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Abstract

In brain tumour resection, it is vital to know where critical neurovascular structures
and tumours are located to minimise surgical injuries and cancer recurrence. The
aim of this thesis was to improve intraoperative guidance during brain tumour
resection by integrating both ultrasound standard imaging and elastography in the
surgical workflow. Brain tumour resection requires surgeons to identify the tumour
boundaries to preserve healthy brain tissue and prevent cancer recurrence. This
thesis proposes to use ultrasound elastography in combination with conventional
ultrasound B-mode imaging to better characterise tumour tissue during surgery.
Ultrasound elastography comprises a set of techniques that measure tissue stiffness,
which is a known biomarker of brain tumours. The objectives of the research
reported in this thesis are to implement novel learning-based methods for ultrasound
elastography and to integrate them in an image-guided intervention framework.
Accurate and real-time intraoperative estimation of tissue elasticity can guide towards
better delineation of brain tumours and improve the outcome of neurosurgery. We first
investigated current challenges in quasi-static elastography, which evaluates tissue
deformation (strain) by estimating the displacement between successive ultrasound
frames, acquired before and after applying manual compression. Recent approaches
in ultrasound elastography have demonstrated that convolutional neural networks
can capture ultrasound high-frequency content and produce accurate strain estimates.
We proposed a new unsupervised deep learning method for strain prediction, where
the training of the network is driven by a regularised cost function, composed of a
similarity metric and a regularisation term that preserves displacement continuity

by directly optimising the strain smoothness. We further improved the accuracy of
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our method by proposing a recurrent network architecture with convolutional long-
short-term memory decoder blocks to improve displacement estimation and spatio-
temporal continuity between time series ultrasound frames. We then demonstrate
initial results towards extending our ultrasound displacement estimation method to
shear wave elastography, which provides a quantitative estimation of tissue stiffness.
Furthermore, this thesis describes the development of an open-source image-guided
intervention platform, specifically designed to combine intra-operative ultrasound
imaging with a neuronavigation system and perform real-time ultrasound tissue
characterisation. The integration was conducted using commercial hardware and
validated on an anatomical phantom. Finally, preliminary results on the feasibility
and safety of the use of a novel intraoperative ultrasound probe designed for pituitary
surgery are presented. Prior to the clinical assessment of our image-guided platform,
the ability of the ultrasound probe to be used alongside standard surgical equipment

was demonstrated in 5 pituitary cases.



Impact Statement

This thesis describes the development of novel ultrasound tissue characterisation
methods to enable the intraoperative characterisation of brain tumours. Moreover,
this work focused on the clinical translation of the presented research by developing

open-source tools for intraoperative guidance and assessing their clinical feasibility.

From an academic perspective, the developed learning-based methodologies
have helped improve the state-of-the-art in speckle tracking for ultrasound elastog-
raphy. We proposed the first unsupervised training strategy applied to quasi-static
ultrasound imaging (chapter 3). We also introduced a new regularisation term that
preserves the displacement continuity by directly optimising the strain smoothness,
which was later used in other studies [1, 2]. Furthermore, we made publicly available
an in vivo database for quasi-static strain imaging, which consisted of 17271 RF data
of blood vessels from the arm of a human volunteer'. We also released a numerical
ultrasound simulation dataset for shear wave velocity estimation, consisting of 20,000
images®. These open-access datasets could help the development and validation of
new learning-based strategies in ultrasound elastography for both academia and the

industry.

This thesis also presents open-source software packages for the translation of the
developed concepts into clinics. This comprises an ultrasound-aided neuronavigation
module to integrate ultrasound imaging with a commercial neuronavigation system>.

We also proposed the first real-time Al-driven ultrasound elastography module

'Open access in vivo database available on https://www.synapse.org/InVivoDataForUSE
2Open access simulation database available on https://www.synapse.org/SimForSWEI
30Open-source platform available on https://github.com/UCL/SkullBaseNavigation
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designed for intraoperative use*. This stand-alone module can be connected to a live
stream of data and allows the use of a pre-trained convolutional neural network to
perform real-time inference. Those software programs could potentially be used for
the clinical translation of new advances in ultrasound-based methodologies.

This work also studied the clinical feasibility of the use of intraoperative ul-
trasound for brain tumour resection. This comprises the development of a novel
ultrasound transducer designed for transsphenoidal surgery in collaboration with
Vermon (Tours, France), a company specialised in the manufacture of advanced trans-
ducer technologies. A clinical trial was performed on an initial cohort of 5 patients
who underwent pituitary resection surgery. This study brought additional clinical
evidence that ultrasound imaging could be a safe and effective technological adjunct
to transsphenoidal surgery. Since then, the first intraoperative ultrasound transducer
for transsphenoidal surgery was commercialised (BK Medical, UK) [3], suggesting
that our project was in line with the current clinical needs. This work could lead to
further clinical investigations regarding the intraoperative use of ultrasound imaging

for the characterisation of brain tumours.

40Open-source platform & fine-tuning code available on https://github.com/RemiDelaunay/
DeepUSE
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Chapter 1

Introduction

1.1 Ultrasound-guided neurosurgery

1.1.1 Brain tumour resection

A brain tumour corresponds to an abnormal growth of cells located in the brain. The
tumour can be malignant (as opposed to benign), which means it can metastasise and
spread to other parts of the body. It can also be classified using a grading system from
1 to 4 depending on their growth rate and malignancy. Low-grade tumours (grade 1
or 2) tend to grow slowly and are less likely to spread to other regions. High-grade
cancers (grade 3 or 4) are highly differentiated (i.e., different from normal cells)
and usually spread more rapidly than low-grade tumours. Brain tumours can arise
from the brain (i.e., primary tumours) or can spread from elsewhere in the body
(i.e., secondary tumours). The National Health Service (NHS) estimates that about
11,000 people are diagnosed with a primary brain tumour every year in the United
Kingdom (UK) [4]. The symptoms can vary and depend on the tumour location.
They include headaches, nausea, hormonal imbalance, vision loss, speech disorder,
or partial paralysis. The treatment options depend on the size, location, and type of
the tumour and usually involves medical therapies, radiotherapy, or neurosurgery.
Surgical resection is one of the main treatment options for brain tumours. The
aim of tumour resection is to maximise tumour tissue removal, while preserving
surrounding structures. The resection extent is an important prognostic indicator [5].

Incomplete resection can result in tumour recurrence and require further treatment.
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Complete removal of the tumour can be challenging because margins of the tumour
are not always clearly delineated. High-grade tumours can spread to nearby normal
parts of the brain and cause high recurrence rates, while low-grade tumour cells can
be difficult to distinguish from healthy ones. In addition, the tumour can be located
close to critical neurovascular structures, which can further decrease the level of

resection to avoid further neurological damage [6].

1.1.2 Image-guided neurosurgery

The introduction of computed tomography (CT) in the 1970s, and magnetic resonance
imaging (MRI) in the 1990s, has led to considerable progress in the visualisation
and localisation of brain tumours [7]. The development of frameless stereotaxy, also
known as neuronavigation, arose in the late 1980s and enabled to further improve
surgical guidance by mapping imaging data to the patient’s anatomy [8]. Neuronavi-
gation is now extensively used for surgery planning and intraoperative guidance [9].
In addition, the use of neuronavigation allows for smaller, more precisely positioned
incisions and the accurate localisation of tumours and surrounding structural and
functional regions which may be at risk during surgery [10].

However, intraoperative guidance based on preoperative imaging has significant
limitations. Intraoperative tissue shift usually occurs, resulting in the displacement
of anatomical structures, which may not be in the neurosurgeon’s field of view [11].
Such brain shift typically arises from a change of intracranial pressure induced by
craniotomy [12]. Navigation accuracy will also decrease during the course of the
operation because of the brain shift induced by the removal of tumour tissue. These
displacements can be inconsistent and hard to predict for neurosurgeons who can no
longer rely on the preoperative images for guidance [13].

Intraoperative brain scanning has been used to provide a real-time localisation
of brain structures during surgery. CT scanning provides a three-dimensional display
of the brain, and can be easily integrated with neuronavigation systems [14, 15].
However, the ionising radiation doses affecting the patient and surgical team, and its
low contrast in soft tissue, have limited its use in the operating room. Intraoperative

MRI generally offers better contrast and resolution, allowing accurate visualisation
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of brain structures, as well as the level of tumour resection. However, the significant
cost attributed to a dedicated intraoperative MRI suite still makes it difficult to be

routinely used in neurosurgery [16].

1.1.3 Intraoperative ultrasound imaging

The interest in ultrasound imaging for neurosurgical applications arose in the 1980s
[17, 18] and has been constantly evolving since then [19, 20]. It has been used
in many interventional settings and applications, mostly for surgical guidance and
tissue characterisation [21, 22].

Ultrasound imaging has also shown potential for surgical guidance in tumour
resection, especially for assessing the extent of resection [23-25]. The portability,
cost-efficiency, and real-time imaging acquisition make ultrasound imaging a good
alternative for the intraoperative assessment of brain tumours. Furthermore, sev-
eral studies have emphasised that standard B-mode imaging allows for a tumour
delineation similar or even more accurate than MRI and CT [26-29].

However, intraoperative ultrasound remains an under-utilised tool in neuro-
surgery. Intraoperative ultrasound remains challenging to use routinely for inexperi-
enced users, because of its limited field-of-view and non-intuitive image orientation.
The development of ultrasound-based navigation improved the readability of ultra-
sound data by providing information on the position and orientation of the imaging
plane [19]. In addition, advances in navigation technology have enabled to recon-
struct 3D ultrasound volumes and perform multimodal registration with preoperative
scans such as MRI and CT [30]. The real-time overlay of ultrasound on preoperative
images has proven to be useful during brain tumour resection by compensating for

tissue shift [31].

1.1.4 Ultrasound elastography

Another important consideration for the delineation of brain tumours with ultrasound
imaging is that tumour boundaries can sometimes not appear clearly on standard
pulse-echo imaging. Surgeons do not only use image guidance to assess the tumour

margin, but can also rely on the tissue mechanical properties, where tumours tend
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to be stiffer than surrounding structures. Magnetic resonance elastography (MRE)
is a technology that combines MRI with low-frequency vibrations to infer the
mechanical properties of soft tissues. This technique has been used successfully
for the preoperative assessment of tissue stiffness in brain tumour surgery [32].
However, the inherent limitations of MRI for intraoperative use (i.e., cost and

prolonged operating time) also apply to MRE.

Ultrasound elastography is a real-time alternative that is derived from conven-
tional ultrasound imaging and motion estimation techniques. Ultrasound elastog-
raphy constitutes a set of techniques that measure and image tissue mechanical
properties by applying a force on the tissue and monitor its following deformation
[33]. It has been used clinically for the characterisation of lesions in different or-
gans, such as the liver [34] or prostate [35], but also for the differentiation between
benign and malignant tumours, such as those found in the thyroid [36] and breast
[37]. Ultrasound elastography has also shown promising results in image-guided
interventions, such as liver resection [38, 39]. Preliminary results suggest that the
use of ultrasound elastography in combination with conventional B-mode ultrasound

could be a useful adjunct to better delineate brain tumours [40, 41].

1.2 General aims and motivation

In brain tumour resection, it is vital to know where the tumour and critical neurovas-
cular structures are located to minimise surgical injuries and cancer recurrence. The
aim of this thesis is to improve intraoperative guidance during brain tumour resection
by integrating both ultrasound standard imaging and elastography in the surgical

workflow.

Recent approaches in ultrasound elastography have demonstrated that convolu-
tional neural networks can capture ultrasound high-frequency content and produce
an accurate measure of tissue stiffness, which is a known biomarker of brain tu-
mours and could also potentially differentiate vital structures around the tumour site.
Intraoperative characterisation of tumour tissue and surrounding structures could

potentially help surgeons to identify tumour remnants and, therefore, improve the
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extent of resection and minimise neurovascular injuries.

This thesis also proposes open-source tools to combine neuronavigation with
intraoperative ultrasound imaging. We hypothesised that real-time ultrasound-based
tissue characterisation could also benefit from preoperatively-acquired MRI and CT
images, and that their combination in a fully integrated navigation system would
improve neurosurgical guidance. To this end, we developed a research image-
guided intervention platform, based on existing open-source software, designed for

ultrasound-guided neuronavigation.

Finally, this project also studied the usefulness of intraoperative ultrasound in
transsphenoidal surgery, a minimally invasive approach for the resection of pituitary
tumours. This technique consists of removing the tumour by passing through the
nasal cavity and the sphenoid sinus. At the time this study was initiated, there was
no commercial transducer suitable for accessing the tumour site. To this end, we
developed a novel ultrasound transducer which has been specifically designed for
the transsphenoidal approach. Pre-clinical experiments and preliminary results of a
clinical study on the feasibility and risk assessment of the use of this novel transducer

are presented.

1.3 Thesis structure

This work is organised in 7 different chapters focusing on different aspects of this
project. Chapter 2 gives an introduction to medical ultrasound and ultrasound elastic-
ity imaging, including a review of the different ultrasound elastography techniques
considered for this work. Chapter 3 focuses on the development of a novel learning-
based method in ultrasound elastography. This technique is based on quasi-static
elastography, a well-known ultrasound imaging modality that determines elastic tis-
sue parameters and could potentially help differentiate brain tumour tissue. Chapter
4 is an extension of the work carried out in chapter 3 and focus on the development
of a recurrent neural network architecture to improve spatio-temporal consistency of
quasi-static strain estimation. Chapter 5 further investigates the use of convolutional

neural networks for microscale displacement estimation in shear wave elastography,
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by making use of the previous work accomplished in chapter 3 and 4. Chapter 6
contains the work carried out for the development of our prototype neuronavigation
framework. Chapter 7 describes the technical challenges of pituitary surgery and
the technical evaluation of a novel ultrasound transducer, specifically designed for
pituitary tumour resection. We also present the preliminary results of a clinical
study that aimed to assess the risk and feasibility of the intraoperative ultrasound
transducer prototype. Finally, chapter 8 contains a general conclusion and provides

future perspectives on the work carried out throughout this thesis.



Chapter 2

Tissue modelling and imaging for

ultrasound elastography

2.1 Medical ultrasound

The first technological development of ultrasound imaging occurred during World
War 1, with the use of the first sonar systems for under-water navigation. The
research interest for the use of sonography in diagnostic imaging arose in the late
1940s [42]. However, it was not until the 1970s that diagnostic ultrasound imaging
was used in medical practice. Nowadays, ultrasound is one of the most widely used
medical imaging modalities. In 2011, it was estimated that nearly 25% of all medical

imaging procedures involved ultrasound imaging [43].

The British Medical Ultrasound Society reported in 2010 that they considered
diagnostic ultrasound to be safe, with no evidence of harmful effect to humans
(including the fetus) [44]. Yet, the effect of ultrasound on biological tissue is still
a topic of research [45]. Wood and Loomis were the first to report the detrimental
effects of ultrasonic energy upon biological material, through experiments on small
animals and fish [46]. In addition, recent studies have investigated the potential
harmful effect of cranial ultrasound on the neural integrity and development of
neonates [47, 48]. The two observed bio-effects of ultrasound imaging are heating
and cavitation. Tissue heating results from the mechanical friction induced by the

ultrasonic waves. Cavitation is the formation of small bubbles in response to the
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change of pressure induced by the acoustic field. Presently, state-of-the-art ultrasound
scanners display the thermal and mechanical index to provide the operator with an
indication of the potential ultrasound bio-effects. The thermal index corresponds to
the ratio of acoustic power to the power required to raise the tissue temperature by 1
°C. The mechanical index provides an estimation of the maximum amplitude of the

pressure pulse in tissue, which is an indicator of the likelihood of cavitation [49].

Ultrasound imaging is inexpensive relative to MR and CT, portable and generally
provides real-time visualisation. In addition, it does not produce any ionising
radiation, unlike fluoroscopic and nuclear medicine procedures. It is used in a
wide variety of diagnostic and therapeutic applications, including prenatal diagnosis,
internal organ examination, blood flow measurements and tumour ablation. Last but
not least, it is also used as a guiding tool for interventional procedures and often is

an adjunct to other imaging modalities, such as X-rays and MRL

2.1.1 Ultrasonic physics

The term ‘ultrasound’ refers, in physics, to all acoustic energy that oscillates at a
frequency above the human auditory band (ranged between 20 Hz to 20 kHz). Ultra-
sound scanners typically use a frequency range of about 2 to 20 MHz. Ultrasound
transducers are generally composed of an array of piezoelectric crystals, which
convert the electrical voltage into mechanical vibrations (transmission mode) and
vice versa (receiving mode). The ultrasound waves propagate through tissue along
the particle motion (longitudinal waves) and oscillate successively between zones
of compression and rarefaction [50]. An example of longitudinal wave propagation

from an ultrasound transducer is shown in figure 2.1.

The way the ultrasound waves are transmitted will depend on certain tissue
physical properties. The acoustic impedance Z describes how much resistance a
longitudinal wave will encounter as it goes through a tissue, and is defined as the

product of the tissue density p and speed of sound c:

Z=pc 2.1)
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Figure 2.1: Ultrasound wave propagation. The ultrasound waves emitted from the transducer
propagates in the longitudinal direction with successive zones of compression
and rarefaction characterised by the wavelength A. The fluctuations of the
propagating wave occur with local negative/positive pressure changes. Courtesy
of Zagzebski et al. [50]

Distance

At the interface of two tissue media with different acoustic impedance, part of
the ultrasound wave will be reflected back to its source, while the remaining part
will be transmitted through the second medium [51]. The difference of propagation
speed between two media will result in a change of direction of the ultrasound waves,
which corresponds to the refraction phenomenon. Ultrasonographers often use a
water-like gel to to reduce the impedance difference at the air-tissue boundary and

improve the transfer of acoustic energy from the transducer face to the body.

Scattering is another important aspect of ultrasound imaging and consists of
the reflection of ultrasonic waves caused by localised heterogeneities in the tissue
through which they pass (small molecules, cells, etc.). The scatterers that reflect
back a portion of the waves are known as ‘backscatters’ and constitute part of the
received ultrasonic signal. The insonification of the tissue also causes constructive
and destructive interference between the scatterers, which creates the speckle pattern

that gives the characteristic granular texture of ultrasound images [52].

As an ultrasound beam passes through tissue, its amplitude will be progressively
attenuated. This is partly due to scattering, but most of the vibrational energy is lost

in the form of heat, also known as the absorption phenomenon. Acoustic absorption
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in tissue is mainly due to viscous loss (i.e., tissue resistance) and the conversion of
the wave energy into internal molecular energy states. The attenuation of ultrasound
in soft biological tissues is about 0.2 to 0.5 dB/cm?*/MHz [53]. The absorption
coefficient o depends on the frequency of the transmitted ultrasonic waves, which is

given by the following power law:

o~ af’ (2.2)

where y denotes the frequency dependence. It is unitless and varies according to the
tissue viscosity and is usually comprised between 1 (e.g., muscle, heart and fat) and
2 (e.g., water) [54, 55]. The attenuation increases with frequency, shortening the
depth of penetration of ultrasonic waves. Therefore, there is a trade-off between the
image resolution, which is proportional to the transducer’s central frequency, and the
maximum image depth. Time-gain compensation is a way to partially compensate
for signal attenuation in tissue by increasing the amplification gain according to the

reflected echoes’ depth.

2.1.2 Pulse-echo imaging

Pulse-echo imaging constitutes the standard medical ultrasound acquisition method
for image diagnosis [56]. An ultrasound transducer (generally composed of multiple
piezoelectric crystals) is used to generate a directional beam of short ultrasound
pulses that are used to insonify the targeted tissue. Each transducer element can be
excited individually at different times, which allows steering or focus the ultrasound
beam via electronic manipulation (transmit mode). Those pulses are echoed back
from the scatterers to the transducer that also acts as the receiver. The received
signal is then used to form the image, which is also known as receive beamforming.
Similar to the transmit mode, the signal at each pixel can be calculated by applying
the time delays corresponding to this point in the image space [57]. The time
delay 7 corresponds to the time taken for the pulse to reach a specific target in
depth and to be reflected back to the transducer. The target depth d can be easily

retrieved by assuming a constant speed of sound throughout the medium, which
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is assumed to be 1540 m/s in soft biological tissues. Therefore, the depth can be
calculated as d = ¢t/2. Figure 2.2 illustrates the process of how the ultrasound
signal is traditionally transmitted and received in pulse-echo imaging, also known as

delay-and-sum beamforming [58].
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Figure 2.2: Transmit and receive modes in pulse-echo imaging. A typical transducer is
composed of multiples elements Xy for which time-delays 7y are applied to
transmit and focus an ultrasound beam at a specific target depth. During receive
beamforming, the acoustic reflections are received at each channel and are time
aligned then summed to reconstruct the ultrasonic signal. Adapted from Engel
et al. [58]

Different display modes have been developed for pulse-echo imaging. The three
most common display modes are the Amplitude (A), Motion (M) and Brightness (B)
modes [59]. An example of each display mode is showed in figure 2.3. The A-mode
displays the echo amplitude of a single transducer scan line as a function of depth.
The M-mode corresponds also to a single scan line, except that the transducer emits

pulses multiple times, which allows tracking of anatomical structure motion over
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time, such as cardiac pulsations. The B-mode is the most commonly used modality
in clinical practice and consists in the combination of multiple A-lines to form a 2D
grey-scale image of the imaged anatomy, where the brightness intensity corresponds

to the echo amplitude.

-

A-mode M-mode B-mode

Figure 2.3: Typical ultrasound display modes: amplitude (A) mode, motion (M) mode and
brightness (B) mode.

