1. Introduction:

Glaucoma is a diverse group of ocular disorders that eventually results in the
progressive degeneration of retinal ganglion cells (RGC), clinically manifesting as
thinning of the retinal nerve fibre layer and cupping of the optic disc. If untreated, the
condition leads to visual impairment and eventually, blindness (Jonas et al., 2017,
2018; Stein et al., 2021; Weinreb et al., 2014). The lack of symptoms in the early
stages of the disease precludes an early diagnosis, contributing to its status as the
leading cause of irreversible blindness worldwide, afflicting about 3-5% of people
above 40 years of age (Blindness et al., 2021; Weinreb et al., 2014). As the world’s
population ages, the prevalence of glaucoma is expected to double by 2040 (Tham
et al., 2014). Vision loss from glaucoma not only impacts quality of life, but exerts a
significant socio-economic burden (~US$ 2.9 billion in direct costs of glaucoma
treatment for the United States in 2011, or an average of ~US$ 1450 in direct costs
of glaucoma treatment per patient, excluding indirect costs such as loss of
productivity), which increases markedly as the disease progresses (Varma et al.,
2011).

The main risk factors for late-onset glaucoma are age, ancestry, family
history, and increased intraocular pressure (IOP) (Jonas et al., 2017, 2018; Stein et
al., 2021; Weinreb et al., 2014). Under normal conditions, IOP is balanced between
aqueous humour production by the ciliary body, and aqueous drainage, mainly
through the trabecular meshwork and Schlemm’s canal which comprises the
conventional pathway, and alternatively through the non-conventional uveoscleral
outflow pathways. In glaucoma, resistance to outflow or blockage of aqueous outflow
results in increased IOP. The type of primary glaucoma can be differentiated by the
configuration of the iridio-trabecular meshwork angle (Figure 1). In primary angle-
closure glaucoma (PACG), there is iris-angle apposition, blocking aqueous drainage
and resulting in increased |IOP (Sun et al., 2017). Conversely for primary open-angle
glaucoma (POAG) (Wiggs and Pasquale, 2017), the iridio-trabecular meshwork
angle remains open, but outflow resistance is increased, mainly due to pathological
alterations along the trabecular outflow or elsewhere along the drainage pathway.
Although the majority of patients with POAG present with elevated IOP, up to a third
of cases present with IOP within the normal population range (Sommer et al., 1991).
Such patients are classified as having ‘normal tension glaucoma’ (Wiggs and
Pasquale, 2017), which could be a misnomer as some patients may have IOP
spikes that are missed due to classification based on single |OP measurements.
Yet another common form of glaucoma (accounting for up to a quarter of glaucoma
cases worldwide) is exfoliation glaucoma (Ritch and Schlotzer-Schrehardt, 2001), a
secondary glaucoma. In this condition, aqueous outflow may be blocked by
abnormal deposition of white extracellular debris in the trabecular outflow and other
structures of the anterior chamber.

Family history and ancestry-specific susceptibilities to different forms of
glaucoma suggest an underlying genetic basis (Jonas et al., 2017, 2018; Weinreb et
al., 2014). Segregation studies have been fairly successful at identifying gene
mutations in pedigrees with early onset and family-linked glaucoma. These are
typically rare mutations in genes with very large effect sizes (odds ratio > 5 to 10)
and are thought to be directly causative of disease. Such examples include dominant
negative mutations in the MYOC gene that are found in a sizeable proportion (~10%)
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of juvenile onset glaucoma patients, and at least 4-5 percent of familial glaucoma
patients (Allen et al., 2015; Alward et al., 1998; Han et al., 2019; Stone et al., 1997,
Wiggs et al., 1998). In contrast, the genetic basis of late onset (above age of 40
years) glaucoma is complex, and is influenced by many factors including age,
lifestyle, genetics and environment (Wiggs and Pasquale, 2017).

Currently there are two general experimental approaches in use in glaucoma
genetic studies (Figure 2). The first, uses single nucleotide polymorphisms (SNPs)
as units for risk association within the context of a genome-wide association study
(GWAS) (Uffelmann et al., 2021). SNPs are a common source of human genetic
variation and are dispersed throughout a person’s genome, occurring on average
about once in every 1,000 nucleotides. These are most commonly found in
intergenic or intronic regions in the genome. Researchers study the statistical
association between SNP allele frequencies in persons with glaucoma compared to
individuals without disease. Strongly associated SNPs define a region of the human
genome that is associated with the glaucoma risk. Because SNPs are mostly located
in the non-coding regions of the human genome, they are not usually under
evolutionary selective pressure. SNPs residing in conserved, non-coding regions are
likely regulatory in nature and confer risk by quantitatively altering gene expression.
These could exert more subtle effects compared to coding sequence mutations that
directly alter encoded proteins qualitatively. In addition, it is often difficult to identify
the causal gene linked with a SNP, as there could be multiple genes in the tagged
region; casual genes associated with SNPs have also been found in distant
locations (Smemo et al., 2014). Thus, the effect sizes of these SNPs with relation to
glaucoma risk, tend to be modest (usually with Odds Ratios between 1.1 to 1.3).
Nevertheless, a catalogue of SNPs that are strongly associated with glaucoma risk
have potential clinical utility as they can be incorporated into polygenic risk scores to
predict glaucoma susceptibility (Knoppers et al., 2021).

The second approach focuses on the coding regions of the gene (Ross et al.,
2020; Yamazaki et al., 2019) termed the exome, and uses each gene as the unit of
association with disease risk. Although the exome makes up about 1% of the whole
genome, it has disproportionate weight in terms of importance as it specifies protein
function. Thus, genetic variants that impair protein function have a significant chance
to alter cellular physiology and consequently drive disease phenotypes. As opposed
to SNP-based approaches, whole exome sequencing (WES)-based approaches
screen protein coding sequences to find rare (often with <1% frequency) deleterious
mutations that are under purifying selection. Although each variant might be rare
individually, their occurrence in aggregate might be sufficient for the detection of
gene-based burden signals (Povysil et al., 2019). A shortcoming of exome-based
approaches is the reliance on bioinformatics algorithms that qualitatively predict
deleterious changes to protein function (Genetics of Exfoliation Syndrome et al.,
2021). For example, a lack of functional characterization of coding WDR36 alleles
found in glaucoma case control cohorts has contributed to the confusion regarding
WDR36 as a causal POAG risk gene (Fingert et al., 2007; Hauser et al., 2006;
Hewitt et al., 2006; Pasutto et al., 2008). Therefore, experimental validation to
determine the type of functional change, i.e., gain or loss-of-function, and quantify
the extent of alteration is required for disease manifestation is imperative for coding
variant data to be truly useful for follow-up investigation in disease mechanisms.

This review will cover recent advances in genetic studies of primary open-
angle glaucoma, primary angle-closure glaucoma, and exfoliation glaucoma, which
collectively account for the majority of all glaucoma subtypes in the world today. We
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will also review the utility of these risk loci as therapeutic targets for glaucoma
treatment and discuss how their discoveries could illuminate disease processes and
improve clinical outcomes.

2. Primary Open-Angle Glaucoma (POAG)

2.1 Frequency of POAG

Glaucoma is classified as POAG when the iridio-trabecular meshwork drainage
angle is open and there are no signs of secondary causes of raised IOP such as
exfoliation syndrome (see Section 4), pigment dispersion, uveitis or exogenous steroid
medication use (Stein et al., 2021).

There have been many population-based studies reporting on the prevalence
of POAG, spanning across a broad range of ethnicities and geographical locations
(Leske, 2007; Tham et al., 2014). The majority of these studies report prevalence in
people aged 40 years and older. The prevalence of POAG in published studies is
similar in Europe (1 - 3%) (Anton et al., 2004; Jonasson et al., 2003; Topouzis et al.,
2007), Australia (2 — 3%) (Mitchell et al., 1996; Weih et al., 2001) and Asia (1 — 4%)
(Bourne et al., 2003; Casson et al., 2007; He et al., 2006; Iwase et al., 2004; Palimkar
et al., 2008; Rahman et al., 2004; Ramakrishnan et al., 2003; Raychaudhuri et al.,
2005; Sah et al., 2007; Shen et al., 2008; Sia et al., 2010; Vijaya et al., 2008; Wang et
al., 2010) but is higher and more variable in Africa, ranging from 1% in Nigeria
(Murdoch et al., 2001) to over 8% in Ghana (Ntim-Amponsah et al., 2004). Reported
prevalence is also higher in other African-Caribbean populations (7 — 9%) (Leske et
al., 1994; Mason et al., 1989). Prevalence appears to be related to country of origin
rather than country of residence, as evidenced by the variable rates within different
ethnicities in the United States (Tielsch et al., 1991). European derived populations in
the United States have a reported POAG prevalence of 1 — 2% (Klein et al., 1992;
Tielsch et al., 1991) compared with 2 — 5% in Hispanic-Americans (Quigley et al.,
2001; Varma et al., 2004) and 4% in African-Americans (Tielsch et al., 1991). The
lowest reported prevalence of POAG is 0.06% in Eskimos residing in Alaska (Arkell et
al., 1987). However, a major limitation of comparing reported prevalence figures
between studies is the different definitions of glaucoma that were adopted. For
example, when diagnostic criteria from different large epidemiological studies were
applied to one analytical dataset, prevalence estimates varied by up to 10-fold (Wolfs
et al., 2000). To address this issue, the International Society for Geographical and
Epidemiological Ophthalmology (ISGEO) published a consensus definition of POAG
for epidemiological studies (Foster et al., 2002), and a growing number of studies now
report according to this classification (Casson et al., 2007; He et al., 2006; Iwase et
al., 2004; Jonasson et al., 2003; Rahman et al., 2004; Raychaudhuri et al., 2005; Shen
et al., 2008; Sia et al., 2010; Vijaya et al., 2008; Vijaya et al., 2005; Wang et al., 2010).
However, even comparisons between ISEGO-compliant studies are not straight-
forward due to lack of standardisation of prevalence, particularly for age. Investigators
have carried out meta-analyses of POAG prevalence using Bayesian techniques to
account for variation in age-structure between populations (Rudnicka et al., 2006;
Tham et al., 2014). The most recent meta-analysis, comprising 50 population-based
studies, reported the global prevalence of POAG in 2013 to be 3.1% (95% CI 1.7-5.3)
in people aged 40-80 years, with 44 (95% CI 31-61) million people affected (Tham et
al., 2014). The number of people affected is forecast to increase rapidly to 80 million
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in 2040, primarily due to the ageing population (Tham et al., 2014). Fewer studies
have reported the incidence of POAG, with estimates ranging from 0.29% per year in
Sweden to 0.5% per year in Barbados (de Voogd et al., 2005; Ekstrom, 2008; Founti
etal., 2021; Leske et al., 2007; Mukesh et al., 2002). Again, however, comparing rates
is not simple due to differences in case definition and population structures.

