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Abstract

Introduction: Improving peri- and postnatal facility-based care in low-resource set-
tings (LRS) could save over 6000 babies' lives per day. Most of the annual 2.4 million
neonatal deaths and 2 million stillbirths occur in healthcare facilities in LRS and are
preventable through the implementation of cost-effective, simple, evidence-based
interventions. However, their implementation is challenging in healthcare systems
where one in four babies admitted to neonatal units die. In high-resource settings
healthcare systems strengthening is increasingly delivered via learning healthcare
systems to optimise care quality, but this approach is rare in LRS.

Methods: Since 2014 we have worked in Bangladesh, Malawi, Zimbabwe, and the
UK to co-develop and pilot the Neotree system: an android application with accom-
panying data visualisation, linkage, and export. Its low-cost hardware and state-of-
the-art software are used to support healthcare professionals to improve postnatal
care at the bedside and to provide insights into population health trends. Here we
summarise the formative conceptualisation, development, and preliminary implemen-
tation experience of the Neotree.

Results: Data thus far from ~18 000 babies, 400 healthcare professionals in four hos-
pitals (two in Zimbabwe, two in Malawi) show high acceptability, feasibility, usability,
and improvements in healthcare professionals' ability to deliver newborn care. The
data also highlight gaps in knowledge in newborn care and quality improvement.
Implementation has been resilient and informative during external crises, for example,
coronavirus disease 2019 (COVID-19) pandemic. We have demonstrated evidence of

improvements in clinical care and use of data for Quality Improvement (Ql) projects.
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1 | BACKGROUND AND RATIONALE
Worldwide, 2.4 million children younger than 28 days die every year
representing 48% of deaths in children under 5 years® and at least a
further 2 million are stillborn.2 About 90% of newborn deaths and
98% stillbirths occur in low-resource settings.?® Most mothers (~80%)
now deliver in health care facilities.* However, this increase in facility-
based deliveries is not associated with expected reductions in mater-
nal and newborn mortality.* Up to 70% of newborn deaths and at
least half of stillbirths are avoidable through the consistent implemen-
tation of low-cost evidence-based interventions.>® Most recent
WHO newborn data indicate coverage, quality, and measurement
gaps in newborn care.”

Health systems strengthening, along with education and training
in newborn care are key to saving newborn lives.”” Previous studies
have demonstrated the value of educational interventions for
healthcare professionals and kangaroo mother care in decreasing
newborn case fatality rates. The potential for e-health technologies
and telemedicine to improve newborn care is increasingly being dem-
onstrated.’® These digital formats can provide a user-friendly inter-
face for the implementation of evidence-based interventions and
guidelines, reliable data systems, digital clinical decision support tools
and education in one platform.***?2 However, even when strong evi-
dence of effectiveness exists, intervention coverage is often low due

+13 35 well as

to lack of IT-skills training, human resources and finance,
lack of co-development, government buy-in and alignment with exis-

ting country systems.14

1.1 | Reliable capture of routine healthcare data in
low resource settings

The capture of routine health data through Electronic Healthcare
Records is key to improving quality of care, efficiency and cost-effec-
tiveness, and a crucial building block for strong health systems.” Yet,
few such Electronic Healthcare Record systems exist in low-resource
settings'® and where they do, they have historically been focused on
specific disease processes such as HIV. Furthermore, data capture and
storage systems are predominantly retrospective and paper-based,
making it inefficient to retrieve and use the data to inform care deci-
sions. Weak health information systems, especially gaps in the provi-

sion of reliable, accurate disaggregated and timely data to guide

Conclusion: Human-centred digital development of a Ql system for newborn care
has demonstrated the potential of a sustainable learning healthcare system to
improve newborn care and outcomes in LRS. Pilot implementation evaluation is
ongoing in three of the four aforementioned hospitals (two in Zimbabwe and one in

Malawi) and a larger scale clinical cost effectiveness trial is planned.

behavioural sciences, global health, health services, neonatal

decision making have been highlighted as a significant barrier to equi-
table and sustained improvements in newborn care.”

