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Vast stretches of East and Southern Africa are characterized by a mosaic of deciduous
woodlands and evergreen riparian forests, commonly referred to as “miombo,” hosting a
high diversity of plant and animal life. However, very little is known about the communities
of small-sized mammals inhabiting this heterogeneous biome. We here document the
diversity and abundance of 0.5–15 kg sized mammals (“meso-mammals”) in a relatively
undisturbed miombo mosaic in western Tanzania, using 42 camera traps deployed over
a 3 year-period. Despite a relatively low diversity of meso-mammal species (n = 19),
these comprised a mixture of savanna and forest species, with the latter by far the
most abundant. Our results show that densely forested sites are more intensely utilized
than deciduous woodlands, suggesting riparian forest within the miombo matrix might
be of key importance to meso-mammal populations. Some species were captured
significantly more often in proximity to (and sometimes feeding on) termite mounds
(genus Macrotermes), as they are a crucial food resource. There was some evidence
of temporal partitioning in activity patterns, suggesting hetero-specific avoidance to
reduce foraging competition. We compare our findings to those of other miombo sites
in south-central Africa.

Keywords: small mammals, miombo, habitat use, termite mounds, riparian forests, woodlands, meso-mammals

INTRODUCTION

Miombo woodlands cover a vast area of eastern and southern Africa, and typically consist of a
mosaic of open to dense deciduous woodlands dominated by Brachystegia and Julbernardia trees,
interspersed with patches of evergreen riparian forests and wetlands (Frost, 1996; Banda et al., 2008;
Munishi et al., 2011; Gumbo et al., 2018). Despite sustaining a diverse plant life, mainly due to
the high annual rainfall (up to 700 mm/year; Frost, 1996; Godlee et al., 2020; Muvengwi et al.,
2020), these habitats are characterized by shallow, nutrient-poor soils, and by unpalatable grasses
(Frost, 1996; Loveridge and Moe, 2004; Montfort et al., 2021). Coupled with the scarcity of surface
water during the dry season, and with annual fires depleting standing vegetation biomass, these
factors contribute to differences in diversity and abundance of large mammal species compared
to other savanna-woodland ecosystems in Sub-Saharan Africa, especially in the dry season when
abundance drops (Caro, 1999; Waltert et al., 2009; Kavanna et al., 2014; Amaya et al., 2021;
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Davis et al., 2021). However, little is known about the effects of
this environment on communities of small-sized mammals.

We know that some of miombo system characteristics could
prove highly favorable for small (0.01–0.5 Kg) and “meso-
mammals” (0.5–20 Kg; Frost, 1996; Timberlake et al., 2010). The
availability of fruit, flowers, and seeds from a diverse woody
plant flora, for example, might offer ample foraging opportunities
for herbivorous rodents (and the small carnivores that prey
on them), and allow for dietary niche differentiation and co-
existence among multiple species (Frost, 1996). Furthermore,
the low densities of ungulates and large carnivores (e.g., felids,
canids) could attenuate the intensity of interspecific competition
over food resources, and thus open up novel ecological niches for
smaller species (Caro, 2001, 2002; Easter et al., 2019), especially
if canopy cover prevents abundant grasses from sustaining large
herbivore communities. Nonetheless, although such combined
conditions (abundant food, reduced competition, and lower
predation risk) are predicted to promote species-rich small and
meso-mammal communities and large population sizes, available
data point elsewhere.

Most studies reveal a general pattern of low rodent
diversity and abundance in miombo systems characterized by
vast expanses of uniform deciduous woodlands (Linzey and
Kesner, 1997; Caro, 2001, 2002; Gaynor et al., 2021). By
contrast, relatively larger numbers of small and meso-mammals
(both at the species and population levels) are found in
those miombo systems encompassing patches of well-watered,
evergreen riparian forest or wetlands (e.g., Pettorelli et al., 2010;
Rovero et al., 2017). This suggests that woodland resources might
be of overall little value to small-sized mammals [possibly due to
lower plant diversity, plant unpalatability, or water shortages, as
proposed for larger mammals (Frost, 1996; Waltert et al., 2009)]
with higher numbers found in more productive and botanically
heterogeneous areas within the woodland matrix.

Rodent distribution in the miombo also appears to mirror
that of widely dispersed biotic features, such as open grassland
patches, human settlements, or termite mounds (Linzey and
Kesner, 1997; Caro, 2001, 2002; Fleming and Loveridge, 2003).
For example, in a test of the importance of termite mounds
for small vertebrates in a Zimbabwe miombo system, results
from live-trapping individuals revealed how several species were
substantially more common on mounds, to the point that some
would burrow only in proximity to termite colonies while
avoiding the surrounding woodlands (Fleming and Loveridge,
2003). It is thus possible that the observed patterns of small-sized
mammal diversity and abundance across a miombo system could
also be heavily influenced by the availability of such “resource
islands,” likely representing an important food source in an
otherwise low-diversity biome.

The association of small and meso-mammals with highly
localized botanical communities and biotic features (e.g., riparian
forests, termite mounds) could also promote high levels of
interspecific competition. Rare or widely scattered food and
water have been widely documented to increase the rate of
encounter among competing mammalian species sharing the
same resources, with substantial fitness costs in terms of direct
interference competition (e.g., injuries, unsustainable energetic

expenses; Dickman, 1991; Valeix et al., 2007). This is in turn
is reflected by fine-scale strategies to avoid interference, among
which temporal partitioning in activity patterns is the most
common (Kronfeld-Schor and Dayan, 2003; Frey et al., 2017).
One study of small carnivores reported activity patterns shifts
among co-existing miombo-dwelling species with a similar
diet (e.g., insects and rodents), therefore pointing to temporal
partitioning as an important behavioral strategy to cope with
limited resource availability (Easter et al., 2019).