The most common type of transducer used in clinical practice are multi-elements
1-D array transducers [56]. Each element can be fired independently, allowing the
electronic focusing or steering of the transmitted ultrasound beam. Similarly, the
focus of the received signal can be dynamically adjusted by applying the appropriate
time delays. The reconstruction of the 2D image consists of summing and adjusting
in time individual scan lines generated by sequentially firing subgroups of elements
over the lateral plane. To improve image resolution, multiple transmit pulses can be
used, each focused at a different imaging depth, and the resulting scan lines later
combined. However, this also reduces the imaging frame rate, as a larger number of
transmit-receive events are needed to form the image. The ultrasound transducers
commonly used are linear and phased array transducers, which present different
aperture shape and size. Linear arrays generally have a broad footprint and are
usually used for diagnostic applications that have a large acoustic window. Phased
array transducers feature a smaller aperture size, commonly with a convex shape,
which creates a trapezoidal field-of-view [60].

After acquiring the raw ultrasound signal, different post-processing steps are

necessary to obtain B-mode images. The first step aims to find the envelope of the raw
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beamformed RF signal (Envelope detection). It allows extracting of the magnitude
of the RF signal and filter the high frequency content. This is classically done using
the Hilbert transformation. Finally, the envelope-detected signal is log-compressed
to improve the image dynamic range (Log compression), and interpolated from polar
to Cartesian space to improve the image display (Scan conversion) [61]. Figure 2.4

displays the result of the aforementioned processing steps.
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Figure 2.4: B-mode image formation from the beamformed radio-frequency signal. Image
courtesy of Natalia Ilyina [59].

2.1.3 Coherent plane wave imaging

Plane-wave imaging is a different acquisition method that allows to image a 2D
region of interest at a much faster rate, up to 100-fold faster than traditional B-mode
imaging. Instead of sequentially scanning the image line-by-line, this technique fires

the elements from the array all at once, creating an unfocused transmitting plane
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wave over the entire field of view. This technique, also called ‘Ultrafast imaging’
was developed originally for shear wave elasticity imaging [62]. Although the plane
wave imaging concept is not recent, its application was only made possible recently
with the increase of computational power of current systems via the technological
developments in graphical processing unit (GPU) [63].

However, the increased frame-rate due to the generation of unfocused plane
waves results in a substantial loss in image resolution and contrast, as compared
with traditional B-mode imaging that uses dynamic focusing. To improve the image
quality, Montaldo et al. developed the coherent plane wave compounding method,
which compensates for focused emission by taking several plane wave images at
different angles [64]. The image acquisition process consists in acquiring plane wave
frames at different angles (usually comprised between -8° to 8°, with a step of 1°)
and compound the resulting signals to construct a high-quality image. Figure 2.5
illustrates the different modes of acquisition of plane wave and pulse-echo imaging.

The coherent plane wave compounding method still largely increases the imag-
ing rate as compared to B-mode imaging, with frame rates up to 10000 frames per
second. The increased frame rate enables to perform measurements of tissue and

blood motion while improving the image quality [63].

2.2 Biological tissues and elasticity

2.2.1 Background

The change of tissue stiffness has been a known biomarker of several disease pro-
cesses and is still used nowadays as a diagnostic tool. Palpation is the physical
examination of tissue stiffness, which consists in applying pressure of the hand or
fingers to the surface of the body to assess the size or consistency of an underly-
ing organ. Palpation has been used for the diagnosis of a large variety of disease
processes, from the presence of inflammation to the detection of fibrosis or tumours.

The study of tissue mechanical properties as a diagnostic tool can be dated to
ancient Egyptian time with the Ebers papyrus from 1550 BC, where the palpation of

pulses was already described. Palpation of the radial arteries for pulse examination
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Figure 2.5: Comparison between pulse-echo and plane wave imaging. Pulse-echo imaging
reconstructs the image line-by-line by sequentially firing groups of elements
to create successive focused ultrasound beams. Plane-wave imaging generates
unfocused transmitting plane wave over the entire image region. The coherent
compounding method generates several plane wave images at different angles
to compensate for unfocused emission, and reconstructs images with the same
quality as the conventional line-by-line pulse-echo imaging method.

was also described in traditional Chinese medicine around 500 BC. In 440 BC,
Hippocrates, the father of western medicine, also identified the relationship between
tissue stiffness and different pathologies [65].

The alteration of tissue elasticity is known to appear in diseased tissue (e.g.,
brain tumours) by the exudation of fluid from the blood vessels to the extra- and
intra-cellular space, which results in an increased interstitial pressure at the disease
site, inducing a change of tissue stiffness. In the case of fibrosis, the diseased tissue
is replaced with a stiffer collagen-based matrix.

Although palpation is very useful to assess the stiffness of superficial anatomical
structures, such as the radial carotid arteries and the thyroid, it is limited by tissue
depth. In addition, palpation is highly-user dependent and its subjective nature makes
it prone to human errors. In addition, the difficulty to detect small alterations makes
it challenging to provide an early diagnosis of disease formation.

This context has motivated the research of alternative techniques to quantita-

tively measure tissue mechanical properties. The emergence of noninvasive diag-
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nostic imaging tools has inspired new tissue characterisation techniques, such as
MR- and ultrasound elastography. In contrast with palpation, these tools present the
advantage of providing a quantitative measurement of tissue stiffness and are less

dependent on the size and location in depth of the targeted tissue.

2.2.2 Theory of elasticity

The theory of elasticity treats the relationship between forces (i.e., stress) applied
to a material and the resulting deformation (i.e., strain). For linear materials, the
relationship between stress and strain can be expressed by the generalised Hooke’s
law:

0 =Ciji & (2.3)

where ¢ and € are the stress and strain, respectively, and the indexes j,/ indicate the
direction of force (or strain) and i, k denote the plane on which it is acting. C is the
fourth-order stiffness tensor, and is composed of 81 elastic constants, which account

for three directions of deformation in three different planes.

Different types of elastic moduli are defined according to which direction stress
and strain are to be measured (see figure 2.6). The three main types of elastic
moduli are: the Young’s modulus, shear modulus, and bulk modulus. The Young’s
modulus E describes how an object will be deformed along an axis where the stress,
either a tensile or compressive force, is applied longitudinally. It corresponds to
the coefficient of proportionality between the applied longitudinal stress o7 and the

longitudinal strain &, = AL/L:

o,=E- ¢ 2.4)

The shear modulus G is defined for shear deformations, where an object will
deform when acted upon by opposing forces. It is defined as the proportionality

coefficient between the shear stress o, and strain &:

o5 =G-& (2.5)
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The bulk modulus K is the extension of the Young’s modulus in three dimen-
sions, and is used to describe the volume changes in all directions under a uniformly
loaded pressure. It is defined as the coefficient between the volumetric stress ¢, and

strain &,:

Oy, = K- &y (2.6)

For incompressible material, no volume change is observed. The high content
of water in soft tissue makes it nearly incompressible and isotropic. For example,
a cylindrical object undergoing a tensile load will be stretched in length, and vice-
versa. The ratio between the longitudinal strain & and radial strain & = ATr, which
corresponds to the deformation in the radial direction, is known as the Poisson’s ratio

V:

V=— 2.7)

The Poisson’s ratio is an important parameter for ultrasound elastography and
indicates the extent of volume change caused by the deformation. The Poisson’s
ratio ranges from 0.2 to 0.5 for most solids, where 0.5 corresponds to complete
incompressibility. Soft tissues are usually assumed to be nearly incompressible, with

a Poisson’s ratio ranging from 0.490 to 0.495 [66].

The relationship between stress and strain according to Hooke’s law (see Eq.
2.3) can be described solely by E and v. The matrix C;jy; of elastic constants can be
reduced to 36 components by taking into account symmetries of the stress and strain

tensors [66, 67]. For isotropic materials, the Young’s modulus E can be factored out
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of Cjjx;, which gives in matrix form:

€11 1 -V -V 0 0 0 O11
%) -v 1 —v 0 0 0 022
£ 1|—-v —v 1 0 0 0 o
B _ 1 33 (2.8)
265 E|l0 0 0 201+4v) 0 0 o3
2¢e13 0O 0 0 0 2(1+v) 0 o3
2€12 0 0 0 0 0 2(1 + V) O12
The inverse relation may be written as:
o11 I-v v \Y 0 0 0 €11
02 v 1—-v —v 0 0 0 &0
033 \% \% 1—v 0 0 0 €33
= i 2 29
023 0 0 0o =¥ 0 0 2&3
o013 0 0 0 0 2 0 | |25
o1 0 0 0 0 0 2| |2

This relation can be further simplified with the Lamé parameters [68], usually

denoted as A and u:

O11 A+ 2u A A 0 0 O 11
(%) A A+ 2/.L A 0 0 O &
Lo A A A+2u 0 0 O] |e

33| _ u 33 (2.10)
023 0 0 0 u 0 0 2ex3
013 0 0 0 0 u Of [2¢&53
O12 0 0 0 0 0 u 2€1p

with the Lamé parameters A and u corresponding to:
Ev E
A= = 2.11
(1+v)(1—2v) K=o (e.11)

The second Lamé parameter p corresponds to the shear modulus G. In the case
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of an incompressible medium, the Poisson’s ratio is usually approximated to 0.5.
Therefore, the relation between the Young’s and shear modulus can be further

simplified to [69]:

E =3G (2.12)

In shear wave imaging, the elastic moduli also determine the propagation veloc-
ity of waves. Ultrasound imaging generally involves two types of wave propagation:
longitudinal and transverse waves. The longitudinal waves are typically used to form
the ultrasound image. The speed C, of the longitudinal waves, which is typically
about 1540 m/s in soft tissue, can be expressed in terms of the Bulk modulus and

density of tissue p [70]:

K
cp =4/ — (2.13)
Vb

The speed of transverse waves c¢g (1-10 m/s in soft tissue), also known as shear

waves, can be determined by taking the square root of the ratio of the shear modulus

G
N 2.14
c > (2.14)

By combining Eq. 2.12 with Eq. 2.14, we can then define Young’s modulus

G over the tissue density [70]:

according to the shear wave speed and tissue density:

E =3pc? (2.15)

Compressive acoustic waves used for conventional ultrasound imaging travel
at high speed in tissue (1540 m/s). On the contrary, mechanical shear waves travel
relatively slowly (1-10 m/s), depending on tissue stiffness. According to Eq. 2.1,
the acoustic impedance of soft biological tissues depends on their density and speed
of sound Cy, which is related to the bulk modulus K with Eq. 2.13. Therefore, the

contrast in pulse-echo imaging does not bear any direct information on the elastic
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modulus E, which is related to shear wave speed ¢, through Eq. 2.15.
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Figure 2.6: Different deformation models and elastic moduli. The elastic moduli can be
defined as the ratio of the stress (force per unit area, noted ¢) and the strain
(expansion/compression per unit length, noted €). The elastic moduli can be
described by the direction of the force: normal to the surface (Young’s modulus),
tangential to the surface (shear modulus) and in all combined directions (bulk
modulus). Image courtesy of Sigrist et al. [33].

2.3 Ultrasound elastography

Ultrasound elastography is an emerging ultrasound technology that was first de-
scribed by Ophir et al. in 1990 [71]. Nowadays, it refers to a set of imaging
techniques by which tissue mechanical properties are being estimated. The basic
mechanism of ultrasound elastography consists of applying a force to a tissue and
analysing its mechanical response to measure its elastic properties. The different
techniques can be classified according to the nature of the force (quasi-static or
acoustic radiation force) and the physical parameter being estimated (strain or elastic-
ity modulus). In quasi-static elastography, the force is applied either by an external
force, for example by manually pressing on the anatomy with the transducer, or by
using physiological internal motions, such as blood vessel pulsation. In shear wave
imaging, internal shear waves can be induced by a high-intensity pulsing push emit-

ted by the ultrasound probe. The following sections provide an in-depth explanation
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of the physics theory on which elastography is based, as well as a description of the
different quasi-static and transient ultrasound elastography techniques (see figure

2.7).
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Figure 2.7: Summary and classification of the ultrasound elastography techniques discussed
in this chapter.

2.3.1 Quasi-static elastography imaging
Quasi-static elastography was the first technique to be introduced by Ophir et al., in
1990 [71]. It consists in applying a slight force to the targeted tissue, and determining
the tissue strain by analysing the displacement between two echo signals, acquired
before and after applying compression. The strain typically investigated in quasi-
static elastography is the longitudinal strain, which is linked to Young’s modulus via
Eq. 2.4. The longitudinal deformation relative to the applied stress is expressed as
the ratio of the total deformation of the tissue AL to its initial length L.

In elastography, the strain is calculated by taking the derivative of the displace-
ment « in the direction of the applied force:

AL bu

=" =5 (2.16)



2.3. Ultrasound elastography 42

The longitudinal strain is also known as the engineering strain or the Cauchy
strain. The displacement u is retrieved by acquiring an ultrasound image before and
after applying the quasi-static force. This step is known as displacement estimation
and is discussed in detail in chapter 3. It is important to note that, unlike Young’s
modulus, the strain is not an intrinsic mechanical property and does not provide a
quantitative measure of tissue stiffness. This is because the strain is relative to the

applied force, which is not being quantified in quasi-static elastography.

Different tissue excitation methods have been developed in quasi-static elas-
tography. The most common technique is to apply force with a handheld probe
on the surface of the tissue, which is similar to palpation [37]. This method is
particularly useful for quantifying the stiffness of superficial anatomical structures.
However, the palpation force is not efficiently transmitted to deeper structures due
to the attenuation observed in soft tissue. In addition, the application of the stress
is usually applied manually and is inherently highly user-dependent. A non-steady
image acquisition can introduce some out-of-plane displacements and deteriorate the

quality of the resulting strain images.

To induce uniform displacement, Hiltawsky et al. [72] developed a freehand
applicator that can be used to place a hand-held probe perpendicular to the tis-
sue surface and to apply a purely vertical displacement on the tissue. Another
technique consists of using an additional low-frequency vibrator system (1-10 Hz)
that generates quasi-static deformations [73, 74]. More recently, Patlan-Rosales et
al. [75] developed a robotic system with haptic feedback to guide the clinician when

performing palpation.

Internal physiological motion can also generate quasi-static displacements.
These stimuli include respiratory and cardiovascular deformations [76]. This type
of excitation can be useful to image tissue stiffness of deeper structures, where
palpation is more challenging. However, physiological motions are hard to predict

and introduce non-uniform deformation, which limits reproducibility.

Quasi-static elastography was the first ultrasound tissue characterisation tech-

nique to be translated into clinical use. This includes the detection of lesions in
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liver disease [77, 78] and prostate cancer [79]. Quasi-static elastography has also
proven useful to characterise tumour tissue by differentiating benign from malignant
tumours in the thyroid [80], kidney [81], breast [37, 72, 82] and lymph nodes [83].
More recently, it has been used in image-guided interventions such as for liver [38]
and brain tumour surgery [22, 40]. An example of a brain tumour elastogram (i.e., a
tissue elasticity map) is showed in figure 2.8.

Most manufacturers of ultrasound systems have commercialised their own quasi-
static elastography method, which makes it the most widely available ultrasound
elastography technique. The information displayed is usually the strain map, also
known as elastogram, which can be overlaid on the B-mode image. The elastogram
is displayed as a pixel map with a colour scale that differs between different vendors.
Other metrics can also be provided, such as the strain ratio which corresponds to the
ratio between the strain measured in the target tissue region (i.e., a tumour) and a
reference region (i.e., background). Although the strain ratio is not a quantitative

measure, it has been extensively used for breast cancer diagnosis [84].

Figure 2.8: Quasi-static elastography example. B-mode image (a) and strain elastogram
(b) of a convexity meningioma acquired during brain tumour resection. We
can visualise a high strain at the inferior brain-tumour interface (white arrow).
Adapted from Chakraborty et al. [40]

2.3.2 Transient impulse shear wave elastography

The quantitative evaluation of tissue stiffness in ultrasound elastography is provided

by the Young’s modulus. Shear wave imaging techniques estimate the Young’s mod-
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ulus by measuring the velocity of the induced shear wave (see Eq. 2.15). Transient
impulse methods rely on the ability to track shear wave propagation by monitoring
the tissue motion induced by the applied force. Similar to quasi-static strain estima-
tion, the tissue motion is typically estimated by calculating the displacement between
frames acquired before and after the excitation using correlation algorithms either
in the phase or the time domain. A literature review on displacement estimation is

available in chapter 5.

Once we track the shear wave propagation in tissue over time using ultrasonic
displacement estimation, it is possible to use this information to recover quantitative
elastic information, i.e, the shear and Young’s moduli. The initial method proposed
to recover elasticity mapping was based on the inversion of the second-order wave
equation. The governing equation for wave propagation in an isotropic, elastic and

locally homogeneous medium can be expressed as [85]:

d%ii

GVZ%i+ (K+G)V(V-ii) = P s (2.17)

where G and K are the shear and bulk modulus, Vi is the spatial Laplacian
of the shear wave displacement i, V is the del operator, p the tissue density (ap-
proximately 1000 kg/m? for soft biological tissue) and ¢ is time (in seconds) [86].
Assuming that the propagated wave is pure shear wave and thus, divergence-free,
V-ii =0, then Eq. 2.17 can be simplified to the time-independent form of the wave

equation, also known as the Helmholtz equation:

d%ii

Vii=p——r 2.1
G P33, (2.18)

The inversion of Eq. 2.18 can be implemented by computing the second-order
spatial and temporal derivatives of the shear wave displacement. However, the 3D
shear wave displacements cannot be estimated by imaging the medium with a 1D
ultrasound probe. Bercoff et al. calculated the shear wave displacement only in the
axial direction, hypothesising that the three components of the displacement are

independent solutions of the wave equation [86], which gives:
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Since the imaging field of view corresponds to the (x,z) plane, only two components

of the Laplacian can be calculated and, therefore, they assumed that:
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Thus, the shear modulus can be calculated as :
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Although all the components of Eq. 2.21 can be obtained using ultrasound
tracking techniques, the estimated displacements are in practice corrupted with
signal noise. Therefore, it is challenging to obtain an accurate estimation of the
spatial second derivatives from the ultrasonic displacement data. This requires
different filtering operations to remove noise from displacement data, which can be

computationally intensive, and thus challenging, for real-time processing.

The common approach to estimate the propagation speed of the shear wave
consists in performing time-of-flight measurements, where the shear wave position
is represented as a function of time. This is typically done by estimating the time of
arrival of the shear wave at different lateral positions in the axial displacement data.
The elastic modulus can then be estimated by using Eq. 2.15. The time of arrival can

be estimated using either cross-correlation or time-to-peak methods.

The cross-correlation method estimates the time of arrival of the propagating
shear wave front by determining the time lag between adjacent lateral positions [87].
The Time-To-Peak (TTP) method estimates the arrival time of the wave by taking the
intensity peak of the displacement for each lateral position. The shear wave speed is
then estimated by finding the slope of a fitted line estimated with linear regression

on the time-to-peak displacement versus the lateral position [88—90].
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2.3.2.1 Transient Elastography

Transient elastography (TE) uses low-frequency (50 Hz) mechanical vibration to
generate shear waves in the targeted tissue. The external push is induced by a me-
chanical vibrating device, and the shear wave propagation in the tissue is tracked with
a separate ultrasound transducer using motion-mode (M-mode) imaging. In contrast
with B-mode imaging, which reconstructs a 2D image with multiple ultrasound
scan lines across the lateral direction, M-mode imaging allows tracking of tissue
displacement on one scan line with a high temporal resolution. This one-dimensional
method allows one to follow the propagation of the shear wave and to measure its
velocity along a scan line, which corresponds to a small tissue volume of about 1 cm
wide and 4 cm long. The main drawback of this technique is that M-mode imaging
does not allow imaging of the region of interest to guide tissue stiffness assessment.
Ultrafast ultrasound imaging has later been implemented for transient elastography,

allowing real-time 2D imaging of a larger portion of tissue [91].

This technique was the first shear wave ultrasound method to be commercially
available (FibroScanTM, Echosens, Paris, France) [92, 93]. It has been used mainly
for liver diseases, with performance similar to serum biomarkers for the diagnosis
of liver fibrosis [94]. This method has gained increasing attention to monitor the

progression of chronic liver disease and could replace the more invasive liver biopsy.

2.3.2.2  Acoustic Radiation force imaging (ARFI)

Acoustic radiation force-based elasticity imaging techniques use a short duration
(0.1-0.6 ms), high-intensity pulse (peak pulse average = 1400 W/cm?) to induce an
internal force to displace tissue. This force results from the transfer of momentum
from the ultrasonic wave to the medium through which it is propagating due to
scattering and absorption mechanisms [96]. This ‘pushing’ pulse can be generated
by focusing several acoustic beams of a standard ultrasound transducer. According
to the derivation by Nyborg et al [97, 98], the radiation force F for an acoustic plane
wave can be related to the absorption o and speed of sound c in the tissue, as well as

the local average intensity of the focused acoustic beam / so that:
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Figure 2.9: Transient elastography with FibroScan™ (Echosens, Paris, France). The upper
image shows the FibroScan ™ applicator that contains the piston to generate
the shear waves. The lower image represents axial displacement as a function
of time and depth, obtained from an M-mode image sequence. The shear wave
velocity by calculating the slope of the white line is drawn on the image. It
corresponds to the best fit of shear wave time-of-arrival according to depth.
Image courtesy of Bamber et al. [95].
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It is important to note that this derivation assumes that ultrasound waves in soft
tissues are mainly attenuated by absorption and that the contribution of scattering
can be neglected. The absorption of the radiation force by the tissue generates a

displacement (about 10-30 um) and normal shear waves that propagate perpendicular
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to the imaging/excitation plane. Therefore, this excitation method allows the mea-
surement the relative tissue deformation, i.e., strain, and the Young’s modulus, which
is proportional to the shear wave’s propagation velocity. Excitation and imaging are
performed with the same transducer and allow B-mode images to be displayed to

guide the procedure.