1.2 | Digital clinical decision support

Paper-based clinical guidelines have been used for a long time to
optimise care; however, uptake is often variable. Increasingly, digi-
tal clinical decision support tools are being developed in high-
resource settings, most often linked to Electronic Health Records.
These decision support tools provide healthcare professionals with
targeted information for a given patient or situation. Healthcare
professionals enter data at the point-of-care and those data gener-
ate case-specific advice according to evidence-based guidelines
Digital

knowledge-based clinical decision support tools have been shown

(commonly known as knowledge-based systemst).
to improve diagnosis and treatment decisions. For example, imple-
mentation of a sepsis clinical decision support tool in a US hospital
was associated with a 53% reduction in adult sepsis-related
mortality.?”

Few low resource healthcare systems have adopted knowledge-
based clinical decision support systems at this stage. This is despite
most small and sick babies (an estimated 30 million worldwide) seek-
ing facility-based care within these settings.'® Knowledge-based
clinical decision support applications have been trialed in Tanzania
and Malawi for the community case management of maternal and
childhood health conditions.?2° A digital clinical decision support
addressing a narrow range of newborn conditions (Noviguide) linked
to education in newborn care (but not to Electronic Health Records)
has been piloted in Uganda.?* A prototype decision support app is
under development in Kenya with pilot data pending.?? Digital sup-
port tools have huge potential to improve clinical outcomes in these
settings. However, they rely on robust data capture systems, and
evidence for impact and scale up is lacking. Furthermore, there are
many gaps in the evidence with which to create clinical guidelines
that are relevant to low-resource settings.?®

More recently, non-knowledge based clinical decision support
tools are being developed based on adaptive prediction models,
including machine learning methods. Examples of how this approach
has been successfully applied in child health in high-resource settings
include Longsdale 2020.2* Machine learning has shown improvements

in predictive models for assessing the need for critical care and risk of
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mortality on admission to paediatric intensive care units.?> Limiting
factors in the use of machine learning to optimise data-driven predic-
tive clinical models are poor quality of data, limited understanding of
the platforms they are delivered into, and deficiencies in their imple-

mentation into practice.

1.3 | Education in newborn care to improve quality
of care in low-resource settings

Education in newborn care is essential to upskill healthcare profes-
sionals in delivering evidence-based practice.’ Healthcare providers
have cited lack of nursing and medical training in the provision of
higher-level neonatal care as a barrier to providing quality in-hospital
care to newborns.2%?” Additional barriers to education in newborn care
include high staff turnover and frequent reassignment of staff to differ-
ent units within the facility. Basic newborn care educational programs
have been shown to improve knowledge, competence, and appropriate
practices regarding newborns. However, not all basic education pack-
ages result in a sustained change in practice?? and reliance on paper-
based reporting systems has hampered implementation. Neotree has
been developed as a solution through its data capture and constant rein-
forcement of education messages at the point of care.?® Digital
approaches to education in newborn care are being explored.?**? How-
ever, these have not been combined with, and linked to, electronic
health records and clinical decision support systems; and sustained

improvements in quality of care have yet to be demonstrated.

1.4 | Learning healthcare systems

In high income countries, data capture, decision support, education,
and continuous learning have been combined to create learning
healthcare systems to accelerate health system strengthening and
performance. The concept of a learning organisation?” was first
applied to healthcare systems in the United States (US) in 2007 as a
way of leveraging electronic health record data to rapidly develop evi-
dence for daily clinical practice and policy.*°

In learning healthcare systems, data are collected and collated
from multiple sources, for example, Electronic Health Records and
patient experience. These data are then analysed and interpreted to
create knowledge and evidence, for example, optimising existing evi-
dence based clinical guidelines. This knowledge is then fed back into
the healthcare system to improve health care and outcomes through a
combination of automated delivery of knowledge, such as, through
digital clinical decision support tools and education, quality improve-
ment and implementation science.

Quality improvement aims to systematically improve and monitor
the quality of care, for example, feedback via electronic data dash-
boards. Implementation science aims to understand and reduce gaps
between what is known (evidence) and how knowledge is translated
into practice (behaviours) through various strategies, such as Audit
and Feedback. The Audit and Feedback strategy motivates health

Learning Health SystemsllkE

professionals to improve their practice by visualizing and highlighting
the gap between their own performance and desired performance
targets.

