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Reproducibility of 3 T APT-CEST in Healthy
Volunteers and Patients With Brain Glioma

Ivar J.H.G. Wamelink, MSc,1* Joost P.A. Kuijer, PhD,2 Beatriz E. Padrela, MSc,2

Yi Zhang, PhD,3 Frederik Barkhof, MD, PhD,2,4 Henk J.M.M. Mutsaerts, MD, PhD,2
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Background: Amide proton transfer (APT) imaging is a chemical exchange saturation transfer (CEST) technique offering
potential clinical applications such as diagnosis, characterization, and treatment planning and monitoring in glioma
patients. While APT-CEST has demonstrated high potential, reproducibility remains underexplored.
Purpose: To investigate whether cerebral APT-CEST with clinically feasible scan time is reproducible in healthy tissue and
glioma for clinical use at 3 T.
Study Type: Prospective, longitudinal.
Subjects: Twenty-one healthy volunteers (11 females; mean age � SD: 39 � 11 years) and 6 glioma patients (3 females;
50 � 17 years: 4 glioblastomas, 1 oligodendroglioma, 1 radiologically suspected low-grade glioma).
Field Strength/Sequence: 3 T, Turbo Spin Echo - ampling perfection with application optimized contrasts using different
flip angle evolution - chemical exchange saturation transfer (TSE SPACE-CEST).
Assessment: APT-CEST measurement reproducibility was assessed within-session (glioma patients, scan session 1; healthy volun-
teers scan sessions 1, 2, and 3), between-sessions (healthy volunteers scan sessions 1 and 2), and between-days (healthy volun-
teers, scan sessions 1 and 3). The mean APTCEST values and standard deviation of the within-subject difference (SDdiff) were
calculated in whole tumor enclosed by regions of interest (ROIs) in patients, and eight ROIs in healthy volunteers—whole-brain,
cortical gray matter, putamen, thalami, orbitofrontal gyri, occipital lobes, central brain—and compared.
Statistical Tests: Brown-Forsythe tests and variance component analysis (VCA) were used to assess the reproducibility of
ROIs for the three time intervals. Significance was set at P < 0.003 after Bonferroni correction.
Results: Intratumoral mean APTCEST was significantly higher than APTCEST in healthy-appearing tissue in patients
(0.5 � 0.46%). The average within-session, between-sessions, and between-days SDdiff of healthy control brains was 0.2%
and did not differ significantly with each other (0.76 > P > 0.22). The within-session SDdiff of whole-brain was 0.2% in both
healthy volunteers and patients, and 0.21% in the segmented tumor. VCA showed that within-session factors were the
most important (60%) for scanning variance.
Data Conclusion: Cerebral APT-CEST imaging may show good scan–rescan reproducibility in healthy tissue and tumors with
clinically feasible scan times at 3 T. Short-term measurement effects may be the dominant components for reproducibility.
Level of Evidence: 2
Technical Efficacy: Stage 2

J. MAGN. RESON. IMAGING 2022.

Novel imaging biomarkers in glioma patients may help
diagnosis, prognosis, and treatment decisions by

improving tumor characterization and delineation.1–3 One
such imaging biomarker is amide proton transfer (APT)
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imaging. APT is a subset of chemical exchange saturation
transfer (CEST) imaging that allows for quantitative amide
and peptide detection.1,4,5 Specifically, APT-CEST may be
especially useful in glioma imaging as these primary brain
tumors express increased amounts of protein.6–8 This mag-
netic resonance imaging (MRI) technique measures the inten-
sity change in bulk water after the magnetization in amide
protons is selectively saturated and transferred by chemical
exchange to water protons.6 This intensity change indirectly
reflects protein concentration in the tissue, computed by the
magnetization transfer ratio asymmetry (MTRasym).

4,5,9

Multiple clinical applications have been proposed in
recent years for neuro-oncological APT-CEST imaging and
show promising results regarding diagnosis, characterization,
and treatment planning and monitoring in glioma.8,10–14 Also
in other clinical contexts, APT-CEST has demonstrated its
potential clinical usability, eg, in the detection of stroke for
highlighting ischemic areas, paving its way to a near-future
standard application.15–17 However, particularly for routine
clinical application, high reproducibility in healthy and
tumorous tissue is crucial. Quantitative assessment of the
reproducibility of differences between healthy and tumorous
tissue is mandatory for the development of imaging bio-
markers with established cut-off values to non-invasively dif-
ferentiate between tissue conditions.

