Corerain Technologies Ltd., Shenzhen, China, xinyu.niu@corerain.com

Abstract—Recent advances in algorithm-hardware co-design
for deep neural networks (DNNs) have demonstrated their
potential in automatically designing neural architectures and
hardware designs. Nevertheless, it is still a challenging opti-
mization problem due to the expensive training cost and the
time-consuming hardware implementation, which makes the
exploration on the vast design space of neural architecture and
hardware design intractable. Different with previous co-design
methods for DNNs, our proposed approach is capable of locating
designs on the Pareto frontier. This capability is enabled by a
novel three-phase co-design framework, with the following new
features: (a) decoupling DNN training from the design space
exploration of hardware architecture and neural architecture,
(b) providing a hardware-friendly neural architecture space by
considering hardware characteristics in constructing the search
cells, (c) adopting Gaussian process to predict accuracy, latency
and power consumption to avoid time-consuming synthesis and
place-and-route processes. In comparison with the manually-
designed ResNet101, InceptionV2 and MobileNetV2, we can
achieve up to 5% higher accuracy with up to 3× speed up on the
ImageNet dataset. Compared with other state-of-the-art co-design
frameworks, our found network and hardware configuration can
achieve 2% ∼ 6% higher accuracy, 2×∼ 26× smaller latency
and 8.5× higher energy efficiency.

I. INTRODUCTION

The success of deep learning, and especially neural net-
works (NNs), has attracted enormous research and industrial
interests in applying NNs in real-life scenarios such as in
autonomous driving [1]. However, the heavy computational
and memory demand of running NNs imposes a large overhead
on their hardware performance, in particular while consider-
ing resource-constrained platforms [2]. Currently, there are
two research directions that focus on improving the hard-
ware performance of deployed NNs. First, algorithm-level
design of efficient NNs through neural architecture search
(NAS) [3], which automatically designs NN architectures with
high accuracy and low computational complexity for different
scenarios [4]. Second, hardware-level efforts to design highly-
optimized and specialized hardware accelerators for NNs, such
as Eyeriss [5]. However, most of the time, the algorithm-level
optimization and the hardware-level design are not considered
jointly, which can lead to sub-optimal solutions in terms of
both the resultant algorithmic or the hardware performance.
For example, the authors in [2] demonstrate that the hardware

architecture designed for the regular convolution is not suitable
for depthwise convolution commonly used in the NAS [4].

To address the aforementioned sub-optimality, there is a
growing demand for a method that can perform NAS to design
accurate NNs and at the same time, co-develop hardware de-
signs customized for the NN found. To meet this demand, re-
configurable hardware, such as field-programmable gate arrays
(FPGAs), represents an ideal platform to implement algorithm-
hardware co-design. Given its reconfigurability, FPGA can be
utilized to provide highly-optimized hardware, customized for
different NNs found by NAS. Previous work has attempted
to apply evolutionary algorithm [6]–[8], reinforcement learn-
ing [9], [10] and differentiable NAS [11], [12] on algorithm-
hardware co-design for DNNs on FPGA. However, these
approaches iteratively perform the network training and design
space exploration for multiple times, making the process time-
consuming. Also, the characteristics of the accelerator are only
considered during NAS in their work. To address these issues,
our contributions include:
• A novel three-phase co-design framework, which decouples

network training from design space exploration of both
hardware design and neural architecture to avoid iterative
time-consuming optimization. A hardware-friendly neural
architecture space is also proposed by considering the char-
acteristics of the underlying hardware to construct search
cells before the neural architecture searching (Section III);

• An accurate and efficient cross-entropy loss, latency and en-
ergy consumption model based on Gaussian process regres-
sion, together with a genetic algorithm, which enable fast
design space exploration within few minutes (Section IV);

• A demonstration of the effectiveness of the proposed method
on the ImageNet dataset. The network found and its custom
hardware design lie in the Pareto frontier, and can achieve
better accuracy, energy efficiency and latency in comparison
to other state-of-the-art co-design methods (Section V).