Ideally, learning healthcare systems promote an iterative, synergis-
tic cycle of interaction between data, knowledge, and practice delivered
on an integrated platform, compatible with local systems and culture
resulting in a constant state of quality improvement. Learning
healthcare systems also offer the capacity for real-time learning includ-
ing quasi-experimental designs, to greatly increase the ability to gener-
ate and test hypotheses in a timely manner. A learning healthcare
system can exist at any scale be it facility, national or international.
Patients, family, and community engagement and the assurance of high
standards of data quality, governance, and accessibility are all central to
the delivery of a successful learning healthcare system.

A scoping review of global learning healthcare systems described
68 such systems; the majority of these were in the US, two in the UK
and only one in a low-resource setting, Kenya.>* One of the seven
recommendations of a recent commission into the future of the UK
NHS was to develop the culture, capability, and capacity to become a
learning health system.3? In the US, the “ImproveCareNow” network
is a mature learning health system for child health aimed at improving
health outcomes for children and young people with inflammatory
bowel disease.>® This network has demonstrated improvements in
remission rates and growth through standardized data collection,
monitoring, evaluation, as well as sustainable and collaborative care.

Despite low-resource settings have the most to gain from learn-
ing health systems, such an approach is uncommon, perhaps due to a
lack of knowledge, research, or logistical capacity.>* The 2016 WHO
framework for improving health facility newborn care highlights the
need for actionable information systems.2> Delaying the development
of learning healthcare systems in low-resource settings until they can
be embedded within fully functioning healthcare systems will only

exacerbate existing health inequities.

2 | THENEOTREE: DESCRIPTION

Over the last 7 years we have worked with teams in the UK (2013
onwards), Bangladesh 2015), Malawi (2016-2017 and 2019 onwards)
and Zimbabwe (2018 onwards) to co-develop a learning health system
for newborn care in low-resource settings - the Neotree. We have
also conceptualised a similar, linked perinatal learning healthcare sys-
tem - Mummytree.

Throughout the process, we have used open-source code and
maintained local data ownership.?83® The Neotree system combines
an android application with accompanying data visualisation, linkage,
and export. Its low-cost hardware and state-of-the-art software sup-
port healthcare professionals to improve postnatal care at the bed-
side. Neotree is a horizontal intervention - aiming to comprehensively
address most common newborn disorders as opposed to focusing on
one disease. It has been, and can be, readily adapted to incorporate
new disease trends in outbreak situations such coronavirus disease
2019 as (COVID-19).%’
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21 | Collaborating partners

Neotree has been developed through a network of collaborating insti-
tutions. The UK based Neotree team, at University College London
works in close collaboration with their Zimbabwean and
Malawian institutional partners in all their local sites; in
Zimbabwe the Biomedical Research and Training Institute (BRTI)
and their Ministry of Health and Child Care Electronic Health
Record (EHR) team counterparts, and in Malawi the Parent and
Child Health Initiative (PACHI) and the Malawi Ministry of
Health. For example, a software developer, funded through the
Neotree, works across both the Neotree and the Zimbabwean
Ministry of Health EHR team.

2.2 | \Logistics of use

Healthcare professionals capture clinical and demographic data on
newborns on admission, discharge and from laboratory data using
low-cost android tablets at the bedside (see Figure 1 data pipeline;
Figure 2 sample screen shots of the data capture screens). In our
country settings (Malawi and Zimbabwe) neonates are usually admit-
ted and discharged by nursing cadres. Hence Neotree has been devel-
oped for nurses by nurses. However, in one of our sites (Sally Mugabe

Central Hospital) junior doctors take responsibility for admissions and
discharges; hence in this site Neotree has been adapted for use by

doctors.

2.3 | Data export and linkage

Neotree has been designed to work in low-resource settings where net-
work connectivity can be limited Tablets work offline, exporting, and
synchronising data when a Wi-Fi network is available. Data are linked and
then fed back to local (hospital) and national (Ministry of Health) audi-
ences (National Electronic Health Record: demo video showing linkage of
Neotree to Zimbabwean EHR: https://youtu.be/_hz-hSkpHQI) and aggre-
gate data systems (District Health information software v2).