So which habitat types and environmental features favor
the presence of small-sized mammalian taxa within a
miombo ecosystem? In the current study, we investigated
the environmental factors underlying smaller mammal diversity
and abundance in a relatively undisturbed miombo mosaic
habitat, the Issa Valley of western Tanzania (“Issa” from now
onward) using a network of motion-triggered camera traps
(CTs) over a 3-year period (2016–2018). Since CTs are usually
not triggered by animals < 0.5 kg in body mass (Rowcliffe
and Carbone, 2008), we restricted our investigation to meso-
mammals (rodents, elephant shrews, lagomorphs, pangolins, and
small carnivores weighing more than 0.5 kg). This excluded a
large proportion of small mammals which could not be detected
by CTs, such as the entire guild of small rodents. We report
also results for species smaller than 0.5 kg, with the caveat
that the frequency of detection might be negatively biased by
smaller body sizes. While there are published species lists of
large mammals from the study area (Piel et al., 2019), little is
known about the meso-mammal community. We first used the
CT network to compute an inventory of the species found in
the study area. Issa is characterized by a highly varied ecological
landscape, with deciduous woodlands on high-lying plateaus,
and an extensive system of river valleys hosting closed-canopy,
evergreen riparian forests. We expected to find higher species
diversity in river valleys characterized by riparian forests than in
deciduous woodlands. Relative abundance was considered as an
indicator of the intensity of habitat use rather than an estimate
of local densities, given that individual identification was not
possible and the same individuals could have been captured
multiple times on CTs.

We then applied CT data to identify the ecological drivers of
the intensity of site use by meso-mammals, using capture rates
as indicators of relative abundance (Rovero and Marshall, 2009;
Rovero et al., 2014). Specifically, we tested the hypothesis that
the deciduous woodlands at Issa would represent a less suitable
habitat for meso-mammals than the riparian forests, as proposed
previously for larger species (Frost, 1996; Waltert et al., 2009).
We further predicted that meso-mammals would be relatively
more abundant at CT sites located in the riparian forests of
river valleys (characterized by steep slopes and low elevations)
rather than on plateau woodlands, given the supposedly greater
availability of forage, cover, and water in the forests. We also
predicted that all insectivorous species would be more frequently
captured at CT sites located in proximity to termite mounds (of
the genus Macrotermes), as the latter might provide important
but highly localized food and shelter sources. Relative abundance
was considered as an indicator of the intensity of habitat use
rather than an estimate of local densities, given that individual
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identification was not possible and the same individuals could
have been captured multiple times on CTs.

Finally, we explored whether the presumed scarcity and/or
wide dispersion of miombo resources would translate into fine-
scale temporal partitioning in activity patterns throughout the
day and night among meso-mammal species. We thus predicted
that species would exhibit little temporal overlap in primary time
of activity between each species pair that shared similar diets. In
particular, insectivorous, nocturnal species were expected to show
a high degree of differentiation among them in night-time activity
patterns, to avoid direct interference over shared food resources.

MATERIALS AND METHODS

Study Area
The Issa valley lies in the Tongwe West Forest Reserve,
western Tanzania (Figure 1). Issa comprises steep river valleys
(900 m asl) and high-lying plateaus (1,800 m asl; Piel et al.,
2015, 2019; Mayengo et al., 2020). The entire region is
dominated by deciduous miombo woodlands and closed-canopy,
evergreen riparian forests, typically located in the valleys between
steep slopes (Piel et al., 2019). Woodlands are dominated by
Brachystegia and Julbernardia trees, while a variety of woody
plant species typical of the central African lowland rainforests
is found in the riparian forests (Piel, 2018; Piel et al., 2019).
Mean annual temperatures range between 11 and 38◦C, while
mean annual rainfall ranges between 900 and 1,400 mm. Rainfall
patterns denote distinctive wet (November–April) and dry
seasons (May–October) (Piel et al., 2019; Mayengo et al., 2020).
Common medium/large mammals include chimpanzee (Pan
troglodytes), yellow baboon (Papio cynocephalus), roan antelope
(Hippotragus equinus), Lichtenstein’s hartebeest (Alcelaphus
lichtensteinii), and bushpig (Potamochoerus larvatus), with larger
predators such as lion (Panthera leo), leopard (P. pardus),
wild dog (Lycaon pictus), and spotted hyena (Crocuta crocuta)
also present but at low densities (Piel et al., 2019). Issa is
surrounded by small (formerly refugee) settlements established in
the 1970s. Humans sporadically visit the area for wildlife snaring,
small-scale logging, honey collection, or livestock herding, but
anthropogenic impacts on the landscape remain modest (Piel
et al., 2015, 2019).