II. BACKGROUND

A. Algorithm and Hardware Co-design

The joint design of NNs and hardware has been recently an
activate research area [13]. Based on an evolutionary algorithm

…
(Hardware Design Space)

Training

...

Train Supernet

Latency and
Energy Models

(Gaussian Process)

Specify the Hardware Design Space
…

a

b

(Neural Architecture Space)

d

Phase 1: Specify and Train Phase 2: Modeling Phase 3: Exploration
f Genetic Algorithm

Initial Population

Fitness
Function

SelectionCrossover

Mutation

g (Optional) Quantization Aware Training

Scenario 1 Scenario 2 …… Scenario N

Loss Model
(Gaussian Process)

e

Resource Modelc

Characteristics of
accelerator

Hardware Friendly
NAS Space

Fig. 1. The overview of the proposed framework.

(EA), Lin et al. [6] propose a two-stage method for algorithm-
hardware co-design. Although their work claims 1.3× speedup
and 1.6× energy savings, their results are based entirely on
simulations, and the performance is estimated without running
on a real hardware. At the same time, EA has been adopted
in other NAS methods [7], [8]. However, training cost is
expensive and the generated NNs lack in accuracy.

Reinforcement learning (RL) is another approach used for
the algorithm-hardware co-design [9]. Nevertheless, a common
drawback in these RL-based algorithm-hardware co-design
approaches is that they demand significant number of GPU
hours for search of both algorithm and hardware-defining
parameters, which is unfeasible for real-life applications. To
reduce the search cost, differentiable NAS (DNA) has been
used in algorithm and hardware co-design [11]. However, it
has been demonstrated in [14] that the NNs found by DNA
can only achieve similar accuracy to the NNs generated by
random search.

The once-for-all (OFA) proposed in [15] provides another
paradigm for NAS. The progressive shrinking algorithm has
been demonstrated to be effective in training the supernet.
However, their work only optimizes neural architectures with-
out searching the optimal hardware architectures. Also the
neural architecture space in their paper does not consider the
characteristics of underlying hardware design, which leads
to sub-optimal hardware performance. Compared with their
work, we are able to achieve a higher accuracy and hardware
performance as demonstrated in Section V. Although [16]
tries to search the accelerator architecture, they only focus on
processing engine (PE) connectivity and compiler mappings
for an ASIC design.

B. Gaussian Process

Gaussian process (GP) is a model built around Bayesian
probabilistic theory which can embody prior knowledge into
the predictive model and can be used for regression of real val-
ued non-linear targets [17]. A GP is specified by a mean func-
tion and a covariance function-kernel. A common choice for
kernels includes polynomial, Gaussian or Matérn kernels [17].
The mean function represents the supposed average of the
estimated data. The kernel computes correlations between
inputs and it encapsulates the structure of the hypothesised
function. GP allows fast estimation, which is especially useful

in design space exploration [18]. However, [18] only explored
latency estimation for a single layer, while this paper adopts
GP to estimate the loss, latency and energy consumption of
the whole NN.

III. ALGORITHM-HARDWARE CO-DESIGN

The problem of algorithm-hardware co-design can be de-
fined as follows:

min
α∈A,β∈B

min
wα

L (wα, α, β) (1)

The A denotes the NN architecture space and B represents
the hardware design space. To minimize the loss L, we aim
to find the optimal hardware configuration β ∈ B and NN
architecture α ∈ A with the associated weights wα.

In this paper, we decouple the training of weights wα and
the optimization of α and β into two separate steps. First, we
train a supernet, encompassing all our NN architecture options,
with respect to the weights wα using the following objective
function based on a cross-entropy (CE) loss:

min
wα

∑
α∈A

CE (wα, α) , (2)

During this process, we randomly sample sub-NNs from the
supernet and independently train each sampled network to
minimize the overall loss. Then, once the training is finished,
we perform the optimization with respect to the α and β using
the overall objective function L containing both the CE loss
and hardware costs as follows:

min
α∈A,β∈B

L (α, β) . (3)

Aiming at solving (2) and (3), a novel algorithm-hardware
co-design framework is proposed, which is illustrated in
Figure 1. To make sure the framework is applicable to any
reconfigurable hardware system, we generalize it into three
phases: 1) Specify and Train, 2) Modeling and 3) Exploration.
Note that the first and second phases are only required once,
while the Exploration is briefly performed given a specific
deployment scenarios, which makes our framework efficient.