2.2 Risk factors for POAG

Older age is a very strong risk factor for POAG, regardless of ethnicity (Tham
et al., 2014) or the study definition of glaucoma (Wolfs et al., 2000). Raised IOP is the
cardinal modifiable risk factor for POAG (Stein et al., 2021). Higher IOP is associated
with both prevalent and incident POAG across different continents and ethnicities
(Jiang et al., 2012; Le et al., 2003; Leske et al., 2008). Incidence studies have reported
an increased risk of POAG of 10-18% per 1-mmHg higher baseline IOP (Jiang et al.,
2012; Kim et al., 2011; Le et al., 2003; Leske et al., 2008; Sommer et al., 1991). The
commonly used definition for “raised IOP” is >21 mmHg, based on the population
mean |IOP plus 2 standard deviations (Hollows and Graham, 1966; Leydhecker et al.,
1958). The relative risk of developing POAG is much higher for a person with ocular
hypertension compared with a person whose IOP is within the normal range.
However, there are limitations to defining a normal range of IOP as IOP is a dynamic
trait with a distinct diurnal pattern. Thus, many individuals with glaucoma could have
IOP<21 at least some of the time. Previous studies have estimated the proportion of
patients with POAG that were classified as normal-tension glaucoma NTG; (IOP < 21
mmHg) at between 20-90% (lwase et al., 2004). Nevertheless, lowering IOP is still an
effective strategy for treating NTG (1998a; 1998b; Anderson and Normal Tension
Glaucoma, 2003).

Other well-established risk factors for POAG are ancestry (Tham et al., 2014)
(higher risk in people of African and Hispanic descent compared to Europeans) and a
family history of glaucoma. First-degree relatives of POAG patients have a 22%
lifetime risk of developing disease compared with 3% for people without a family
history (Wolfs et al., 1998). This supports the heritable nature of POAG and the
importance of genetic risk factors (see below).

Other factors reported to be associated with POAG have less clear evidence
for a causal link. While myopic refractive error is associated with a higher prevalence
of POAG in cross-sectional studies (Marcus et al., 2011), there is less clear evidence
for an association with POAG incidence in longitudinal studies or glaucoma
progression in large clinical trials. A thinner central corneal thickness (CCT) has also
been associated with higher risk of conversion from ocular hypertension to POAG
(Gordon et al., 2002) and an increased risk of incident open-angle glaucoma (Jiang et
al., 2012). However, CCT is associated with IOP due to measurement artefacts
(Hoffmann et al., 2013) and it remains unclear whether observed associations
between CCT and glaucoma are due to biases related to this.

2.3 Pathophysiology of POAG

The very strong association between IOP and POAG, and the high-level
evidence that lowering IOP can reduce the risk of POAG progression (Garway-Heath
et al.,, 2015) both point towards IOP-related mechanisms as critical in disease
pathogenesis. However, the mechanisms for higher |IOP causing RGC death and optic
nerve degeneration remain unclear. There are several pathophysiological theories

4



regarding the mechanism of damage in glaucoma, and it is likely that numerous factors
are concurrently at play in this complex disease (Figure 3; (Stein et al., 2021).

The biomechanical theory of glaucoma suggests that higher IOP mechanically
induces glaucomatous changes in the optic nerve at the level of the optic nerve head
(Burgoyne, 2011; Strouthidis and Girard, 2013). Evidence supports the primary site of
RGC injury in glaucoma to be at the optic nerve head, at the level of the lamina cribrosa
(Anderson and Hendrickson, 1974; Quigley and Anderson, 1976; Quigley et al., 1981).
The physical response of the optic nerve head to IOP depends on the level of IOP,
collagen fiber organization in the lamina cribrosa and surrounding sclera, the
morphology of the optic nerve head, and the overall biomechanical properties of the
3D load-bearing connective tissue architecture of the optic nerve head (Strouthidis
and Girard, 2013). Depending on these factors in an individual, a threshold may be
reached where higher IOP results in damage to RGCs; this may be via interrupted
axoplasmic flow and supply of nutrients, altered blood flow (physical compression of
capillaries), or mechanotransduction (the conversion of mechanical stimuli to chemical
signals at a cellular level) (Strouthidis and Girard, 2013).

The vascular theory of glaucoma proposes that insufficient blood supply to the
optic nerve is a key factor in the pathogenesis of RGC loss (Caprioli et al., 2010;
Cherecheanu et al., 2013; Hayreh, 1969; Hayreh et al., 1994; Yanagi et al., 2011).
This reduced blood supply may be caused by systemic hypotension, vasospasm,
atherosclerosis, or by compression of vasculature secondary to raised I0P. While
studies have demonstrated associations between glaucoma and blood pressure, as
well as statistically flawed ocular perfusion pressure parameters (Khawaja et al.,
2013b), autoregulation of blood flow in the optic nerve head occurs over a large range
of blood pressure and I0OP, and therefore surrogate measures of end-tissue perfusion
are problematic (Drance et al., 1988).

Data from the >100 gene loci that have been identified via genome-wide
association studies of glaucoma (Chen et al., 2014; Choquet et al., 2018; Genetics of
Glaucoma in People of African Descent et al., 2019; Gharahkhani et al., 2014;
Gharahkhani et al., 2021; Taylor et al., 2019) do not provide definitive evidence for
either biomechanical or vascular theories for glaucoma. Rather, they suggest the
involvement of multiple distinct cellular processes, each potentially with small effects
(Danford et al., 2017; Janssen et al., 2013).

Considerable evidence implicates oxidative stress in the pathophysiology of
POAG (Chrysostomou et al., 2013; Kumar and Agarwal, 2007; Zanon-Moreno et al.,
2008). Oxidative stress may damage the trabecular meshwork, resulting in raised |IOP
and, in turn, optic nerve damage. Additionally, free radicals may interact with incident
light and directly damage the optic nerve. Primary mitochondrial dysfunction may
increase the tendency towards oxidative stress and be a trigger for the onset of
glaucoma (Chrysostomou et al., 2013).

Like other neurodegenerative disorders such as dementia, POAG is strongly
age-related. The optic nerve is often considered as part of the central nervous system
(CNS) because, unlike other cranial nerves, it shares the same embryonic origins as
the CNS and is encased by the meninges (Bron et al., 1998). It has therefore been
suggested that POAG may be, at least in part, a manifestation (Teikari, 1987) of
general CNS degeneration (Gupta and Yucel, 2007). In the same way that some
degree of cognitive decline with ageing is considered physiological, some degree of
RGC loss is considered normal with increasing age. Dementia and glaucoma are
characterized by faster, pathological rates of cognitive and RGC decline respectively,
and accelerated ageing has been implicated in both diseases (Caprioli, 2013).
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2.4 Heritability of POAG

Studies estimating heritability suggest a significant genetic contribution to
POAG. Among the twin and family-based heritability studies, h? (narrow sense
heritability), varied from 0.13-0.81 (Charlesworth et al., 2010; Cuellar-Partida et al.,
2016; Teikari, 1987). Recent reports using electronic medical records and insurance
claims data suggest higher glaucoma heritability estimates (0.70 and 0.93;
(Polubriaginof et al., 2018; Wang et al., 2017)). A recent systematic meta-analysis
(Asefa et al., 2019) showed that individual endophenotypes related to POAG also
demonstrate significant heritability including intraocular pressure, 0.43 (0.38-0.48);
cup-to-disc ratio, 0.56 (0.44-0.68); disc size, 0.61(0.37-0.81); cup size, 0.58 (0.35-
0.78); corneal hysteresis, 0.40 (0.29-0.51); retinal nerve fiber layer thickness, 0.73
(0.42-0.91); cup shape, 0.62 (0.22-0.90); and peripapillary atrophy, 0.73 (0.70-0.75).
Studies included in the meta-analysis were primarily from European Caucasian and
Asian populations and showed significant heritability in both ethnic groups (Asefa et
al., 2019). Interestingly, age is a significant factor influencing heritability of glaucoma-
related endophenotypes with heritability decreasing with increasing age suggesting
increasing impact of potential environmental risk factors over time.