Figure 3 shows data visualisations from the Malawian data dash-
board prototype co-developed with Malawian healthcare profes-
sionals, incorporating evidence-based audit and feedback features.®®

An open-source development process means the software can be
easily adopted by hospitals/governments who can then tailor data
input fields locally without needing remote software support or creat-
ing commercial dependencies.®® In terms of open data curation and
management, for example, we work in partnership with the
Zimbabwean Ministry of Health and Child Care Electronic Health
Records team to ensure seamless integration of Neotree data into the

NeoTree research data
base

Dataanalysis  ward audits

Data hosting PEIEREEA

server merge Trend analysis

Emergency triage
& Treatment

Vital signs Mat outcome NeoTree
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DHIS: District Health Information System, software
platform for reporting, analysis and dissemination of
data for health programs. Used in 60 countries.

API: Application Programming Interface, software
intermediary allowing 2 pieces of software to
communicate.

JSON: JavaScript Object Notation; minimal, readable
format for data structure and transfer
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.
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Data pipeline: Currently, the web-based editor platform is used to design five NeoTree data and decision support forms. HCPs

capture data, print to patient notes and export pseudonymized data to a data server. Data are processed, merged and analysed before being
presented back to HCPs in meaningful dashboards. Data are also integrated with national electronic medical records
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HYPOTHERMIA
-if baby is <1800 g - warmer
If oxygen is not needed
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-if baby is >1800 g but <2500 g -
ambulatory KMC

2) Limit heat loss

- Make sure baby is dry

- Put on a hat & wrap up the baby
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up

- The four ways by which a baby may
lose heat are:

Evaporation

< Export

Excel Spreadsheet @
JSON O
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Data Transfer/
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Sample screen shots of NeoTree front end (App interface): Recorded observation, examination, and data capture by the HCP

triggers timely guidelines, education, and management giving decision support. On completion, captured data are automatically exported ready

for analysis and presentation
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SRV IDETEY TV Total number of patients admitted to Ethel Mutherika Nursery in May-19 114

Outcome Admitted from Referred from Readmissions.
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FIGURE 3 Data dashboard development, Kamuzu Central Hospital, Malawi: Moves units from hand-drawn, time consuming, unreliable and
unclear data charts to clear, dynamic digital displays of meaningful data insights and driving impactful interventions (eg, hypothermia highlighted
in lower right dashboard)®8

national system, with all data to be held and owned on a Zimbabwean 24 | How the Neotree system aims to improve
Ministry server. clinical care

We are committed to anonymised open data sets being available
for in-country policymakers and clinicians/academics to improve neo- Knowledge and evidence are generated from the data, for example
natal health outcomes. We follow the FAIR data principles to optimise through the optimisation of existing evidence-based guidelines for
use and re-use of our code.>’ The Neotree and Mummytree have diagnosis and management of sick newborns?>2® and clinical surveil-
been, and are being, developed to be compatible with local informa- lance.3”° Generated knowledge and evidence are then used to drive
tion technology systems and data regulations. This compatibility has change in clinical practice through four main routes. First, an imple-
been country specific according to country data regulations and pref- mentation science driven approach is used to understand relationships
erences. In Zimbabwe, all data are stored on a physical server resident between knowledge and behaviours in newborn care in low-resource
in Zimbabwe. In Malawi, data are stored in an encrypted storage area settings. Second, evidence-based clinical decision and management
of the Amazon Web Server. In Zimbabwe, the data export and linkage support is provided at the bedside with embedded educational mes-
to the Ministry of Health EHR has been configured precisely to match saging, including dynamic configurability to reflect the needs and
the national EHR. capacity of the particular healthcare setting. Third, data are visualised