Previous preliminary findings in reproducibility studies
were promising for clinical 3 T APT-CEST applications.18–20

One study showed consistently higher within-session than
between-sessions reproducibility for 3 T APT-CEST with par-
tial brain coverage and relatively long scanning time in healthy
volunteers and glioma patients.18 Another study found good
reproducibility in brain tumors.19 Spatially homogenous radio-
frequency (RF) shimming and B0-inhomogeneity correction
could contribute to this reproducibility, but the authors of this
study exclusively investigated mean tumor APT-CEST values
in a single slice. A third study found good reproducibility in
only two healthy volunteers.20

The purpose of this study was to investigate the short-
and long-term reproducibility of 3 T APT-CEST measurements
in a comparatively large group of healthy volunteers and a pilot
level group of glioma patients, with a clinically applicable scan
protocol with full brain coverage and a short scan duration.

Methods
This prospective study was approved by the institutional
review board (VUmc_2021-0038) and written informed con-
sent was obtained from all participants.

Study Design
Healthy volunteers were recruited non-commercially through
external advertisements. Inclusion criteria were 1) age
>18 years and 2) neither clinical history nor MRI evidence of
brain pathology. Prospective recruitment also included

patients with suspected recurrent or de-novo glioma on exter-
nal MRI and referred for tumor resection between May 2021
and July 2021. Patients were included if 1) age >18 years, 2)
they had a radiological diagnosis of de-novo glioma or recur-
rent already confirmed glioma, 3) received clinically indicated
MRI, and 4) had no other concurrent brain pathology at the
time of diagnosis.

Participants with severe motion artifacts in T1-weighted
(T1w), contrast-enhanced T1-weighted (ceT1w), or APT-
CEST scans were excluded. No participants needed to be
excluded due to compromised image quality.

Participants
Twenty-one healthy volunteers (mean age � SD: 39 � 11 years,
11 women) and 6 glioma patients (mean age � SD: 50 �
17 years, 3 women) were scanned. Five patients subsequently
received a histopathological confirmation according to the 2021
World Health Organization (WHO) criteria: four glioblastomas
(GBMs; WHO grade 4) and one oligodendroglioma (WHO
grade 2).21 One patient opted against surgery due to the high
radiological likelihood of a slow-growing low-grade glioma.
Power analysis to determine group size to detect change in
APT-CEST for GBM and LGG is given in Table S1 in the
Supplemental Material.

Protocol of Scan–Rescan Test
Healthy volunteers were subjected to three APT-CEST scan
sessions (Fig. 1). The first two sessions were separated by par-
ticipant repositioning (between-sessions reproducibility) and
the last session occurred 4–14 days later (between-days repro-
ducibility). Patients underwent one scan session (Fig. 1). Each
session, in both volunteers and patients, contained two con-
secutive APT-CEST scans (within-session reproducibility)
with a B0-map in between. All participants received a structural
three-dimensional (3D) T1-weighted acquisition (T1w) while
the patients additionally received a complete neuro-oncological
MRI protocol according to the European Organisation for
Research and Treatment of Cancer standard including 3D
T1-weighted post-contrast (ceT1w) and fluid-attenuated inver-
sion recovery.22 APT-CEST scanning was performed before the
neuro-oncological MRI protocol.

APT-CEST Image Acquisition and Post-Processing
All participants were scanned on a 3-T MRI (Vida, Siemens
Healthineers, Erlangen, Germany) using a 20-channel head
coil, including whole-brain 3D MPRAGE T1w (repetition
time (TR) 2300 msec, echo time (TE) 2.32 msec, inversion
time (TI) 900 msec, refocusing flip angle 8�, field of view
240 mm, slice thickness 0.9 mm) and TSE SPACE APT-
CEST (TR 3000 msec, TE 17 msec, turbo factor
140, refocusing flip angle 120�, 2.8 � 2.8 � 2.8 mm3 resolu-
tion, 7 frequencies with saturation pulses [10 Gaussian pulses
of 100 msec at 2.0 μT] at �3.0 ppm, �3.5 ppm, �4.0 ppm,
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and 1560 ppm off-resonance, scan duration: 4:36 minutes)
plus a dual-echo gradient recalled echo (GRE) B0 map for cor-
rection of spatial inhomogeneity of the resonance frequency.23