2.5 Linkage studies for POAG

Initial POAG gene discovery efforts focused on family linkage studies designed
to identify single gene (Mendelian) causes of glaucoma (Allingham et al., 2009);. This
approach resulted in 13 loci (GLC71A-GLC1P) (Crooks et al., 2011; Fan et al., 2007;
Monemi et al., 2005; Morissette et al., 1995; Sarfarazi et al., 1998; Sherwin et al.,
2009; Stoilova et al., 1996; Suriyapperuma et al., 2007; Trifan et al., 1998; Wiggs et
al., 2004; Wirtz et al., 1997; Wirtz et al., 1999; Woodroffe et al., 2006) identified with
varying levels of genetic linkage. Likely causative genes have been identified for 4 of
these loci including MYOC (GLC1A) (Stone et al., 1997), OPTN (GLC1E) (Rezaie et
al., 2002), and EFEMP1 (GLC1H) (Collantes et al., 2021; Mackay et al., 2015) and
TBK1 (GLC1P) (Fingert et al., 2011). Mutations in these genes, particularly the MYOC
GIn368X mutation can account for up to 5% of POAG cases (Sears et al., 2019).
Genes that may modify POAG risk but are not definitively pathogenic have also been
identified at GLC1F (ASB10) (Pasutto et al., 2012) and GLC1G (WDR36) (Hauser et
al., 2006). Two loci (GLC1J and GLC1K) were identified as part of a genome-wide
sibling pair analysis for early-onset POAG (Wiggs et al., 2004). Another genome-wide
linkage study offered further support for GLC71D and GLC1/ (Crooks et al., 2011).
GLC1/ on chromosome 15 was originally defined by an ordered subset analysis that
stratifies by age of diagnosis (Woodroffe et al., 2006). Genome-wide association
studies (GWAS) have also shown significant association with SNPs located in several
of these regions including GLC1A (1923), GLC1H (2p15-16) and GLC1J (9922).
Although genetic linkage studies remain a useful tool towards uncovering risk loci, this
approach could be supplanted by more comprehensive SNP- and sequencing- based
approaches that directly interrogate all possible loci for risk association.

2.6 Genome-wide association studies for POAG

Genome-wide association studies (GWAS) have identified many genomic loci
associated with POAG risk (Allingham et al., 2009; Liu and Allingham, 2017,
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Youngblood et al., 2019). The genetic variants (SNPs) associated with disease are
typically common in populations (minor allele frequencies 10% to 30%) and
individually have small overall effects (Odds ratios of 1.1-1.4). Initial POAG GWAS
used relatively small numbers of cases and controls providing sufficient statistical
power for identification of only those loci with larger effects such as CAV1/CAV2
(Thorleifsson et al., 2010) and TMCO1, CDKN2BAS (Burdon et al., 2011). Larger
POAG GWAS were completed by consortia such as the NEIGHBORHOOD (Bailey
et al., 2016) and the International Glaucoma Genetics Consortium (IGGC) (Hysi et
al., 2014). Recently trans-ancestry meta-analyses involving datasets from the
NEIGHBORHOOD, IGGC and others have discovered 127 independent POAG
genomic loci (Gharahkhani et al., 2021).

While the majority of POAG GWAS studies have been carried out in
European Caucasians, several studies in Asian populations revealed novel loci
including TGFBR3 (Li et al., 2015) and PMM2 (Chen et al., 2014). Recently, a
GWAS of African ancestry cases and controls (Genetics of Glaucoma in People of
African Descent) identified APPB2 (Genetics of Glaucoma in People of African
Descent et al., 2019), a novel locus not identified in other populations or in the trans-
ancestry meta-analyses (Gharahkhani et al., 2021). Future larger studies of cases
with African and Asian ancestry will be necessary to fully define the POAG genetic
architecture in these populations.

GWAS of normal tension glaucoma (NTG) cases and controls have also
identified several novel loci including 8922 in European Caucasians (Wiggs et al.,
2012) and ELOVLS in Japanese (Writing Committee for the Normal Tension
Glaucoma Genetic Study Group of Japan Glaucoma et al., 2010). Additionally, the
CDKNZ2B-AS locus appears to have larger effects in the NTG subgroup compared to
POAG overall (Burdon et al., 2012; Wiggs et al., 2012).

Gene-set enrichment and pathway analyses (Gharahkhani et al., 2021)
implicated a diverse array of cellular processes potentially contributing to POAG
pathogenesis. Additionally, several loci harboring genes involved in mitochondrial
function are also associated with disease risk including TXNRD2 and ME3, both
influencing NADPH metabolism (Santana-Garrido et al., 2021).

Several low frequency (minor allele frequency less than 1%) variants have
also been associated with POAG risk. Unlike most of the common variants
associated with disease that are located in noncoding genomic regions, these low
frequency variants affect coding sequences and protein structure. ANGPTL7 coding
variants have been shown to reduce glaucoma risk in European Caucasian
populations (Tanigawa et al., 2020). A relatively common MYOC variant
(p-GIn368Ter) increases POAG risk in European Caucasian and Asian populations
(Gharahkhani et al., 2021; Zebardast et al., 2021). The MYOC GIn368Ter variant
was initially discovered as a Mendelian cause of glaucoma with reduced penetrance
(Stone et al., 1997). In some populations this variant has been noted to be as
frequent as 1.5% and can account for up to 5% of POAG cases ((Alward et al., 1998;
Wiggs et al., 1998). The penetrance is age-dependent (Allingham et al., 1998; Nag
et al., 2017) and is also influenced by a POAG polygenic risk score suggesting that
many genetic variants of smaller effects can modify the main effect of this mutation
on disease. (Han et al., 2019; Siggs et al., 2021; Zebardast et al., 2021)

2.7 Functional investigation of POAG risk genes.



Most of the genetic variants (SNPs) associated with POAG are located in
noncoding genomic regions and many are ‘eQTLs’ or expression quantitative trait
loci that influence gene expression. Of note, it is customary to ‘name’ the genomic
regions associated with disease according to the gene closest to the lead variant (i.e.
the variant SNP with the best evidence for association) however in about half the
GWAS loci tested by the GTEx (Genotype Tissue Expression) consortium, eQTL-
gene correlations suggest that the putative causal gene(s) are not the nearest gene
to the lead GWAS variant (Claussnitzer et al., 2015; Gamazon et al., 2018). Fine-
mapping studies defining causal genes have not yet been completed for all POAG
loci, however some functional and animal studies have provided supporting evidence
for several genes implicated by GWAS associations.

The first of these is SIX6 located on chromosome 14q. This was one of the
first POAG loci to be discovered (Wiggs et al., 2012) and was also found to be
associated with cup-to-disc ratio (CDR; (Ramdas et al., 2010)). S/X6 codes for Sine
Oculis Homeobox Homolog 6 a protein known to contribute to ocular development
(Slavotinek, 2011). Several SIX6 missense variants were found primarily in POAG
cases and these variants were found to alter ocular metrics such as eye size and
optic nerve structure in a zebrafish complementation assay (Carnes et al., 2014;
Iglesias et al., 2015). Further studies have shown that human carriers of a common
SIX6 missense variant, (p. Asn141His) have a thinner nerve fiber layer compared to
controls (Cheng et al., 2014a; Khawaja et al., 2018a). Together these results
suggests that S/IX6 influences glaucoma susceptibility through a mechanism
involving development of the neural retina.

SNPs located in the genomic region that includes CAV7 and CAVZ2 are
associated with POAG and with IOP (Khawaja et al., 2018b; Loomis et al., 2014;
Thorleifsson et al., 2010). CAV1 and CAVZ2 code for caveolins 1 and 2 that are
necessary for the formation of caveolae, specialized membrane structures involved
in a number of signaling pathways including NOS3 and cholesterol metabolism (Hu
et al., 2020a). A CAV1 mouse knockout has elevated |IOP (Elliott et al., 2016) and
loss of caveolae in the Schlemm's canal (SC) and trabecular meshwork. In addition,
in the CAV1 knockout mouse outflow tissues are more susceptible to plasma
membrane rupture suggesting a role for caveolae in mechanoprotection, and
aqueous drainage from knockout mouse eyes was more sensitive to nitric oxide
(NO) synthase inhibition than controls, suggesting that excess NO partially
compensates for outflow pathway dysfunction(De leso et al., 2020).

Finally, SNPs in an intergenic region between EFEMP1 and PNPT1 have
been associated with IOP (Khawaja et al., 2018b) and POAG (Gharahkhani et al.,
2021). Recently, rare EFEMP1 variants have also been found in families with early-
onset POAG (diagnosis before age 35) in China (Liu et al., 2020) and the Philippines
(Collantes et al., 2021) as well as an adult-onset POAG family from the U.S.
(Mackay et al., 2015). The discovery of rare coding variation segregating with
disease in these families suggest that EFEMP1 mutations can cause glaucoma and
that the causal gene in this locus is likely to be EFEMP1.

Future GWAS studies using larger and more ethnically diverse populations
are likely to reveal additional POAG-risk loci providing more insight into disease
pathogenesis. Fine-mapping studies that define the likely causative genes residing
in associated genomic loci will also help define underlying disease mechanisms.