Phase 1: Specify and Train — To define the hardware design
space for exploration, it first requires the users to specify a
reconfigurable hardware system to accelerate NNs. Then, the
neural architecture search space is built based on the supported

operations provided by the underlying hardware system. The
neural architecture search space often considers different al-
gorithmic configurations, ordering and connections between
operations inside the NNs [3]. Note that, our framework does
not apply any restrictions on the neural architecture space,
and it can be changed accordingly for different reconfigurable
hardware designs. Therefore, our framework is general enough
to cover any reconfigurable hardware, and has potential to gain
higher accuracy and hardware performance.

During the training, in order to efficiently solve (2), we use
the progressive shrinking algorithm [15] to train all the sub-
networks within the supernet by random sampling of candidate
NNs. All the sub-networks share the same set of parameters
within the supernet. Once the training is finished, we can
quickly sample a sub-network from the supernet without extra
effort. All these sub-networks form the final neural architecture
space, which enables exploration at the algorithm-level in later
phase.

Phase 2: Modeling — In the second phase, we model
different metrics: CE loss (CE), latency, energy and resource
consumption, to enable fast exploration in the last phase.

For loss, latency and energy models, we adopt the GP
regression for fast estimation. The training data used for GP
regression is obtained by randomly sampling a small number
of sub-networks from the supernet. These sampled NNs are
then evaluated on the dataset to get the CE loss, and run on
our reconfigurable hardware with different configurations to
obtain their latency and energy consumption. For the resource
model, we propose to use a simple analytic formulation to
estimate the DSP and memory resource consumption.

Phase 3: Exploration — In the last phase, as the regression
models for loss, latency, energy and resources are available,
Genetic algorithm (GA) is adopted for fast design space
exploration in both neural architecture and hardware design
search spaces. The loss (fitness) function is defined as follows:

L = η × CE + µ× Latency + λ× Energy +ResPT . (4)

The η, µ and λ are user-defined hyper-parameters which
denote the importance for the CE loss, latency and energy
consumption. The CE, Latency and Energy are the regres-
sion results of GP-based CE loss, latency and energy models.
Different values for η, µ and λ may lead to different results
and this is explored in Section V. The ResPT term is defined
as follows:

ResPT =

{
0, DSPused ≤ DSPavl,MEMused ≤MEMavl

γ, DSPused > DSPavl,MEMused > MEMavl
(5)

where the DSPavl and MEMavl represent the available DSPs
and memory resources on the target hardware platform and
DSPused and MEMused denote DSP and memory consump-
tion provided by the resource model. The γ denotes the
penalty added to the loss function when the hardware resource
consumption exceeds the budget. In our very last step, if the
underlying hardware supports different precision other than
the one used for training the supernet, the quantization aware

Off-chip
Memory

D
M
A

Input
Buffer

Data
Manager

Weight
Buffer

Conv
Engine

Tail Units (ReLU, Pool, SC)

Fig. 2. Overview of the FPGA-based accelerator.

finetuning [19] will be enabled to tailor the resultant NNs
to the hardware system. The process of GA is illustrated
in Figure 1.

IV. DESIGN SPACE AND MODELLING

A. Design Space

The design space is composed of two parts: hardware design
space and neural architecture space.

1) Hardware Design Space: This paper adopts an example
design which uses a single configurable processing unit to pro-
cess different layers. Although there are other designs, such
as the streaming design [11], [13] with layer-wise reconfigura-
bility, they usually require a large amount of on-chip memory
to cache all the intermediate results, which restricts the model
size of the NN and limits the neural architecture space. In
this paper, we adopted the single processing engine design,
such that our search space encompasses larger CNNs. Note
that, although we use the single engine design, our framework
is general enough to be applied to any reconfigurable design
such as the streaming design by changing the hardware design
space.