Camera Trapping
We deployed a total of 42 motion-triggered, infrared CTs
(Bushnell Trophy Cam HD Aggressor; and Reconyx Hyperfire
2 HF2X) at Issa over a 3-year period (December 2015–
December 2018). Due to mechanical camera failures, this was
for a total of 21,517 camera days (Supplementary Material).
Camera days were calculated as the number of calendar days
in which a CT was deployed and active in the field. Distances
between single CT sites were at least 150 m, covering an
area of 14.45 km2. We selected CT sites to sample different
vegetation types, with half in deciduous woodlands (n = 21;
camera days mean ± S.E. = 427.57 ± 68.82; range = 47–
986), and the other half in riparian forests (n = 21; camera
days mean ± S.E. = 597.05 ± 67.51; range = 49–940;

Supplementary Material). We attached CTs to large trees, 30–
90 cm above the ground, following recommendations for camera
trapping of small- and medium-sized mammals (Rowcliffe and
Carbone, 2008; Ortmann and Johnson, 2021). To maximize
capture probability, we deployed CTs primarily along forest and
woodland trails—commonly utilized by terrestrial vertebrates
(Rovero et al., 2010; Cusack et al., 2015). Moreover, tall grass and
woody plants growing in the CTs line of sight were artificially
removed at regular intervals. Of the 42 CTs deployed, 15 were
positioned in proximity of large termite mounds of the genus
Macrotermes (the most common in the study area; Mayengo et al.,
2020; Table 1). CTs faced the mounds, which were confirmed to
be actively occupied by termite colonies in the course of a parallel
study on primate feeding behavior. All CTs were set on video
mode (video duration: day = 60 s; night = 15 s) with a 1 s delay
between exposures, and visited once a month to retrieve SD cards
and change batteries. For statistical analyses, CTs active for less
than 30 calendar days (“camera days” from now onward) were
removed from the dataset.

We identified all meso-mammals (rodents, hares, elephant-
shrews, small carnivores, and pangolins) captured on CTs to
species level (except when lighting conditions or poor video
quality prevented an unequivocal identification). The giant and
southern ground pangolins (Smutsia gigantea and S. temmincki,
respectively) were considered together as “pangolins,” since they
could not be easily distinguished from each other based on the
resolution of the available video material.

Environmental Covariates
In QGIS v. 3.14.1, we extracted the elevation (m) of each CT
site from a Digital Elevation Model (DEM) at 90 m spatial
resolution. We then then calculated slope as a percentage value
(%), using the Terrain Analysis toolbox in QGIS. The vegetation
type of all CT sites was derived from a vegetation map based
on Landsat satellite imagery, at a spatial resolution of 30 m.
Vegetation type was classified as either “deciduous woodland”
or “riparian forest” and later confirmed on the ground. In a
small number of cases (n = 4), there was disagreement between
the available vegetation-class map and ground observations,
probably reflecting a failure of remote-sensing imagery to capture
small-scale variation in habitat structure. This was therefore
rectified in our final dataset. Finally, we classified all CT sites as
either located at termite mounds or not.

Statistical Analyses
We conducted all statistical analyses in R v. 3.5.2 (R Core Team,
2020). We calculated the Relative Abundance Index (RAIs) for
all identified meso-mammals as the number of videos obtained
for each species, divided by the overall number of camera days
(Rovero et al., 2010; Palmer et al., 2018). We excluded multiple
capture events of the same species on the same camera day
from analyses. We did this to minimize the risk of pseudo-
replication generated by double-counting the same individual on
the same day, which was more conservative than the threshold
adopted by other studies (Bowkett et al., 2008). Although not
excluding the possibility of capturing the same individuals
on different days and at different CT sites, this conservative
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FIGURE 1 | Location of the camera traps (n = 42) deployed between January 2016 and December 2018 in the Issa Valley, in relation to the different vegetation
types. The Issa station represented the main research base for the study. The camera trap site in “grassland/swamp” was instead located in a patch of deciduous
woodland, and thus corrected upon field examination of the site.

approach was deemed necessary to exclude repeated sequences
of videos from the same individuals of certain species remaining
in proximity of CT sites with termite mounds for very long
periods while feeding on termites or waiting for swarming
events. RAIs also were calculated separately for woodland vs.
forest vegetation types, to compare differences in meso-mammal

relative abundance between the two main vegetation types found
at Issa. We performed all computations in the package unmarked
(Fiske et al., 2015).

To determine the drivers of meso-mammal relative
abundance, we used the number of camera days on which
different species were captured at each CT site as a proxy
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TABLE 1 | Relative Abundance Indices (RAIs) for the meso-mammal species (n = 19) of Issa Valley, Tanzania.

Species RAI total
(camera

days = 21,517)

RAI riparian
forest

(camera
days = 12,538)

RAI
deciduous
woodland
(camera

days = 8,979)

Number of
detections

Number of CT
sites where
the species

was detected

Body mass
range (Kg)

Typical diet

Giant Pouched Rat 5.010 7.324 1.904 1,078 30 1.0–1.4 Fruit, seeds insects

Bushy-tailed Mongoose 4.169 6.325 1.158 897 36 1.3–2.1 Insects

Large-spotted Genet 0.889 1.053 0.657 191 28 1.3–2.3 Insects, small vertebrates

Pangolins 0.730 0.781 0.657 157 23 30–35 (giant);
7–18

(ground)

Termites, ants

Crested Porcupine 0.428 0.375 0.501 92 21 12–27 Roots, tubers

Chequered Elephant shrew 0.363 0.471 0.212 78 14 0.5 Insects

African Civet 0.158 0.119 0.212 34 14 7–20 Small vertebrates insects,
fruit

Dwarf Mongoose 0.079 0.056 0.111 17 9 0.2–0.4 Insects

Palm Civet 0.046 0.080 0 10 3 2.0–3.2 Small vertebrates insects,
fruit

Banded Mongoose 0.028 0.048 0 6 4 1.5–2.25 Insects, small vertebrates

Marsh Mongoose 0.028 0.048 0 6 2 2.0–5.0 Crustaceans, molluscs,
small vertebrates