Data entry and guidance is tailored to available resources in through dashboards (Figure 3) operationalising audit and feedback.®®
treatment and technology within the host facility. Data governance Data dashboards use raspberry pi, a low-cost computer, linked to
procedures have been developed in consultation with both Minis- screens and an open-source data visualisation software (Metabase).
tries of Health and the UCL data governance team and are in line Currently the dashboard includes two reporting interfaces for the

with UK General Data Protection Regulations (GDPR). The Neotree system. The first dashboard displays real-time reports on a

approach to data security is 2 fold: (i) minimize the chance of data screen display in neonatal wards visualising key data (eg, admission
leakage, by ensuring data are encrypted in transit and at rest, and and mortality rates). The second dashboard is a slide-deck of monthly
by minimizing the number of places the data are stored data available for presentation at local morbidity and mortality meet-
(ii) pseudonymizing the data at the point of collection, so that even ings.** A third targeted QI screen for improving key clinical indicators
in the event of a breach, personal identifiable information would (eg, admission hypothermia) has been prototyped and piloted pending
not be leaked, and (iii) establishing data backup, storage, and implementation in the future.*® The automated delivery of morbidity

safeguarding procedures. mortality data to local multi-disciplinary teams is crucial for clinical
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’ DRAFT LOGIC MODEL FOR A LEARNING HEALTH SYSTEM (LHS) IN NEONATAL CARE
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FIGURE 4 Draft logic model

decision-making, resource management, and the monitoring of quality
care and standards. However, recent data from the WHO quality of
care network show only 17 of 47 countries in the Africa Region
undertake these audits.” The final route employed to drive clinical
practice is through quality improvement methodology, used by health
providers to iteratively improve and monitor care.*? Figure 4 shows
the draft logic model.

2.5 | Neotree development

2.5.1 | Data capture and interface
A literature review around factors contributing to the stagnation in fall
in neonatal mortality in low-resource settings and possible mitigating

t.43

strategies informed the Neotree concept development.”” A prototype

of a data capture, education, and decision support application for tab-

let devices was developed (2014).*4

Although this early prototype
was not sufficiently functional for field-testing, the concept and
sketches of the user-interface were found to be acceptable during
workshops with Bangladeshi Healthcare professionals (n ~ 15; 2014,
unpublished) and conceptualisation was further informed by an
audit of six newborn healthcare units (2014,
unpublished).****

In the next phase of development, we iteratively developed

in Bangladesh

Neotree with nurses in a Malawian neonatal unit using agile user-
centred design methods.?®*°> An editor platform was designed to

allow a clinician to configure the application as a digital neonatal

admission form (2015-2016). Hence Neotree-alpha was developed
by digitalising the Malawi-Ministry of Health neonatal admission
paper form within an android application (UK). In 2016 we con-
ducted a qualitative study to explore barriers and enablers to quality
newborn care delivery.?®

A mixed methods pilot evaluation of Neotree-alpha (2016-2017)
was conducted with 46 Malawian healthcare professionals. Neotree
beta MVP1 (Minimum viable product 1) was produced. High acceptabil-
ity and usability of the data capture of admission information and
resuscitation support functions were demonstrated.?® Healthcare pro-
fessionals reported high perceived improvements in their ability to
deliver quality newborn care after using Neotree over a one-month
period on the ward. They described improved confidence in clinical deci-
sion making, clinical skills, critical thinking, and standardisation of care.
Mean systems usability scores (SUS), a quantitative usability measure,*
before and after the clinical usability study were high at 80.4 and 86.1
respectively (a mean score of more than 68 indicates good/acceptability
usability with only minor changes needed to optimise usability). This
compares favourably with other digital systems, for example, a national
review of UK Emergency Department Electronic Health Records
reported a median SUS of 53*” and is similar to a digital clinical decision
support tool piloted in Uganda, mean SUS 93.5,n = 12.2

In 2018 Neotree-beta was implemented in Sally Mugabe Central
Hospital in Zimbabwe (annual delivery rate ~ 12 000) as a Quality
Improvement tool for neonatal sepsis.*? Discharge data capture and
laboratory data capture functions were added.

Further usability-focused development o was conducted follow-

ing implementation in Kamuzu Central Hospital, in Lilongwe, Malawi
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(annual delivery rate ~ 4500) to create Neotree-beta MVP-2.384148 po
focus of this work was the evaluated co-development of a dashboard
prototype as an electronic data feedback mechanism.*® Acceptability
of Neotree-beta MVP2 was found to be high with some feasibility
issues raised in an evaluation using behavioural science frameworks.*>
Throughout this period the data linkage and pipeline features were
iteratively developed.