For strain measurements, ARFI consists of tracking the tissue displacement
in the region excited at a single lateral location by the pushing pulse. This is done
by computing the displacement between a reference pulse, before the push, and a
tracking pulse which is acquired directly after applying the acoustic radiation force.
This procedure can be repeated across the aperture of the probe to recover a 2D strain
elastogram [98]. In addition, this excitation method lowers signal decorrelation due
to out-of-plane and large displacements, and is less user-dependent, compared to

quasi-static elastography.

The shear wave ARFI method, also called point Shear Wave Elastography
(pSWE), follows the same acquisition protocol but instead tracks the shear waves
generated by the pushing pulse. Since the shear waves propagate away from the
region of excitation, the reference/tracking pulses are acquired laterally to the pushing
pulse. The shear wave speed in tissue has traditionally been calculated with time-
of-flight methods [99]. These methods can provide a local average shear wave
velocity measurement or the procedure can be repeated at different lateral locations
to reconstruct a 2D quantitative map of elasticity (i.e., Young’s modulus map). An

example of velocity estimation with pSWE is shown in figure 2.10.

Both methods were developed by Nightingale et al. [100]. They are commer-
cially available on the Siemens Acuson 2000 & 3000 system (Siemens Medical
Solution, USA) as Virtual Touch™ tissue imaging and Virtual Touch™ tissue quan-
tification, respectively [101]. ARFI has been used for many clinical applications.
It has been considered for cardiovascular imaging, for example to guide thermal
ablation procedures [102], or to identify arterial plaques [103]. It has also been
investigated for tumour characterisation, such as breast [104] and prostate cancer

[105].
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virtual Touch Quantification PSWE

Figure 2.10: Example of point shear wave elastography in a tissue-mimicking phantom with
the Virtual Touch™ system. The shear wave speed is calculated in the green
box, with the value indicated in the left top corner. Image courtesy of Ozturk
et al. [106]

2.3.2.3 2D Shear wave elasticity imaging

The emergence of real-time 2D shear wave imaging has been made possible by the
development of plane wave imaging, leading to ultrafast frame rates up to 10,000
frames per second (fps) [64]. This technique uses the same tissue excitation as ARFI,
but the resultant shear wave front is readily detectable and tracked with ultrafast

imaging in the tissue.

The first technique to make use of multiple acoustic radiation force excitations
was supersonic shear imaging (SSI), developed by Bercoft et al. [86]. This method
consists of inducing a conical quasi-plane shear wave front by applying consecutive
acoustic radiation force excitations at different focusing depths. The resulting shear

waves interfere constructively along the so-called ‘Mach cone’, which results in the
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formation of two intense quasi-plane shear waves propagating in opposite directions.
The name of this method refers to the ‘sonic boom’ created by supersonic aircraft.
The formation of the Mach cone is made possible because the excitation foci are
moved through the tissue above the supersonic speed, which is considerably higher
than shear wave propagation speed (10-30 m/s). The shape and intensity of the
resulting shear waves allow monitoring of simultaneous tissue response across a
larger field of view than ARFI. An example of SSI acquisition is illustrated in figure
2.11.

This method was implemented on the Aixplorer ultrasound scanner (SuperSonic
Imagine, France). The feasibility of SSI has been assessed for the characterisation of
breast tumours [107] and liver viscoelasticity measurements [108]. Similar to ARFI,

it has also been used to monitor thermal ablation procedures [86].

Time

[a] ~e— [ |

RACATAT A
o DA T o

Depth

Plane shear waves

Figure 2.11: Supersonic shear imaging (SSI). (a) Sequential generation of the supersonic
shear source. (b) B-mode image and its corresponding SSI 2-D elastogram
acquired from a tissue-mimicking phantom. (c) Propagation of two quasi-plane
shear waves generated from a supersonic acoustic radiation force. Adapted
from Bercoff, Fink and Tanter [86, 109].

Another multi-stimuli acoustic radiation force imaging technique is Comb-push

ultrasound shear elastography (CUSE), developed by Song et al. [110]. CUSE
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generates shear waves by exciting the tissue with multiple, simultaneous pushing
pulses in the lateral direction. This allows to obtain a 2D elasticity map of the whole
field of view, and compensate for inaccurate shear wave speed in the focal beam

region. The ARFI excitations can be focused or unfocused.

This method was further refined to be used on a standard ultrasound scanner
with the time-aligned sequential tracking (TAST) method [111]. CUSE has been
used for the in vivo assessment of breast tumour mass [112] and thyroid nodules

[113].

2.4 Conclusion

This chapter presented an overview of ultrasound imaging, followed by fundamentals
of linear soft tissue elasticity and their relationship with ultrasound elastography.
This chapter also described different tissue stiffness evaluation techniques (e.g.,
strain imaging, ARFI, pSWE, SWEI) which can be classified into two ultrasound
elastography modalities which are; quasi-static elastography and transient impulse
shear wave elastography. Quasi-static elastography techniques can be used with
most state-of-the-art ultrasound scanners and provide a qualitative estimation of
tissue stiffness (i.e., strain). Transient impulse elastography techniques are based
on the generation and study of shear waves in tissue to estimate tissue mechanical

properties such as the strain, shear and Young’s moduli.

Both quasi-static and shear wave elastography have been investigated in neu-
rosurgery, showing promising results on their ability to delineate brain tumours
[40, 41]. However, the lack of image analysis tools and integration with the surgical
navigation system limited the usefulness of elastography in neurosurgery and its
clinical translation. This thesis hypothesised that the combination of ultrasound
elastography with neuronavigation could improve the location of brain tumours. The
following chapters of this thesis will focus on the development of novel learning-
based techniques to improve tissue stiffness evaluation (chapters 3, 4 and 5), and
their integration into a neuronavigation module (chapter 6). We first considered the

improvement of quasi-static elastography strain estimation (chapters 3 and 4), be-
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cause its low hardware requirement makes it a good candidate for clinical translation.
We then extended our method to shear wave elastography imaging (chapter 5), which
offers operator-independent and quantitative estimation of tissue stiffness, and could

better characterise brain tumours.



Chapter 3

An unsupervised approach to
quasi-static elastography with

end-to-end strain regularisation

This chapter focuses on the development of a new learning-based method for dis-
placement estimation in quasi-static elastography. We first introduce the challenges
and previous work related to speckle tracking for tissue strain estimation in section
3.1. We then introduce our unsupervised training strategy and network architecture
in section 3.2. The sections 3.3 and 3.4 of this chapter respectively present and
discuss our results on numerical simulation and in vivo data. The following work
was presented at the 23™ international conference on Medical Image Computing and

Computer Assisted Intervention (MICCAI) in October 2020 [114].

3.1 Introduction

3.1.1 Previous work in displacement estimation

Various methods of displacement estimation for quasi-static ultrasound imaging have
been proposed over the years. The most common approach consists of searching for
the time-delay between local windows by maximising a function that quantifies the
similarity between a pair of inputs. This maximisation has been operated both in the
time [115-117] and phase domain [118, 119] of the RF data. Different similarity

metrics have been proposed to match consecutive RF frames, such as the cross-



3.1. Introduction 54

correlation function [120-122], the sum of square difference [123, 124] or the sum
of absolute difference [125, 126]. Although windows-based methods have shown
good performance in displacement estimation, working with local windows prevents
the accurate prediction of large deformations and is sensitive to global decorrelation,

i.e., the change of speckle appearance due to out-of-plane motion.

A different strategy involves minimising a cost function that combines image
similarity and displacement regularity [127, 128]. These methods assume the dis-
placement throughout the tissue to be smooth and, therefore, justify the use of a
regularisation parameter that penalises the correlation function to prevent displace-
ment discontinuity. However, this type of approach can be computationally expensive
and is not suitable for real-time application. More recently, new approaches have
been proposed to speed up the computation, such as by using dynamic programming
[129] or by minimising a nonlinear cost function on the entire image [130]. Although
these methods can be used in real-time, they are still sensitive to noise [131], which

is of critical importance for real-time elastography.

The recent progress of learning-based methods for optical flow estimation has
inspired novel strategies for ultrasound strain estimation [132, 133]. Wu et al. pro-
posed a convolutional neural network (CNN) that takes as input patches sampled
from a RF ultrasound data pair, and iteratively reconstruct the displacement and
strain estimates [134]. Gao et al. further improved this method by proposing to use
the Learning-Using- Privileged-Information (LUPI) paradigm [135]. LUPI makes
use of intermediate displacement estimate obtained from numerical finite element
method (FEM) simulation to refine the strain prediction during training. The authors
showed that using privileged information during training improved the accuracy and
generalisation of the network, as compared with their previous method. Kibria et
al. used FlowNet 2.0, which was the first CNN architecture to outperform classical
approaches in optical flow estimation [133]. The network was directly used on
ultrasound elastography data to produce initial displacement estimates, which were
further refined with an optimisation-based method [131]. Other methods directly

used pre-trained optical flow networks and designed transfer learning strategies to
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apply them on ultrasound RF data. Tehrani et al. presented a training strategy to
fine-tune the Pyramid, Warping and Cost volume Network (PWCNet), another well-
known optical flow network [136]. Their training strategy consists of minimising
a loss function between the network’s displacement estimates and their respective
ground truth labels, generated from numerical ultrasound phantoms via finite element
methods [137]. Peng et al. compared the performance of three different optical flow
networks trained on ultrasound numerical simulation: FlowNet, PWC-Net, and Lite-
FlowNet [138]. They assessed the performance of each network on tissue-mimicking
phantoms and in vivo breast ultrasound data. The investigated networks appeared to
provide similar performance as compared with state-of-the-art optimisation-based
methods.

The aforementioned deep learning methods for quasi-static elastography all
used FEM ground truth labels to train networks in a supervised way. Supervised
learning refers to the task of training a network by using labeled datasets. This
approach prevents the model from training on real-world ultrasound data because
ground-truth displacement fields are not possible to obtain because the deformation
applied to the tissue is usually difficult to quantify. Moreover, learning from real-
world ultrasound data can improve the model’s generalisation ability because this
type of data often exhibits complex speckle patterns and echogenic features, which
can be quite challenging to replicate in ultrasound simulation. The lack of ground
truth data in medical imaging has driven the development of unsupervised training
strategies in image registration [ 139, 140]. These methods usually train their network
by optimising a similarity metric between input image pairs, by using the predicted

displacement field to resample the moving image into the reference image space.

3.1.2 Contributions

In this work, we proposed an unsupervised method for speckle tracking that allows a
neural network to be trained directly on clinical data and predict tissue displacement.
The goal of unsupervised learning is to train a deep learning model without using
labeled data. Therefore, our convolutional neural network (CNN) training procedure

is performed without ground truth labels. Instead, the network weights are optimised
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by minimising a dissimilarity function between the pre-compression image and the
compressed image warped with the output displacement field. We also introduce
a new regularisation term that preserves displacement continuity by directly opti-
mising the smoothness of the strain prediction. We validated our method on in vivo
ultrasound data acquired on the forearm of three human volunteers and on numerical
ultrasound simulations. The performance of our method was evaluated by comparing
our displacement field and strain prediction with the ground truth labels and a gold
standard optimisation-based method [141]. To the best of our knowledge, this is the

first unsupervised training strategy applied to quasi-static ultrasound imaging.

3.2 Methods

3.2.1 Problem statement

Our method follows an approach similar to a standard image registration framework,
which aims to find a spatial transformation that maps a moving image into the
space of a reference image. In the case of a non-rigid image registration solution,
this transformation can be represented as a dense displacement field (DDF). This
transformation is generally optimised in an iterative manner, by maximising an
objective function that measures the similarity between the warped moving image
and the reference image, and a regularisation parameter to ensure displacement
continuity. From a learning-based approach perspective, the image mapping is
predicted by a neural network instead of being directly optimised. An overview of
the method is presented in figure 3.1.

If we consider a pair of RF images acquired from a tissue before and after un-
dergoing compression, the aim of displacement estimation is to find the displacement
field between the two images, which allows us to determine the tissue strain proper-
ties. In the case of a linear transducer, the acquired images are 2D and therefore the
resulting DDF comprises the displacements in the axial and lateral direction. This
allows the computation of the axial and lateral strain by differentiating the displace-
ment field. However, since the tissue undergoes an axial compression, the elastic

response will be more important and clinically useful in this direction. Therefore,
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only axial displacement and strain maps are shown in this study.
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Figure 3.1: Overview of the method. This diagram illustrates the proposed unsupervised
training strategy of our method, where the yellow dashed lines indicates data
flows only required in training. During inference, the convolutional neural
network (CNN) takes as input a pair of ultrasound radio-frequency data to
output a dense displacement field (DDF). The strain is then derived from the
displacement field in post-processing by using the least-squares strain estimator.
The training stage only requires the input image pairs, where the output DDF is
used to warp the compressed tissue image to align with the reference image.

3.2.2 Displacement Estimation

Our network takes as input a pair of pre- and post-compression 2D RF frames,
here named Pre and Post, and predicts a DDF u. We named our network ‘USENet’
for ‘Ultrasound Elastography Network’. The network parameters are learned by
minimising a dissimilarity metric Ly, between pairs of 2D RF ultrasound data. Our
training loss function also includes a regularisation term, L,,¢, acting on the predicted
displacement field u and associated with a weighting hyperparameter o, to ensure
balance between the likelihood and smoothness of the predicted transformation. The

optimisation problem can be written as:

6 = argmein [Lsim(Pre, Post;u) + @ - Lyeg(u)] 3.1



3.2. Methods 58

where 0 represents the network parameters that are optimised through stochastic
gradient descent [142]. The goal of stochastic gradient descent is to minimise the
loss function by updating each parameter 6 by a small amount at each iteration. The
direction of fastest decrease of the objective function at each iteration is given by its

negative gradient, which is then used to update the network’s parameters.

The dissimilarity metric corresponds to a negative local normalised cross-
correlation (NCC) which averages the NCC score between sliding windows sampled
from the pre-compression image and the transformed post-compression image, re-
sampled with the predicted displacement field. The NCC between two local image

windows, W, and W), with i, j pixel components can be written as:

Nee— - y (Wore(is 1) = Hivyve ] - [Wipost (is J) — L, ]
N GWIW ) GWposz

(3.2)
i,
where N is the number of pixels (i, j) and ¢ and ¢ correspond to the mean and
standard deviation of the images, respectively. The local windows of size 160 x 16
pixels were sampled from the pre-compression and resampled post-compression

images.

The regularisation term consists of the L.1-norm of the second spatial derivatives
of the predicted displacement field u. According to Mirzai et al., the L1-norm
leads to substantial improvement in the sharpness of displacement estimates for
quasi-static elastography [141]. Given that the strain modulus corresponds to the
displacement gradient, minimising its second derivative allows to enforce the strain

map smoothness. The regularisation term can be written as:

Lyeg =) (| 9Fuij |+] 9ui |) (3.3)
LJ

where 92 and 8y2 are the second partial derivatives in axial and lateral directions,

respectively.
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3.2.3 Implementation

3.2.3.1 Network architecture

The architecture of USENet is based on the U-Net, a fully convolutional network
widely adopted in the medical imaging community [143, 144]. Furthermore, the use
of this type of architecture has been demonstrated successfully for many medical
image registration tasks [140, 145].

The network architecture is illustrated in figure 3.2, and consists of a contracting
path (i.e., encoder) and an expansive path (i.e., decoder). The encoder part is com-
posed of four down-sampling ResNet blocks [146], which capture the hierarchical
features necessary to establish a correspondence between the pair of images. Each
block corresponds to a residual unit composed of two sequential convolutional layers
with a batch normalisation layer and a leaky rectified linear unit.

The contracting path starts with 8 feature map channels, which are then succes-
sively doubled after each ResNet unit. The contraction is performed by halving the
feature map size after each down-sampling block. This is performed by using max
pooling operation, which consists of using the maximum value of patches sampled
from the feature map to reduce its spatial dimension. USENet uses max pooling with
a filter size of 3 x 3 and a stride of 2.

Symmetrically, the decoder part is composed of four up-sampling ResNet blocks
that consist of an additive up-sampling layer summed over a transpose convolutional
layer. Skip connections are used to feed the output of each down-sampling block
to its corresponding decoding block, and were introduced to prevent the gradient
vanishing problem [146]. Finally, each up-sampling block outputs a displacement
field that is convolved and resized to the input size, then summed to output the
predicted displacement field.

This method was implemented in TensorFlow™ using NiftyNet [147]. USENet
was trained with a 12 GB NVIDIA Pascal™ TITAN Xp general-purpose graphic
processing unit (GPU). Image resampling was performed with the bilinear resampler
module available in NiftyNet. Stochastic gradient descent was performed using

the TensorFlow™ implementation of the Adam optimiser [148]. The regularisation
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Figure 3.2: Network architecture of USENet. Each blue rectangle corresponds to a ResNet
unit (illustrated below) with different channel size printed underneath. The
output of each upsampling ResNet unit is then convolved and resized to the
input size before being summed to output the displacement field.

weight was set to & = 1 to ensure displacement continuity.

3.2.3.2 Strain Estimation

In quasi-static elastography, the strain estimates are obtained by computing the
displacement field gradient. However, direct differentiation of the displacement field
is rarely used because gradient operations generate a significant amount of noise
in the resulting strain map. We used the least-squares strain estimator (LSQSE)
to improve the elastogram elastographic Signal-to-Noise ratio [149]. The LSQSE
method reduces the noise amplification due to gradient operation by achieving a linear
curve fit to the displacement field estimates. This method samples 1D displacement
kernels with scalable size n along depth to reconstruct the axial strain map. For soft
tissue, we assume linear elasticity within the sampled kernel. Therefore, we can

write the following relationship:
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u(iy=a-z(i)+b (3.4)

where i corresponds the index of the kernel centre pixel, u the sampled 1D displace-
ment field, z the tissue depth, and a and b are the constants to be estimated. This

equation can be written in the following matrix notation:

u(i) z(i) 1
u(i+1) zZ(i+1) 1
a
u(i+2)| = |z2(i+2) 1 ; (3.5)
u(i+n) z(i+n) 1
which is equivalent to this compact notation:
a
u=A (3.6)
b

where A is a nx2 matrix including the depth position z(i) in the first row as well as
a second row of ones. The slope of the fitted curve a corresponds to the estimated
axial strain and is estimated by minimising the sum of squared error between the
linear model and the displacement estimates, which is given by the well-known

least-squares solution:

= [ATA] ATy (3.7)
b

Since a represents the tissue strain in the middle of the kernel, the strain
information contained at the top and bottom of the field (with length n/2) is not
estimated. The parameter n also affects the smoothness of the resulting strain map
and needs to be carefully adjusted. Since the LSQSE method assumes linear elasticity,
a large kernel size will result in an over smooth strain field, which can prevent to
clearly visualise a difference of stiffness at different tissue interfaces. In this study,

we adjusted the kernel size n manually and find the best results for n = 137.
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3.3 Experiments

3.3.1 Simulation dataset

The Field-II software [150, 151] was used to generate the ultrasound images. It is an
ultrasound simulation package based on linear acoustics that calculates the emitted
ultrasound field at a given spatial location, as a function of time using a convolution
of the spatial impulse response with the excitation function. For pulse-echo imaging,
the received signal is determined by convolving the transducer excitation function
with the spatial impulse responses of the emitting and receiving apertures. The
calculation of the spatial impulse response is based on the Tupholme-Stepanishen
method [152, 153]. Both numerical phantom and ultrasound simulations were
performed using the cyst phantom example available in Field-II [154].

The different processing steps required to create the ultrasound simulation
dataset is shown in figure3.3. Each simulation consisted of a 3D rectangle of size
38 x 40 x 10 mm, containing a cylindrical inclusion with a randomly assigned
diameter (from 8 to 12 mm) and position. The speckle pattern typically observed in
ultrasound imaging was obtained by randomly assigning a total of 400,000 scatterers
across each digital phantom. The axial compression was assigned randomly to each
phantom and represented between 0.5% and 4% of the phantom total length. The
Young’s modulus of the inclusion was set to different values (i.e., 8, 15, 45, and 75
kPa) while the background was fixed to 25 kPa. The difference of stiffness values
between the phantom’s inclusion and background were motivated by tissue elastic
properties usually found in soft tissue such as in liver fibrosis [155], breast [156] and
brain tumours [41]. The numerical phantoms used in this study did not specifically
exhibit stiffness values typically found in brain tumours to artificially increase the
amount of training data and increase the generalisation of the model. The digital
phantoms were meshed by using the Iso2Mesh software [157]. The Poisson ratio of
both background and inclusion were set to 0.495. We applied a uniform displacement
to the top of the phantom, with a fixed boundary constraint applied to the bottom
face, mimicking compression with a hand-held ultrasound probe.

Tissue displacements were estimated by finite element method using the Partial
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Figure 3.3: Finite element analysis pipeline.

Differential Equation Toolbox from MATLAB, and were used to interpolate the
scatterers’ position. A total of 192 RF lines were simulated for each image, with a
probe central and sampling frequency of 7 and 40 MHz, respectively. Background
scatterers were associated with a random intensity value from a Gaussian distribution
to mimic homogeneous tissue. To increase the network’s robustness to noise and
image intensities, the inclusion scatterer intensities were either assigned to O or
similar to the background. Moreover, white Gaussian noise with random signal
power values from 5 to 20 dBW was added to each image to increase robustness to
noise. Finally, 160 ultrasound image pairs were simulated, where 100 were used for

training and 30 for validation and testing, respectively.

3.3.2 In vivo dataset

We created our own in vivo dataset by collecting images of the arms of three human
volunteers. The RF data was acquired from a Cicada 128PX system equipped with a
10 MHz linear probe from Cephasonics (Cephasonics Inc., USA). The images were
reconstructed using the delay-and-sum beamformer from SUPRA [158]. The in vivo
dataset acquisition pipeline is illustrated in figure 3.4. The experimental protocol
consisted of acquiring pairs of images while slowly applying an axial compression on
the volunteer’s arm with the handheld ultrasound probe. The in vivo dataset included
1300 image pairs for training and 300 pairs for validation and testing. The three
image pairs presented in the results’ section were taken from the testing partition

and exhibit one or several blood vessels located in the arm.
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Figure 3.4: In vivo image acquisition pipeline.