The adopted reconfigurable design is illustrated in Figure 2.
The accelerator consists of an input buffer, a weight buffer,
a convolutional (Conv) engine and other functional modules
including Shortcut (SC) [20], Pooling (Pool) and Rectified
linear unit (ReLU) activation. The computation of the NN is
performed sequentially, layer-by-layer, and only one layer is
processed in the Conv engine at a time. This computational
pattern allows the accelerator to support NNs even with a
large number of layers because only one layer’s input data and
weights need to be cached in the on-chip memory. To achieve
higher hardware performance, the accelerator is designed to
support 8-bit integer operations.

The Conv engine supports three types of configurable par-
allelism: filter parallelism (PF), channel parallelism (PC)
and vector parallelism (PV). Different types of convolutions
require different combinations of PF , PC and PV to achieve
an optimal performance. For instance, a convolution with
small number of channels can achieve lower latency with the
combination of low PC and high PF and PV values, since
there is no available concurrency in the channel dimension.
Our hardware design space is represented by memory size
MEM , bandwidth BW and different parallelism levels in-
cluding PF , PC and PV . The domain for both PF and PC
is {8, 16, 32, 64, 128} and PV can be chosen from {4, 8, 16}.
MEM depends on the available memory resources on the

Conv,
Stride-2

U
ni

t

U
ni

t

U
ni

t

U
ni

tSkip

Co
nv

Co
nv

Nin x E Co
nv +

Pool
Stride-2

Block-1 Block-2
(2~4 Units)

Skip
Block-3

(2~6 Units)
Block-4

(2~6 Units)

Average
Pool

FC

Block-5
Nin Nin x E Nout

Fig. 3. The search space of neural architectures.

FPGA board and BW is selected from {32, 64, 128, 256}bits.
Thus, there are totally 5 × 5 × 3 × 4 potential different
configurations for the hardware design.

2) Neural Architecture Space: The example architecture
space is illustrated in Figure 3. In this paper, we argue
that the design of neural architecture search should consider
the underlying hardware design before the NAS optimization.
By analyzing the characteristics of the selected hardware
architecture, we found that it is efficient in performing the
regular convolution with residual addition [20]. Also, [21]
demonstrate that the basic building block of ResNet is still
one of the most effective architectures with the proper scaling
strategies. Therefore, our core neural architecture search space
follows the backbone of ResNet-50 which is composed of
four residual blocks with gradually reduced feature map size
and increased channel sizes. In each block, we search for the
number of units ranging from 2 to Ui, where Ui denotes the
maximal number of units in i

th
block. In each cell, we search

for the expansion ratio (E) chosen from {0.5, 0.75, 1.0}. As
there are totally 16 cells in our neural architecture space, the
total number of combinations is 316. Together with the 300
different hardware configuration options, there are more than
12× 109 different combinations in our co-design space.

B. Loss, Latency, Energy and Resource Models

1) Loss Model: Evaluating CE in Equation 2 for all 12
billion configurations on a large dataset such as ImageNet [22]
is time-consuming. To enable fast evaluation, we adopt GP
regression to estimate the CE for all sub-networks. To repre-
sent the neural architecture, we encode the neural architecture
space, which contains 16 searchable cells, into a 16-dimension
vector with each dimension representing the expansion ratio
used in that cell. The expansion ratio is 0, if a cell is skipped.
We construct a training dataset by randomly sampling and
evaluating a certain number of sub-networks. Based on the
encoded input vector and evaluated CE, we perform regres-
sion using the GP model with a Matérn covariance kernel with
a constant mean function.