All off-resonance scans were registered to the 1560 ppm
off-resonance scan to correct for head motion (MCFLIRT,
FSL 5.0.9).24 APT-CEST maps were then calculated as
MTRasym at 3.5 ppm off-resonance from motion-corrected
images:

APTCEST ¼MTRasym 3:5ppmð Þ
¼ Ssat �3:5 ppmð Þ�Ssat 3:5 ppmð Þ

S0
:

The Ssat and S0 represent the imaging signal intensities
measured with RF saturation at �3.5 ppm and at

1560 ppm, respectively. The B0 map was expressed in
ppm after unwrapping by FSL (Version 5.0.9) Prelude.
The measured points on the Z-spectrum (off-resonance sat-
uration spectrum) were interpolated to the actual frequency
shift as measured by the B0 map. We extrapolated the
measured points on the Z-spectrum if the frequency shift
was between �0.5 ppm and � 1 ppm. Voxels with a shift
larger than 1 ppm were masked (set to 0). Next, the
1560 ppm off-resonance APT-CEST scan was registered to
the non-contrast 3D T1w image with co-registration of the
APT-CEST map using FLIRT (FSL 5.0.9) for healthy vol-
unteers and patients.24 The 3D T1w scan was spatially
normalized to Montreal Neurosciences Institute (MNI)
space using CAT12.7 (build 1615)25 and again with co-
registration of the APT-CEST map, which was then
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FIGURE 1: (a) Scan protocol for the healthy volunteers. (b) Scan protocol for the patients. (c) Scan session. A session contains two
consecutive APT-CEST scans and one B0 map. (a) Scans: 1 = baseline, 2 = scan directly after the baseline—i.e., 1–2 = within-session
reproducibility—scan 4 is a scan 30 minutes after the first—i.e., 1–4 = between-sessions reproducibility—scan 6 = another day—
i.e., 1–6 = between-day reproducibility. (b) Glioma patients underwent one session.
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smoothed by a 3.5 � 3.5 � 3.5 mm3 full width at half
maximum (FWHM) Gaussian filter. No skull stripping
was performed.

Image Analysis
Five anatomical regions of interest (ROIs) were available in
MNI space using the Harvard-Oxford atlas26: the whole
brain including cerebellum and internal cerebral spinal
fluid spaces, cortical gray matter, deep white matter, puta-
men, and thalami. Three additional anatomical ROIs were
manually delineated near the orbitofrontal gyri, the occipi-
tal lobes, and the central brain by (I.J.H.G. Wamelink)
with 1 year of experience under supervision of a neuroradi-
ologist with 10 years of experience (V.C. Keil) (Fig. 2).
The orbitofrontal gyri represent a region that is susceptible
to B0-inhomogeneities.27 All three ROIs contained both
white and gray matter.

In patients with glioma, the ROIs enclosing presumably
vital glioma tissue were manually delineated, together with
similar-sized contralateral tissue ROIs, on the ceT1w for
enhancing tumors and based on FLAIR for the non-
enhancing tumors by a neuroradiologist with 10 years of
experience (V.C. Keil).

By multiplying the binary ROI atlases with the APT-
CEST scans the mean APTCEST values were calculated for all
scans. Next, the SD across all measurements was taken for
the eight ROIs. The SD across subjects of the within-subject
difference (SDdiff) between the mean APTCEST values was cal-
culated for the eight ROIs and each of the three reproducibil-
ity time intervals—within-session, between-sessions, and
between-days. Additionally, voxel-wise SDdiff maps were com-
puted from non-averaged APTCEST values for the three

reproducibility time intervals to visually identify locations of
low reproducibility.

Statistics
The Brown-Forsythe test (Python, Python Software Founda-
tion, version 3.6.9, package: Scipy, version 1.5.2) was used to
test the variance of the SDdiff among the three reproducibility
time intervals of the eight anatomical ROIs. Bonferroni cor-
rection was performed by dividing the significance threshold
(0.05) by the number of separate tests (8 ROIs � 2
tests = 16). Variance component analysis (VCA) (Rstudio
Version: 1.4.1106; VCA Version: 1.4.3) was performed on
the mean APTCEST value of the eight anatomical ROIs to
find the contributions of the different effects. The Brown-
Forsythe test and VCA were only performed on healthy
volunteers.