3.3.3 Performance comparison

We compared our results on ultrasound simulations and in vivo data with a state-
of-the-art strain elastography method called “tOtal Variation Regularization and
WINDow-based time delay estimation” (OVERWIND) [141]. This method performs
displacement estimation by using an iterative optimisation-based strategy applied
to image windows. The OVERWIND results were obtained by using a MATLAB
implementation made publicly available by the authors. The results on simulation
were also compared with the strain estimates obtained by training our network with
a supervised loss function. The supervised loss function was used previously in a
learning-based method for quasi-static elastography [134]. It corresponds to the
mean absolute error (MAE) between the network prediction and the ground truth

labels. The MAE can be written as follows:

1 N
MAE = N Z,' |Predicted; — Label;| (3.8)

Where Predicted and Label correspond to the estimated and ground truth strain

values, respectively.

We validated the performance of our method on our testing dataset. We used
the root-mean-square error (RMSE) to measure the average magnitude of the errors
between our displacement predictions and the ground truth labels. We also used the
Contrast-to-Noise Ratio (CNR) and elastographic Signal-to-Noise Ratio (SNRe) to

measure the quality of our strain estimation with respect to the ground truth. We
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defined the CNR and SNRe as follows:

2(up — 1i)?
oy +0;

SNRe — % CNR =

(3.9
where 1 and o represent the mean and standard deviation of the elasticity map.
Background and inclusion windows were used to compute the CNR for heteroge-
neous phantoms, where L;, 6, and U;, o; are respectively the Young’s modulus mean
and standard deviation in the background and inclusion regions. The SNRe and
CNR ratio are metrics commonly used in USE [141, 159]. We compared the SNRe
and CNR between our prediction and ground truth labels by sampling both the vari-
ances and average in the stiffer inclusion and its background. The background and
inclusion window were carefully selected as described in [141] to ensure meaningful

statistical significance.

3.3.4 Results

Figure 3.5 shows axial strain images estimated from three simulated image pairs and
obtained with FEM, OVERWIND and both supervised and unsupervised models.
The averaged CNR and SNRe values of the entire testing dataset (i.e., 30 image

pairs) are displayed in table 3.1.
Table 3.1: Mean and standard deviation of SNRe and CNR for the strain images of the

simulation testing dataset obtained with finite element methods, OVERWIND,
the unsupervised and supervised network.

Ground truth Unsupervised Supervised OVERWIND
(mean std) (mean std) (mean std) (mean std)
SNRe 7.51(2.61) 6.95(2.54) 7.79(2.01) 9.31(3.51)
CNR  9.15(2.73) 7.70 (3.8) 4.22 (2.08) 6.33(3.6)

Figure 3.6 shows the estimated axial strains of three different in vivo image
pairs. CNR and SNRe values for each case can be found in table 3.2. The local
NCC values between the post-compression and resampled pre-compression images
are also displayed, to indicate the quality of the predicted displacement fields. The
mean of the three CNR values are 7 and 8.43 for our unsupervised model and

OVERWIND, respectively. The average SNRe values are 0.31 and 0.7 for our
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Ground Truth  Unsupervised Supervised Overwind

Figure 3.5: Comparison of three axial strain fields computed from ultrasound simulations
by finite element method (i.e., ground truth), OVERWIND, the unsupervised
and supervised network. Each row corresponds to a different simulation. OVER-
WIND’s regularisation parameters : o1 = f1 =20 and a2 = 2 = 8.

method and OVERWIND, respectively.

Table 3.2: SNRe and CNR of strain estimates from our unsupervised method and OVER-
WIND, and local NCC scores for the three image pair results from the in vivo
dataset.

Unsupervised OVERWIND
Casel Case2 Case3 Casel Case2 Case3
SNRe 0.14 0.07 0.1 0.12 0.35 0.23
CNR 6.22 52 4.5 4.9 3.15 2.23
LNCC 0.87 0.81 0.94 0.90 0.81 0.93

3.4 Discussion

Our results on ultrasound simulation indicate that our method predicts strain es-
timates with a better CNR compared to the supervised network, with 7.70 and
4.22, respectively. This suggests that our training loss function, which includes a

term that penalises the strain smoothness, improves the strain contrast. Our exper-
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B-mode Unsupervised Overwind

Figure 3.6: Comparison of axial strains estimated by our method and OVERWIND on
three image pairs from the in vivo testing dataset. OVERWIND’s regularisation
parameters : a1 = 1 =0.2 and a2 = 2 = 0.05.

iments showed comparable results to OVERWIND, a state-of-the-art method that
has, in terms of CNR, already outperformed a previous classical approach [130] by
27.26%, 144.05%, and 49.90% on average in simulation, phantom, and in vivo data,

respectively, as reported in [141].

The OVERWIND method predicted strain maps with a higher average SNRe
score than USENet for the testing dataset. The high SNRe score associated with a
lower average CNR, as compared with our method, suggests that the strain maps
produced by OVERWIND were over-smoothed (see Fig.3.6). This can be explained
by the choice of OVERWIND’s regularisation parameters, i.e., o and 8, which affect
the smoothness of the predicted displacement field in the axial and lateral directions,
respectively. Optimising OVERWIND’s regularisation parameter for each case may
be possible, but can be too time-consuming for real-time applications. Therefore,

those parameters were set to @ = 2 and 3 = 0.1 for the numerical simulation dataset,
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and @ =2 and B = 0.1 for the in vivo data, by visually inspecting the resulting
displacement fields. However, these results could have been further improved by
automatically searching for the best regularisation parameter for each image pair, by

optimising one or more metric scores such as CNR and SNRe.

Furthermore, the OVERWIND real-time performance had not been quantita-
tively reported, while our approach reached a strain prediction rate of about 13
frames per second on a 12 GB NVIDIA GTX-1080Ti GPU. The real-time inference
of our network and its ability to be trained without ground truth labels represent great

potential for the use of learning-based methods in ultrasound strain elastography.

3.5 Conclusion

In this chapter, we presented USENet, a new deep-learning approach for the esti-
mation of the displacement and strain maps between a pair of ultrasound RF data
undergoing axial compression. We validated our method on both ultrasound simula-
tion and in vivo data acquired from the forearm of 3 human volunteers. Our method
is completely unsupervised, and ground truth images collected from finite element
analysis were only used to assess the performance of our method. Our results on
simulation and in vivo data suggest that USENet is capable of estimating an accurate
displacement and strain field between a pair of RF ultrasound data. Moreover, the
CNR and SNR scores of our strain estimates suggest that penalising the norm of the

displacement second derivative results in smoother elastograms.

Finally, our method only considered a pair of RF ultrasound data to estimate
the tissue strain. However, diagnostic ultrasound systems typically feature real-time
imaging at a high sampling rate (up to 100 frames per second). Although ultrasound
strain elastography can estimate tissue stiffness with only two images, the resulting
displacement is not always sufficient to obtain a relevant strain estimate. A non-
uniform or small axial compression occurring between an image pair can greatly
affect the signal-to-noise ratio and result in a strain map that does not effectively
characterise the tissue stiffness. The following chapter will focus on extending

our unsupervised training strategy to incorporate spatio-temporal consistency. We
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proposed to use a recurrent neural network and showed that using a temporal stack

of ultrasound images improves the strain prediction of the targeted tissue.



Chapter 4

Improving spatio-temporal
consistency of strain estimates using

recurrent neural networks

This chapter is built upon our unsupervised learning method for quasi-static elastog-
raphy presented in chapter 3. Here, we propose to improve displacement estimation
and spatio-temporal continuity between time series ultrasound frames in elastography
by making use of recurrent neural networks. This work further explores existing
challenges in quasi-static elastography in section 4.1 such as frame pair selection
and temporal sampling. A novel recurrent network architecture and training strategy
is presented in section 4.2. The performance of this new method was assessed on
numerical simulation and in vivo time series in section 4.3. Finally, a discussion
of this work is available in section 4.4. This work is adapted from our Physics and
Medicine in Biology journal paper named ‘An unsupervised learning approach to
ultrasound strain elastography with spatio-temporal consistency’ and published in

July 2021 [160].

4.1 Introduction

4.1.1 Background

Typical ultrasound systems feature a high sampling rate (up to a 100 frames per

second), which gives access to a considerable amount of data. The increase of
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computing power, which has become available through the use of GPUs, has enabled
the real-time processing of ultrasound data frames for strain estimation. Quasi-static
elastography only requires two image frames to estimate the strain modulus, but
the resulting information is not always relevant. A non-uniform or small axial
compression occurring between an image pair can greatly affect the signal-to-noise
ratio and result in a strain map that does not effectively characterise the tissue
stiffness.

Different studies focused on finding the most suitable pair of images to be used
for strain estimation. A common solution to this problem is to compute the strain
between all image pairs and associate each resulting strain with a confidence score
based on image similarity [161, 162] and/or tracking information [163]. In [164], the
frame selection is performed before displacement estimation, by using a classifier
that gives a binary decision on the suitability of the image pair for strain computation.

Finding the best image pair also means searching for the optimal interframe
interval, i.e., the time interval between successive ultrasound frames, which greatly
impacts the displacement estimation. A high interframe interval exacerbates decorre-
lation noise due to physiological motion, such as blood flow and muscle movement,
which can greatly affect the performance of displacement estimation methods and
reduce the quality of the resulting strain map. Therefore, this limits the range of
possible image pairs in the temporal dimension for frame pairing methods [165].
Furthermore, commercial scanners can acquire images at a high frame rate and
frame-pairing strategies discard a large proportion of the available data. The strain
image quality can also be improved by accumulating successive displacement fields

[166, 167] or by normalising strain images with an estimate of the applied stress

[168].

4.1.2 Contributions

This chapter proposes a novel network architecture based on convolutional Long-
Short-Term Memory units (convLSTM) [169] to improve displacement estimation
accuracy for image pairs that are temporally distant, by making use of the intermedi-

ate frames. The use of intermediate ultrasound frames improved the displacement
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estimation of our recurrent network for large range deformations, as well as the con-
sistency between consecutive strain predictions. We called our method ReUSENet,
which stands for ‘Recurrent Ultrasound Strain Elastography Network’. An overview
of ReUSENet is presented in figure 4.1. We also present a publicly available in vivo
database which consists in 17271 RF data of blood vessels acquired on the arm of a
human volunteer! .

The training of ReUSENet is based on the unsupervised scheme used in chapter
3 but also incorporates a spatio-temporal consistency term to help the network to
learn from previous predictions. At inference, ReUSENet takes a temporal sequence
of RF ultrasound data as input and predicts the displacement and strain maps of
consecutive image pairs by making use of the memory state of the convLSTM units
captured from previous predictions. We compare the performance of ReUSENet with
the standard feed-forward neural network architecture we developed in chapter 3, i.e.,
USENet. We validated our two models on ultrasound time series using numerical
simulation and in vivo data, and compared our results with state-of-the-art deep
learning-based and optimisation-based algorithms [130, 137]. Both networks can
be run in real-time at a speed of about 20 frames per second with a standard 12 GB

GPU.

4.2 Methods
4.2.1 Network architecture

42.1.1 ReUSENet

The network architecture of ReUSENet is presented in figure 4.2. The encoder
part of the recurrent network is the same as USENet, described in chapter 3. In
the decoder part, the up-sampling blocks from USENet are replaced by convLSTM
units [169]. LSTMs are a type of neural network that have been designed to learn
long-term dependencies and process temporal sequences of data [170]. A standard
LSTM unit is composed of a memory cell ¢;, also known as the internal state, and

three ‘gates’ regulating the flow of information, i.e., the input gate i;, output gate

'Open access database available on https://www.synapse.org/InVivoDataForUSE


https://www.synapse.org/InVivoDataForUSE
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Figure 4.1: Overview of the proposed recurrent model for ultrasound strain elastography
(ReUSENet). At each time step ¢, the network takes as inputs a pair of radio-
frequency data frames (Im,_1,Im;) and outputs the dense displacement field U;
between the inputs images. The displacement field is then spatially derived from
the strain field, by using the least-squares strain estimator (LSQSE).

o; and forget gate f;. Intuitively, the memory cell keeps track of the dependencies
between the inputs of the temporal sequence, the input gate controls the incoming
input flow, the forget gate controls the amount of information to keep in the cell and
the output gate controls the amount of information to use for the output. The output

of an LSTM is called the hidden state and is noted /;.

A convLSTM cell differs from a standard LSTM unit by taking multidimen-
sional data as input, such as videos. This is done by replacing the fully connected
layer of each gate by a convolution operation to capture the image spatial features.

The updated equations can be written as follows:

;

iy = Gg(xt * Wi +he 1 x Wy —l—b,’)

fi= O'g(xt * W+ *th-i-bf)

Oy = Gg(xt *Wyo +hi—1 %Wy, +b0)

g “4.1)
Cr = Gc(xt * Wae + 1 % W +bc)

Ct = Cr—1 @ft—i-l,@c}

hy = 0; ® 6c(ct)

\
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Figure 4.2: Network architecture of ReUSENet. Each blue rectangle constitutes the encoder
part of the network and corresponds to a ResNet unit (illustrated below) with
different channel size printed underneath. The decoder is made up of successive
convLSTM units, which are represented in orange and are described in detail at
the bottom of the figure. The output of each convLSTM unit is then convolved
and resized to the input size before being summed to output the displacement
field.

where % and ® correspond to a convolution operation and an element-wise product,
respectively. 0, and o, are the logistic sigmoid and hyperbolic tangent functions. ¢
denotes the cell input activation vector. W, and b, correspond to the weight matrices

and bias vector parameters, which are learned during training [169].

Inspired by Salvador et al., the encoded features along with the previous hidden
state are fed to a convLSTM layer, which is then followed by four upsampling
convLSTM blocks [171]. For a time step ¢, a convLSTM block i takes as input its
temporal hidden state /; ;1 as well as the previous spatial hidden state 4,1 ;, which
is up-sampled by a bilinear additive layer [172] and a transpose-convolution layer
that are then added to the output of the symmetric encoding block output via a skip
layer. Finally, each convLSTM block outputs a displacement field that is convolved

and resized to the input size, then summed to output the predicted displacement field.
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4.2.2 Training

The encoder of both ReUSENet and USENet takes a pair of pre- and post-
compression 2D RF frames as input, here named Pre and Post, and the decoder
predicts a dense displacement field (DDF). The parameters of our network are esti-
mated by minimising a weighted loss function over the training set. The loss function
L, a1 1s composed of an image similarity term, a displacement regularisation term

and a temporal consistency term which can be written as follows:
Lt()tal = Lgim + aLreg + BLcons (42)

where Ly, Lyeg and Lo are the similarity, regularisation and consistency terms,
respectively. The terms « and 3 are the hyper-parameter used to specify the weight

of the regularisation and consistency terms, respectively.

For any given training pair, the Lg;,, term is chosen as a negative local normalised
cross-correlation (LNCC) function that averages the NCC score between sliding
windows sampled from the pre-compression image and the post-compression image
resampled with the predicted displacement field u. The NCC between two local

image windows, W and W,, with i, j pixel components can be written as:

LNCC = lz Wi (i,.) — bw ] - Wa (i, ) — b
N3 O, * O,

4.3)

where N is the number of pixels indexed by location (i, j) and u and ¢ correspond

to the mean and standard deviation of the images, respectively.

Given the LNCC, the similarity loss Ly, can be expressed as:

Lgim = LNCC(Pre,PostoT) 4.4)

where Post o T corresponds to the spatial transformation predicted by the network
and applied to the post-compression image to map it in the pre-compression image

space.

The regularisation term corresponds to the L1-norm of the strain spatial gradient.
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Given that the strain modulus is defined as the displacement gradient, the strain field
gradient corresponds to the second-order derivative of the predicted displacement

and can be written as follows:

Ligg =Y (| 0Fuij |+ 0xOyuij |+ 05 ui j | + | 9y j |) (4.5)
i,j
where u is the predicted axial displacement field and Bfu, dxoyu, Byzu and d\,du are

the second-order partial derivatives of u.

After displacement estimation, the axial strain map is computed directly during
training. In quasi-static elastography, the strain estimates are obtained by computing
the displacement field gradient. However, direct differentiation of the displacement
field is rarely used because gradient operations generate a significant amount of noise
in the resulting strain map. We used the least-squares strain estimator (LSQSE) to
improve the elastogram signal-to-noise ratio [149].

Similar to our similarity loss, the strain consistency term computes the negative
LNCC score between successive strain fields computed from a temporal sequence. It
compares the current strain field S; with the previously computed strain field S;_1,
where S; o T represents S; warped by the predicted transformation 7. Since the strain
image is formed on the physical grid of the post-compression image, the same spatial

transformation is used to perform the strain image mapping.
Leons = LNCC(S;—1,S:0T) (4.6)

Our consistency term is inspired by previous work, where it has been used as a
metric to estimate the consistency between consecutive strain frames [161]. Jiang
et al. motivated the use of this consistency metric by assuming that the noise in the
strain image is uncorrelated with its underlying signal. Therefore, they suggest that
a high correlation score between consecutive motion-compensated strain images
indicates a relatively low noise level and, consequently, an improved image quality.
This term is used only for the recurrent network, which deals with consecutive image

pairs. Therefore, f3 is set to zero when training the USENet.
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The presented method was implemented in PyTorch? and the following exper-
iments were performed using a 12 GB NVIDIA GTX-1080Ti GPU. The network
weights for both USENet and ReUSENet were fine-tuned independently for the
numerical and in vivo databases. During training, the learning rate was initialised
to 10-3 and was reduced by a factor of 0.8 when the validation loss stagnated for 10
epochs. The training was stopped when the difference between the new and previous
learning rate was smaller than 10", The regularisation loss weight was empirically
set to o = 5, while the consistency weight was set to f = 0.2 for ReUSENet. In

inference, the strain map prediction rate reached a total of 20 images per second.

4.3 Experiments

4.3.1 Experiments on numerical phantoms

We first performed a quantitative comparison on numerical simulations of both
USENet and ReUSENet together with two state-of-the-art elastography methods,
namely RF Modified Pyramid, Warping and Cost volume Network (RFMPWC-
Net) [137] and GLobal Ultrasound Elastography (GLUE) [130]. GLUE is an
optimisation-based approach that relies on a regularised cost function to perform
displacement estimation. We used the public Matlab implementation of GLUE
to compute our results. RFMPWC-Net corresponds to a modified version of the
well-known optical flow network PWC-Net [136]. We used the publicly available
demo code and trained weights of the REFMPWC-Net for comparison. The network
weights have been fine-tuned in a supervised way using an ultrasound simulation
database the authors made publicly available, ‘Ultrasound simulation database for
deep learning” [137]°.

For reproducibility, we used the same ultrasound simulation database to train
both USENet and ReUSENet. The database consists of 24 different phantoms with

10 different average strain values (from 0.5 to 4.5%) and 10 different simulations

’Fine-tuning code and pre-trained models are available at https://github.com/
RemiDelaunay/DeepUSE

3The ultrasound simulation database, GLUE and RFMPWC-Net are available at https://users.
encs.concordia.ca/~impact/


https://github.com/RemiDelaunay/DeepUSE
https://github.com/RemiDelaunay/DeepUSE
https://users.encs.concordia.ca/~impact/
https://users.encs.concordia.ca/~impact/
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with different scatterer positions, which results in a total of 2400 simulated images.
The displacements were obtained by Finite Element Methods using the ABAQUS
software. The ultrasound images were simulated with a centre frequency of 5 MHz by
using the publicly available field-II Matlab toolbox. Each digital phantom contains
one or two inclusions with random positions and Young’s modulus (from 40 to 60
kPa). The first 20 numerical phantoms were used for training, whereas the last
four were used for testing. To mimic a temporal stack of ultrasound imaging data,
the testing dataset consisted of sequences composed of 10 ultrasound images with
increasing axial compression, i.e, with an average strain value ranging from 0.5 to
4.5%. All the numerical phantoms contained 10 different ultrasound simulations with
different scatterer positions, except for the last one, which only had 6. Therefore, the

testing dataset consisted of 36 sequences of 10 images.

During training, the entire sequence was fed to ReUSENet at each iteration,
while the interframe interval was randomly assigned for USENet. Strain image
quality was assessed in terms of normalised root-mean-squared error (NRMSE) and
SNR (see Eq. 3.9). Both similarity and consistency scores are also displayed in

figure 4.4. NRMSE corresponds to:

N P ; T, 2 100 -
NRMSE — \/):l (Predicted; — Label;) 00-N @)

N ' YN (Label;)
where Predicted and Label are the axial displacement of the evaluated method and

the ground truth label, respectively.

An example strain image of a simulated phantom with 1.5% of the average
strain computed by the compared methods is shown in figure 4.3. Figure 4.4
shows the different metric score values plotted against the relative deformation
(in % of strain) for the different methods. The shaded plots correspond to the av-
erage scores (in bold) with 25t percentiles (shaded). Both feed-forward neural
networks (RFMPWCNet and USENet) failed to compute an accurate displace-
ment field for large compression. The NRMSE, SNRe, similarity and consistency

scores dropped significantly after an average axial strain of 3.5% for USENet
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Figure 4.3: Strain images of two numerical phantoms with one inclusion (top row) and two
inclusions (bottom row).

and 1.5% for REFMPWCNet. On the contrary, both ReUSENet and GLUE pro-
vide consistent and accurate results for all compression levels. Although GLUE
has the lowest variance, average scores for ReUSENet (similarity=0.98 4+ 0.001,
consistency=0.98 4+ 0.003, NRMSE=1.02 + 0.05, SNRe=9.19 £ 1.10) are similar
or slightly better than GLUE (similarity=0.98 0.001, consistency=0.98 £ 0.001,
NRMSE=1.10+£0.035, SNRe=8.87 + 1.046). Finally, an example of a temporal
axial strain estimation sequence (from 0.5% to 4.5% strain) computed with USENet
and ReUSENet is compared to ground truth simulations in figure 4.5 to illustrate the

degradation of performance of USENet with increasing compression.