Four-toed Elephant Shrew 0.023 0 0.056 5 1 0.2–0.3 Insects

Savanna Hare 0.019 0 0.045 4 2 1.5–4.5 Leaves, grass, roots

Serval 0.009 0 0.022 3 3 6.0–13.5 Small vertebrates

Honey Badger/Ratel 0.014 0.016 0.011 3 3 5.2–14.5 Small vertebrates, insects
honey

Rock Hyrax 0.014 0.016 0.011 3 2 1.8–5.5 Leaves, grass

White-tailed Mongoose 0.005 0.008 0 1 1 2.0–5.2 Insects, small vertebrates

African Bush Squirrel 0.009 0.008 0.011 2 2 0.1–0.3 Fruit

African Clawless Otter 0.014 0.024 0 3 1 10–18 Small aquatic vertebrates

RAIs have been calculated for the overall study area, and separately for the two main habitat types (riparian forest and dry woodland). Information on body mass and diet
were derived from Kingdon (2015).

for the intensity of site use (Bowkett et al., 2008; Rovero
et al., 2010). We limited our analyses to five species that
were captured by CTs on > 50 camera days (Mori et al.,
2020), namely: Bushy-tailed Mongoose (Bdeogale crassicauda),
Chequered Elephant-shrew (Rhynchocyon cirnei), Crested
Porcupine (Hystrix cristata), Giant Pouched Rat (Cricetomys
gambianus), and Large-spotted Genet (Genetta maculata).
General characteristics of these species are presented in Table 2.
We used Generalized Linear Models (GLMs) for count data to
describe the relationship between relative abundance and the
environmental covariates recorded at each CT site (elevation,
slope, vegetation type, and presence of termite mounds; Bowkett
et al., 2008). Models were fitted separately for each of the
study species. Elevation was transformed from continuous

to categorical (>1,450 m and < 1,450 m) following multiple
convergence issues (Allison et al., 2004). The number of camera
days also was entered in the models as an offset variable to
control for variation in “effort” between CTs. Due to the small
sample size for most species (≤150 captures over 3 years for
three out of five species), and our GLM-based approach, it
was not possible to account for seasonal variation in relative
abundance, and this should be considered when interpreting
our results. We selected a zero-inflated negative binomial
distribution for all GLMs, given significant over-dispersion
in the count data and the large number of non-captures
(i.e., species absent at certain CT sites for the entire study
period). All models were built in the glmmTMB package
(Magnusson et al., 2017).
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TABLE 2 | Averaged coefficient estimates and significance levels for predictors of
relative abundance of five most common meso-mammal species in the Issa Valley,
Western Tanzania.

A. Giant Pouched Rat

B S.E. z P

Habitat (Forest) 2.523 0.524 4.645 <0.001

Mound (Yes) 1.255 0.463 3.061 0.008

Altitude (Low) 1.198 0.435 2.658 0.007

Slope 0.141 0.038 3.544 <0.001

B. Bushy-tailed Mongoose

B S.E. z P

Habitat (Forest) 1.490 0.401 3.601 <0.001

Mound (Yes) 1.937 0.452 4.161 <0.001

Altitude (Low) 0.665 0.393 1.636 0.102

Slope 0.053 0.030 1.722 0.085

C. Chequered Elephant Shrew

B S.E. z P

Habitat (Forest) 1.708 0.834 1.987 0.047

Mound (Yes) 0.441 0.757 0.583 0.560

Altitude (Low) 3.812 1.044 3.570 <0.001

Slope 0.211 0.074 2.825 0.004

D. Large-spotted Genet

B S.E. z P

Habitat (Forest) 0.485 0.438 1.452 0.284

Mound (Yes) 2.703 0.421 6.218 <0.001

Altitude (Low) 0.657 0.401 1.585 0.100

Slope 0.044 0.032 1.333 0.182

E. Crested Porcupine

B S.E. z P

Habitat (Forest) 0.394 0.482 1.792 0.428

Mound (Yes) 0.591 0.690 0.834 0.404

Altitude (Low) –0.393 0.561 0.681 0.404

Slope 0.055 0.039 1.378 0.168

Conditional averages were calculated for all models with 1AIC ≤ 2. Significant p-
values (p < 0.05) are in bold, and trends to significance in (0.05 < p < 0.1) in
italics.

We tested model fit to a zero-inflated negative binomial
distribution by using the dispersion test and the Kolmogorov-
Smirnov test for fitted vs. simulated residual distribution in
the DHARMa package (Hartig, 2017). All tests returned a
P-value larger than 0.2, therefore confirming the goodness-
of-fit of our models. Exact binomial tests did not detect
any outliers. The potential for multicollinearity among
environmental covariates was checked by computing
Variance Inflation Factors (Kutner et al., 2005). Since
all VIFs were < 2, and therefore well below the accepted
threshold of concern (5–10; Kutner et al., 2005), we excluded
that multicollinearity had a significant effect on model
coefficient estimates.