2.8 Genetic associations with POAG endophenotypes



While the primary trait of interest is POAG status, and case-control studies
remain the gold standard for identifying disease associations, analysis of heritable
quantitative traits related to glaucoma (endophenotypes; (Sakurada et al., 2020)) has
multiple advantages. Objective continuous measures offer greater statistical power
compared to binary outcomes and are less prone to misclassification biases.
Additionally, variation in the quantitative trait can be observed within the general
population, meaning that data from healthy participants of population-based studies
can be leveraged. Insights from quantitative trait analyses may also be more
specifically interpreted according to a component part of the causal pathway for
glaucoma. In contrast, it would be unclear whether a genetic association with POAG
overall was related to IOP or other direct optic nerve effects.

As described above, IOP is the cardinal modifiable risk factor for POAG, and
lowering of IOP is its only proven treatment. As IOP is a highly heritable trait (
estimated at 40%-70%; (Asefa et al., 2019; Sanfilippo et al., 2010), understanding the
genetic basis of IOP variation (Ojha et al., 2013; Xu et al., 2021) may uncover
biological insights into the pathological processes underlying POAG susceptibility.
Despite bringing together multiple population studies globally for the International
Glaucoma Genetics Consortium (IGGC), and a sample size of 37,930 participants,
only 9 genome-wide significant associations with IOP were identified in 2017
(Springelkamp et al., 2017). Shortly following this, three very large GWAS for IOP (two
with considerable overlap) have provided a step-change advance in our discovery of
the genetic architecture underlying IOP (Choquet et al., 2017; Khawaja et al., 2018b;
MacGregor et al., 2018). A multi-ethnic GWAS for IOP was carried out in 69,756
participants of the Kaiser Permanente Genetic Epidemiology Research in Adult Health
and Aging (GERA) study (Choquet et al., 2017). GERA is a clinical cohort and IOP
measurements were extracted from patients' electronic medical records; only
measurements taken before any |IOP-lowering treatment were used. The study
confirmed most of the previously reported |IOP-associated genetic loci, demonstrating
the validity of using clinical IOP measurements in a patient cohort rather than the
traditional population-based approach. Additionally, 40 novel IOP-associated loci were
identified at genome-wide significance (Choquet et al., 2017). Following the GERA
study, two independent groups reported even larger GWAS of IOP (Khawaja et al.,
2018b; MacGregor et al., 2018) which included analysis of data from the Eye and
Vision component of the UK Biobank study (Chua et al., 2019). A meta-analysis of
IOP data from UK Biobank, IGGC (Springelkamp et al., 2017) (see above) and the
EPIC-Norfolk Eye Study (Khawaja et al., 2013a) resulted in a GWAS for IOP in
139,555 participants of European descent; 112 genome-wide significant loci were
identified, 68 of which were novel (Khawaja et al., 2018b). These loci explained 17%
of the variance of IOP in the EPIC-Norfolk Eye Study, a considerable proportion given
the variance likely caused by measurement error, measurement artefact from corneal
biomechanics, and the likelihood that measurements at a single point in time do not
accurately reflect the overall physiological IOP level. The IOP-associated loci were
subsequently examined for association with POAG in the US NIEGHBORHOOD case-
control study (Khawaja et al., 2018b). Strikingly, there was a highly linear correlation
between the effect estimates for IOP and POAG from the two studies for the 112 loci.
This strongly supports the utility of IOP as an endophenotype for glaucoma and
suggests that the genetic factors which predispose individuals to higher IOP also
incrementally increase the risk of POAG. There were also loci previously associated
with PACG (at GLIS3, FERMT2, PLEKHA7 and HGF, see below); this suggests that
a proportion of why healthy populations vary in IOP is due to mechanisms which
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contribute to angle-closure disease, even in the absence of disease. The most
enriched gene set in the results were for lymphangiogenesis, driven predominantly by
IOP-associated loci in ANGPT1, ANGPT2 and VEGFC (Khawaja et al., 2018b).
Schlemm’s canal and collector channels have a very similar phenotype to lymphatic
vessels (Aspelund et al., 2014), and it is likely that these lymphangiogenic loci exert
their IOP-altering effects via this part of the aqueous outflow pathway, rather than the
trabecular meshwork (which is traditionally considered as the site of pathology in
POAG). ANGPT1and ANGPT2 both encode Receptor Tyrosine Kinase (TEK) ligands.
Mutations in TEK coding regions have been shown to cause primary congenital
glaucoma (Souma et al., 2016) suggesting that severe alteration of
lymphangiogenesis can cause severe disease manifest at birth while more common
genetic variation may less severely impact lymphangiogenesis and result in an
increased risk of decompensation of IOP as an adult.

Another commonly examined quantitative trait related to POAG is the optic disc
vertical cup-disc-ratio (VCDR; (Choquet et al., 2020b; Sakurada et al., 2020)). An
enlarged VCDR is a key sign of glaucoma, and forms part of the ISGEO definition of
glaucoma (see above). In an IGGC meta-analysis comprising 32,272 individuals, 25
VCDR-associated loci were identified (Springelkamp et al., 2017). The majority of
these loci were not associated with POAG in subsequent case-control analyses, and
only two were significantly associated with POAG following correction for multiple
testing (Springelkamp et al.,, 2017). This suggests that VCDR is a less strong
endophenotype for POAG than IOP, and genetic factors underlying VCDR variation
may not in turn confer risk for POAG. It is hypothesized that a considerable proportion
of VCDR variation is genetically determined variation in baseline anatomy that is
unrelated to glaucoma. There has been a recent step-change in genetic discovery for
VCDR by leveraging machine-learning to conduct large-scale grading of retinal
photographs. Previously, human grading of retinal photographs was required to derive
VCDR in many studies, and this was not practicable in very large studies like UK
Biobank. Two independent groups have developed deep learning models to
automatically derive VCDR from retinal photographs and applied the algorithm to UK
Biobank (Alipanahi et al., 2021; Han et al., 2021) and the Canadian Longitudinal Study
on Aging (Han et al., 2021). This enabled the largest GWAS of VCDR to date,
identifying over 150 significantly associated loci (Alipanahi et al., 2021; Han et al.,
2021). Again, the relevance of these loci for POAG risk is unclear, and a substantial
proportion of the loci more likely underlying anatomical variation unrelated to
glaucomatous processes. Interestingly, several loci involved in neuronal and synaptic
biology were strongly associated with VCDR (Alipanahi et al., 2021).

Another glaucoma-related trait that aids in the diagnosis of POAG is inner
retinal thickness at the macula (Stein et al., 2021). The thickness of both the retinal
nerve fiber layer (MRNFL) and the ganglion cell inner plexiform layer (GCIPL) at the
macula has been derived from optical coherence tomography scans in UK Biobank
participants (Khawaja et al., 2020). The first adequately powered GWAS for these
parameters was conducted in 31,434 European participants of UK Biobank, identifying
46 genome-wide significant loci associated with either mMRNFL or GCIPL (Currant et
al., 2021). Despite mRNFL and GCIPL being important diagnostic biomarkers for
glaucoma, only one of the 46 loci was significantly associated with POAG. This
suggests that the genetic determinants of mMRNFL and GCIPL variation do not in turn
affect POAG risk, and that these parameters are not useful endophenotypes for
POAG. In agreement with this are Mendelian randomisation experiments looking at
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the causal influence of MRNFL and GCIPL instrument variables on POAG which were
non-significant (Currant et al., 2021).

As discussed above, while CCT has been associated with POAG (Dimasi et al.,
2010; Swierkowska and Gajecka, 2017), it is uncertain whether this is a causal
relationship, or the result of the strong artefact corneal biomechanical properties exert
on IOP measurements. A cross-ancestry GWAS meta-analysis for CCT in the IGGC
(n = 25,910) identified 44 genome-wide significance loci, none of which were
significantly associated with POAG after considering multiple testing (lglesias et al.,
2018). Also, there was no significant correlation between the CCT and POAG effect
sizes for the CCT-associated variants (r=-0.17, P=0.2), in contrast to the strong
correlation of CCT and keratoconus effect sizes (r=-0.62, P=5.3x107°) (Aung et al.,
2017). A more recent GWAS meta-analysis for CCT including the GERA cohort
identified a further 41 associated loci (Choquet et al., 2020a); only one of these loci
was significantly associated with glaucoma (Choquet et al., 2020a). Furthermore, a
Mendelian randomisation experiment did not find evidence for a causal effect of CCT
on POAG (Choquet et al., 2020a). Overall, the genetic association studies of CCT
strongly support the hypothesis that CCT is not causally related to POAG and that
previous observational associations are due to IOP measurement artefact.