4.3.2 Experiments on in vivo human data

The dataset we used in the following experiment consisted of image sequences
acquired from the arm of a human volunteer. Data collection was approved by
the King’s College London Research Ethics Management Application System, ref
HR-18/19-8881. The data were acquired by imaging the volunteer arm while slowly
applying axial compression with the handheld ultrasound probe. We acquired raw
channel ultrasound data from a Cicada 128PX system equipped with a 7.5 MHz
linear probe from Cephasonics (Cephasonics Inc., USA). The images were generated

using the delay-and-sum beamformer from SUPRA [173].
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Figure 4.4: Similarity, consistency, SNRe and NRMSE scores with 25" percentiles of the
compared methods for the testing simulation dataset (N=36) according to strain
(in %).

The in vivo dataset included 310 sequences of variable length, i.e., from 19 to
127 images, for a total of 17271 images. The large variance in the image sequence
size can be explained by the frame rate, which varied from 10 to 20 fps, and the
time it took to perform the axial compression. Not all sequences exhibit a specific
target region with a notable difference in stiffness. For example, a sequence can only
show longitudinal muscle fibres of the forearm being compressed. We also decided
to keep sequences with a large amount of lateral displacement or decorrelation noise
for training our networks. However, each sequence selected for testing targeted at
least one blood vessel. The in vivo dataset generally exhibits higher displacement
and decorrelation noise between each frame compared to the simulated dataset.
Therefore, the temporal sequences used as input for ReUSENet during training and
inference corresponded to 6 successive frames. A total of 20 sequences of 6 images

were used for testing, sampled from 13 different acquisition sequences.

The quality of the strain estimates were assessed in terms of consistency, similar-
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Figure 4.5: Strain images of a numerical phantom temporal sequence with increasing defor-
mation (from 0.5% to 4.5% of strain).

ity, and SNRe. Since ground truth labels were not available, we further investigated
the registration accuracy by computing a target registration error (TRE) in each case
from the in vivo dataset. We manually identified 8 pairs of different corresponding
landmarks between the first and last ultrasound frames in each temporal sequence.
The TRE was then computed before and after resampling the last ultrasound frames
of the sequence into the first one, by using the output displacement field predicted by
USENet, GLUE and ReUSENet. The mean TRE for each case, measured in pixels,
is summarised in table 4.1. In order to avoid unfair comparison, RFMPWCNet was
not included in this performance comparison because the network’s weights were

not fine-tuned on the in vivo dataset, unlike USENet and ReUSENet.

Figure 4.6 and figure 4.8 both show an example of strain estimates of a temporal
sequence computed by USENet, GLUE, and ReUSENet. The white arrows indicate
a blood vessel that is also visible in the B-mode image. The similarity, consistency,
and SNRe scores are represented in figure 4.7. Similar to the numerical phantom
experiment, the consistency, similarity, and SNRe scores for the USENet gradually
decrease as the interframe interval increments. Average scores for ReUSENet
(Similarity=0.92 + 0.03, Consistency=0.96 + 0.04, SNRe=0.96 £+ 0.2) are better than
GLUE (Similarity=0.77 £ 0.07, Consistency=0.92 +0.10, SNRe=0.88 4+-0.25). The

mean TREs for individual cases, measured in pixels, are summarised in table 4.1.
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The average TRE and standard deviation for the entire testing dataset are the lowest
for ReUSENet (2.87 £ 1.31), as compared with GLUE (3.80 % 1.44) and USENet
(4.37+2.03).
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Figure 4.6: Temporal strain image sequence from the testing in vivo dataset.

4.4 Discussion

In chapter 3, we validated our method on relatively small deformations (up to 4%
of strain). Here, our results suggest that incorporating temporal continuity by using
convLSTM units improves displacement accuracy, especially for larger deformations.
Experiments on numerical phantoms have highlighted the poor performance of
standard feed-forward networks, such as USENet and REMPWCNet, to estimate
large range deformations. Indeed, they failed to estimate displacement fields for strain

levels higher than 1.5% for RFPWCNet and 3.5% for USENet. On the other hand,
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Table 4.1: Registration accuracy of USENet, GLUE and ReUSENet. The mean TRE is
calculated in pixels for all cases (8 landmark pairs per cases) from the in vivo
testing dataset.

Case | Initial | USENet | GLUE | ReUSENet
1 6.98 | 5.02 4.05 3.29
2 6.48 | 4.08 3.12 2.57
3 10.00 | 4.21 3.05 1.05
4 8.62 |4.15 4.42 2.48
5 322 [14.82 2.91 3.44
6 7.65 | 3.09 3.07 2.18
7 392 |3.50 3.33 4.03
8 991 5.05 491 2.61
9 9.17 | 4.62 3.64 3.92

10 7.50 | 3.39 3.24 2.80
11 8.80 | 3.89 2.83 1.77
12 9.90 | 4.88 3.61 3.55
13 8.18 | 2.58 2.32 2.35
14 6.83 | 4.64 4.68 3.62
15 8.00 |2.62 4.24 1.20
16 10.45 | 9.16 9.00 7.45
17 4.05 |2.59 2.28 2.32
18 5.58 | 2.15 2.66 1.85
19 592 |2.49 3.57 2.37
20 18.06 | 10.40 5.12 2.94
mean | 7.96 | 4.37 3.80 2.87
stddev | 3.09 | 2.03 1.44 1.31

ReUSENet utilises previous predictions to accurately estimate larger deformation
(up to 4.5%). To the best of our knowledge, this is the first learning-based method to
quantitatively reach the reported performance on such a large displacement search
range.

Our results from the in vivo dataset showed that ReUSENet exhibited higher
scores than USENet and GLUE in terms of SNRe, similarity, and consistency. Most
interestingly, the performance gap increased with the interframe interval, which may
suggest that the recurrent network did make use of previous memory states to predict
the current displacement. The TRE results also suggest that ReUSENet performs
better than GLUE and USENet in terms of registration accuracy. Most interestingly,
the performance gap increases with the interframe interval, which suggests that the

sequential information enabled by the recurrent network improved the displacement
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Figure 4.7: Similarity, consistency and SNRe scores with 25th percentiles for the in vivo
testing dataset (N=20) according to the interframe interval.

estimation. It is important to note that the results from GLUE, RFPWCNet and
USENet could have also been improved by applying the intermediate displacement
fields at each time step. There is however no published best practice on how to
exploit temporal context with these methods. We thus considered such possible
extensions as out of scope for this work, and only compared with the publicly

available implementations of GLUE and RFPWCNet.

We found that GLUE was sensitive to its regularisation parameter, o and f3,
which control the displacement field smoothness in axial and lateral directions,
respectively. We used the default parameters suggested by the authors for the
simulation dataset, i.e., @ =5 and 8 = 1 [130]. However, those parameters tended
to over-smooth the strain field for the in vivo dataset, which improved significantly
the SNRe but also concealed the blood vessels in our experiments. Finding the
optimum parameters for each case may be possible, but can be too time-consuming
for real-time applications. Therefore, we selected the same parameters (& = 2 and
B = 0.1) for the entire testing dataset by visually inspecting the collection of output
rather than automatically selecting the parameters that gave the best metric scores.
Automating this process for optimisation-based elastography methods would be an

interesting future research direction.

In conventional scanners, the strain elastogram is usually displayed next to, or

directly overlayed onto the B-mode images. Therefore, processing time and real-time
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Figure 4.8: Temporal strain image sequence from the testing in vivo dataset.

visualisation are of high importance in quasi-static elastography. Both ReUSENet
and USENet were able to achieve an inference speed of up to 20 frame-per-second
(fps) on the DeepUSE Slicer extension, with a 12 GB NVIDIA GTX-1080Ti GPU.
For comparison, RFMPWCNet achieved a framerate of 6 fps on the same GPU. The
inference speed difference between ReUSENet and RFMPWC-Net can be partly
explained by the input size, i.e., RFMPWCNet takes as input 3-channel images,
but also the number of parameters. ReUSENet consists of 1.5 million parameters
(0.8 million for USENet), whereas RFMPWCNet has approximately 9 million
parameters. The MATLAB implementation of GLUE computed the strain field
between one image pair in about 2 seconds on an Intel Core i7-7700HQ CPU. A GPU

implementation of GLUE would significantly decrease the reported computation
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time.

In addition, we have shown that the ability to incorporate temporal information
in a neural network for quasi-static elastography can increase the robustness to decor-
relation noise and improve displacement estimation between a pair of images that are
temporally distant. We have also shown that including intermediate frames allows
the recurrent network to measure larger deformation. Quasi-static elastography is
highly user-dependent, and the displacement between each frame can not only be
significant, but also variable, especially when the images are acquired at a high-frame
rate. The use of a recurrent network that encodes the spatio-temporal information

coupled with a frame-selecting method could also improve real-time visualisation.

4.5 Conclusion

In this chapter, two different neural networks were presented - USENet and
ReUSENet. The former is presented in chapter 3 and is a feed-forward encoder-
decoder, which takes a pair of images as input, while the latter has a recurrent
architecture with decoding convLSTM units that allows a temporal RF data sequence
to be used as input. Both networks were trained in an unsupervised way, which
allows fine-tuning on in vivo data. The loss function used during training is the same
as the one used in the previous chapter, except for the temporal continuity term used
to train ReUSENet. The two networks were compared with a supervised network
(RFMPWCNet) and a state-of-the-art optimisation-based method (GLUE).
Addressing temporal continuity in ultrasound elastography could also be of
interest when using ultrafast ultrasound imaging technologies, i.e., plane wave
imaging, to model fast tissue deformation [174]. This is particularly the case for
shear wave elastography, which aims at tracking in time and space the propagation
of shear waves generated by an acoustic radiation force. This technique has shown
great promise in quantitative evaluation of soft tissue stiffness (see chapter 2), and
more particularly in the characterisation of brain tumours [41]. The next chapter
will focus on the evaluation of our unsupervised method for shear wave elasticity

imaging.



Chapter 5

Learning-based methods for
displacement estimation in shear wave

elastography

This chapter investigates the use of the unsupervised learning-based approach, pre-
sented in chapter 3 and 4, for 2D shear wave elasticity imaging. Section 5.1 describes
state-of-the-art methods in ARF-induced displacement estimation. Section 5.2
presents the approach we used to generate a new numerical ultrasound dataset that
simulates the propagation of ARF-induced shear waves in homogeneous and hetero-
geneous tissue-mimicking media. Sections 3.3 and 3.4 of this chapter respectively
present and discuss our results obtained with our unsupervised learning strategy
and a state-of-the-art method on our numerical simulation dataset. This work was

presented at the SPIE in Medical Imaging conference in February 2022 [175].

5.1 Introduction

This work focuses on shear wave elastography imaging (SWEI), where a focused
AREF is emitted by the ultrasound probe and applied to the tissue (see chapter 2).
The force induces small tissue displacements (about 10-40 um), and generates quasi-
planar shear waves that propagate through the tissue. The shear wave speed is
relatively low in soft tissue (1-10 m/s), and is directly related to the Young’s modulus

(see Eq. 2.14). Ultrafast plane-wave ultrasound imaging has enabled tracking of
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shear wave propagation with high temporal resolution (up to ten thousand frames

per second) and reconstruction of 2D maps of tissue elasticity.

5.1.1 Previous work in ARFI displacement estimation

Shear wave estimation involves monitoring tissue motion spatially and temporally,
which requires the acquisition of a large amount of ultrasound data at a high sam-
pling rate (up to 200 frames per acquisition). Tissue motion can be monitored by
calculating the displacement between a reference image, acquired when the tissue
is at rest, and a set of images acquired after the induced ARF. Thereafter, the shear
wave velocity is generally estimated with time-of-flight (TOF) methods, which deter-
mine the time of arrival of the shear wave at different lateral positions in the axial
displacement fields [90]. Therefore, the accuracy of displacement measurement is
crucial for shear wave estimation, which is challenging because of various sources
of noise in the ultrasound data and the very small displacement magnitude.

Similarly to quasi-static elastography, displacement estimation in SWEI is
usually performed by using a correlation-based approach on the beamformed radio-
frequency (RF) ultrasound data [176]. Alternatively, optimisation-based approaches
initially developed for quasi-static elastography have also been applied to transient
dynamic elastography [177, 178]. Those methods make use of a regularisation
parameter that penalises the correlation function by promoting the smoothness of the
displacement estimates.

Another well-known method consists of calculating the shear wave propagation
velocity by using a phase-shift estimator on the demodulated In-phase/Quadrature
(I/Q) ultrasound data. In 1985, Loupas et al. developed a 2D auto-correlation method
for the velocity estimation of ultrasound blood flow imaging [179]. The phase shift
calculated between the acquired 1/Q data is directly related to the displacement
because of the relation between the ultrasound wavelength and the propagation speed
of the ultrasound in tissue. The Loupas method is still employed in state-of-the-art
shear wave elastography methods [180].

The recent advances of learning-based strategies applied to quasi-static elastog-

raphy, including our work described in chapter 3 and 4, have raised new research
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interest in ARF displacement estimation. Chan et al. proposed a fully convolutional
neural network (CNN) trained on synthetic 3-D displacement data for displacement
estimation in acoustic radiation force imaging (ARFI) [181]. Unlike SWEI, ARFI
only tracks the tissue displacement across depth at a single lateral position and,
therefore, does not allow tracking of the propagation of resulting shear waves (see
chapter 2). Their network was trained in a supervised way, and allowed to estimate
the displacement between two depth samples acquired before, and after applying the
ARF.

Furthermore, Ahmed et al. developed a learning-based method for elasticity
modulus reconstruction in SWEI [182]. Their method focused on the reconstruction
of Young’s modulus elasticity map by using FEM displacement data, and therefore,
did not include a displacement estimation component. The network was also trained

by using ground truth elasticity map labels.

5.1.2 Contributions

In this chapter, we investigated the use of CNNs to improve the displacement
estimation accuracy for tracking shear wave propagation, directly from RF ultrasound
data. We considered the two different network architectures proposed for strain
elastography in chapters 3 and 4. We compared them with a conventional normalised
cross-correlation method. The results presented were obtained from simulated
ultrasound RF data. Our dataset consists of 150 shear wave propagation simulations
in both homogeneous and heterogeneous media, which represents a total of 20,000
ultrasound images. To the best of our knowledge, this is the first study to explore the

use of learning-based methods for ultrasonic shear wave tracking in SWEL

5.2 Methods

5.2.1 Generating the numerical simulation dataset

Numerical simulation was used to train our models and assess their ability to track
shear wave propagation. A publicly available finite element method package [183]
was used to build our ultrasound simulation database. Soft tissue was modelled

in a mesh based on hexahedral elements, with node spacing of 0.34 cm? and size
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35 x 25 x 10 mm in axial, lateral, and out-of-plane directions, respectively. Each
phantom presented a uniform background or included a spherical inclusion with
variable location and radius (between 1.5-5 mm). The attenuation coefficient and
Poisson’s ratio were kept fixed for each phantom (0.45 Np/m and 0.495, respectively),
while the background’s Young’s modulus varied between 15 kPa and 30 kPa, with a
1.5 to 4-fold stiffer inclusion. The distribution of acoustic pressure resulting from the
ARF was simulated with Field-II [150]. The ARF was focused at a depth of 19 mm
and emitted for 71 ps with a simulated linear transducer, with an excitation frequency
of 7 MHz. The f-number, which corresponds to the ratio between the focal depth and
the transducer’s active aperture, was set to 2. The field-II pressure values were then
calibrated to intensity values and converted to body-force values using the following

expression:
2ol

c

F (GRY)

where « is the ultrasonic tissue attenuation (set to 0.45 Np/m), I the pulse-average
intensity of the acoustic beam (in W/m?) and ¢ the speed of sound (set to 1540
m/s). The force field was then used as input to model the shear waves propagation.
LS-Dyna (Ansys, Canonsburg, PA, USA), a commercially available finite element
program, was used to solve the tissue displacement resulting from the simulated
AREF. Perfect matching layers were positioned at the phantom boundaries to attenuate

shear wave reflections in the medium.

The ultrasound images were generated using Field-II, by simulating an ultra-
sound linear transducer with 7 MHz central and 40 MHz sampling frequency. The
speckle pattern typically observed in ultrasound imaging was obtained by randomly

assigning a total of 30,000 scatterers per cm?

across each digital phantom. The
displaced scatterer phantoms were obtained by performing linear interpolation on
the FEM displacement data. Each imaging sequence lasted 5 ms and consisted
of 50 images acquired with a 10 kHz pulse repetition frequency. A total of 150
FEM simulations were performed, with only 110 numerical phantoms containing

a spherical inclusion. The testing dataset is composed of 10 homogeneous and

15 inclusion phantoms. The other simulations were used for training, where three
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different speckle organisations were generated for each phantom, resulting in 375

different imaging sequences for training, i.e., a total of 18750 images.

5.2.2 Training strategy

The aim of shear wave ultrasound tracking is to find the microscale displacements
generated by shear wave propagation. This is done for each shear wave image
acquisition by finding the set of dense displacement fields (DDF) between a fixed
image /r and a time series of moving images Ij;(,). We used the unsupervised training
scheme presented in chapter 3.

The networks were trained by minimising a weighted loss function composed
of an image similarity and displacement regularisation term. The image similarity
term corresponds to a negative local normalised cross-correlation (LNCC) function,
which averages the NCC score between sliding windows sampled from the fixed
image, and the moving image resampled with the predicted displacement field. The
regularisation term corresponds to the L1-norm of the second-order derivative of the

predicted axial displacement field. The training loss can be written as follows:

Loss = LNCC(Ip,Iyyo T) + ocZ (IVZu™)) (5.2)

ij
where T corresponds to the spatial transformation predicted by the network and
applied to the moving image Ij; to map it in the fixed image space. The second-order

derivatives of the predicted axial displacement field are noted Vzuﬁ’;.

The architectures of both neural networks used in this study, named USENet and
ReUSENet, have been described in detail in chapter 3 and 4, respectively. They both
consist of an encoder-decoder neural network with skip connections. The encoder
part is the same for both networks and is composed of four downsampling ResNet
blocks. The decoder part of ReUSENet is made of upsampling convolutional Long-
short-term-memory (ConvLSTM) units, which take as input the encoded features
as well as their temporal hidden state predicted from the previous displacement
estimation. The convLSTM units are replaced by ResNet upsampling blocks for

USENet. Finally, the DDF is predicted by first applying a convolution layer to the
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output of each upsampling blocks, and then by summing their resized outputs.

Both USENet and ReUSENet followed the same training procedure and were
implemented in PyTorch. At each time step ¢, a pair of fixed and moving images
was fed to the network to predict the corresponding DDF. In chapter 4, we used
backpropagation through time (BPTT), which consists of accumulating the network’s
prediction error at each time step for the entire time-series input rather than updating
the network’s weight at each iteration. The input size of the shear wave acquisition
sequence (i.e., 1552 x 128 x 50 pixels) was larger than quasi-static elastography
time-series (i.e., 1552 x 128 x 6 pixels). This difference in input size affected the
computational load and caused exploding gradient issues. To overcome this issue,
we used truncated backpropagation through time (TBTT) to update the network’s
weights, to reduce the computational load, and prevent from exploding/vanishing gra-
dient problems. TBTT is a modified version of BPTT which consists of periodically
updating the network’s weights within a time-series for a fixed number of time steps.
This allowed the network to capture the temporal structure of the time-series input
while preventing the exploding/vanishing gradient problem. The regularisation loss
weight and backpropagation step size were empirically set to o = 0.02 and 8 = 10,

respectively.

5.2.3 Time-of-flight approach

The shear wave speed was estimated from the displacement data using a time-of-
flight method that computes the time lag between the adjacent lateral position via
cross-correlation [107]. The main assumption for this method is that the overall
shape of the shear waves is preserved as it propagates through the medium [184].
Therefore, the propagating shear wave front appearing in the displacement data
should be highly correlated with the initial pulse. The correlation score C calculated

between adjacent lateral displacement profile f; and f;, is calculated as follows:

Y fit) froa (tivg)

C(j) =
1) [vazl fl(ﬁ)z):ﬁv:l fl(tiJrj)z]l/z

(5.3)
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where #; represents the time step of each displacement prediction. The time lag
is estimated for each lateral position and corresponds to the maximum correlation
function.

Since the distance between adjacent lateral positions can be obtained from the
image width and resolution, the shear wave arrival time for each lateral position (i.e.,
time lag) allows the estimation of the shear wave propagation speed (SWS) by using
the following equation:

d

== 5.4
SWS A (5.4)

where d is the distance between the adjacent lateral position and A, is the time lag
calculated by cross-correlation. Thereafter, the elasticity map was reconstructed by
converting the shear wave velocities into Young’s modulus values, and by applying a

9x9 median filter to mitigate the effects of outliers, as described in a previous study

[90].

5.3 Experiments

The performance of our method was evaluated on our numerical simulation testing
dataset. We compared our learning-based approach with ground truth FEM displace-
ment fields and the displacement estimates obtained from a classical normalised
cross-correlation (NCC) approach [176]. The performance of the compared tech-
niques was assessed in terms of CNR and SNR of the elasticity map (see Eq. 3.9).
The Young’s modulus MAE (See Eq. 3.8 between the prediction and ground truth
estimates for the background and inclusion values was also calculated.

Figure 5.1 shows an example of shear wave propagation at different time steps
(0.5, 1.0, 1.5 and 2.0 ms) estimated from the testing dataset with ground-truth
displacements, NCC, USENet, and ReUSENet. The left shear wave is propagating
faster than the right one in the medium, which indicates that a stiffer spherical
inclusion is located on the left side of the numerical phantom.