2) Latency and Energy Models: Measuring the hardware
performance of all sub-networks for the FPGA-based design
for different design parameters is time-consuming because of
synthesis and place and route processes that are needed for the
real hardware implementation. We again use GP regression
model to estimate the latency and energy consumption. To
represent the NN together with the hardware configuration,
we encode it into a 19-dimensional vector with the first 16
dimensions representing the neural architecture and the last 3
dimensions being PF , PC and PV .

3) Resource Model: As DSPs and memory are the limiting
resource for FPGA-based CNN accelerator [23], we primarily
consider DSP and memory consumption in this paper. The
DSP consumption can be described as: DSPused = (PC ×
PF × PV)/2, which is dominated by the parallelism level
used in the Conv engine.

The memory resources are mainly consumed by the input
and weight buffers. As the input buffer needs to cache all the
input feature maps in the current ith layer, its usage can be
represented as: MEMin = max

i=1,...,l
(N i

c × Hi ×W i) × DW ,

where N i
c , H

i and W i denote the number of channels, height
and width of the input feature map, DW is the data width and l
is the total depth of the net. As for the weight buffer, because
weights are shared along PV parallelism, it only needs to
cache the current PF filters, so the memory consumption can
be formulated as: MEMweight = max

i=1,...,l
(N i

c × PF ×Ki ×

Ki)×DW , where Ki is the kernel size of the ith layer. Due
to the use of ping-pong buffer technique, the total memory
consumption is: MEMused = 2× (MEMin+MEMweight).

V. EXPERIMENTS

The PyTorch and GPyTorch libraries are used for the
implementation of the supernet training and the GP models
respectively. ImageNet [22] dataset contains over 10,000,000
labeled images of 1000 object categories for classification. The
hardware design used in all experiments is implemented on
an Intel Arria 10 SX660 FPGA platform using Verilog. 1GB
DDR4 SDRAM is installed on the platform as the off-chip
memory. Quartus 17 Prime Pro was used for synthesis and
implementation. An Intel Xeon E5-2680 v2 CPU was used as
the host processor. We train the supernet on a GPU cluster with
six NVIDIA GTX 1080 Ti GPUs for 4 days. A power meter
is plugged in to measure the runtime power performance.

A. Accuracy of Gaussian Process-based Model

To train our GP-based loss model, 2000 sub-networks were
sampled and evaluated on ImageNet [22]. We used 1500
samples for training and 500 samples for evaluation. The
model was trained for 50 iterations using an Adam optimizer.
The result is shown in Table I. The mean absolute error (MAE)
is only 0.01005, which demonstrates the GP-based loss model
is sufficiently accurate for the modeling.

TABLE I
RESULTS OF GAUSSIAN PROCESS-BASED MODELS.

Kernel Function Mean Absolute Error

Loss Model Matérn (3/2) 0.01005

Latency Model Matérn (5/2) 0.06521ms

Energy Model Matérn (5/2) 0.01804W

Similarly, 4600 random samples with different network
configurations and hardware designs were collected for latency
and energy modeling. We used 3000 and 1600 samples for
training and evaluation respectively. The training was again

μ-0.2, η-1.0
λ-0.001

μ-0.1, η-1.0
λ-0.001

μ-0.05, η-1.0
λ-0.001

Po
w

er
 (W

)

Fig. 4. The performance of various NAS-generated NNs on different candidate
hardware design. Pareto-optimal is denoted by blue points.

performed with respect to 50 iterations and an Adam op-
timizer. As shown in Table I, the MAE of our GP-based
latency and energy models is only 0.06521ms and 0.01804W.
Therefore, the proposed GP-based latency and energy model
can be used as an accurate estimator for the latency and energy
consumption.

B. Effectiveness of Design Space Exploration

For reference and demonstration, we iterated through and
evaluated all samples in the co-design space to get the ref-
erence Pareto frontier. The Pareto-optimal points, which are
better in either loss or latency or energy with respect to any
other point, form a Pareto frontier, which is drawn as blue
points in Figure 4. Because the whole design space is too
large to show in the Figure. we randomly drew 2000 non-
Pareto-optimal samples as purple points to visualize the rest
of the design space.