2.8 Polygenic prediction modelling for POAG

Given the recent large-scale discovery of genetic associations with POAG,
there has been interest in whether the knowledge of a person's genotype can help
predict their risk of POAG. A regression-based model combining 133 SNPs associated
with IOP at genome-wide significance with age, sex and 3 SNPs known to be
associated with POAG but not IOP (rs74315329 in MYOC, rs2157719 in SIX6 and
rs8015152 in CDKNZ2B-As1) was able to predict high-tension POAG in the
NEIGHBORHOOD study with an area under the receiver operating characteristic
curve (AUC) of 76% (Khawaja et al., 2018b). This was a striking finding, and the first
time it had been demonstrated that genotype could predict POAG with a level of
accuracy that may enable targeted population screening. Improved predictive ability
was achieved in a later study which combined genetic association results for 10P,
VCDR and POAG in a multitrait analysis, creating a polygenic risk score (PRS) that
included all uncorrelated SNPs with a significance threshold of P < 0.001 (n = 2,673)
(Craig et al., 2020). Applying this PRS to the independent ANZRAG cohort (Australian
and New Zealand Registry of Advanced Glaucoma; 1,734 advanced POAG cases and
2,938 controls) demonstrated that participants in the top decile of PRS were at a 15
fold increased odds of POAG than the bottom decile, and 4.2 fold odds compared to
the other 90% of the cohort (Craig et al., 2020). When the PRS was combined with
age, sex and reported family history of glaucoma, it predicted POAG with an AUC of
80% in the population-based Blue Mountains Eye Study (Craig et al., 2020). While this
level of predictive ability is certainly not diagnostic alone, it may enable identification
of a subset of the general population with a sufficiently high prevalence of glaucoma
to make screening cost-effective. Currently, in most developed settings such as the
UK, population screening for POAG is not recommended (Hamid et al., 2021). This is
in part due to the relatively low prevalence of undetected glaucoma in the population
and the resultant poor positive predictive value of current best tests. Targeting
screening to a subset of the population with a higher prevalence of glaucoma would
result in an improved positive predictive value with the same test. The above-
mentioned studies offer hope that genetic prediction models can identify a POAG-
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enriched proportion of the general population for whom glaucoma screening will be
cost-effective and beneficial (Hamid et al., 2021). A recent cross-sectional,
questionnaire-based study of patients with advanced glaucoma demonstrated strong
support for genetic prediction testing facilitating detection of glaucoma in the future
(Hollitt et al., 2021).

3. Primary Angle-Closure glaucoma

3.1 Epidemiology

Primary angle-closure glaucoma (PACG) is one of the most common types
of glaucoma, currently affecting 17.4 million individuals worldwide, of which over
70% are of Asian ancestry (Chan et al., 2016; Cheng et al., 2014b; Wang et al.,
2019; Zukerman et al., 2020). This number is expected to double by 2040 (Tham et
al., 2014). In this form of glaucoma, anatomical alterations in the anterior chamber
result in the iris occluding the iridio-trabecular meshwork angle, interfering with
aqueous outflow. The resultant increase in IOP initiates a cascade of pathological
alterations that lead to glaucomatous optic neuropathy, resulting in blindness.

3.2 Clinical Features/pathophysiology of PACG

Angle closure disease can be classified by the extent of disease severity
(Ahram et al., 2015; Aung et al., 2005; Foster et al., 2002; Sun et al., 2017; Wang et
al., 2019; Weinreb et al., 2014). Eyes classified as primary angle-closure suspects
(PACS) have an occluded angle, but do not exhibit increased IOP and present with
healthy optic nerves. Primary angle-closure eyes (PAC) have raised IOP and/or
peripheral anterior synechiae in the angles, but the optic nerves are not damaged,
representing the intermediate stage of disease. Finally, primary angle-closure
glaucoma (PACG) eyes represent the fully manifest disease, and present with
glaucomatous neuropathy, accompanied by visual field loss in association with angle
closure.

Regardless of stage, anatomical abnormalities that occlude the iridio-
trabecular meshwork angle initiate PACG disease (Sun et al., 2017; Weinreb et al.,
2014). These can be broadly classified into several main mechanisms: pupillary
block, non-pupillary block, and multiple or mixed mechanism. In pupillary block, there
is resistance to aqueous flow at the level of the pupil between the iris and the
anterior lens surface, causing build-up of aqueous behind the iris. The resultant
pressure difference causes the peripheral iris to bulge anteriorly, narrowing the
angle. This mechanism is the most common trigger of acute angle closure. In non-
pupillary block, abnormalities in other anterior segment structures, for example, a
thicker peripheral iris, an abnormally positioned iris due to anterior rotation of the
ciliary body or a large lens vault, crowd the angle and hinder aqueous drainage. In
mixed mechanism angle closure, multiple anatomic alterations occur concurrently to
occlude the iridio-trabecular meshwork angle and initiate disease.

3.3 Risk factors for PACG
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Due to the anatomical basis of angle closure, the biometric configuration of
the eye is the biggest risk factor for PACG (Nongpiur et al., 2019; Razeghinejad and
Banifatemi, 2013; Sun et al., 2017). Shallow anterior chamber depth (ACD), short
axial length and thick, relatively anteriorly positioned lens are major anatomical risk
factors for PACG (Alsbirk, 1986; Nongpiur et al., 2011; Tarongoy et al., 2009;
Weinreb et al., 2014). In particular, a shallow anterior chamber depth appears to be
key in PACG susceptibility. Eyes with ACD of less than 2.8mm have a high
propensity to develop angle closure (Lavanya et al., 2008) and have increased risk
of developing glaucomatous optic neuropathy. (Aung et al., 2005) Other risk factors
for angle closure including age, East Asian ethnicity and female sex can also be
explained by biometry. Eyes of East Asians tend to have shallower anterior
chambers, compared to Europeans (Wang et al., 2013). Similarly, female eyes tend
to be smaller and have shallower ACD compared to males (Alsbirk, 1976). Aging
increases the thickness of the lens, resulting in anterior chamber crowding (Lowe,
1969; Tomlinson and Leighton, 1973), thereby accounting for the increased risk of
PACG with age.

3.4 Heritability estimates for PACG

There is a strong genetic basis for PACG. The risk of developing PACG is
3.5 times higher in first degree relatives (Kavitha et al., 2014) and up to 6 times if
they are of Chinese ancestry (Sim et al., 1998; Wang, 1985). Siblings of patients
diagnosed with angle closure who were of Chinese ancestry also have a drastically
increased (about seven times) likelihood of developing the same condition compared
to the general population. As such, the heritability of angle closure has been
estimated to be nearly 60% (Amerasinghe et al., 2011). This could be in part due to
genetic factors strongly influencing biometric parameters of the eye. In particular,
ACD is highly heritable, with estimates of 50-88% in Caucasians (Klein et al., 2009),
56% for South Indians (Ciociola et al., 2021), and up to 90% in the Chinese
population (He et al., 2008). In addition, population-based studies have found that
narrow angles are frequently found in of Chinese eyes (7%) and a substantial
proportion (10%) will be afflicted with angle closure disease (Ye et al., 1998).

3.5 Genetic Studies of PACG

Several genetic studies have been undertaken to find risk genes for PACG
and associated biometric phenotypes. Family linkage analysis of a large family
afflicted with nanophthalmos, hyperopia, and angle closure glaucoma led to the
discovery of NNO1, a locus mapping to chromosome 11 (Othman et al., 1998).
NNO1 remains the only locus that is directly linked to an angle closure phenotype,
although the causal gene(s) within this locus has not been elucidated.

Since then, two cross-ancestry GWAS on PACG have identified 8 loci that
are associated with risk of developing PACG (Khor et al., 2016; Vithana et al., 2012).
The first study, involving more than 20,000 cases and controls from 5 countries,
identified 3 loci - PLEKHA7 rs11024102, COL11A1rs3753841 and rs1015213
located between PCMTD1 and ST18 on Chromosome 8q that were significantly
associated with PACG. The follow-up study (Khor et al., 2016) comprised over
40,000 participants from 23 countries world-wide. The results replicated the initial 3
loci and uncovered 5 new loci- EPDR1 rs3816415, CHAT rs1258267, GLIS3
rs736893, FERMT2 rs7494379, and DPM2 - FAM102A. Notably, two of the loci
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(PLEKHA7 and FERMT?2) are also associated with risk of increased IOP (Khawaja et
al., 2018b; MacGregor et al., 2018), underlining the key contribution of IOP to PACG
disease as well as possible shared mechanisms with POAG.

These loci have been replicated in many follow-up studies that dissect the
association of these loci to PACG disease severity (Awadalla et al., 2013; Duvesh et
al., 2013; Nongpiur et al., 2018; Rong et al., 2016; Shi et al., 2013; Wan et al., 2019).
The results largely support the association of these loci with PACG risk, despite
heterogeneity in the clinical presentation, ethnic make-up, and sample sizes of
cohorts. Most notably, EPDR1 rs3816415 was significantly associated with severe
PACG disease in the Singaporean Chinese population. A weighted polygenic risk
score matrix generated from the 8 key GWAS loci was also significantly associated
with higher risk of fully manifest and intermediate PACG disease (Liu et al., 2021).

3.6 Functional investigation of PACG risk genes

Studies characterizing PACG risk genes have been ongoing. Notably, there is
suggestive evidence from analysis of disease tissue and functional characterization
in cellular models that PLEKHA7 rs11024102, which has been associated with both
PACG risk and high IOP, could be involved in some aspects of PACG pathogenesis
(Lee et al., 2014; Lee et al., 2017). PLEKHA7 was found highly expressed in the
anterior chamber and associated with apical junction complexes (AJCs; (Lee et al.,
2014)), which are known to regulate cell polarity, adhesion and barrier permeability.
The risk associated PLEKHA7 rs11024102 (Lee et al., 2017) was also associated
with lower expression of PLEKHA7, implying that this could be a regulatory SNP that
controls PLEKHA7 expression. Concordant with its association with AJCs, PLEKHA7
was found to modulate cell migration and barrier permeability. While these data is
somewhat informative, it is unclear how how PLEKHA7-related alterations due to its
lowered expression in disease tissue manifests in PACG.disease It is also unclear
whether lowered expression of PLEKHAY is a key driver event in PACG
pathogenesis. Therefore more studies, especially in animal models are required to
clarify the role of PLEHA7 in PACG disease process. Similarly, a combination of
functional investigation in both cellular models and animals are required to determine
the importance of other risk-associated genes in PACG pathogenesis.