Figure 5.2 shows three examples of elasticity map estimated from the testing

dataset with ground truth displacements, NCC, USENet and ReUSENet. The first
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row corresponds to a numerical phantom with homogeneous background, while
the two other rows show numerical phantoms that contain a stiffer inclusion. It is
important to note that SWEI does not allow to characterise tissue stiffness at the
excitation location. Therefore, the Young’s modulus values displayed in the focal
region are not to be taken into account for stiffness evaluation.

The CNR, SNR, and Young’s modulus MAE values averaged over the testing
dataset for the compared methods are shown in table 5.1. USENet, ReUSENet and
NCC methods have similar Young’s modulus prediction accuracy, with ReUSENet
exhibiting the lowest mean Young’s modulus MAE inclusion value, i.e., 9.61 kPa as
compared with the ground truth values. On the other hand, the NCC method had the
lowest MAE for the Young’s modulus of the inclusion, i.e, MAE of 2.18 kPA. Our
results also suggest that ReUSENet presents a higher SNR and CNR (0.85, 3.90), as
compared with NCC (0.82, 3.32) and USENet (0.66, 3.59).

Table 5.1: Mean and standard deviation of SNR, CNR and Young’s modulus MAE for the
elasticity maps estimated from the simulation testing dataset (10 homogeneous

background and 15 with stiffer inclusion). Results obtained from ground truth
(GT), NCC, ReUSENET and USENet displacement estimations are showed.

SNR CNR Y M, (kPa) Y M, (kPa)
(N=25) (N=15) (N=15) (N =25)
GT 1.25 (£0.39) | 4.59 (£1.80) - -
NCC 0.82 (£0.21) | 3.32 (£1.91) | 12.56 (£15.22) | 2.18 (£1.6)
USENet | 0.66 (£0.12) | 3.59 (£1.81) | 11.22 (£13.32) | 4.36 (£3.18)
ReUSENet | 0.85 (£0.23) | 3.90 (+1.85) | 9.61 (+£12.2) | 3.21 (£2.25)

5.4 Discussion

Our results suggest that learning-based methods could efficiently be used to track
microscale deformations in SWEI. Our approach gives performance similar to the
NCC method in terms of CNR, SNR, and YM MAE values. This suggests that the
ability of ReUSENet to incorporate long-term dependencies with its convLSTM
units improves the displacement estimation of time-series inputs.

Our results also indicate that ReUSENet showed higher performance than

USENet in terms of SNR, CNR and YM MAE scores. However, the performance
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Figure 5.1: Shear wave displacement estimated in a heterogeneous phantom. Each column
corresponds to a different displacement estimation method: FEM ground truth
(GT), NCC, USENet and ReUSENet. Each row corresponds to the z-score
normalised displacements at different time steps, from top to bottom: 0.5, 1.0,
1.5, 2.0 ms. Notice that the tracked shear waves are propagating faster on the
left side, indicating the presence of a stiffer inclusion.

improvement is not as noteworthy as the one observed in chapter 4, where we showed
that feed-forward networks failed to estimate large range quasi-static deformations
(see Figure 4.5). In shear wave imaging, the displacement generated is of the order of
a few micrometres, and the ultrasound time series are acquired with a high temporal
sampling rate (about 5-10 ms). Therefore, our results suggest that both feed-forward
and recurrent neural networks can efficiently track shear wave displacements, and
that the use of convLSTM units is better suited for ultrasound time series that exhibit

larger deformation.
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Figure 5.2: Young’s modulus elasticity maps estimated from ground truth displacement,
NCC, USENet and ReUSENet. Each row displays the Young’s modulus map
(colorbars in Pa) estimated from a different numerical phantom.

The processing times of ReUSENet and USENet have been reported in chapter
4, with a displacement prediction rate of 20 frames per second on a 12 GB NVIDIA
GTX-1080ti GPU. On the other hand, the MATLAB implementation of the NCC
approach processed a SWEI sequence in 7.3 s on an Intel Core 17-7700HQ CPU,
which corresponds roughly to a prediction rate of 8 frames per second. However,
it is important to note that a GPU implementation of the NCC approach would

significantly decrease the reported computation time.
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5.5 Conclusion

This chapter proposes the use of feed-forward and recurrent neural networks (i.e.,
USENet and ReUSENet) to track shear wave propagation in ultrasound elastography.
We validated our method on a numerical data set that simulated the propagation
of shear waves induced by a single-push acoustic radiation force. The training
methodology is completely unsupervised, and ground-truth displacements estimated
via FEM were only used for the method comparison. We also compared our method
with a classical NCC approach in terms of displacement and elasticity estimation
accuracy.

Last but not least, this work presents a publicly available ultrasound simulation
dataset of 20,000 images'. Numerical ultrasound simulations are computationally
expensive and, to the best of our knowledge, this is the first numerical SWEI dataset
made publicly available. This dataset could be used to explore and validate further

learning-based strategies for shear wave ultrasonic tracking.

'Open access simulation database available on https://www.synapse.org/SimForSWEI


https://www.synapse.org/SimForSWEI

Chapter 6

Integration of intraoperative

ultrasound with neuronavigation

This chapter focuses on the integration of intraoperative ultrasound imaging and
elastography into a neurosurgical workflow. It first introduces the concept of surgical
navigation and its technical evolution in minimally invasive surgery. It also gives a
brief introduction of the progress made in image-guided surgery and investigates the
current software available (e.g., commercial and research open-source software) for
ultrasound-guided surgery (section 6.1). The aim of this work was the design of an
ultrasound-aided neuronavigation and elastography platform for clinical use. The
system requirements and choice of open-source platform are presented in section 6.2.
This chapter also presents the procedural assessment of the neuronavigation platform
in a typical surgical workflow (section 6.3). Finally, the results of our feasibility

study and its potential use in clinical settings are discussed in section 6.4.

This work is adapted from an International Journal of Computer Assisted
Radiology and Surgery journal paper named ‘Integrated multi-modality image-
guided navigation for neurosurgery: open-source software platform using state-
of-the-art clinical hardware’, and published in May 2021 [185]. For this work,
I performed the literature review on existing image-guided therapy software to
determine the best suited open-source platform for our project, i.e., Slicer-IGT and
PLUS toolkit. The design and development of the neuronavigation platform was

a collaborative effort between our team and the UCL software development team.
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My contribution was especially focused on the integration of the ultrasound system
with the neuronavigation platform, and included establishing the streaming of data,
the different calibration procedures, the reconstruction of volumetric ultrasound
data and visualisation with preoperative scan images. The stand-alone module for
elastography imaging is my own contribution and was presented separately in our
Physics and Medicine in Biology journal paper named ‘An unsupervised learning
approach to ultrasound strain elastography with spatio-temporal consistency’ [160].
The tissue-mimicking phantoms were fabricated by Eleanor Mackle and Dr. Jonathan
Shapey. Finally, I participated in all the pre-clinical experiments presented in this

chapter.

6.1 Introduction

6.1.1 Navigation in neurosurgery

Stereotactic surgery refers to surgical procedures that use a three-dimensional coor-
dinate system to locate specific anatomical targets within the body. This term is used
for a broad range of minimally invasive interventions such as needle biopsy, ablation,
implantation, or stimulation. The use of stereotactic technologies has been firstly
used in neurosurgery with the aim of performing safer and less invasive interventions
while improving target localisation.

The first stereotactic system was developed by Leksell in 1949 [186] and
consisted of an arc-centered frame to be fixed to the patient head (see figure 6.1). The
target localisation was performed using a three polar coordinates system, expressed
in terms of angle, depth and anterior-posterior location. However, frame-based
stereotaxy presented several disadvantages. The frame attached to the patient was a
source of discomfort, but also obstructed the view of the surgical field. Furthermore,
once the frame was fixed, the target localisation accuracy could not be assessed
intraoperatively. The advances in imaging technologies, especially with the invention
of CT and MRI, and the progress in computer science allowed to overcome the

limitations associated with frame-based stereotaxy.

Nowadays, typical neuronavigation systems have the ability to identify the
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Figure 6.1: Picture of the Leksell stereotactic system. Courtesy of Lunsford et al. [186].

location of surgical tools relative to the patient position in real-time (via positional
tracking), using a frameless localisation system (i.e., tracking device). The two main
categories of localisation systems used in minimally invasive surgery are optical
and electromagnetic tracking. Optical tracking typically consists of dual infra-red
cameras that track the position of retro-reflective markers attached to an object
(e.g., surgical instruments). The main limitation of optical tracking is the necessity
of maintaining a direct line of sight between the infra-red camera and the tracked
instruments and the reference frame. Electromagnetic tracking relies on the creation
of a magnetic field by a field generator, and to measure its inhomogeneous intensities
with sensors. These electromagnetic sensors are only a few millimetres in size
(down to 0.3 mm). In addition, there is no need for direct line-of-sight visualisation.
However, the field generator has to be very close to the operating site to ensure good
localisation accuracy (e.g., working volume of 40 x 40 x 40 cm). Furthermore, the
use of ferro-magnetic elements can disrupt the localisation precision. The choice of

localisation technology will depend on the type of intervention, but also the operator
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preferences.
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Figure 6.2: Summary of the neurosurgical workflow for brain tumour resection. Figure
adapted from Gerard et al. [187]. Step 1: A scan of the patient is acquired.
Step 2: The scan images are uploaded to the neuronavigation system. Step
3: Patient-to-image registration is performed on the day of surgery to map the
patient’s head with the scan images. Step 4: the neuronavigation system is used
to guide the neurosurgeons during surgery.

6.1.2 Ultrasound-guided surgery and related work on

image-guided intervention software
In neurosurgery, intraoperative ultrasound has shown promising results for real-
time 3D visualisation, brain-shift adjustments and tissue characterisation [23-25].

However, despite this previous work, intraoperative ultrasound remains an under-
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utilised tool in neurosurgery. Firstly, because neurosurgeons are not very familiar
with US as an imaging modality and, secondly, because US is typically acquired
and visualised in unfamiliar planes. Furthermore, ultrasound-based guidance for

neurosurgery has not been widely used in clinics.

Intraoperative ultrasound-aided neurosurgery is not new, but the offer of com-
mercial navigation systems is limited in this field. Only Brainlab (Brainlab, Germany)
and Medtronic (SonoNav, Medtronic, USA) include an ultrasound imaging module
in their neuronavigation system. However, their use is limited to a small range
of commercial ultrasound devices. Sonowand [188] was the only company fully
dedicated to the use of intraoperative ultrasound and navigation for minimally in-
vasive surgery, but it has now gone out of business. On the other hand, the past 20
years have seen the emergence of different research image-guided software. These
software programs aim to provide an open-source and customisable environment
for a seamless integration of different medical equipment, including ultrasound
imaging, and encourage the development of new image-guided applications. Those
image-guided therapy software can be classified according to their flexibility and

level of integration.

Different libraries have been focusing on one or different aspects of image-
guided interventions and, therefore, can not be qualified as fully integrated platforms.
For instance, we can note the Image-guided Surgery Toolkit (IGSTK) [189] provides
different packages such as surgical navigation interface and image visualisation.
One of the most popular libraries for open-source image-guided therapy software
i1s openlGTLink [190], which consists of a network communication protocol for
diverse medical equipment. The PLUS toolkit [191] is a library originally designed
for ultrasound imaging research, which now also offers hardware compatibility for a
multitude of medical imaging and tracking devices. Other open-source platforms aim
to provide a highly-flexible environment for the development of application-specific
modules such as NifTK [192], MITK [193] and 3D-Slicer [194]. Those applica-
tions offer core functionalities such as, a graphical user interface, different image

visualisation and processing options, and hardware communication. In addition,
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they also contain extensions specifically designed for image-guided therapy such as
Slicer-IGT, NiftylGI and MITK-IGT.

Finally, we can also find fully integrated image-guided therapy platforms such
as IBIS [195] and CustusX [196]. These software programs have been designed to
be translated into clinics with minimal effort. CustusX is focused on ultrasound-
guided intervention, whereas IBIS has been specifically developed for intraoperative

neurosurgery guidance, with an emphasis on augmented reality.

6.1.3 Contributions

This chapter describes the development of an open-source ultrasound-guided neu-
ronavigation platform, designed to integrate with commercially-available neuron-
avigation and ultrasound systems. The system was assessed in terms of workflow
integration and tracking accuracy using multi-modal tissue-mimicking phantoms.
This chapter also presents a stand-alone 3D-Slicer ultrasound elastography module,
which was build upon the methods presented in chapter 3, 4 and 5, and that could

potentially be used alongside the neuronavigation platform.

6.2 System design
6.2.1 Hardware

6.2.1.1 Medtronic StealthStation

The Medtronic StealthStation is a neuronavigation platform that allows surgical
navigation in real-time. The system incorporates different software, including the
‘Cranial software’, which is dedicated to neurosurgical interventions. The Stealth-
Station includes both electromagnetic and optical tracking. For the purpose of this
project, we decided to use optical tracking because it enables a bigger working field
and a better accuracy than electromagnetic tracking. The spatial location of the
ultrasound probe was recorded in real-time on the StealthStation using the SureTrack
™ technology from Medtronic. It consists of a passive marker compatible with
optical tracking which can be attached to an ultrasound transducer for the surgical

procedure. A tracked navigation stylus was also used to perform patient-to-scan
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registration.

Medtronic provides its own library, StealthLink, to extract tracking data from
the StealthStation via a TCP/IP connection. It is an Application Program Interface
(API) designed for research purposes only. The use of StealthLink is controlled
via a licence research agreement that needs to be signed by the users to enable the
server connection on the StealthStation system. For safety reasons, data can only
be queried from the StealthStation, meaning that no modification can be executed
on the system. The navigation information provided via StealthLink includes the
coordinate transformations (i.e., the position) of the different tools in use, i.e., the
tracker (SureTrack) attached to our ultrasound probe and any stylus or pointer used

for registration, as well as the patient registration preoperative scan data.

6.2.1.2 Ultrasound systems

Two different ultrasound systems were used during the development of the open-
source platform. The BK5000 (BK Ultrasound, UK) is a commercially available
ultrasound system which provides transducers specifically designed for brain tumour
surgery. The Burr-hole transducer (N11C5s, Bk Ultrasound, UK) is an ultrasound
probe designed for intraoperative neurosurgery and was used for this study. The
other ultrasound system available was the Ultrasonix Sonictouch Q+ (BK ultrasound,
UK). This system is compatible with the custom-made ultrasound transducer that we

specifically designed for pituitary tumour surgery (see chapter 7).

6.2.2 Software

Among the open-source image-guided software presented in section 6.1, Slicer-IGT
appeared to be the most suitable platform for this project. This choice was driven
by several considerations. One of the primary requirements was that the platform
was compatible with the medical equipment used by our clinical collaborator at the
National Hospital for Neurology and Neurosurgery (London, UK), for an easier
translation to clinics. Slicer-IGT is fully integrated with the PLUS toolkit, which
offers the largest hardware compatibility. In addition, PLUS provides a wide range

of ultrasound image processing tools, including the calibration procedures used for
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this study. Furthermore, Slicer-IGT is part of the 3D Slicer large community, which
represented an important support to carry out this project (50+ regular contributors,
500+ papers published, 1000+ downloads/month according to Drouin et al. [195]).
3D-slicer also incorporates a wide range of modules dedicated to image processing
and visualisation that is compatible with Slicer-IGT. For instance, 3D-Slicer includes
a module called Slicelet, which allows creation of a simplified user interface that is
optimised for a particular workflow.

The integration of all hardware and software components is illustrated in figure
6.3. The PLUS toolkit communicates via TCP/IP (using the openlGTlink protocol)
with the Medtronic StealthStation and ultrasound system to stream the navigation
and imaging data in real-time. PLUS provides a graphical user interface (GUI)
denominated ‘PLUS Server’ to manage the hardware communication. It uses a
‘device set configuration file’ written in Extensible Markup Language (XML) to
set up all the configurable parameters and enable the connection. The configurable
parameters describe the device (imaging or tracking parameters), the connection,
and any algorithms or applications PLUS needs to operate on the device. Images
from both ultrasound systems are streamed through PLUS. PLUS supports both the
Medtronic StealthStation and Ultrasonix Sonictouch systems, and is built on their
respective research interfaces, respectively the Ulterius and StealthLink libraries.
However, the BK5000 and its OEM research data streaming interface were not
supported. Therefore, the BK surgery kit Python library [197] was used to interface
the BK5000 with PLUS. Once the connection is established, the data from the
ultrasound and neuronavigation systems are streamed in real-time to Slicer-IGT. The

image calibration and 3D volume reconstruction are then performed in Slicer-IGT.

6.2.3 Neuronavigation Slicelet

A custom end-user interface was created using 3D Slicer in order to facilitate the use
of Slicer-IGT during surgery. Slicer-IGT, which is part of 3D-slicer, can be tedious
to navigate through because each step is performed on a different module. Therefore,
we designed a light version of the original 3D slicer version by using the Slicelets

application. A Slicelet allows to load only pre-defined 3D-slicer modules in a
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Figure 6.3: Hardware and Software communication using IP/TCP network. Data from
the BK5000/Ultrasonix Touch and the Medtronic StealthStation is streamed
to PLUS which enables the server connection between the different hardware
and the PC. The Preoperative scan, ultrasound images and tracking data are
uploaded to Slicer-IGT, which performed all the necessary processing steps:
image calibration, patient-to-scan registration, ultrasound 3D reconstruction and
real-time visualisation.

simplified interface and automate some processing steps (e.g., connection to different
devices). We created a Slicelet module using the Python ScriptedLoadableModule
base class provided by 3D Slicer. Features of the neuronavigation slicelet included
display of preoperative MR/CT scans, real-time overlay of ultrasound data, tool
locations and calibration process and volume reconstruction of ultrasound data. The
Slicelet was made publicly available to allow others in the research community to

test and build on this work!.

'Open-source platform available at https://github.com/UCL/SkullBaseNavigation
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Figure 6.4: Neuronavigation module user interface. The 3D Slicer Slicelets module allows to
combine different application into a simplified interface to improve the surgical
workflow.

6.2.4 Stand-alone ultrasound elastography module

A 3D-slicer module was also implemented to perform intraoperative tissue characteri-
sation with the learning-based elastography methods presented in chapters 3, 4 and 5.
This stand-alone module has been named ‘DeepUSE’ and is also publicly available?.
DeepUSE is written in Python using the ScriptedLoadableModule base class pro-
vided by 3D Slicer. The module is fully integrated with the PyTorch implementation
of both ReUSENet and USENet, the two network architectures we developed for
ultrasound elastography. DeepUSE’s features include the loading of a trained model
via a configuration file, the offline inference of a loaded RF data sequence and the
real-time inference of a stream of RF data sent using the OpenlGTLink protocol
[190]. In terms of visualisation, the strain image nodes are automatically displayed
alongside the RF data converted into B-mode to facilitate data interpretation. Fig-
ure 6.5 shows a screenshot of the DeepUSE module, which shows a B-mode image
and its respective elastogram side by side. The image displayed is from the publicly

available dataset presented in chapter 4.

2Slicer DeepUSE module available at https: //github.com/RemiDelaunay/SlicerDeepUSE


https://github.com/RemiDelaunay/SlicerDeepUSE

6.2. System design 108

{J]5 40000mm ~ \ # — (75 4.0000mm

@ 3DSlicer

~ Network
Config file ni/DeepUSE/DeepUSE/config/config_reusenet real.json ~
Interframe Interval 6
Load
~ OpenlGTLink
Hostname: localhost
Port: 18944

Connect

V' Store results
rf0299_07

Inference

» Data Probe - ode. 7| B: 10299 07 Strain

Figure 6.5: DeepUSE : Slicer ultrasound elastography module interface.

6.2.5 Calibration

Although the cranial software from the Medtronic StealthStation allows patient-
to-MR registration and tool calibration, it does not provide ultrasound calibration
algorithms. Therefore, all the ultrasound calibration steps were performed in Slicer-
IGT.

The first calibration procedure consists of calculating the position of the tip of
the ultrasound probe. Position tracking of the ultrasound transducer was calibrated at
the start of each case using the pivot calibration algorithm provided as part of Slicer-
IGT. Pivot calibration involved the use of the tracked stylus tool to determine the tip

k™ marker. The calibration

of each individual instrument relative to the SureTrac
procedure was a two-step process that involved pivoting and then spinning the tracked
instrument around a fixed point for 15 s each in turn. After pivot calibration, the
RMSE between the predicted transform and the acquired points is displayed to assess
the quality of the calibration. Typically, the RMSE for pivot and spin calibration
should be less than 1 mm. As the tracker is securely attached to the tool, once
calibration has been performed, the transformation matrix between the stylus tip and
the tracker remains constant [198].

Since the tracking and ultrasound data are acquired by different devices, there
can be a significant time delay between the different data streaming nodes. The
streaming offset between the different devices can be estimated by performing a

temporal calibration. The calibration procedure synchronises the data streams by

scanning up and down a fixed object, such as the bottom of a water tank [198].
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Finally, the last calibration procedure consists of computing the position of the
image relative to the probe. This procedure is similar to the image-to-patient regis-
tration, and consists in finding the transformation between points on the ultrasound
image and a tracked physical object, such as the position of a tracked stylus. Image
calibration was performed using the stylus-aided calibration toolbox and involved
imaging and registering the stylus tip in multiple locations within the ultrasound im-
age [198]. Ultrasound image-to-probe calibration can be time-consuming and highly
user-dependent. The position of the tracking stylus tip in the ultrasound image can
be difficult to locate and can result in calibration errors. Therefore, image calibration
was performed beforehand, and the transformation matrix was subsequently saved
for use during surgery. Figure 6.6 shows the setup we used for the image calibration

procedure.