Then, to demonstrate the effectiveness of our framework,
we used GA to perform design space exploration, and check
whether these found configurations match the reference Pareto
frontier. The time cost for the proposed GP-based models and
GA to find one optimized design is only 0.1 GPU hour, which
demonstrates the efficiency of our framework. In contrast,
other approaches [9], [24] require tens to hundreds of GPU
hours in searching. As mentioned in Section III, the user-
defined hyper-parameters η, µ and λ specified in the GA
represent the importance of accuracy, latency and energy
consumption respectively, we chose three sets of η, µ and
λ: {1.0, 0.2, 0.001}, {1.0, 0.1, 0.001} and {1.0, 0.05, 0.001},
to demonstrate how the GA is able to find different Pareto-
optimal designs according to users’ requirements. The resul-
tant designs found by the GA are highlighted by black arrows
in Figure 4, which all lay on the reference Pareto frontier. Their
NN architectures and hardware configurations are illustrated
in Figure 5. Therefore, our framework can effectively identify
the Pareto-optimal designs in the vast algorithm-hardware co-
design space.

We also evaluated the resultant networks on different hard-
ware platforms including Intel Xeon Silver 4110 CPU and
NVIDIA GTX 1080 Ti GPU. The results are presented in Ta-
ble II. TensorRT and CuDNN 8.11 libraries were used for GPU

TABLE II
ACCURACY, LATENCY AND ENERGY EFFICIENCY ON IMAGENET.

CPU GPU FPGA
Acc

Lat. Enrg. Eff. Lat. Enrg. Eff. Lat. Enrg. Eff.
(ms) (FPS/W) (ms) (FPS/W) (ms) (FPS/W)

η(1.0)µ(0.05)
26.08 0.28 7.40 0.94 4.52 5.07 77.63%

λ(0.001)

η(1.0)µ(0.1)
24.06 0.30 6.57 1.06 3.66 6.27 76.30%

λ(0.001)

η(1.0)µ(0.2)
19.18 0.38 5.03 1.38 3.14 7.32 74.91%

λ(0.001)

implementation, and the MKLDNN was used to optimize the
performance of the CPU implementation. The batch size was
set to one for a fair comparison. Compared with GPU and CPU
implementations, the networks found for the reconfigurable
FPGA-based accelerator can achieve approximately 2× and
6× reduction in latency and up to 5× and 19× higher energy
efficiency.

C. Comparison with Manually Designed Networks

To demonstrate that the auto-generated NN architectures can
outperform manually-designed networks in terms of accuracy,
latency, energy and model size on our FPGA accelerator,
we evaluated several commonly benchmarked NNs including
ResNet-101 [20], VGG-16 [25] and Inception-v2 [26] on
the ImageNet. The hardware configurations with respect to
these networks were manually optimized. The results are
shown in Figure 6. The network found with highest accuracy
(η = 1.0, µ = 0.05, λ = 0.001) is nearly 1% more accurate
and 3× faster than ResNet-101. Compared with VGG-16, the
network found can achieve nearly 5% higher accuracy while
reducing the latency by nearly 10×. We also compared our
work with the MobileNetV2 [27] implemented in [15]. Our
design achieves a similar latency while improving the accuracy
by nearly 4%.

D. Comparison with Existing Co-Design Work

We compared our proposed approach with four other
state-of-the-art co-design methods, including Co-Explore [28],
EDD [11], HAO [24], and OFA [15]. Although there are other

1st Unit 2nd Unit 3rd Unit 4th Unit

(a) Neural Architecture and hardware configuration when η=1.0, μ=0.05

1st Unit 2nd Unit 3rd Unit 4th Unit

(c) Neural Architecture and hardware configuration when η=1.0, μ=0.5

1st Unit 2nd Unit 3rd Unit 4th Unit

(b) Neural Architecture and hardware configuration when η=1.0, μ=0.1

SkipE = 1.0E = 0.75E = 0.5

PC = 64, PF = 64
PV = 1

BW=256
SC_EN=True

MEM = 46.8Mb

Neural
Architecture

Hardware
Configuration

PC = 64, PF = 64
PV = 1

BW=256
SC_EN=True

MEM = 46.8Mb

PC = 8, PF = 64
PV = 8

BW=256
SC_EN=True

MEM = 35.2Mb

Fig. 5. Neural architecture and hardware configuration of NNs found.