We selected models with the lowest Akaike’s Information
Criterion (AIC, corrected for small sample size) and the
largest Akaike’s weights (wAIC) as those best explaining the
relative abundance of each meso-mammal species (Burnham and
Anderson, 2002; Wagenmakers and Farrell, 2004; Burnham et al.,
2011). AIC values were compared among competing models
containing all possible combinations of environmental covariates
as main effects. For models differing by ≤ 4 in AIC, conditional
averaged coefficients were calculated in the package MuMiN
(Barton, 2015). To estimate the overall degree of temporal overlap
in activity patterns among the five most common study species
(see above), we reported the local time at which each species
was captured on CT in our dataset. Capture events were again
restricted to one per day (randomly selected) to minimize the
risk of pseudo-replication; as the same individuals visited CT
sites for prolonged periods while feeding on termite mounds,
the choice of one event per day ensured that each observation
corresponded to an independent activity bout, given the body
size of the study species (a 1-day interval was taken as longer
than the time required by meso-mammals to traverse a home
range; Swihart et al., 1988). In the overlap package (Meredith and
Ridout, 2014), we calculated the overlap coefficient of temporal
activity pattern for each species pair (delta; Monterroso et al.,
2014). We adopted the delta1 estimator when at least one of the
study species was captured in ≤75 events, and the delta4 when
both species were captured in ≥ 75 events (Monterroso et al.,
2014). The 95% confidence interval for the delta obtained from
each species pair was then computed using percentile intervals
of 999 bootstrap samples (Monterroso et al., 2014). Overlap in
activity patterns was considered low when < 0.05, moderate
when between 0.05 and 0.75, and high when > 0.75 (Mori
et al., 2021). We then tested for finer-scale differences in activity
patterns between species pairs by using bootstrap tests (number
of bootstrap repetitions = 999) with the function compareCKern
in the package activity (Rowcliffe et al., 2014; Mori et al.,
2021). Bootstrap tests compare two sets of circular observations
(i.e., daily activity patterns of two study species over a 24-h
period) and determine the statistical significance that the two
observations belong to the same temporal distribution. Rejection
of the null hypothesis (P < 0.05) was considered as indicative of
significantly different activity distributions between species pairs.
A limited sample size prohibited our estimating temporal activity
overlap between woodlands and riparian forests. However, our
study covered a small area, and thus spatial segregation between
species is unlikely.

RESULTS

Species Inventory and Relative
Abundance Indices
We detected 19 species of meso-mammals on CTs in Issa
(Table 1). RAIs indicated that two species, namel the Bushy-
tailed Mongoose and the Giant Pouched Rat, were substantially
more common than the others and captured on a total of
897 and 1,078 camera days, respectively. Only three other
species were captured on videos on more than 50 camera days.
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FIGURE 2 | Average number of camera days (Mean ± S.E.) in which each meso-mammal species in Issa Valley was detected, compared between CT sites in
deciduous woodland (n = 20) and riparian forest (n = 22).

According to our expectations, most species (n = 10) exhibited
a higher relative abundance at CT sites located in riparian
forests rather than woodlands. Conversely, seven species were
more often observed in the woodlands, while two (the Honey
Badger Mellivora capensis and Rock Hyrax Procavia capensis)
presented qualitatively similar RAIs between the two vegetation
types. We also observed that some species completely avoided
one vegetation type or the other (Table 1). For example, meso-
mammals typical of open habitats, like the Serval (Leptailurus
serval) and the Savanna Hare (Lepus victoriae) were never
captured at riparian forest CT sites. On the other hand, species
that are typical of dense habitats or are highly dependent on
available surface water, such as the African Clawless Otter (Aonyx
capensis), Marsh Mongoose (Atilax paludinosus), and White-
tailed Mongoose (Ichneumia albicauda), were found only in the
water-rich and well-vegetated riparian forests. These patterns
suggest that species typical of different ecosystems coexist in
Issa thanks to habitat heterogeneity. However, RAIs should be
interpreted with caution, as most of them were computed for
very small sample sizes and without taking into account the
potential for spatial auto-correlation among CT sites. The use

of RAIs also does not allow for estimating variation in the
probability of detection among CT sites due to local micro-
site conditions, and this should be taken into account for the
interpretation of our results.

Ecological Drivers of Relative
Abundance
Through our modeling approach, we found that three of the five
most common meso-mammal species at Issa, namely the Bushy-
tailed Mongoose, Giant Pouched Rat, and Chequered Elephant-
shrew, were significantly more abundant at CT sites located in
forests rather than woodlands (Table 2 and Figure 2). Moreover,
the relative abundance of the Giant Pouched Rat and of the
Chequered Elephant-shrew was also higher at lower elevations
(<1,450 m) and positively correlated with slope (Table 2),
indicating that these two species utilized the Issa valley system
more intensely than the plateaus. Similar trends, although non-
significant, were also observed for the Bushy-tailed Mongoose
(positive correlation with slope) and for the Large-spotted Genet
(more abundant at lower elevations; Table 2). According to
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FIGURE 3 | Average number of camera days (Mean ± S.E.) in which each meso-mammal species was detected, compared between CT sites located at termite
mounds (n = 15) and sites with no termite mounds in close proximity (n = 27).

our expectations, three of the four insectivorous-omnivorous
species, the Bushy-tailed Mongoose, Giant Pouched Rat, and
Large-spotted Genet, were also more frequently captured at CT
sites located near termite mounds, rather than along game trails
(Table 2 and Figure 3). Only the Chequered Elephant-shrew,
despite its insect-based diet, was not more common at CT sites
with termite mounds than at sites without mounds (Table 2 and
Figure 3). No environmental covariates explained the variation
in relative abundance among CT sites for the Crested Porcupine.