A subsequent Wellcome-Trust-funded development and pilot
implementation evaluation (funded October 2019 to August 2022) is
ongoing in these two hospitals, with a third hospital added in October
2020 (Chinhoyi Provincial Hospital, Zimbabwe, annual delivery
rate ~ 3000)* in preparation for wider scale implementation and eval-
uation. Case fatality rates vary in these units between 190 and
250 per 1000 admitted babies. Since October 2019 upon commence-
ment of Wellcome Trust funding, we have been iteratively improving
all existing functions of the Neotree in collaboration with end users
and developing additional data collection for stillbirths and maternal
outcomes. Clinical, quality of care, process, implementation science
and economic data gathered during this time will inform the design
and protocol for wider scale evaluation, most likely through a
stepped-wedge trial of clinical and cost effectiveness with embedded

process evaluation.

2.6 | Clinical decision support

The clinical decision support function of the Neotree was devel-
oped in three parts. First, national and international standardised
neonatal resuscitation and stabilisation guidelines were digitalised
and incorporated into Neotree as a resuscitation algorithm, for
example, if a baby was not breathing, advice was immediately given
on how to resuscitate.?® Second, a larger set of clinical decision
support algorithms were developed according to Malawian national
(Care of the Infant Newborn: COIN®°) and international guidelines
and evidence in newborn care (Table 1). These were configured
within the Neotree editor form of the application but not activated
as we identified significant gaps in evidence-based guidance suit-
able for low-resource settings. For example, the European defini-
tion of neonatal sepsis is two or more clinical symptoms and two or
more laboratory signs in the presence of, or because of, suspected
or proven infection.”? This definition is not possible in low-resource
settings where laboratory investigations are not routinely available.
In the absence of extensive trial or epidemiological data in low-
resource settings, alternative techniques to consolidate best avail-
able low-quality evidence can be used, such as expert opinion using
the Delphi method.

In 2017 to 2018, we conducted a Delphi study to determine
whether a panel of 22 neonatal experts with global expertise could
address evidence gaps in four neonatal guidelines designed to be
included in the Neotree: sepsis, neonatal encephalopathy, respiratory
distress, and thermoregulation.2® These conditions represent the lead-
ing preventable causes of neonatal mortality and are difficult to diag-

nose and manage appropriately in low-resource settings with some of

the weakest WHO GRADE recommendations and quality of evidence.
Key changes made in response to this Delphi study were as follows.
First, the Thompson score, a validated sensitive clinical scoring system
for diagnosis of neonatal encephalopathy in low-resource settings,>?
was adopted. Second, analysis was initiated to identify a set of trig-
gers to prompt the healthcare professionals to carry out a Thompson
score assessment, for example, resuscitation longer than 10 minutes
after birth.>® Third, additional work was commenced to devise and
refine a sepsis risk score for low-resource settings (completion and
integration into the Neotree anticipated summer 2022). In 2019, a
scoping review of existing literature on clinical prediction models to
diagnose neonatal sepsis in low-resource settings was performed.>* In
2020, a dataset was constructed from the routine admission and dis-
charge Neotree data from the neonatal unit of Sally Mugabe Central
Hospital, Zimbabwe. A clinical prediction model to diagnose neonatal
sepsis was then developed on this dataset by fitting multivariable
logistic regression models.>®> The resulting prediction model is cur-
rently being refined on a second training dataset from Zimbabwe.
Fourth, all respiratory conditions are being placed under the umbrella
diagnosis of respiratory distress of the newborn as experts concluded
it was not easy in these settings without access to routine investiga-
tions to differentiate between causes of respiratory distress, for
example, meconium aspiration vs congenital pneumonia. The
remaining non-resuscitation algorithms are being refined according to
best available evidence. All these IF-THEN knowledge-based decision
algorithms will then be configured via the Neotree editor platform
ready for testing.

Finally, clinical management pages were developed during the

Zomba Central Hospital®®

and the Sally Mugabe Central Hospital pilot
studies* to encouraging healthcare professionals to take key actions
for a given clinical problem. Thus far 31 management pages have been
iterated. Currently, the healthcare professional chooses from a list of
diagnoses provided to them on the final pages of the Neotree admis-
sion pages. After choosing the diagnoses, the associated management
pages with advice appear on the Neotree system.