3.7 Candidate Gene Approaches for PACG

Additional risk loci have also been discovered by interrogating SNPs occurring
within or near genes that could potentially participate in PACG pathogenesis using
hypothesis-driven approaches. The most prominent of these is MMP9, a collagenase
that is presumed to influence extracellular matrix remodelling in the eye. Multiple
SNPs within or near MMP9 have also been associated with PACG in multiple
cohorts of differing ethnicity (Awadalla et al., 2011a; Cong et al., 2009; Micheal et al.,
2013; Wang et al., 2006). Additionally, multiple loci linked to other MMP9-related
genes, including HGF (Awadalla et al., 2011b), HSP70 (Ayub et al., 2010), MFRP
and NOS3 (Rong et al., 2016) were also found to be associated with PACG in a
recent meta-analysis, although it is still unclear whether they directly participate in
PACG disease.
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3.8 Quantitative Trait Loci Analysis for PACG

As the anatomical configuration of the eye is a major risk factor for PACG,
quantitative trait loci (QTL) studies have also been undertaken to find risk genes
linked to biometric parameters. The most prominent QTL loci is ABCC5 rs1401999,
which is associated with a shallower ACD (Nongpiur et al., 2014) (3=-0.045 mm
ACD, P=8.17x1079). This locus was discovered in large, Asian cohort of 5,308
individuals, and was also associated with PACG risk in a separate cohort. However,
it failed to replicate PACG risk in a much larger multi-ancestry cohort from a
subsequent PACG GWAS that uncovered the 8 key risk loci for PACG (Khor et al.,
2016; Vithana et al., 2012) (see above). A possible explanation for this discrepancy
could be that the association of shallower ACD with PACG risk is only limited to
Asians, whereas other quantitative traits that influence other biometric parameters
such as lens thickness, anterior chamber width and lens vault could be universally
more important for conferring risk in other ethnicities. Future QTL studies should
incorporate other relevant traits to fully examine this possibility.

3.9 Insights into disease mechanism and identification of potential therapeutic
targets

Despite the discovery of many well validated risk-associated loci from
GWAS experiments, the identity of driver genes, and by implication, insight into
disease mechanisms from genetics remain uncertain. Fundamentally, this is
because the overwhelming majority of risk loci found by GWAS are non-coding, and
the current practise of nominating the gene located closest to the sentinel GWAS
SNP as the ‘candidate gene of prime interest’ is misleading. Co-localization
approaches (Nicolae et al., 2010) integrating expression Quantitative Trait Loci
(eQTL) and GWAS data (Giambartolomei et al., 2014; Gusev et al., 2016; He et al.,
2013; Hormozdiari et al., 2016; Huang et al., 2015; Nica et al., 2010) could be helpful
in identifying the causal gene in the vicinity of the risk SNP. However, because non-
coding variants could exert their regulatory effects beyond their immediate loci, the
identity of the actual effector gene can remain obscure. To address the possibility
that effector genes could reside in a distant location from the sentinel SNP (Smemo
et al., 2014), advances in the understanding of chromatin interactions are needed
before we can begin to elucidate driver genes linked to risk-associated SNPs located
in non-coding regions.

3.10 Next Generation Sequencing approaches uncover potential risk genes in PACG

Due to the challenges in nominating effector genes arising from GWAS
studies, the focus has gradually shifted towards using whole exome-sequencing to
study the genetic basis of glaucoma. Indeed, new causal genes have been
uncovered in other diseases using this platform, giving rise to both novel insights into
disease and new therapeutic drug targets. Likewise, promising new gene candidates
have emerged through interrogating coding variation in families afflicted with PACG
(Sun et al., 2019; Suri et al., 2018; Waseem et al., 2020). In particular, recurrent
coding mutations in COL18A1 (Suri et al., 2018) and SPATA3 (Waseem et al., 2020)
have recently been observed in familial pedigrees with multiple related individuals
affected by PACG.
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The ¢.550G>A mutation in COL18A1 were first discovered from linkage
analysis of a multi-generational Iranian family. The corresponding amino acid
substitution E184K, was predicted to be deleterious. A longitudinal search uncovered
two unrelated PACG patients who are heterozygous carriers of additional frameshift
mutations at R505Vfs and L612Wfs in COL18A1. Interestingly, bi-allelic loss of
function mutations in COL718A1 are known to cause Knobloch syndrome, a rare
autosomal recessive inherited disorder characterized by vitreoretinal degeneration
leading to retinal detachment (Menzel et al., 2004; Sertie et al., 1996). Although
homozygous mutations in COL718A1 appear to cause ocular abnormalities in the
posterior chamber of individuals afflicted with Knobloch syndrome, it remains unclear
how heterozygous COL18A1 mutations lead to PACG-associated phenotypes
manifesting in the. Further characterization, including the type (i.e., gain or loss of
function) and extent of functional alteration of all three alleles are needed to
determine if there could be dose-dependent effects that modify disease phenotype.

SPATA13 codes for a guanine nucleotide exchange factor (GEF) for
GTPases that regulate a multitude of cellular signalling pathways and processes
(Bristow et al., 2009; Sagara et al., 2009). A 9 base-pair deletion in the SPATA13
coding region was found in an initial pedigree of 3 members afflicted with angle
closure and established to be transmitted in an autosomal dominant manner. Follow
up evaluation in an independent cohort of 189 patients uncovered 8 additional
mutations in the same gene. The researchers observed increased GEF activity in the
deletion mutant and 3 out of the 8 protein altering SPATA13 variants. Although this
suggests that SPATA13 gain of function could be causing PACG phenotypes, the
researchers noted that the precise cellular processes modulated by SPATA3 remain
unknown. They also observed that only a subset of coding variants exhibited
increased GEF activity (Waseem et al., 2020). Additional investigation in disease
tissue and relevant cell lines to find the key GTPase modulated by SPATA13 will
reveal mechanistic links to PACG.

Nevertheless, these initial forays into exome sequencing exemplify the
power of studying coding variants to uncover risk genes that participate in PACG
pathogenesis in a more direct manner. To this end, larger genetic consortia have
begun to utilize whole exome sequencing approaches to find coding variants
associated with PACG risk in population-based studies.

4. Exfoliation Syndrome and Glaucoma

4.1 Epidemiology

Exfoliation glaucoma (XFG) is a late-onset systemic disorder that afflicts over 60
million people worldwide (Ritch and Schlotzer-Schrehardt, 2001; Tham et al., 2014).
This condition initially manifests as exfoliation syndrome (XFS), where abnormal
extracellular debris termed exfoliative material are deposited visibly in the anterior
chamber of the eye (Ritch and Schlotzer-Schrehardt, 2001; Ritch et al., 2003). XFS
has also been epidemiologically linked to several systemic conditions including
cerebrovascular disease and cardiovascular disease (Elhawy et al., 2012; Ritch,
2016), although it is still unclear whether these deposits play casual roles in these
conditions.
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4.2 Pathophysiology of Exfoliation syndrome

XFS manifests in the eye as exfoliative deposits in the anterior segment
structures of the eye, including the ciliary body, lens capsule, iris, and trabecular
meshwork. This deposition may impede aqueous outflow and eventually increase in
IOP. As a result, about half of all XFS patients will develop XFG, making it the most
common cause of open angle glaucoma in the world (Weinreb et al., 2014).
Compared to POAG, XFG is a more aggressive disease. XFG patients often present
with a higher IOP accompanied by more advanced visual field loss and tend to
respond poorly to IOP lowering medication (Ritch and Schlotzer-Schrehardt, 2001;
Ritch et al., 2003). The severity of the clinical phenotypes has been directly
correlated with the extent of exfoliation deposition — and by implication the extent of
outflow impedance- at the trabecular meshwork (Ritch and Schlotzer-Schrehardt,
2001; Ritch et al., 2003; Schlotzer-Schrehardt and Naumann, 1995). Although an
obvious clinical management strategy is to modulate exfoliation deposition in the
eye, the lack of mechanistic understanding of processes underlying exfoliative
material deposition precludes this approach. Consequently, symptomatic treatment
by lowering IOP using a combination drugs and surgical intervention remains the
standard-of-care in XFG management (Jonas et al., 2017; Weinreb et al., 2014).

4.3 Risk Factors

XFS/XFG risk factors include age, family history and ethnicity (Ritch and
Schlotzer-Schrehardt, 2001; Ritch et al., 2003). Familial segregation analyses using
pedigrees and twin studies have established XFS/XFG as a disorder with a clear
genetic component. However, the mode of Mendelian inheritance is not clear,
implying that XFS/XFG is a complex disease with interactions involving multiple
genes and environmental factors (Wiggs and Pasquale, 2017). In line with this
notion, XFS/XFG prevalence varies among ethnic groups, with the highest
prevalence observed in the Scandinavian population, where XFG is observed in up
to two-thirds of patients afflicted with open-angle glaucoma (Zukerman et al., 2020).
Although there is some epidemiologic evidence that UV exposure and caffeine intake
could be associated with XFS risk (Dewundara and Pasquale, 2015; Kim et al.,
2021; Pasquale et al., 2014; Stein et al., 2011), the mechanistic basis of these
findings, and whether there are additional lifestyle factors contributing to this finding,
remains to be dissected.