Temporal Overlap in Activity Patterns
We observed that four out of the five most common meso-
mammals at Issa, excluding the Chequered Elephant Shrew,
were largely nocturnal. Circadian overlap in overall activity
patterns was thus high (>0.75) between all species (excluding
the diurnal elephant shrew), irrespective of dietary similarities
(Table 3 and Figure 3). For example, the Large-spotted Genet,
which is carnivorous but also consumes large quantities of
insects at certain times of the year, exhibited substantial activity
overlap (1 > 0.75; Table 3) with the Bushy-tailed Mongoose,
and with the Giant Pouched Rat, which also often feed on

insects. Nonetheless, some partitioning in activity patterns could
be detected using bootstrap testing, as all species exhibited
significant finer-scale differences in their temporal activity
distributions between each other (Table 3 and Figure 4). The
Giant Pouched Rat was more active during earlier night hours
compared to the Bushy-tailed Mongoose, in spite of substantial
overlap in overall activity times (1 > 0.75; both species largely
nocturnal; Figure 4). Similarly, the Large-spotted Genet was also
active at night, but with more detections during early morning
than the mongoose and the rat (Table 3 and Figure 4). The
Chequered Elephant-shrew, which is largely diurnal, appeared
to almost completely segregate temporally from the larger
Bushy-tailed Mongoose, Giant Pouched Rat, and Large-spotted
Genet (Table 3 and Figure 4) by concentrating its activity
peaks in the late morning and early evening (09:00–12:00 a.m.
and 08:00–09:00 p.m., respectively). Surprisingly, all primarily
insectivorous species showed significantly different temporal
distributions of activity from the herbivorous Crested Porcupine,
which feeds mostly on roots and therefore does not represent a
potential competitor over shared forage resources (Table 3 and
Figure 4).
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TABLE 3 | Estimates of temporal overlap in activity patterns (1 ± 95% C.I.) for
pairs of the five most common meso-mammal species in the Issa Valley.

Species pairs and number of
detections (in brackets)

1 1 95% C.I. Bootstrap test
P-values

Bushy-tailed mongoose
(897)–Chequered elephant shrew
(78)

0.326 0.249–0.410 <0.001

Bushy-tailed mongoose
(897)–Crested porcupine (92)

0.833 0.748–0.909 0.005

Bushy-tailed mongoose
(897)–Giant pouched rat (1078)

0.916 0.881–0.949 <0.001

Bushy-tailed mongoose
(897)–Large-spotted genet (191)

0.832 0.769–0.899 <0.001

Chequered elephant shrew (78)
– Crested porcupine (92)

0.473 0.368–0.584 <0.001

Chequered elephant shrew (78)
– Giant pouched rat (1078)

0.366 0.297–0.438 <0.001

Chequered elephant shrew (78)
– Large-spotted genet (191)

0.549 0.458–0.651 <0.001

Crested porcupine (92)–Giant
pouched rat (1078)

0.821 0.731–0.900 0.012

Crested porcupine (92)–Large-
spotted genet (191)

0.824 0.718–0.913 0.031

Giant pouched rat
(1078)–Large-spotted genet (191)

0.781 0.715–0.742 <0.001

We considered 1 < 0.05 as small overlap, 0.05 < 1 < 0.75 as moderate overlap,
and 1 > 0.75 as high overlap. The last column presents the statistical significance
of bootstrap tests for fine-scale differences in temporal distribution of activity
patterns between species pairs. Significant P-values (< 0.05) are highlighted in
italics.

DISCUSSION

In this study, we used motion-triggered camera traps to
investigate the ecology of a meso-mammal community in
the miombo mosaic ecosystem of the Issa Valley, western
Tanzania. We hypothesized that the vast deciduous woodlands
characterizing the miombo would support a relatively low
diversity of meso-mammal species due to the scarcity of resources
for terrestrial vertebrates reported in other studies. We found
that the meso-mammal community in the study area comprised
a relatively small number of species (n = 19), most of them
occurring at very low relative abundance. We also found that
meso-mammals were more abundant in the riparian forests
associated with river valleys than in the deciduous woodlands,
likely due to the greater availability of forage, protective cover,
and water in the wetter vegetation. Moreover, we observed that
some insectivorous and omnivorous species were more abundant
in immediate proximity to termite mounds, which could thus
represent important resource islands for meso-mammals in the
miombo. Finally, we investigated whether the presumed resource
scarcity in the miombo could translate into temporal partitioning
in activity patterns, so as to avoid interference competition
among those species sharing similar diets, and we found evidence
in support of this hypothesis.

Landscape heterogeneity may increase meso-mammal
diversity through various mechanisms, from increasing food
diversity (e.g., seeds, plants, invertebrates), to providing cover

from predators, to increasing dispersal success through habitat
connectivity (Price et al., 2010). At Issa, the species composition
and relative abundance of meso-mammals mirrors that of other
study sites characterized by high vegetative heterogeneity, such
as Udzungwa and Mahale (Pettorelli et al., 2010; Rovero et al.,
2017). Although forested areas are better represented in these
sites, results from Udzungwa and Mahale also revealed that the
most abundant meso-mammals were the Bushy-tailed Mongoose
and the Giant Pouched Rat (Pettorelli et al., 2010; Rovero et al.,
2017), similar to our findings. These were the only two species
with RAIs > 1; only five other species occurred at RAIs between
0.1 and 0.5 (Table 1). All other species occurred at very low
relative abundance, with RAI scores < 0.1. These patterns
suggest that the Issa system might not represent a highly suitable
environment for meso-mammals, given that only a handful of
species thrive in it.