Figure 6.6: Ultrasound image calibration method. A: Ultrasound transducer (attached to

a clamp for illustration purposes only). B: Medtronic SureTrack ™ optical

tracking marker. C: Medtronic Stylus. D: Medtronic reference frame. E:
BK5000 Ultrasound machine. F: computer. G: water tank.

6.2.6 3D ultrasound volume reconstruction

We used the ultrasound reconstruction algorithm implemented in Slicer-IGT to
reconstruct 3D ultrasound volumes [199]. There are two scanning steps to perform
the 3D reconstruction. First, the users have to operate a ‘scout scan’, which consists

of a low resolution reconstruction that defines the spatial boundaries of the region of
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interest to image. Then, the high-resolution scan can be performed by repeatedly
scanning the area of interest in real-time until the volume has a satisfactory resolution.

An example of 3D reconstruction can be seen in figure 6.9.

6.3 Accuracy and workflow testing

6.3.1 Laboratory testing of system accuracy

An abstract phantom model was used to test the accuracy of the system’s ultrasound
navigation and 3D reconstruction. The phantom was made of polyvinyl alcohol
cryogel (PVA-c), a tissue-mimicking material that is known to have similar acoustic
and mechanical properties than soft tissue. The phantom consisted of two 15 mm
diameter tumour-mimicking spheres embedded within parenchyma-mimicking tissue
and was manufactured according to previously published methodology [200-202].
The phantom was imaged with a Medtronic O-arm™ to provide a 3D volumet-
ric x-ray contrast image for registration. Scan images were uploaded to the Medtronic
StealthStation and registered with the phantom using the surface registration tech-
nique from the Medtronic Cranial software. The BK burr hole ultrasound transducer
was calibrated using the method described above, and volumetric ultrasound data
was acquired. Tumour spheres were segmented on the registered ultrasound and
X-ray images using an intensity threshold. The system accuracy was measured in
terms of target registration error (TRE) calculated between the two centres of the

spheres.

6.3.2 Clinical simulation to test workflow integration

A patient-specific phantom model comprising skull, brain, and tumour created with
tissue-mimicking ultrasound and X-ray properties was used to simulate the use of
the navigation system in a clinical operating room. The skull was 3D printed in
Polylactic acid (PLA), from an anonymised CT scan of the patient’s brain. The
brain tissues were made with Poly(vinyl) alcohol cryogel (PVA-c). The difference
of acoustic contrast between the tumour and brain tissues was obtained by mixing
different concentrations of glass spheres with the PVA-c [203]. This phantom was

compatible with both CT and ultrasound imaging. Before phantom scanning, barium
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sulphate, which is a clinical imaging contrast, was added to the tumour to further
increase the image contrast. The time taken to set up the system and to perform
probe calibration was recorded, and clinician feedback was obtained regarding the

clinical utility and accuracy of the system.

Figure 6.7: Software workflow and feasibility study images. a) Preoperative scanning with
CT scan. b) Image-to-patient registration using the reference frame and patient-
specific phantom. c) Intraoperative ultrasound acquisition using the BK5000
ultrasound system. d) Overview of the set-up with in 1. the BK5000, 2. the
reference frame, 3. patient-specific phantom, 4. the operating room laptop, and
5. the Medtronic StealthStation.

6.3.2.1 Results

The phantom that was used to assess the system accuracy as well as the volumetric
CT and ultrasound images are shown in figure 6.8. The distances between the
centroids of the tumour spheres were 3.82 mm and 4.41 mm for tumour spheres 1
and 2, respectively.

The workflow integration assessment was performed in a mock operating room.

The full experimental setup can be seen in figure 6.7. Prior to the clinical simulation,



6.3. Accuracy and workflow testing 112

Figure 6.8: Ultrasound navigation and reconstruction system accuracy using a multi-modal
polyvinyl alcohol cryogel (PVA-c) phantom. (a) Polyvinyl alcohol phantom.
(b) Volumetric 3D x-ray image of phantom obtained with the Medtronic O-arm.
(c) Reconstructed ultrasound image obtained with an intraoperative burr hole
ultrasound transducer (N11C5s). (d) Volumetric reconstruction of ultrasound
data.

the preoperative CT scan was uploaded for surgical planning and image calibration
transform was estimated. Trained clinical staff correctly assembled the system
hardware and completed initial setup in 10 min 19 s. Assembly of the system’s
sterile components was completed correctly in 1 min 22 s and intraoperative probe
pivot and temporal calibration was completed in 1 min 43 s. Clinical evaluation of
the system was undertaken independently by 2 consultant neurosurgeons using a
patient-specific PVA-c phantom model of a patient with a vestibular schwannoma

undergoing surgical resection via a simulated retrosigmoid craniotomy.

Figure 6.9 compares the patient-specific MRI data used to create the brain
tumour phantom with CT and ultrasound images acquired during the workflow
integration assessment. Ultrasound image acquisition included freehand real-time

imaging and 3D volume reconstruction. Real-time ultrasound imaging was available
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in our software, as a CT overlay or on a separate window. The neurosurgeons
navigated with the ultrasound probe via the simulated retrosigmoid craniotomy and
were able to visualise the simulated brain tumour. Both neurosurgeons considered
the system to be very useful, with an intuitive display and clinically acceptable

accuracy.

6.4 Discussion

The primary outcome of this work is the efficient integration of the neuronavigation
Slicelet into the surgical workflow. The clinical simulation demonstrated the seamless
integration of our software into the surgical workflow. The setup of the system
was easy and quick to assemble for the clinical team. By only using existing
hardware within its intended use, the platform complied with all relevant surgical
safety requirements, including sterility and electrical standards. The additional
pieces of hardware needed for this prototype system included a network switch
and interconnecting cables. A laptop placed on a small surgical trolley could be
positioned conveniently within the operating room as directed by the surgical team.
The required intraoperative probe calibration procedure took only a couple of minutes.
Both neurosurgeons considered the Slicelet user interface to be intuitive and easy to

use.

The clinical simulation also involved assessing the neuronavigation platform’s
visualisation and processing features. The calibration of the tracked ultrasound
probe enabled to display real-time ultrasound imaging into the patient’ space and
to reconstruct volumetric ultrasound data. Although the image streaming rate from
the BK5000 system was acceptable (25 fps), it was still lower than the frame rate
displayed on the ultrasound system (60 fps). The 3D volume reconstruction method
is based on the number of frames acquired within the scout scan region. A low frame
rate will result in a sparser volume and will likely increase the spacing between each
frame and, therefore, will require a longer acquisition time to obtain an adequate
image resolution. The streaming rate was considered satisfactory for real-time

visualisation according to the neurosurgeons, but improving the image frame rate



6.4. Discussion 114

Figure 6.9: Intraoperative simulation of 3D Ultrasound reconstruction using patient data and
a patient-specific phantom model. (a) Illustration of patient MRI data using the
neuronavigation slicelet system, including an overlay of the tumour and nerve
on the MRI data and a separate 3D model of those structures. Green: Tumour,
Yellow: Nerve. (b) Neuronavigation slicelet display of the phantom’s CT scan
with overlaid 3D reconstructed ultrasound volume. A volumetric representation
of the US data is displayed in the top right panel. Black arrow: Tumour.
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would decrease the 3D reconstruction time. The reconstructed 3D ultrasound volume
was also overlaid on the preoperative CT scan to facilitate navigation through the
skull phantom and improve the visualisation of the simulated brain tumour. Both
neurosurgeons found that the ultrasound and CT overlay was clinically useful and

accurate.

Laboratory accuracy assessment demonstrated system accuracy levels compa-
rable to previously reported research systems [196, 204], with an average TRE of
4.11 mm for the sphere phantom experiment. Nevertheless, the TRE achieved in our
phantom experiment could be further improved. Future work will investigate the
error sources that contribute to the current TRE and look at ways to reduce the most
significant error sources. We currently believe that the calibration of the ultrasound
probe is a significant source of error, so future work will investigate using alternative
calibration methods, for example, phantomless auto-calibration [205]. This feature
would be useful in the context of neurosurgery due to intraoperative brain tissue shift
and tracking errors. It could considerably improve surgical guidance when there is a

high mismatch between preoperative and ultrasound scans.

The stand-alone ultrasound elastography module was not evaluated during the
accuracy and workflow assessment. This is due to the fact that the clinically-available
ultrasound scanners used in this study did not allow us to stream the raw beamformed
ultrasound signal that is used in ultrasound elastography. In chapter 4, we reported
an inference speed of 20 fps on a 12 GB NVIDIA GTX-1080ti GPU for quasi-static
strain prediction. This suggests that our elastography module could be used alongside
our neuronavigation platform to perform real-time tissue elasticity characterisation.
Further experiments will be required on tissue-mimicking phantoms to assess the

integration of the ultrasound elastography module into the surgical workflow.

6.5 Conclusion

We presented in this chapter an integrated intraoperative navigation system for brain
tumour surgery with the ability to incorporate neuronavigation with ultrasound-

based guidance. The system was built around commercially-available CE-marked
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hardware to facilitate clinical translation, although additional proprietary software for
streaming the data out of the commercial devices was required. All other components
of the system software, including the Slicer-IGT and PLUS libraries, are open-source.

Future work will focus on the integration of the intraoperative navigation plat-
form in the surgical workflow. Chapter 7 presents a clinical study aiming to evaluate
the use of ultrasound imaging during the resection of pituitary brain tumours. The
first phase of this clinical trial focused on evaluating the feasibility and safety of a
novel intraoperative ultrasound transducer, specifically designed to image pituitary
tumours. The next phase of this clinical trial will aim at assessing the integration
of the ultrasound-aided neuronavigation platform alongside this new ultrasound

transducer.



Chapter 7

Evaluation of an intraoperative
ultrasound transducer prototype for

pituitary tumour resection

This chapter deals with the assessment of a new ultrasound probe designed specif-
ically for transsphenoidal surgery. To better explain the different reasons lying
behind the design and specifications of this prototype, previous work in intraoper-
ative ultrasound imaging for pituitary surgery is presented (section 7.1). The first
part of this work involves the pre-clinical assessment of our intraoperative ultra-
sound probe prototype, which aimed to evaluate the device’s image resolution and
ergonomics (section 7.2). The second part of this study presents the results of a
clinical study performed on an initial cohort of 5 patients who underwent pituitary
resection surgery. This clinical study aimed at assessing the feasibility and safety of

our new intraoperative ultrasound transducer (section 7.3).

This chapter is adapted from different conference and journal publications and
is a collaborative work between our team and our clinical collaborators. I actively
participated in the design and implementation of the pre-clinical experiments. I
also participated in all the clinical cases by helping set up the ultrasound system
and acquiring the data shown in this chapter. I presented our pre-clinical feasibility
assessment results at the Computer Assisted Radiology & Surgery (CARS) Inter-

national Congress, which took place in Berlin, Germany in June 2018 [206]. In
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addition, the clinical study preliminary results are adapted from our paper named
‘Integrated multi-modality image-guided navigation for neurosurgery: open-source
software platform using state-of-the-art clinical hardware’, and published in July

2021 [207].

7.1 Introduction

7.1.1 Pituitary adenomas

Pituitary adenoma is a tumour that develops in the pituitary gland. It is located in
the brain, behind the nose and eyes, in a depression of the sphenoid bone called
the sella turcica (see figure 7.1). The pituitary is an endocrine (i.e., hormone-
secreting) gland that also controls the production of hormones in the body, regulating
diverse physiological functions such as reproduction, blood pressure and growth.
Mostly benign, pituitary adenomas can cause different symptoms, depending on the
type of tumour. Hormone-secreting (i.e., functioning) tumours can be responsible
for a multitude of endocrine disorders such as, Cushing’s disease, prolactinoma, or
acromegaly [208]. As they grow, pituitary tumours can also compress the functioning
gland or the optical chiasma, causing hormone imbalance or visual loss, respectively.
Pituitary tumours are common, with a prevalence of 15-20% of the population
according to a metaanalysis conducted on English-language articles from MEDLINE
[209].

The treatment options depend on the size and type of the tumour and include
chemotherapy, radiotherapy, and neurosurgery. Surgical resection is a common
approach for treating pituitary adenomas [208, 210], and around 500 cases are
performed each year in the United Kingdom [211]. This is due to the fact that the
pituitary gland is located right behind the sinuses, and can be accessed by using a
minimally invasive, transnasal approach. Among all resected brain tumours, 10% of

them are pituitary adenomas [212].

7.1.2 Transsphenoidal surgery

The gold-standard method for pituitary tumour resection is called transsphenoidal

surgery [213]. It consists of accessing the sella turcica by passing through the nasal
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Figure 7.1: Anatomy of the pituitary gland. A: Labelled anatomy of the pituitary gland.
B: Brain MRI showing adenomas of different size (from left to right: micro-,
macro- and giant adenoma). Figure courtesy of Molitch et al. [208]).

cavity and sphenoid sinus. This method was developed in the early 1900s, with
contributions from brain surgery pioneers such as Schloffer, Hirsch, and Cushing
[214-216]. The transsphenoidal approach for pituitary surgery prevailed over tradi-
tional intra-cranial approaches in the 1960s, with the development of fluoroscopy
and microscopy [217, 218]. In the past 20 years, the procedure became less and less
invasive with the development of video endoscopy. In contrast with conventional
microscopy, the endoscope can be inserted into the sphenoidal sinus without requir-
ing any incisions (e.g., sublabial or tranfixion incision). In addition, endoscopy can
provide a more detailed view of the operating site and images of better quality [219].
Furthermore, the use of preoperative scans and frameless stereotaxy further refined

the method [220].

Although there have been consecutive improvements through the years, pitu-
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itary tumour resection can still be challenging. Indeed, it still suffers from a high
incomplete resection rate, which oscillates between 30 and 40%, depending on the
study [221, 222]. This increases the risk of cancer recurrence and consequently the
need for further treatment such as re-operation, hormonal therapy, and radiotherapy
[223-225].

Incomplete resection arises from different factors, including the surgeon’s expe-
rience, tumour characteristics and visualisation of the surgical field [226]. Although
endoscopy improved intraoperative tumour visualisation, it still suffers from a narrow
field-of-view and is limited to surface visualisation, which prevents from locating
underlying structures such as, blood vessels, nerves and tumour remnants. There is
also a risk that the tumour capsule collapses during resection, which can obstruct the
tumour site view. Intraoperative blood can also reduce visualisation. Furthermore,
pituitary tumour boundaries can be difficult to assess intraoperatively, especially if
they are not in the surgeon’s direct line of sight.

As a consequence, different intraoperative imaging modalities have been ex-
plored to address the high incomplete resection rate, including magnetic resonance
imaging (MRI) and computed tomography (CT) [227, 228]. Although both in-
traoperative MRI (iMRI) and CT (iCT) can provide high-resolution images, their
bulkiness, cost, and impact on the duration of surgery are obstacles to their regu-
lar and widespread use, not only in transsphenoidal surgeries but in neurosurgical

procedures in general.

7.1.3 Previous work on ultrasound-aided pituitary surgery

Intraoperative ultrasound presents several advantages for intraoperative guidance and
has been investigated during intracranial procedures for real-time intra-procedural
orientation and for monitoring tumour resection procedures [20, 229, 230]. Differ-
ent clinical studies have assessed the use of intraoperative ultrasound imaging for
transsphenoidal surgery. These studies were performed with an ultrasound transducer
designed for other clinical applications such as vascular [231], transesophageal [232]
and transbronchial [233] imaging. This is due to the fact that the transsphenoidal

approach creates a very narrow aperture, and only a few commercial transducers can
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both fit into the nasal cavity and image the tumour site. At the time of this study
and to the best of our knowledge, only one commercial ultrasound transducer was
developed for transsphenoidal surgery [234]. However, this device has not been

approved for the European market yet.

The need for ultrasound probes suited for the transsphenoidal approach led to
the development of different transducer prototypes. Two non-CE marked prototypes
were developed and tested in clinics [235, 236]. The first prototype consists of a
2D side-looking transducer with a tubular shape. The probe is composed of a 64
elements linear array with a 10 MHz central frequency. The tip’s diameter and
footprint were 4 mm and 12.8 mm, respectively. The prototype was tested on 9
patients with pituitary macroadenoma. The authors noted that the probe provided
high-resolution images (0.19 x 0.22 mm), which allowed to identify tumour tissue
and carotid arteries. However, the detection of major nervous structures such as
the optical chiasma was not mentioned. In addition, the neurosurgeons indicated
that the ultrasound image orientation was confusing. Indeed, the identification of
brain structures and tumours are often done using MRI, which is decomposed into
a standard image orientation, i.e., axial, coronal and sagittal planes. Therefore, the
authors noted that the ultrasound image orientation affected image interpretation.
This can be explained by the design of the probe, which features a side-viewing array

to reduce the diameter of the tip.

The second prototype consisted of a forward-looking array with a bayonet shape
[236]. The footprint of the probe is 12 x 8 mm, which is considerably larger than the
previous side-viewing prototype. It also features a higher central frequency than the
previous one, i.e., 12 MHz, to increase the image resolution in the near field. Another
clinical trial assessed the probe on 24 pituitary resection cases. The authors argued
that this probe provided a better image quality, as well as a more familiar image
plane. Neurosurgeons managed to identify all major anatomical structures such as
the optical chiasma, carotid arteries, and pituitary gland. In addition, the ultrasound
images revealed tumour remnants not visible with endoscopy [236]. However, the

bulky tip of the probe was too big to enter the sphenoid sinus in 2 cases, making the
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imaging of the tumour site impossible. The authors suggested that both prototypes
could be used interchangeably depending on the tumour type. Micro-adenomas are
usually located around the gland, whereas the macro-adenomas are larger and can be
widespread. Therefore, the second prototype could be more useful to image tumours
located at the surface of the gland (i.e., micro-adenomas) and vice versa for the

side-looking probe.

7.1.4 Contributions

In this work, we have developed a slender, forward-viewing ultrasound device for
transsphenoidal access and plan to create novel software tools to integrate this device
into a surgical navigation system. It is hoped that the system will be helpful in
locating residual pituitary tumour tissue as well as neurovascular structures. Pre-
clinical experiments including image resolution and ergonomics assessment of this
new intraoperative ultrasound device are presented. Thereafter, we initiated a single-
centre clinical study in the National Hospital for Neurology and Neurosurgery, Queen
square, London. The study aimed at assessing the feasibility and safety of the new
intraoperative ultrasound transducer in an initial patient cohort. The preliminary

results, based on a cohort of five patients, are presented.

7.2 Ultrasound transducer assessment

7.2.1 Ultrasound probe specifications

Our intraoperative ultrasound transducer is a clinical-grade prototype manufactured
by Vermon (Vermon S.A., Tours, France), a company specialising in advanced
transducer technologies. The probe’s design corresponds to a novel version of the
two previous prototypes developed by Solheim et al., which were also manufactured
by Vermon [235, 236]. This new transducer is designed to overcome the mentioned
limitations of the two previous prototypes, which are the unfamiliar imaging plane
and the bulky size. The difference of design of the three prototypes is displayed in
figure 7.2. Our prototype is less bulky than the forward-viewing probe developed by
Solheim et al., which was found to be too large to safely enter the sphenoid sinus in

2 patients. Moreover, the other side-viewing probe prototype needs to be inserted
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further into the sella turcica to be able to scan the sellar structures, thereby limiting
its use to larger tumours.

The development of thin ultrasound probes, dedicated to the transsphenoidal
approach, has been based on a necessary trade-off between image quality (which
depends on the number of ultrasound elements, greater in the side-viewing prototype)
and image intuitiveness (best in the forward-viewing probe). It is with these surgically
relevant considerations that we decided to centre further development around a
forward-viewing prototype, and to work on optimising image quality for the purpose
of transsphenoidal surgery while at the same time keeping the probe’s diameter in
proportion with the surgical corridor.

Accordingly, our novel transducer consists of an endoscopic-shaped probe with
a shaft that is slenderer than in previous versions. The tip is 200 mm long and has
a diameter of 7 mm. At the end of the probe, an 80-element convex array with a
curvature radius of 8.48 mm is located along the tip, imaging both in the forward and
side directions. The centre frequency is higher than previous prototypes, 18 MHz,
to improve the image resolution. The transducer’s connector is compatible with the
CE-marked SonixTouch ultrasound console (BK Ultrasound, UK). A photograph of

our quasi-forward-looking ultrasound probe is shown in figure 7.3.

7.2.2 Image resolution assessment

This section describes the method used to determine the image resolution of our
high-frequency ultrasound probe. One of the improvements of the probe is its high-
central frequency, which should allow the identification of neurovascular structures
surrounding the tumour. In ultrasound imaging, the spatial resolution corresponds
to the axial (vertical) and lateral (horizontal) resolution of the image. The axial
resolution depends on the size of the sound wave pulse. Therefore, higher frequencies
will generate shorter pulses and thus increase the axial resolution. However, shorter
pulses are more attenuated in soft tissue and, therefore, will affect the imaging depth
(see chapter 2).

Our method to assess the image resolution was inspired by an approach used

in photo-acoustic imaging [237]. A 25 um tungsten fibre (Quorum Technologies
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Figure 7.2: Evolution of the transsphenoidal probe prototypes. a) Design of the side-looking
probe [235]. b) Picture of the forward-viewing probe with a bayonet shape
[236]. c) Design of our prototype.

Ltd., East Sussex, United Kingdom) was anchored in the middle of a water tank (see
figure 7.4). The fibre in the water tank was then scanned at different frequencies
(8, 15 and 20 MHz), and depth (from 0.5 cm to 2.5 cm with intervals of 0.5 cm).
The depth was accurately set by using a XY table. The maximum depth was set
to 4.5 cm, because it corresponds to the maximum imaging depth required during
pituitary surgery. Indeed, pituitary tumours rarely exceed 1 cm in diameter [238]. To

ensure optimal lateral resolution, the ultrasound beam focus was set to the depth of
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Figure 7.3: Photograph showing the novel forward-viewing ultrasound probe. (A) 200 mm.
(B) 15 mm. (C) 85 mm. The probe tip’s diameter (the distance between the two
blue arrows) is 7 mm. (D) The probe’s distal 16 mm contains an 80-element
convex array. The radius of the transducer’s curvature (indicated by the black
arrowhead) is 8.48 mm.

the thread by using dynamic receive beamforming [239].