4.4 GWAS studies

To tease out the genetic component underlying XFS/XFG risk, several
genome wide association studies have been performed. SNPs located within or near
LOXL1, CACNA1A, FLT1-POMP, TMEM136-ARHGEF12, AGPAT1, RBMS3, and
SEMAGA have been reported to be associated with risk of XFS at genome-wide
significance (Aung et al., 2017; Aung et al., 2015). However, as in GWAS studies of
other forms of glaucoma, these loci were located either in intergenic or intronic
regions, suggesting that these candidate genes might not be the effector genes
directly participating in XFS pathogenesis.

4.5 LOXL1 studies and allele reversal
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The only XFS risk gene discovered in GWAS studies whose effect size is
substantial is LOXL1 (Thorleifsson et al., 2007). Consequently, LOXL7 remained a
key focal point of all subsequent XFS/XFG experimental efforts to understand the
underlying disease mechanism (Schlotzer-Schrehardt and Zenkel, 2019). LOXL1
was first discovered as a risk gene in a genome-wide association study conducted
on the Icelandic population (Thorleifsson et al., 2007). Two common SNPs in exon 1
of LOXL1, rs1048661: G>T (R141L), and rs3825942: G>A (G153D) conferred more
than 20-fold risk of XFS. Although these associations have been largely replicated in
multiple geographical populations, the phenomenon of allele reversal observed
between Europeans, Japanese, and South Africans made it impossible to discern
whether gain or loss of LOXL1 function was associated with increased risk of XFS
(Abu-Amero et al., 2012; Guadarrama-Vallejo et al., 2013; Jaimes et al., 2012; Liu et
al., 2008; Williams et al., 2010). For example, the G allele of rs1048661 has been
established as risk increasing with nearly all populations studied except in Asian
populations, where it was found to be protective (Gong et al., 2008; Nakano et al.,
2014; Pandav et al., 2019). Similarly, the G allele of rs3825942 was found to be
associated with increased risk in all populations except in Black South Africans
(Williams et al., 2010). The reasons underlying these stark allele reversals remain
unknown to date.

To uncover LOXL1 variants with larger effect sizes that are not reversed, a
global research partnership carried out deep resequencing studies of the LOXL1
gene.(Aung et al., 2017) This revealed multiple rare protein-altering variants, the vast
majority of which were enriched in unaffected participants compared to patients with
XFS. One particular rare variant (LOXL1 p. Y407F, with a frequency of <1% in the
Japanese control population) had a singularly striking effect size, conferring 25-fold
protection against XFS.

4.6 Functional investigation of LOXL1 alleles and their roles in XFG

The LOXL1 gene encodes a lysl oxidase that cross links collagen and elastin
fibrils in the extracellular matrix (ECM) (Greene et al., 2020). Cross-linking
strengthens and stabilizes elastin fibres and by extension, the ECM, increasing its
resistance to mechanical stress and degradation. Analysis of LOXL1 expression in
disease tissue suggests that LOXL1 could be involved in XFS pathogenesis. LOXL1
is ubiquitously expressed in nearly all ocular tissues in the anterior segment and was
found to be induced in the early stages of XFS (Schlotzer-Schrehardt, 2009;
Schlotzer-Schrehardt and Zenkel, 2019). The trigger(s) for induction has not been
found, although cellular stress such as inappropriate growth factor abundance
changes, inflammation, oxidative stress, and UV light have been suggested.
Importantly, LOXL1 has been found to be major component of exfoliative deposits
(Sharma et al., 2009) colocalizing with ECM components such as elastin and fibrillin
(Ovodenko et al., 2007), suggesting that LOXL1 could nucleate and stabilise these
deposits. In later stages of XFS, LOXL1 expression was found to be reduced in
anterior segment tissues (Schlotzer-Schrehardt, 2009; Schlotzer-Schrehardt and
Zenkel, 2019). This could affect structural stability of the ECM in ocular tissue and
may contribute to the compromise of blood ocular barrier in the ciliary body, leading
to leakage of serum proteins such as ApoE, which are also present in exfoliative
material, and perpetuate additional cycles of exfoliative deposition. In agreement
with this observation, the blood-ocular barrier was disrupted in mice lacking both
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copies of the LOXL1 gene, although exfoliative deposition were not observed (Wiggs
et al., 2014). LOXL AS1?

Despite the wealth of correlative expression and genetic data implicating
LOXL1 in the disease process, the actual role of LOXL1 in the XFS disease process
remains an enigma. Crosslinking-activity of the risk variants R141L and G153D has
been demonstrated to be similar to the activity of the reference protein in vitro (Kim
and Kim, 2012), implying that proteolytic processing of LOXL1 (Sharma et al., 2016)
and protein-protein interactions with other participatory proteins (Schlotzer-
Schrehardt and Zenkel, 2019) could be key towards uncovering its mechanism of
action in cells.

Accordingly, evidence from studies in other disease contexts suggest that
LOXL1 could indeed modulate cellular signal transduction by modifying the ECM
(Greene et al., 2020; Hu et al., 2020b; Ma et al., 2018; Vallet and Ricard-Blum,
2019). The ECM participates in a wide variety of cellular processes, and it is not
surprising that mutation of LOXL1 or pathological alteration of its expression has
been linked to other systemic disorders. However, the resultant phenotypes are often
the result of context-specific interactions of LOXL1 with components within the local
microenvironment. This context-specificity of LOXL1 interactions underlies the
difficulty in elucidating LOXL1 function in ocular contexts, as it renders
characterization of LOXL 1 variants in vitro in the absence of the appropriate context
uninformative. Complementary genetic studies focusing on rare variants with larger
effect sizes are needed to pinpoint other key risk gene variants and identify
additional cellular processes that could play a role in XFS pathogenesis. The recent
discovery of CYP39A1 loss-of-function gene variants as XFS susceptibility factors
could be a feasible starting point to begin elucidating the role of LOXL1 variants and
the ECM in XFS disease (Genetics of Exfoliation Syndrome et al., 2021).

4.6 Whole exome sequencing studies in a large multinational cohort implicates
CYP39A1 as a XFS risk gene

An exome-wide search was recently undertaken to uncover XFS risk-
associated rare coding sequence variants that might have been missed by previous
GWAS studies (Genetics of Exfoliation Syndrome et al., 2021). In this multicenter
case-control, study involving 20 441 participants, both LOXL1 and CYP39A1 were
found to harbour a significant differential burden of rare, protein-altering genetic
variants between patients with XFS and unaffected individuals. In particular,
CYP39A1 loss of function alleles were significantly enriched in XFS cases compared
to controls (3.25% vs 1.8%). CYP39A1 encodes a hydroxylase involved in the
breakdown of cholesterol, converting its substrate 24-hydroxycholesterol (24-OHC)
to 24,7-dihydroxycholesterol (Li-Hawkins et al., 2000). The association of CYP39A1
was novel and thus subjected to additional scrutiny via replication attempts in
independent cohorts. Meta-analysis of all studied samples suggested that carriage of
rare CYP39A1 loss-of-function variant had a 2-fold increased risk of developing XFS
compared to non-carriers.

4.7 Functional investigation of CYP39A1 alleles
Due to limitations with current bioinformatics prediction algorithms, all
discovered CYP39A1 variants were evaluated for enzymatic activity using, and most

were confirmed to have lower enzymatic activities than the reference protein. Follow-
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up investigation in disease tissue revealed that the expression of CYP39A1 was
decreased throughout all stages of XFS including early disease. As 24-OHC
regulates the cholesterol efflux by activating the Liver X Receptor transcriptional
program (Beceiro et al., 2018; Traversari et al., 2014; Wang and Tontonoz, 2018),
XFS tissue was examined for alterations in cholesterol homeostasis. Strikingly,
esterified cholesterol, the form packaged by cells for storage and/or transport was
found to be enriched and colocalized in exfoliation deposits. Most importantly, and
for the first time since the discovery of LOXL1 as an XFS risk gene, a new cellular
process, cholesterol efflux had been implicated in XFS disease.

As the plasma membrane and the adjoining basement ECM is the site of
cholesterol efflux, it is conceivable that LOXL1 could be involved in regulating this
process. To lend further support to this possibility, WES sequencing of more cohorts
should be performed to determine the co-carriage status of LOXL1 and CYP39A1
variants in patients or controls, to establish if there is a genetic and/or mechanistic
interaction between the two genes. Experimental characterization is also needed to
determine the involvement of LOXL1 and its variants in influencing this process, and
to determine if CYP39A1 loss-of-function driven cholesterol efflux could compromise
blood-aqueous barrier integrity and/or influence exfoliative deposition. A key acid test
to assess the importance of CYP39A1 and LOLX1 in XFS disease would be
construction of an animal model for XFS by genetic engineering of relevant
CYP39A1 and/or LOXL1 alleles, since no such model presently exists presently.

4.8 Using risk alleles to predict XFS disease

Individually, the frequency of these variants in the population are rare, but
collectively, carriers of LOXL1 and CYP39A1 variants make up a substantial
proportion of the population, suggesting that functionally validated variants could
have additional utility as data points for patient stratification algorithms (Figure 4)
(Bell et al., 2021). While single gene variants had been used in risk prediction
algorithms in other complex genetic diseases, incorporation of both LOXL1 and
CYP39A1 variants into XFS risk prediction algorithms could potentially improve
accuracy and precision in stratifying individual XFS risk. However, experimental work
is needed to develop an appropriate assay that can appropriately reflects the
contribution of variants of both genes towards disease risk.