The agreement of the APTCEST values in tumor
patients was assessed by the intraclass correlation coefficient
(ICC) (Python, Python Software Foundation, version 3.6.9,
package: Pingouin, version 0.3.12). The within-session ICC
was computed for the tumor and contralateral ROI. The
ICCs were calculated with a 95% confidence interval
(CI) using an average random raters model, and given the fol-
lowing classifications: 0.00–0.39, poor; 0.40–0.59, fair; 0.60–
0.74, good; and 0.75–1.00 excellent.28

Bland–Altman plots were created to show differences
between the three reproducibility time intervals in healthy
volunteers. The Mann–Whitney U test (Python, Python Soft-
ware Foundation, version 3.6.9, package: Scipy, version
1.5.2) was performed to compare the mean APTCEST values
of the different structures in healthy volunteers with the mean
tumor values in patients. Statistical significance was deter-
mined at P < 0.006 with Bonferroni correction (0.05/8).

FIGURE 2: Axial, coronal, and sagittal slices of the three manually delineated regions of interest (ROIs).
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The effect size (E) was only computed for patients:

Effect size Eð Þ¼Tumor-to-normal tissue difference
SDdiff

:

Results
APTCEST Descriptive Statistics in Volunteers and
Patients
The mean and SD for the anatomical and tumor ROIs are
shown in Table 1. The mean APTCEST difference between
ROIs in GBMs and contralateral tissue was 1.11% (N = 4,
Table 1, Fig. 3). Intratumoral mean APTCEST

(1.59 � 0.67%, N = 6) was significantly higher than con-
tralateral similar-sized ROI APTCEST in healthy-appearing
tissue in patients (0.5 � 0.46%), and also significantly
higher than mean APTCEST in anatomical ROIs in healthy
volunteers (between 0.42 and 1.02, N = 21).

Reproducibility in Healthy Volunteers
Figure 4 shows high within-session reproducibility and
only slightly higher between-sessions and between-days
voxel-wise SDdiff. The highest within-session voxel-wise
SDdiff variance was found in the orbitofrontal gyri, as also
shown by the higher ROI SDdiff (Table 2). The SDdiff was
consistent within each of the three time intervals and only
showed a small increase (maximum of 0.11%)
between them.

The between-days SDdiff was consistently slightly lower
than the between-sessions SDdiff. However, the Brown-
Forsythe test showed a non-significant difference between
the between-sessions and between-days reproducibility
(P = 0.75, N = 21). The SDdiff increase between sessions
was small and the reproducibility did not significantly differ
between the within-session and between-sessions and the
within-session and between-days (Table 2). No statistically
significant differences were found after Bonferroni correc-
tion. The within-session SDdiff of the whole brain for all
patients was 0.2% (N = 6).

The VCA showed that total variance (0.03–0.07) was
relatively low compared to the difference between GBMs
and contralateral tissue (1.11%). The variance appears to be
predominated by the factor within-session rather than any
other factor (Table 3). This is consistent with the SDdiff

maps (Fig. 4). Figures 5 and 6 show Bland–Altman plots of
the mean APTCEST value against the APTCEST value session
differences of the brain ROIs.

Reproducibility in Patients
The within-session reproducibility of the tumors was slightly
lower (SDdiff, 0.21%, N = 6) than in the contralateral ROIs
(SDdiff, 0.11%), but without a statistical significance
(P = 0.73). The mean whole-brain APTCEST values did not Ta
b
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significantly differ between healthy volunteers and patients
(0.88 � 0.93%, 0.93 � 0.95% respectively; P = 0.13).
Mean tumor values did however differ significantly with the
eight ROIs in healthy volunteers. Within-session scan agree-
ment was the highest in contralateral ROIs (ICC = 0.99;
95% CI, 0.92–1.00; N = 21) followed by glioma
(ICC = 0.97; 95% CI, 0.82–1.00; N = 6). The effect size of

the APTCEST in GBM was 5 when considering the ROI-wise
within-session SDdiff of the putamen.