The greater relative abundance of several species in riparian
forests suggests that these are important resources to meso-
mammals in this mosaic system. Riparian forests usually have
a very high diversity of plant species, offer nutrient-rich plant
forage due to eutrophic soils, do not burn seasonally, and
are located in proximity to permanent water sources (Naiman
et al., 2010; Timberlake and Chidumayo, 2011). Moreover,
the closed canopy cover of riparian forests provides a dark
undergrowth environment, which might offer protection against
larger diurnal predators (Prugh and Golden, 2014). Deciduous
woodlands, on the other hand, grow on nutrient-depleted
soils (resulting in low-quality plant forage), are seasonally
depleted of plant forage, burn during the dry season, are well-
lit due to sparser canopy cover, and generally have little to
no surface water (Frost, 1996; Timberlake and Chidumayo,
2011). Riparian forests thus likely hold important year-round
resources for meso-mammals, especially in terms of forage,
moisture, and protective cover. The same patterns were found
for rodents in the Ruvuma Landscape in southern Tanzania
(Nkwabi et al., 2018). On the other hand, a study in the
Katavi National Park (∼200 km South of Issa) reported a
smaller number of meso-mammal species in the same size
range examined here (14 species vs. 19 species at Issa; Table 1;
Caro, 2003). Since Katavi is largely dominated by deciduous
woodlands and grasslands, with little evergreen forest cover
(Banda et al., 2008), our findings highlight the importance
of riparian forests as key habitat for meso-mammals across
different miombo systems.

Another possibility is that the greater relative abundance
of meso-mammals observed in riparian forests at Issa could
derive from a greater detectability at riparian forest CT sites,
caused by differences in micro-habitat conditions between the
two vegetation types. This seems unlikely, however, given
that riparian forests present low-lighting conditions and more
complex vegetation backdrops, which should make CT detections
less likely compared to woodlands (i.e., the opposite of what
we observed). Additionally, some species that are arboreal or
climbers (e.g., the genet and, to a lesser extent, the Giant
Pouched Rat), given similar local densities, should have been
more easily detected at woodland sites, where they are forced to
move for longer distances on the ground. Taken together, these
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FIGURE 4 | Overlap in activity patterns between the five most common
meso-mammal species in the Issa Valley, Tanzania. The plots show time over
a 24-h period on the x-axis (note that at the latitude of Issa, sunrise is at about
06:00 h, and sunset at 18:00 h, throughout the year); and density of detection
events, on the y-axis.

considerations indicate that the greater number of CT detections
in riparian forests reflect a genuinely higher intensity of forest
site use compared to woodland sites, and not an artifact of our
sampling design.

Whereas some species exhibited clear preference for either
open or closed vegetation, some generalist species (e.g., Crested
Porcupine, Large-spotted Genet) were equally abundant in
woodlands and forests. This could reflect their greater plasticity
in habitat tolerance. Both the savanna/grassland species and the
generalist species occurred at much lower relative abundances
than the forest species; this may indicate an advantage for forest-
dwelling species that lie in the miombo mosaic in the form of
greater diversity of resources and greater availability of water and
protective cover in riparian forests.

Termite mounds are known for their abundant supply of
highly nutritious prey for mammals (Redford and Dorea, 1984)
and role in increasing biodiversity (Fleming and Loveridge,
2003). Given increased RAI scores at termite mounds for 3/5 of
the species we surveyed, these resources are clearly important
predictors of meso-mammal habitat use in the miombo. The
Bushy-tailed Mongoose is an ant and termite specialist (Kingdon,
2015), so we expected this relationship. On the contrary, the
Large-spotted Genet usually feeds on beetles, grasshoppers, and
small vertebrates where it has been studied previously (Roberts
et al., 2007), but at Issa it may rely on termites in miombo
areas between October-December when several swarming events
are commonly observed (D’Ammando, pers. obs.). Similarly,
the Giant Pouched Rat is reportedly granivorous, but we
observed several instances of rats consuming termites from
CT recordings. Termite mounds may offer protective cover
to several mammal species, as nesting in mound burrows has
been suggested to explain the greater abundance (both in terms
of species and of individuals) of rodents in the vicinity of
mounds in miombo ecosystems (Fleming and Loveridge, 2003).
Future studies could resolve this issue by investigating whether
the abundance of insectivorous mammals in miombo habitat
increases in concomitance with alate swarming events (Dial and
Vaughn, 1987), thereby indicating that the mounds may also act
primarily as food sources.

The relatively low abundance of the Chequered Elephant-
shrew on Macrotermes mounds is surprising, given that elephant
shrews broadly (Woodall and Currie, 1989) and this species
specifically (Redford, 1987) is known to feed on termites. It could
be that the larger size of M. subhyalinus and M. bellicosus are
chemically or anatomically prohibitive to consume (Longhurst
et al., 1978; Phillips et al., 2021). Our interpretation is that
this could reflect a behavioral strategy to avoid the other meso-
mammals attracted to termite mounds. Chequered Elephant-
shrews are much smaller than sympatric species at Issa and may
thus incur substantial costs from competition with mongooses
and genets. Moreover, the small carnivores commonly observed
at termite mounds could also represent potential predators
for the elephant shrew, thereby acting as a deterrent. These
considerations were supported by the temporal segregation of the
elephant shrew from other species.

High (temporal) overlap in activity patterns among three of
four omnivorous and insectivorous species could be interpreted
as evidence of little interference competition among meso-
mammals in miombo ecosystems, implying that resources may
not be limited. Most meso-mammal encounters were indeed in
riparian forests and/or on termite mounds, which presumably
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offer plentiful resources (i.e., year-round green foliage, fruits,
and termite swarms) when compared to deciduous woodlands.
This interpretation is however, invalidated by the fact that
significant differences in fine-scale temporal distributions of
activity patterns were detected between all pairs of study
species. These observations suggest that meso-mammals at Issa
tend to actively avoid each other, thereby indicating a high
potential for interference competition over limited resources.
Indeed, although foraging opportunities might be abundant
in riparian forests and on termite mounds, the small areal
extent and patchy distribution of these habitat features likely
constrains the amount of available food. Our findings thus
corroborate the hypothesis that the miombo offers scarce and
widely scattered resources to meso-mammals, reflected by the
behavioral mechanisms of temporal avoidance observed within
the omnivorous/insectivorous guild.