The discovery of CYP39A1 using WES-based approaches underscores the
utility of this approach towards directly uncovering causal risk genes in complex
diseases. With its increasing popularity, more WES studies performed in large
cohorts will uncover more casual risk gene variants, not just in XFS/XFG, but other
glaucoma subtypes. Future work done to explain the way these variants influence
XFS risk will illuminate underlying disease processes. This will enable the expansion
the repertoire of XFS management strategies from |IOP management to actual
modulation or prevention of exfoliative deposition.

5. Future directions

5.1 Coalescence of genetic discovery with functional characterization
A major weakness in glaucoma genetics has been the lack of integrative

studies that translate discovery of genetic risk variation to actual functional
significance in disease. This is in part due to the diversity of genetic sequence
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variants associated with glaucoma risk. Thus far, all genetic discovery have been
centered mostly on non-coding SNPs, which for reasons outlined above preclude
experimental follow up for functional validation. With the emergence of whole exome
sequencing technology, we are now well positioned to directly identify risk-
associated coding variants. In contrast to SNPs, coding variants are very amenable
to experimental characterisation, especially when appropriate functional assays are
utilized. Therefore, instead of relying on bioinformatics algorithms, which are neither
precise nor quantitative, it is increasingly likely that actual functional characterization
of risk alleles will be used to confirm the direction and/or extent of genetic variation
(i.e., loss or gain of function) that is associated with disease risk as part of the
validation process. This would accelerate our understanding of how alterations in
these gene contribute to glaucoma pathology and enable us to see disease
processes in a new light. In the longer term, advances in whole genome sequencing
(WGS) (Amarasinghe et al., 2020; Ng and Kirkness, 2010) accompanied by
decreases in costs of sequencing will enable the application of this technology in
large cohort studies, potentially implicating important non-coding alterations and
copy number changes in glaucoma pathogenesis, enabling a more complete view of
genomic mechanisms contributing to disease.

5.2 Complementary technologies for orthogonal functional validation

Regardless of the technological platform used for risk gene discovery,
thorough functional investigation of candidates and careful interpretation of
experimental results, especially in resolving inevitable discrepancies between data
generated from in vitro and in situ contexts, are requisite for candidate gene
validation. In particular, the appropriate use of complementary profiling technologies,
including high resolution imaging modalities (Adhi and Duker, 2013) to characterize
glaucoma-related anatomical alterations, and single cell transcriptomic approaches
(Stuart and Satija, 2019) to investigate gene expression in disease tissue will be
potentially valuable as an orthogonal means of validation. Single cell approaches
could be valuable given the scarce availability of ocular disease tissue (Voigt et al.,
2021). Indeed, novel insights have been obtained from scRNA studies in retina
disease tissue (Menon et al., 2019; Orozco et al., 2020; Voigt et al., 2019). Indeed,
recent scRNA-based studies in glaucoma (Patel et al., 2020; van Zyl et al., 2020),
have begun to expand our understanding of glaucoma disease at the cellular level,
bridging the knowledge gap from gene discovery to actual understanding of disease
mechanisms.

5.3 Cell and animal models continue to be crucial for mechanistic validation of risk
genes

Once the identity of the risk gene has been established, cellular and animal
models are imperative to infer the role of these genes in disease process. Cellular
models are usually the first step towards this because of its relative ease of
manipulation. In particular, the deployment of CRISPR based editing techniques
either to knock out genes or to introduce important risk alleles would be important
towards characterizing glaucoma-related phenotypes and elucidate key downstream
pathways impacted by this manipulation. Organoid models and/or other 3D-type
models, are thought to recapitulate spatial aspects of disease tissue and will add an
extra dimension towards the understanding of disease process. Physiologically
relevant animal models can then be used to bridge the gap between in vitro
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observations and their importance in actual disease tissue, These could involve
crossing appropriate alleles (mouse model studies references) to existing glaucoma
models in mice or rats, and/or using conditional knockouts in ocular tissue to
investigate specific aspects of disease physiology and determine if they modify
disease severity. These animal models can then be used as platforms to evaluate
and test therapeutic modalities for glaucoma therapeutics

5.4 Validated risk genes are attractive drug targets for glaucoma therapeutics

Genetic studies based upon next generation sequencing approaches have
unearth a treasure trove of validated drug targets that have been successfully
translated into approved therapeutics (Abifadel et al., 2003; Cohen et al., 2005;
Cohen et al., 2006; Dewey et al., 2017; Graham et al., 2017; Shapiro et al., 2018).
Functional characterization of risk genes in cellular and animal models (outlined
above) will also increase the number of potential drug targets for glaucoma, enabling
the development of new therapeutics for glaucoma management. As these targets
have strong genetic support, they are more likely to pass clinical trials and achieve
regulatory approval (King et al., 2019; Nelson et al., 2015). This will eventually
expand the repertoire of glaucoma treatment options and enable the use of subtype-
directed treatment regimens, potentially improving prognostic outcomes.

5.5 Genetic data as a substrate for predicting glaucoma risk

A recent survey of genetic variation in the exome demonstrated that when
taken in aggregate, rare protein altering genetic variants are more common than
previously thought (Lek et al., 2016). It was estimated that over 90% of human
genetic variation are rare (MAF<1%) and an overwhelming majority are singleton or
“private” mutations that are only found once in a cohort (Lek et al., 2016).
Consequently, as increasingly more patients undergo whole exome/genome
diagnostic sequencing, more and more singletons will be found, representing a
potentially large source of variants of uncertain significance (VUS) in risk genes.
Functional readouts of individual variants will provide granularity to individual
predictions of disease risk and resolve diagnostic uncertainty by clarifying the
functional status of VUS (Figure 4; (Findlay et al., 2018). Therefore, to pre-empt this
emerging problem, functional ascertainment of all possible coding variation in
important risk genes should be undertaken. When the resultant data is then
integrated with relevant clinical data points, for example, disease outcomes of
genotyped glaucoma patients in prospective studies, or progression-relevant
biometric alterations observed in genotyped eyes, the resultant data could serve as
useful raw material for generating precise risk stratification databases (Majithia et al.,
2014; Majithia et al., 2016). This enables patients at high risk of progression to
blindness to be identified early for prioritized intervention.

5.6 Conclusions

Next generation sequencing technologies coupled with high throughput functional
genomics will revitalize the field of glaucoma genetics by enabling the direct
identification of causal genes for glaucoma. However, close multidisciplinary
collaborations are required to transcend beyond statistical associations and obtain
crucial insight into glaucoma pathogenesis. Only then will this enable timely and
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positive real-life impacts on clinical practice to ameliorate the escalating problem of
glaucoma-related blindness due to the rapid aging of the world’s population.
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8. Figure Legends

Figure 1. Subtypes of adult onset glaucoma. Primary open-angle glaucoma (L),
can be differentiated from Primary angle-closure glaucoma (M) by the irido-
trabecular meshwork angle. This angle is occluded in angle closure glaucoma due to
anatomical alterations, interfering with aqueous drainage and induces increased
intraocular pressure (IOP). In open-angle glaucoma, the anatomical angle is
unoccluded but outflow resistance is increased, resulting in increased IOP. This is
mainly due to pathological alterations along the trabecular meshwork tissue or
elsewhere along the drainage pathway. In Exfoliation glaucoma (R), abnormal
deposition of extracellular debris in anterior chamber structures interferes with
aqueous outflow, leading to increased IOP. Increased IOP in all glaucoma subtypes
invariably leads to degeneration of retinal ganglion cells (RGC), progressively
leading to blindness.

Figure 2. Comparing and contrasting Single Nucleotide Polymorphism-based
and Exome sequencing-based approaches to finding risk genes in genome-wide
association studies of glaucoma subtypes.

Figure 3. Possible disease mechanisms in Primary open-angle glaucoma that
result in the degeneration of retinal ganglion cells.

Figure 4. Functional readouts of discovered variants can potentially improve
precision in diagnosing and predicting risk of disease progression in
exfoliation syndrome. A functional allelic series of CYP39A1 variants discovered by
whole exome sequencing is shown. Box and whisker plots of enzymatic activities of
the alleles, normalised to the wild-type reference allele re indicated. Blue rectangle
denotes normal range of function. Alleles are classified as common alleles not
associated with disease, predicted benign and predicted deleterious alleles.
Predicted deleterious alleles were used in the initial effect size calculations. As
expected, predicted benign alleles had a higher median activity, while predicted
deleterious alleles had a much lower median activity. A. Misclassified variants, i.e.,
whose actual functional activities were not predicted correctly by bioinformatics
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algorithms are indicated. B. Odds ratio that was recalculated based using an
arbitrary cut-off of 95% loss of function was unchanged and highly significant,
indicating that the vast majority patients with XFS carried the most severe loss of
function alleles. C. Retrospective tracking of heterozygous carriers of the G204E
alleles in the Japanese population found that carriers were 6 times more likely to
progress to blindness. Tracking of carriers of this allele and other severe loss of
function alleles in other populations is needed to confirm whether these alleles could
be clinically actionable and whether carriers should be subjected to early clinical
intervention. More data is also needed to establish the extent of loss of function that
is needed for XFS to manifest .
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