Discussion
We found high reproducibility across the three reproducibil-
ity time intervals in healthy volunteers. Within-session

4

3

2

1

0

–1

(%)

b

dc

a

FIGURE 3: Single transversal APT-CEST slices of four different glioblastoma patients. APTCEST value in color scale projected on the
post-contrast T1-weighted image, within the tumor ROI only. Red and green boxes are positioned around the tumor and
contralateral ROIs, respectively. Note the heterogeneous hyperintensity in the tumorous regions that show hyperintensity on the
contrast-enhanced T1-weighted image when compared to the contralateral region (a–c). (d) The APT-CEST value of a non-enhancing
glioblastoma. APT = amide proton transfer; CEST = chemical exchange saturation transfer; ROI = region of interest.

Axial
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c
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FIGURE 4: Voxel-wise SD maps of the within-subject difference between scan sessions 1–2, 1–4, and 1–6 (rows a, b, and c,
respectively), for all healthy volunteers (N = 21). Color scale represents the SD of the difference in APTCEST value (%) between
sessions (SDdiff), where higher SDdiff means lower reproducibility.
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measurement agreement in glioma, contralateral-to-glioma,
and healthy brain ROIs was excellent. Furthermore, within-
session reproducibility in whole-brain APT-CEST scans of
glioma patients was equal to the reproducibility in healthy
volunteers and even better for tumor ROIs. The variance thus
seems to be predominated by general error contributors such
as thermal noise, subject motion, B0 inhomogeneity, and
stress on scanner hardware, rather than long-term instrumen-
tal errors, physiological variance, or between-subject differ-
ences. These results may suggest that 3 T APT-CEST
provides sufficient reproducibility for clinical application,
especially given the larger APTCEST value changes between
glioma and normally appearing tissue.

While the between-sessions reproducibility was not eval-
uated previously, the within-session and between-days repro-
ducibility of APT-CEST scans of this study are in line with
previous studies in healthy volunteers18,20 and brain tumor
patients.18–20 The within-session, between-sessions, and
between-days reproducibility presented in the current study
showed a trend of decrease—although not statistically

significant—for the SDdiff and the VCA. Between-days repro-
ducibility showed higher consistency than between-sessions
reproducibility, albeit not to a statistically significant degree.
The first two studies used scan protocols and acquisition
parameters similar to ours with an exclusive focus on mean
APTCEST values.18,19 Our current study pursues a different
perspective by also performing a voxel-wise reproducibility
analysis in healthy tissue of patients and healthy participants
to focus on the reproducibility of relative APTCEST values.
Both studies found similar within-session scan agreement for
glioma.18,19

Our results show that the different imaging sessions had
no statistically significant effect on APTCEST measurement
values, which is in agreement with a previous similar analysis
of variance in healthy volunteers and glioma patients.18 Our
findings are comparable to another study with two healthy
volunteers.20 Furthermore, our difference between glioma
measurements and healthy appearing contralateral tissue at all
time points was in agreement with previous studies.13,18,29

While APT-CEST reproducibility in the brain has not yet

Table 2. The SDdiff of the Eight ROIs and Each of the Three Reproducibility Time Intervals

Whole Brain

Cortical
Gray
Matter

Deep White
Matter Putamen Thalami

Orbitofrontal
Gyri

Occipital
Lobes

Central
Brain

Within-session (%) 0.20 0.20 0.19 0.22 0.26 0.61 0.22 0.20

Between-sessions (%) 0.24
P = 0.35

0.25
P = 0.28

0.26
P = 0.39

0.28
P = 0.22

0.28
P = 0.31

0.67
P = 0.76

0.26
P = 0.33

0.27
P = 0.33

Between-days (%) 0.22
P = 0.17

0.22
P = 0.20

0.24
P = 0.11

0.33
P = 0.01

0.33
P = 0.05

0.48
P = 0.58

0.24
P = 0.14

0.26
P = 0.03

The P-value is the comparison between the within-session difference and either the between-sessions and or between-days difference for
the brain structures in healthy volunteers. P-values less than 0.003 were considered significant.
SDdiff = standard deviation across subjects of the within-subject difference; ROI = region of interest.