XY table
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Figure 7.4: Spatial resolution evaluation method. (a) Illustration of the resolution experi-
ment. The green line in the blue cube represents the tungsten wire immersed
in the water tank. The water tank was moving along the Y-axis using an XY
table, to scan the wire at different depth. (b) Example of the reconstructed wire
image. (c) Associated intensity profile (red circles) of the reconstructed wire
image with a Gaussian curve fitting (blue curve)

Ultrasound images of the water tank were acquired using a standard CE-marked
ultrasound image display system (SonixTouch, BK Ultrasound, UK). A B-mode
image was captured for each frequency and depth. The Tungsten fibre was visible on
the images by displaying a point spread function shape. The spatial resolution was
estimated by taking the full width at half maximum values (FWHM) of its intensity
profile (see figure7.4). The size of the fibre in both axial and lateral direction was
then converted from pixel to millimetre size. The average resolution was about 0.25

mm (% 0.02 mm) in axial and about 1.3 mm (&£ 0.3 mm) in the lateral direction.
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7.2.3 Ergonomics study

Prior to the clinical study, a procedural test was performed to assess the device
ergonomics. To this end, we mimicked a transsphenoidal surgery procedure. The
mock surgery was performed on an existing Kezlex anatomical model (Ono and Co.,
Tokyo, Japan) (see Figure 7.5), which is a phantom designed for pituitary surgical
training. To make the procedural test as realistic as possible, we also included all the
equipment and tools commonly used in pituitary surgery. This includes a O-degree
endoscopic camera (Karl Storz SE and Co., Germany), surgical instruments (e.g., a
curette), and a neuronavigation platform (Stealth Station S7, Medtronic, USA). In
addition, a CT scan of the anatomical phantom was acquired beforehand in order
to use it as a preoperative scan for neuronavigation. An optical passive marker

(SureTrack™

, Medtronic, USA) was attached to the ultrasound probe in order to
track its position during the mock intervention. Finally, the entire procedure was
performed and evaluated with the help of two experienced neurosurgeons specialised

in transsphenoidal surgery, with over 50 cases performed.

Figure 7.5: Ergonomics study. (a) Experimental set-up. 1: Anatomical phantom positioned
in a Mayfield clamp. 2: Endoscope. 3: transsphenoidal probe. 4: Medtronic
StealthStation with the phantom model displayed. 5: Ultrasonix system. 6:
Surgical tools. (b) Picture of the ultrasound probe and endoscope fitting into the
nose of the pituitary phantom.

The ergonomics study allowed us to assess the transducer’s technical feasibility.

The probe size and configuration enabled the surgeons to insert and manipulate it



7.3. First-in-human clinical study 127

easily into the anatomical phantom’s nasal cavity. Both the endoscope and ultrasound
probe could fit together into the sphenoid sinus (see figure 7.5). Although the probe
was covered by a surgical drape, the probe appeared to be robust enough to not
break when entering the sinus. The probe was also successfully tracked by the
neuronavigation platform during the mock procedure (see figure 7.5). Overall, both
neurosurgeons agreed that the probe was suitable for transsphenoidal surgery and

were willing to use it in clinics.

7.3 First-in-human clinical study

7.3.1 Study design

The study began in October 2019 and involved patients undergoing transsphe-
noidal surgery for pituitary adenoma. Ethical approval was obtained from our local
ethics committee (19/L.0O/0882), and the trial was registered on ClinicalTrials.gov
(NCT03284775). The minimum inclusion criteria were 1) adult patients, 2) undergo-
ing transsphenoidal surgery, 3) diagnosis of pituitary adenoma on preoperative MRI,
and 4) able to provide consent. All patients gave their written informed consent to
test our ultrasound probe after the risks, benefits, and alternatives were discussed.
Patients were specifically informed that this was the first clinical application of this
novel ultrasound probe.

Patients were recruited from October 2019 to March 2020, when the UK entered
alockdown in response to the COVID-19 pandemic. Eleven patients were approached
to participate in this study and all eleven were recruited by the clinical team, but
only five participated (2 female, 3 male; age range: 42—73 years), due to the study’s
discontinuation in the general response to the COVID-19 pandemic. Diagnosis
included pituitary macroadenoma in three cases, acromegaly in one case, and re-
operation due to incomplete resection in the remaining case.

All operations were performed by neurosurgeons who have a subspecialty
interest in pituitary surgery, and were involved with the design and pre-clinical
assessment of the ultrasound probe. All operations took place at the National

Hospital for Neurology and Neurosurgery, which is a large regional neuroscience
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centre, that carries out approximately 150-200 pituitary operations each year.

7.3.2 Intervention

The surgical technique for the endoscopic transsphenoidal approach is unchanged
to that used without the ultrasound probe. General anaesthesia is administered, and
nasal mucosal decongestants applied (Moffat’s solution). Patients are positioned
supine on the operating table, and the operative field prepared and draped. Access to
the sella turcica is performed through a mononostril endoscopic approach. If needed,
the floor and anterior wall of the sella are drilled off. A cruciate incision is made to
the dura mater and the tumour removed using curettes and rongeurs.

The ultrasound probe is applied to the sella before and after the dural incision
for visualisation of the tumour and surrounding neurovascular structures. In case of
an intraoperative cerebrospinal fluid leak, a fat graft is harvested from the patient’s
abdomen and placed over the dural defect. Nasal packing is not placed in the absence

of cerebrospinal fluid leak.

7.3.3 Measures of outcomes

The primary outcomes of the study were to demonstrate that the use of the ultrasound
device in pituitary surgery is both technically feasible and safe. Technical feasibility
was assessed by the ability of the probe to be used during transsphenoidal surgery
alongside standard surgical equipment. Device safety was assessed by the number,
type, and severity of adverse events related to use of the device, e.g., device malfunc-
tion. In addition, a short written assessment of the probe usage was performed by
the surgeon carrying out the procedure after each operation.

The secondary outcomes were to demonstrate that the ultrasound device does
not adversely affect the occurrence of postoperative complications, the operating
time (minutes), and the length of stay (days). For this purpose, the operating times
and length of stay were also collected for a series of 30 consecutive patients with
pituitary adenoma, operated before and contemporaneously to this study, by the same
surgical team and with the same surgical technique, but in whom intraoperative ultra-

sound had not been used. Postoperative complications to be recorded included death,



7.3. First-in-human clinical study 129

cerebrospinal fluid leak, meningitis, vascular complications, visual complications,
diabetes insipidus, hypopituitarism, and cranial nerve injury. Vascular complications
to be recorded included carotid or other vessel injury, or symptomatic haematoma.
Venous bleeding from the cavernous sinus was to be considered a vascular complica-
tion only if it prevented completion of the surgical procedure. Epistaxis was only to
be considered a vascular complication if it warranted return to the operating room.
Cerebrospinal fluid leaks to be recorded included all postoperative leaks requiring
lumbar drainage or repair. Patients with Cushing’s disease receiving postoperative
cortisol, or in whom a hypophysectomy was carried out, were also not included as

surgical complications.

7.3.4 Results

7.3.4.1 Primary outcomes
A photograph of the surgical field is showed in figure 7.6. The probe’s ability to be
used alongside the standard surgical equipment for transsphenoidal procedures was
demonstrated in all cases. The ultrasound probe was available at all times during
the operation, and imaging the tumour site only took a few minutes each time. The
probe was slender enough in all patients to access the sella turcica, even while the
endoscope was being used (see figure 7.7). According to the neurosurgeons, the
probe was easy to manipulate, but the surgical drape that enclosed it was too large and
not steady enough. A smaller, thicker drape was also used, but it altered the image
quality. Furthermore, no adverse events related to the device were encountered.
We did however experience some difficulty with flattening the superfluous folds
of the probe’s protective sterile sheath, actually intended for bulkier probes, and so
adding unwanted volume to our prototype (see figure 7.7). This led to the aggregation
of air bubbles near the tip of the probe, causing the formation of reflection artefacts
in the image (see figure 7.9). We rapidly learned to use a sterile elastic band to
maintain the sheath taut around the probe’s tip. Nevertheless, a dedicated slimmer
sheath or a transducer design compatible with standard sterilisation processes would
be a preferable solution for future use. Finally, the probe did not enter into conflict

with the endoscope, and so could be introduced under direct endoscopic vision (see
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figure 7.7).

Three written assessments positively underlined that tumour and vessels were
readily identifiable, and in two cases that an adenoma residual was evident. In
one of these cases, ultrasound allowed to identify a residual that would not have
otherwise been noticed. Additional remarks were that ultrasound clarity was best
before opening the dura mater. One assessment observed that the probe would be
best used alongside neuronavigation, in view of the difficulty to convincingly identify

the anatomy on ultrasound in that particular case.

7.3.4.2 Secondary outcomes

After surgery, one patient represented with a delayed cerebrospinal fluid leak and
subsequently developed meningitis. None of the patients had new pituitary hormonal
deficits postoperatively, aside one patient who remained on hormonal replacement
therapy on follow-up.

Operating time ranged from 68 to 110 minutes (mean: 93 min) and length of
stay was 4 days in one case, 5 days in two cases, 6 days in one case, and 18 days in
the case with a cerebrospinal fluid leak (median: 5 days). This represents an extra
20 minutes of operating time, when compared to the average duration of the thirty
contemporaneous, consecutive cases of pituitary adenoma resection performed by
the clinical team without intraoperative ultrasound (range: 45-168 min, mean: 73
min). The length of stay for this same group, on the other hand, was comparable

(range: 2 — 20 days, median: 4 days).

7.4 Discussion

The ultrasound probe image resolution was considered satisfactory for the identi-
fication of brain neurovascular structure. The maximum average axial resolution
was calculated as 0.26 mm (£0.02 mm) and the maximum average lateral resolution
as 1.3 mm (£0.3 mm). Therefore, it is within the probe’s design specifications to
be able to image relevant anatomical structures such as the optic tracts and major
intra-cranial arteries, which both exhibit a size of a few millimetres [240, 241].

The ergonomics study has demonstrated that the size and configuration of our
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Figure 7.6: Photograph of the surgical field. 1: Endoscope display. 2: Ultrasound system. 3:
Patient’s head covered with sterile drapes.

prototype were appropriate and suitable for the transsphenoidal approach. It also
demonstrated that the probe could also be used alongside neuronavigation platforms,
which plays an important role for surgical guidance and is another important aspect

of this project.

Those considerations on image quality and device ergonomics correlate with
our results from the clinical study. The use of our novel ultrasound device appeared
to be both technically feasible for the 5 cases. The use of the ultrasound probe did not
significantly disrupt the surgical workflow and the additional average surgical time
compared favourably with scanning times reported for other intraoperative imaging

modalities such as, MRI [242, 243] and CT [244].

We did not encounter any intraoperative adverse events in this preliminary

cohort. After surgery, one patient subsequently developed meningitis due to a
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Figure 7.7: (A) Photograph of the surgical field, showing the ultrasound probe in use along-
side the endoscope. (B) Top view: Transsphenoidal endoscopic view through
left nostril, showing the opening made in an enlarged sella turcica. The pituitary
tumour has been partially resected. Middle view: The sphenoid sinus is filled
with water to reduce acoustic impedance. Lower view: The ultrasound probe’s
tip is inserted through the sellar opening under endoscopic vision.

delayed cerebrospinal fluid leak. The ultrasound probe was fully covered with
a protective sterile sheath during surgery and no puncture of the drape occurred
throughout the 5 cases. Cerebrospinal fluid leakage leading to intracranial infection
represents one of the most common postoperative complication in transsphenoidal
surgery, with an incidence rate ranging from 0.8% to 15% [245]. A larger cohort
of patients would be required to determine if the use of intraoperative ultrasound
induces a higher occurrence of postoperative infection.

Despite the difficulties encountered with the probe’s protective sterile sheath, the
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images of the tumour site acquired during surgery were clinically relevant. Operator
feedback collected following surgery conveyed that vessels and tumour contours
were readily identified on ultrasound (see figure 7.8 and 7.9); that clarity was felt
to be best before opening the dura mater; and that the use of flowable haemostatic
matrix obscured the ultrasound views. Although our project is not yet at a phase to
assess our probe’s intraoperative impact on surgical decision-making, anecdotally it
did allow identifying an adenoma residual in one patient that would otherwise have

been missed.
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Figure 7.8: A: T2-weighted coronal magnetic imaging resonance slice of a patient with
a pituitary macroadenoma. The inset in the top right corner of panel A is a
T1-weighted sagittal slice in the same patient, indicating the level of the coronal
slice (thin blue line). The white rectangular frame centred on the tumour’s
apex provides the approximative bearings for panel B, whilst the oblique frame
centred on the cavernous segment of the right internal carotid artery provides
the bearings for panel C. B: Intraoperative ultrasonographic caption showing the
suprasellar portion of the tumour, protruding through the diaphragm sellae (i.e.,
a sheet of dura mater that forms the roof of the pituitary fossa). The diaphragm
sellae is indicated on either side of the tumour by arrowheads. C: Intraoperative
ultrasonographic caption of the right infrasellar portion of the tumour. The right
diaphragm sellae is indicated by the white arrowhead. The asterisk indicates the
cavernous segment of the right internal carotid artery.

7.5 Conclusion

This chapter demonstrates the safety and feasibility of a new ultrasound probe
designed specifically for transsphenoidal surgery. Future work will aim at integrating
this device into the ultrasound-aided neuronavigation presented in chapter 7, as a

means of further enhancing the intraoperative understanding of the surgical field.
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Figure 7.9: A: T2-weighted coronal magnetic imaging resonance slice of a patient with
a pituitary macroadenoma. The inset in the top right corner of panel A is
a T1-weighted sagittal slice in the same patient, indicated the level of the
coronal slice (thin blue line). The white rectangular frame centred on the left
internal carotid artery provides the approximative bearings for panel B, whilst
the left frame centred on the tumour’s apex provides the bearings for panel C. B:
Intraoperative ultrasonographic caption of the left lateral aspect of the tumour
and of the cavernous segment of the left internal carotid artery (asterisks). C:
Intraoperative ultrasonographic caption showing the suprasellar portion of the
tumour. A segment of the left anterior cerebral artery is characterised by the faint
hyperechogenic line shown by the full white arrowhead. Another segment sliced
transversally can be made out faintly as an ovoid circle (hollow arrowhead). The
tumour is mostly of a homogenous appearance both on panels B and C. Panel C
is also illustrative of reverberation artefact, due to the presence of air between a
segment of the convex ultrasound array and the medium.



Chapter 8

General conclusion and future

perspectives

8.1 General conclusion

This project focused on the integration of intraoperative ultrasound imaging in the
surgical workflow and the development of new elasticity-based tissue characterisation
techniques for brain tumour resection. It involved different aspects of ultrasound-
based guidance, such as, the development of displacement estimation techniques
for ultrasound elastography, the integration of ultrasound imaging into an image-
guided platform and the assessment of a new ultrasound transducer prototype for

transsphenoidal surgery.

Our work on ultrasound tissue characterisation focused on speckle tracking,
which is one of the key challenge of elastographic tissue stiffness evaluation. We
explored the use of CNNs for displacement estimation in the case of quasi-static de-
formations for tissue stiffness evaluation. To the best of our knowledge, we presented
the first fully unsupervised learning-based method for displacement estimation in
ultrasound elastography. We also extended our unsupervised training scheme to esti-
mate the strain elastogram between ultrasound RF time series, and demonstrated that
the use of recurrent units improves displacement estimation and temporal continuity
for strain field prediction. Both approaches were validated on numerical ultrasound

simulations and an in vivo datasets of RF data of a human forearm that we made
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publicly available!. Our network architectures, USENet and ReUSENet, achieved
state-of-the-art performance as compared with traditional approaches, and were able
to achieve a prediction rate of 20 images per second with a 12 GB NVIDIA GTX-
1080ti GPU. Therefore, it is highly suitable for real-time imaging and represents
great potential for the use of learning-based methods in quasi-static elastography.

We also investigated the use of an unsupervised learning-based method for
displacement estimation in shear wave elastography imaging. To this end, we gener-
ated an ultrasound simulation dataset of 20,000 images that simulates ARF-induced
shear wave propagation in 150 different numerical tissue-mimicking phantoms?.
ReUSENet and USENet showed similar performance to a traditional NCC approach,
showing great promise in the use of learning-based methods for the estimation of
microscale deformations in transient dynamic elastography.

This thesis also presented the development of an image-guided neurosurgery
platform that combines intraoperative ultrasound with neuronavigation. Our system
was built around commercially-available CE-marked hardware to facilitate clini-
cal translation and was developed with open-source libraries such as, Slicer-IGT
and the PLUS toolkit. The feasibility assessment of our neuronavigation module
demonstrated the seamless integration of our software and intraoperative ultrasound
imaging into the surgical workflow. The module included features that could po-
tentially improve intraoperative surgical guidance, such as volumetric ultrasound
reconstruction and the overlay of real-time ultrasound acquisition with preoperative
images. Furthermore, we also developed a stand-alone elastography module that can
perform real-time tissue characterisation with USENet and ReUSENet. This module
has also been implemented in 3D-Slicer and could be used in combination with our
ultrasound-guided neurosurgery platform.

Finally, we performed the clinical feasibility and risk assessment of an intra-
operative probe prototype developed for pituitary tumour resection. The ultrasound
images acquired during the clinical evaluation had a satisfying contrast and resolution,

which allowed neurosurgeons to identify the tumour and surrounding neurovascular

'Open access in vivo database available on https://www.synapse.org/InVivoDataForUSE
2Open access simulation database available on https://www.synapse.org/SimForSWEI
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structures. Our preliminary results suggest that the probe could be safe to use in
transsphenoidal surgery, but more cases will be required to confirm its safety and
usefulness. At the time this study was carried out, the first intraoperative ultrasound
transducer for transsphenoidal surgery was commercialised (BK N20P6, BK Medi-
cal, UK) [3]. Although the specifications of the BK probe are not publicly available,
it exhibits a similar shape and design to our prototype. This suggests that our project

was in line with current clinical needs.
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Figure 8.1: BK N20P6 ultrasound transducer for transsphenoidal surgery (BK Medical, UK)

8.2 Limitations and future perspectives

Future directions of this project should focus on the clinical validation and assessment
of the learning-based ultrasound elastography techniques developed in this work,

and the integration of intraoperative ultrasound imaging in brain tumour surgery.

8.2.1 Learning-based methods for brain tissue characterisation

The displacement estimation methods developed in this thesis for quasi-static elastog-
raphy were validated on numerical simulations and in vivo dataset of images acquired
from the arm of human volunteers. The application of our network’s architectures to
shear wave elastography was only validated using ultrasound simulation. However,
we were not able to assess the performance of our methods on intraoperative brain
tumour imaging.

Although we were able to record B-mode snapshots of pituitary tumours during
the assessment of the intraoperative transducer prototype, we could not retrieve raw
RF data from the ultrasound system as part of this ethically approved study. Accurate
displacement estimation relies on the high-frequency content of the ultrasound
signal, which is contained in the raw beamformed ultrasound data but not in the

reconstructed B-mode images used for display. Therefore, future investigations
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will aim at validating the use of our different methods on ultrasound data obtained
from brain tumour resection. Our unsupervised training scheme allows our neural
networks to be trained directly on in vivo ultrasound data, without requiring any
ground truth labels. The acquisition of an ultrasound neurosurgery dataset for quasi-
static and shear wave elastography will enable us to assess the performance of our
approach on brain tumour characterisation.

Although the usefulness of quasi-static and shear wave elastography have been
investigated previously in neurosurgery [40, 41], it would be interesting to compare
their respective performance in a further clinical study. Both techniques determine
different elasticity parameters and have different hardware requirements. Quasi-static
elastography can be used with most conventional ultrasound systems (when raw data
can be retrieved) and determines the strain, which is a qualitative measure of stiffness
(see chapter 2). Shear wave imaging can measure the Young’s modulus, which is
an absolute measure of tissue stiffness, but requires ultrasound systems capable of
generating sufficiently high-intensity acoustic radiation force. The comparison of
both methods in neurosurgery will allow to better determine the clinical needs for

brain tumour resection.

8.2.2 Integration of intraoperative ultrasound in the surgical

workflow

The feasibility assessment of our neuronavigation module showed promising re-
sults, and future efforts will be made towards its clinical translation. In chapter 6,
we highlighted the accuracy of the system, with an average TRE of 4.11 mm for
the sphere phantom experiment, as the main limitation of our system. The most
significant source of error experienced during our experiments originated from the
image-to-probe calibration procedure. Further developments will aim at improv-
ing the accuracy of the ultrasound probe calibration by investigating, for example,
phantomless auto-calibration techniques [205].

Further experiments would also be required to assess the integration of the
stand-alone ultrasound elastography module in the surgical workflow. This will

require the use of an ultrasound system that can allow us to retrieve RF data, such as
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the Cicada 128PX ultrasound system (Cephasonics Inc., USA) we used to generate
our in vivo dataset (see chapter 4). The PVA-c material used to make the tissue-
mimicking phantoms in the preclinical assessment of the neuronavigation module
have also been used for tissue stiffness evaluation [246]. This would allow us to
reproduce the simulated brain tumour experiment by including realistic brain tissue
and tumour stiffness properties.

Finally, the second part of the clinical study on the assessment of the intra-
operative probe prototype will aim to evaluate the combination of the ultrasound
probe prototype with the ultrasound-guided neurosurgery platform and investigate
the usefulness of our intraoperative elastography module. This will allow us to
clinically assess the feasibility and safety of our research platform in the surgical

workflow.
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