The unexpected differences in temporal activity distribution
between the four insectivorous/omnivorous species and the root-
eating Crested porcupine warrant further investigation. It is
possible that the porcupine is avoided by other species due to
its large size and quills, which could pose a serious danger to
smaller mammals during direct encounters. Another possibility
is that overlap in diet could be higher in miombo ecosystems,
with species that are typically targeting insects or fruit also
feeding on roots and other underground vegetal material favored
by the porcupine. Detailed analyses of behavior and dietary
preferences will be needed to clarify the ecological implications
of this finding.

One of the distinguishing characteristics of miombo
woodlands, especially in western Tanzania, is the extreme
seasonality, with a 6-month wet season when most of the
annual rain falls. Moreover, with anthropogenic fires burning
the landscape a few months after the last rains, the physical
environment is transformed in ways that are known to influence
animal presence and behavior (Frost, 1996; Desanker et al.,
1997; Mayengo et al., 2020). For example, rains stimulate termite
activity, which can result in alate feasts for predators (Dial
and Vaughn, 1987), and fires promote growth of new forage
for herbivores (Green et al., 2015). Unfortunately, the effect
of seasonality on the relative abundance of meso-mammals in
the region remains unknown. For small mammals (<0.5 kg),
which might share forage resources with meso-mammals (e.g.,
seeds, arthropods), reported seasonal effects on abundance
are inconsistent. Using Sherman traps in Katavi National Park
(∼250 km SE of Issa), Caro (2001, 2002) reported a slight increase
in overall captures of rodents in the dry season compared to
the wet but later, Fitzherbert et al. (2007) reported no seasonal
difference in captures using the same method and from the same
area. In the Ruvuma area, in southern Tanzania, although data
were collected across a single season, Nkwabi et al. (2018) found
an interaction between vegetation and burned stage with more
rodent diversity in riparian forests during sprouting, compared
to freshly burned periods, whereas for miombo woodlands,
they reported more diversity during recently burned periods. In
the most comprehensive study, Taylor and Green (1976) used
“breakback traps” to study reproduction in small mammals in
Kenya. They reported a drop in abundance from early to late

wet season and from mid to late dry season, similar to results
from Malawi a decade later (Happold and Happold, 1991).
Nonetheless, all these studies focused on smaller species than
those considered for this study (therefore making comparisons
difficult), and adopted different sampling methodologies.

We were not able to study the effect of seasonality and
especially fire in the current study due to a limited sample size,
constraints to our study design (i.e., sampling effort was biased
toward the wet season, while most species had too few captures
per season to estimate meaningful effect sizes), and lack of field
data (on the effects of burning events at the scale of CT sites).
Analyses of seasonal effects were also incompatible with our
modeling approach, as duplicating camera trap sites for wet
vs. dry season, while keeping all other variables constant (i.e.,
vegetation type, presence of termite mounds, slope, elevation)
would have severely violated GLM assumptions of independence
between data points and thus undermined our interpretation of
the results, However, we hope that future studies incorporate
these likely important influences on meso-mammal presence.

Moreover, while the number of cameras deployed for this
study and the temporal coverage (36 months) are sufficient to
address questions of relative abundance, there remain limitations.
First, we made no attempt to quantify resource availability or
evaluate habitat suitability for any of these species. Additional
investigation into micro-habitat features that may promote some
species over others would be very useful to discussion on inter-
specific competitive dynamics. Second, comparative work from
other miombo systems would allow us to better contextualize
our findings. All studies to date have adopted live-trapping as
a method to assess miombo small-sized mammal abundance
(e.g., Caro, 2001, 2002) thus focusing on smaller species than
those we considered for our CT approach. There is a dearth of
published literature on meso-mammal assemblages across dry
tropical woodland biomes, which means that we are unable
to be confident in whether our results are typical or not
for miombo mosaic systems. Finally, by identifying individual
animals, we could further extrapolate population densities of each
species and clarify the effects of differences in the probability of
detection between CT sites on estimates of relative abundance
and intensity of habitat use. Given the rise of machine learning
applications to camera trap footage, future studies that integrate
AI would allow even more robust analyses on resulting data
(Ahumada et al., 2020).

While there are numerous, global studies on mammal declines
in the Anthropocene, many focus on larger, especially charismatic
species (Harris et al., 2009; Junker et al., 2012). Far fewer have
focused on meso-mammals (but see Kennerley et al., 2021). This
study, along with others in this Special Issue, represent an attempt
not just to census meso-mammal assemblages, but also to begin
to understand what drives their (relative) abundance, especially
in a system that characterizes a large portion of eastern and
southern Africa.

Small-sized mammal communities are reliable reflectors of
biodiversity (Keller and Schradin, 2008) and anthropogenic
activity (Griffiths et al., 2015) and thus can serve as important
proxies through low-cost, low-maintenance remote monitoring
like camera trapping. Compared to sympatric larger species,
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their smaller ranges and enhanced adaptability may make them
more resilient to natural and anthropogenic pressures. As such,
data that inform on their natural habitat preferences, strategies
to minimize inter-specific competition, and overall ecology are
critical when habitat change is imposed on their system. We hope
to have shed light on a small (geographic) system here, but one
that can serve as a model for other parts of eastern-southern
Africa where miombo mosaic landscapes dominate.
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