Table 3. Percentage of Total Variance Computed by the Variance Component Analysis

Whole Brain
Cortical Gray

Matter
Deep White

Matter Putamen Thalami
Orbitofrontal

Gyri
Occipital
Lobes

Central
Brain

Total variance
(APTCEST %)

0.033 0.039 0.034 0.069 0.058 0.205 0.041 0.043

Factor subject 16% 28% 11% 34% 13% 42% 12% 22%

Factor day 19% 16% 21% 16% 4% 14% 20% 8%

Factor session 5% 2% 13% 14% 22% 1% 8% 24%

Factor within-session 60% 54% 55% 36% 61% 43% 60% 46%

Largest contributor to total variance is marked in bold.
APTCEST = amide proton transfer chemical exchange saturation transfer.

7

Wamelink et al.: 3 T APT-CEST Reproducibility in Volunteers



been investigated extensively, our reproducibility was similar
to that of studies in other body parts such as breast (7 T) and
prostate (3 T) tissue and different CEST sequences such as
glutamate-CEST.30–33

We found the lowest reproducibility in the orbitofrontal
gyri, which can be explained by the susceptibility of these
regions to B0-inhomogeneity that impacts the Z-spectrum.13

Moreover, regions with large veins, such as areas close to the
superior sagittal sinus, also showed high variance consistent
with the literature.29 We corrected for the B0-inhomogeneity
by creating a B0-map between both APT-CEST scans.34 The
B0-map was scanned once for each session in order to limit
the session duration. We thus implicitly assumed that the
measurement error of the B0-map itself does not contribute

to APTCEST variability. However, the within-session variabil-
ity does include subject motion between CEST and B0 scans.
Other potential causes are subject movement in general, and
the pre- and post-processing steps, which is why we applied
the same sequence parameters during the entire study.
Finally, low reproducibility could be caused by physiological
variation of amide concentrations.

With good reproducibility, APT-CEST imaging shows
potential for clinical implementation. The SDdiff was consis-
tent within each of the three time intervals and only slightly
increased between the different time intervals. Moreover, the
SDdiff was small compared to the tumor signal change,
denoting a detectable difference between healthy and tumor-
ous tissue, in particular for GBMs. This opens the door for

mean APTCEST (%)

Δ
 A

P
T

C
E

S
T
 (

%
)

mean APTCEST (%)

mean APTCEST (%)

mean APTCEST (%)

mean APTCEST (%)

Δ
 A

P
T

C
E

S
T
 (

%
)

Δ
 A

P
T

C
E

S
T
 (

%
)

Δ
 A

P
T

C
E

S
T
 (

%
)

Δ
 A

P
T

C
E

S
T
 (

%
)

putamen

thalami

deep white matter

cortical gray matterwhole brain

FIGURE 5: Bland–Altman plots. Amide proton transfer chemical exchange saturation transfer (APTCEST) differences of the five
different brain structures are plotted against their mean APTCEST value. Continuous and broken lines indicate mean difference and
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potential clinical biomarker applications such as percentage
differences in APT-CEST values that can be used to differen-
tiate tumors from viable tissue. A potential benefit of APT-

CEST over conventional tumor imaging, more specifically
ceT1w imaging, is that APT-CEST might be able to identify
non-contrast-enhancing parts of high-grade gliomas.29 Previ-
ous studies have also shown that APT imaging is able to dif-
ferentiate between solitary brain metastases and GBMs or
radiation necrosis and viable tumor tissue.35–37 These find-
ings are particularly important for quick and non-invasive dis-
ease staging and tumor classification, which may avoid
unnecessary biopsies, but also open potential alternatives to
gadolinium contrast administration.38

Limitations
We only investigated at intra-vendor reproducibility in this
study. It is thus unclear whether the results can be generalized
to different scanners and vendors. Inter-vendor reproducibil-
ity is important to study for clinical implementation as scan-
ning a patient on the same scanner for follow-up assessment
is not always clinically feasible. Another limitation is that our
sample size for glioma patients remains on a pilot study level.
Finally, we could have scanned more offset frequencies to
improve correction for off-resonance effects but this would
have prolonged the scan duration to clinically unfeasible
times.

Conclusion
The findings of this study indicate that whole-brain APT-
CEST imaging with clinical scan time has a sufficiently high
short- and long-term reproducibility in tumors and healthy tis-
sue at clinically feasible scan times at 3 T. The tumor–normal
tissue contrast was larger than the APT-CEST scan–rescan
errors. Instrumental noise seems to be the largest component,
while long-term physiological variance and between-subject
variability were smaller. Reproducibility might be lower near
regions with B0-inhomogeneity.
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