We are currently undertaking usability testing for the automated
surfacing of the clinical problem list and linked management pages in
response to entered data (rather than by healthcare professional
choice). Once non-resuscitation algorithms have been finalised, we
will undertake one-to-one usability workshops with exemplar clinical
cases followed by implementation evaluation of acceptability and fea-
sibility within the clinical workflow (February to April 2022).

2.7 | Neotree driving change in clinical care
To date we have gathered data for more than 18 000 babies, and over
400 healthcare practitioners have interacted with the Neotree system.
We have observed how the Neotree system can directly and rapidly
change clinical care and strengthen adherence to evidence based clini-
cal practice.

An example of such change in clinical care is to manage hypother-

mia, which is a preventable risk factor for poor outcomes: when the
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TABLE 1 Clinical decision support algorithms generated by NeoTree (other than resuscitation guidelines) according to degree of complexity
(simple vs complex) and level of underlying evidence (strong vs weak)

Data source Category

1. Simple conditional based decision trees based on based on strong evidence

Birth weight measured/recorded on admission

Gestational age recorded on admission

Maternal HIV status recorded on admission

Maternal Syphilis status recorded on admission

Temperature recorded on admission

Blood sugar on admission

Abnormal findings on clinical examination

Clinical examination/maternal history
2. Simple conditional expressions based on weak evidence

Abnormal findings on clinical examination/maternal history

3. Complex conditional expressions based on strong evidence
Clinical examination - Thompson score
Clinical examination - triggers/risk factors

Clinical examination/history

4. Complex conditional expression based on weak evidence (in low resource settings)

Clinical examination and history (but not investigations)

“RDS categories to be developed: Possible meconium aspiration; respiratory distress of prematurity; transient tachypnoea of the newborn; congenital

pneumonia; pneumonia/bronchiolitis.

Low birth weight

Very low birth weight
Extremely low birth weight
Appropriate for gestational age
High birth weight
Premature

Very premature

Extremely premature

Term

Post-dates

HIV exposed (high risk)
HIV exposed (low risk)
Untreated maternal syphilis
Normothermia

Mild hypothermia
Moderate hypothermia
Severe hypothermia
Hypoglycaemia

Risk of hypoglycaemia
Clinical jaundice

Clinical convulsions
Dehydration

Ambiguous genitalia
Congenital abnormality

Consider tetanus

Difficulty feeding

Birth trauma

Consider abdominal obstruction
Consider congenital heart disease (CHD)

Consider anaemia

Neonatal encephalopathy
Consider Neonatal encephalopathy

Respiratory distress of the newborn®

Risk factors for early onset neonatal sepsis
Risk factors for late onset neonatal sepsis
Early onset neonatal sepsis

Late onset neonatal sepsis

Consider Necrotising Entero-Colitis (NEC)

Consider meningitis
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Neotree system was initially rolled out in Kamuzu Central hospital,
79% of babies were admitted hypothermic. This dropped to less than
38% after the data dashboard was deployed and efforts were focused
on keeping newborns warm after birth and in transit, prior to admis-
sion, but may have correlated with seasonal temperature.

Similarly, when the Neotree system with management guideline
support was implemented in Sally Mugabe Central Hospital,
Zimbabwe, oral antibiotic prescribing on discharge (not an evidence-
based treatment) fell from 97% to 2%.%*°% Inappropriate antibiotic
usage is associated with increased antimicrobial resistance.