Fig. 6. Comparison of accuracy and latency among our work, the manually-
designed neural networks and other algorithm-hardware co-design methods.

TABLE III
DETAILS OF HARDWARE IMPLEMENTATIONS.

Platform Number Latency Accuracy Energy Eff.
of DSPs (ms) (GOPS/W)

Co-Explore [9] Xilinx XC7Z015 150 95.24 70.24% 0.74

EDD [11] Xilinx ZCU102 2520 7.96 74.60% -

HAO [24] Xilinx ZU3EG 360 22.27 72.68% -

OFA [15] Xilinx ZU9EG 2520 3.30 73.60% -

Our Work Intel GX1150 1345 3.66 76.30% 6.27

co-design works, they suffer from low accuracy [7], [8], [13],
[29] or only evaluated on a small dataset [10], [12], [30].
Therefore, we did not include them in our comparison. The
results are shown in Figure 6. Table III summarizes their
underlying hardware platforms and implementation details.
Compared with the network generated by [28], our network
found can achieve 6% higher accuracy, more than 26× speed
up and nearly 8× higher energy efficiency. We can also achieve
nearly 4% higher accuracy than HAO [24] with better hardware
performance even with the latency being normalized by the
DSP consumption. In comparison with OFA that consumes
nearly twice more DSPs, we achieve a similar latency with
2.7% higher accuracy.

VI. CONCLUSION

This paper proposes a novel algorithm-hardware co-design
framework for reconfigurable NN accelerators. To reduce the
search cost, we adopt genetic algorithm and Gaussian pro-
cess regression, which enables fast design space exploration
within few minutes. The network and hardware configuration
generated by the proposed framework on our reconfigurable
CNN accelerator can achieve 1% to 5% higher accuracy while
reducing the latency by 2× to 10× on the ImageNet dataset,
in comparison with manually-designed NNs on the same
hardware. Compared with the other state-of-the-art algorithm-
hardware co-design approaches, our found NNs achieve better
accuracy, energy efficiency, latency and search cost. Future
work includes expanding the search space with more choices
of operations, integrating optimization for recurrent neural
networks into the current optimization step and supporting
end-to-end automation.

ACKNOWLEDGEMENT

The support of the United Kingdom EPSRC (No.
EP/L016796/1, EP/N031768/1, EP/P010040/1, EP/V028251/1
and EP/S030069/1), the National Natural Science Foundation
of China (No. 62001165), Hunan Provincial Natural Science
Foundation of China (No. 2021JJ40357), Changsha Munici-
pal Natural Science Foundation (No. kq2014079), Corerain,
Maxeler, Intel and Xilinx is gratefully acknowledged.

REFERENCES

[1] S. Grigorescu et al., “A survey of deep learning techniques for au-
tonomous driving,” Journal of Field Robotics, vol. 37, no. 3, pp. 362–
386, 2020.

[2] H. Fan et al., “A real-time object detection accelerator with com-
pressed SSDLite on FPGA,” in 2018 International Conference on Field-
Programmable Technology (FPT), pp. 14–21, IEEE, 2018.

[3] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[4] B. Wu et al., “Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 10734–
10742, 2019.

[5] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable accelera-
tor for deep convolutional neural networks,” IEEE journal of solid-state
circuits, vol. 52, no. 1, pp. 127–138, 2016.

[6] Y. Lin et al., “Neural-hardware architecture search,” Workshop on ML
for Systems at NeurIPS 2020, 2019.

[7] P. Colangelo et al., “Artificial neural network and accelerator co-
design using evolutionary algorithms,” in 2019 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–8, IEEE, 2019.

[8] P. Colangelo et al., “Evolutionary cell aided design for neural network
architectures,” arXiv preprint arXiv:1903.02130, 2019.

[9] W. Jiang et al., “Hardware/software co-exploration of neural archi-
tectures,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 12, pp. 4805–4815, 2020.

[10] M. S. Abdelfattah et al., “Best of both worlds: Automl codesign of a
CNN and its hardware accelerator,” arXiv preprint arXiv:2002.05022,
2020.

[11] Y. Li et al., “EDD: Efficient differentiable dnn architecture and im-
plementation co-search for embedded ai solutions,” arXiv preprint
arXiv:2005.02563, 2020.

[12] H. Fan et al., “Optimizing fpga-based cnn accelerator using differ-
entiable neural architecture search,” in 2020 IEEE 38th International
Conference on Computer Design (ICCD), pp. 465–468, IEEE, 2020.

[13] C. Hao et al., “FPGA/DNN co-design: An efficient design methodology
for 1ot intelligence on the edge,” in 2019 56th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6, IEEE, 2019.

[14] L. Li and A. Talwalkar, “Random search and reproducibility for neural
architecture search,” in Uncertainty in Artificial Intelligence, pp. 367–
377, PMLR, 2020.

[15] H. Cai et al., “Once-for-all: Train one network and specialize it for
efficient deployment,” arXiv preprint arXiv:1908.09791, 2019.

[16] Y. Lin et al., “Naas: Neural accelerator architecture search,” arXiv
preprint arXiv:2105.13258, 2021.

[17] C. E. Rasmussen and H. Nickisch, “Gaussian processes for machine
learning (gpml) toolbox,” The Journal of Machine Learning Research,
vol. 11, pp. 3011–3015, 2010.

[18] M. Ferianc et al., “Improving performance estimation for FPGA-based
accelerators for convolutional neural networks,” in International Sympo-
sium on Applied Reconfigurable Computing, pp. 3–13, Springer, 2020.

[19] B. Jacob et al., “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2704–
2713, 2018.

[20] K. He et al., “Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[21] I. Bello et al., “Revisiting resnets: Improved training and scaling
strategies,” arXiv preprint arXiv:2103.07579, 2021.

[22] J. Deng et al., “Imagenet: A large-scale hierarchical image database,”
in 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255, Ieee, 2009.

[23] S. Liu et al., “Optimizing CNN-based segmentation with deeply cus-
tomized convolutional and deconvolutional architectures on FPGA,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 11, no. 3, pp. 1–22, 2018.

[24] Z. Dong et al., “Hao: Hardware-aware neural architecture optimization
for efficient inference,” in IEEE 29th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pp. 50–
59, IEEE, 2021.

[25] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[26] C. Szegedy et al., “Rethinking the inception architecture for computer
vision,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2818–2826, 2016.

[27] M. Sandler et al., “Mobilenetv2: Inverted residuals and linear bottle-
necks,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4510–4520, 2018.

[28] W. Jiang et al., “Standing on the shoulders of giants: Hardware and
neural architecture co-search with hot start,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 11, pp. 4154–4165, 2020.

[29] W. Jiang et al., “Accuracy vs. efficiency: Achieving both through fpga-
implementation aware neural architecture search,” in Proceedings of the
56th Annual Design Automation Conference 2019, pp. 1–6, 2019.

[30] W. Chen et al., “You only search once: a fast automation framework for
single-stage dnn/accelerator co-design,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1283–1286, IEEE, 2020.

	Introduction
	Background
	Algorithm and Hardware Co-design
	Gaussian Process

	Algorithm-Hardware Co-design
	Design Space and Modelling
	Design Space
	Hardware Design Space
	Neural Architecture Space

	Loss, Latency, Energy and Resource Models
	Loss Model
	Latency and Energy Models
	Resource Model

	Experiments
	Accuracy of Gaussian Process-based Model
	Effectiveness of Design Space Exploration
	Comparison with Manually Designed Networks
	Comparison with Existing Co-Design Work

	Conclusion
	References