Through supporting these projects, we recognised clear gaps in
training in Quality Improvement methods for healthcare practitioners
in low-resource settings. Neotree deployment has been robust
despite external crises (eg, industrial action, economic collapse, and
COVID-19) and data have been used to improve care and monitor
healthcare outcomes during COVID-19.2” COVID-19 clinical manage-
ment and infection control guidance was incorporated into the Neo-
tree. We have demonstrated the ability to adapt rapidly and respond.
For example, in response to clinical evidence of a recent rise in fresh
stillbirths (www.bbc.co.uk/news/world-africa-53580559, possibly due
to indirect impacts of COVID-19 on health service provision and use),
we mobilised our planned implementation of stillbirth data collection
in Zimbabwe. Initial data showed stillbirth rates of 100 to 120 per
1000 births (for comparison, UK rates are 3.3 per 1000).>”

We have a strong ethos of collaboration. Neotree data from
Zimbabwe are being used as part of a national study assessing the
impact of the COVID-19 pandemic on mother-to -child transmission
of HIV and syphilis.>® In Malawi we have worked closely with the local
NEST360 team (nest360.0rg) on data quality and resource/equipment
allocation. We are seeking funding to collaborate with GOAL3 (www.
goal3.org) to pilot integration of Neotree with a Bluetooth physiologi-

cal monitoring system for newborn care in low-resource settings.

3 | NEOTREE: KEY INTERVENTION
DEVELOPMENT AND IMPLEMENTATION
LESSONS

Strong African clinical leadership, Ministry of Health buy-in and col-
laboration, user-centric technology and our flexible approach to devel-
opment and evaluation have been a key to implementation success.
Employing locally based stakeholders has ensured community engage-
ment and has gained essential local expertise and leadership.

Significant overall challenges have included the impact of external
crises on clinical care and research activities (COVID-19 pandemic
and industrial action) and balancing the requirements of national digi-
tal systems with local clinical quality improvement. Further challenges
have included ensuring a common language and understanding across
clinical, technology and policy stakeholders and the availability of gold
standard diagnostics to support the development and validation of
the clinical decision support functionality of the Neotree.

A key lesson learnt from the initial prototype development was

the importance of high-end software to create a functioning

application. The initial workshops in Bangladesh led to two changes in
intervention development. First, that the application data capture and
clinical decision support needed to be adaptable to the clinical setting
in terms of medical resources (equipment, medication, staffing senior-
ity and experience and availability of investigations). Second, that the
clinical decision support should be horizontal, aiming to address the
full range of newborn problems encountered in a low-resource new-
born care unit.

Key technological successes during the initial Neotree-beta devel-
opment in Malawi?® included the advantages of an intuitive interface
between the clinical and research teams and the software code. The
interactive editor platform enabled those without software coding
skills to configure the data capture forms and clinical decision support
without having to alter the base code. Staff turnover is high in these
settings and there is currently little or no formal training in newborn
care. We learnt therefore, that the educational components needed
to be simple but comprehensive, including information on clinical
examination as well as differential diagnosis and management. Study
participants provided data on implementation strategies which were
incorporated into future pilot implementation studies - in particular
the use of a paid role for Neotree ambassadors to provide technical
support (at between 0.3 and 0.4 full time working equivalent per new-
born care unit). Two additional gaps were highlighted - a lack of mean-
ingful parent, family and community engagement and a lack of use of
behavioural sciences frameworks with which to optimize intervention
development and evaluation. Both gaps have been addressed in sub-
sequent development and evaluation cycles.

Significant challenges were met during the initial pilot implemen-
tation study in Sally Mugabe Central Hospital, Zimbabwe, with captur-
ing and linking microbiology laboratory data.*?> The need to ensure
high quality Wi-Fi for intermittent data sync was identified as a sec-
ond priority for ongoing implementation.

Key lessons learnt from the initial pilot implementation in Kamuzu
Central Hospital (May 2019-September 2019) work were several fold.
First, digital health interventions can be optimised combining both
agile user-focused methodologies with behaviour change frameworks.
Second, that data on dashboards should be accompanied by clear
messaging around how to act on those data, to motivate change in
clinical practice (via audit and feedback). Third, complex data transfor-
mations should not be handled within the visualisation programme,
but elsewhere in the system (eg, a data pipeline) to reduce network

requirements in low resource settings.

3.1 | Summary and next steps
In this paper we have described our experience of developing and
implementing a learning healthcare system for newborn care: Neo-
tree. We are gathering ongoing implementation evaluation data and
future steps include collecting robust evidence of clinical and cost
effectiveness of impact on newborn care and mortality.

Ensuring adequate data quality and robustness, harmonization and

integration with existing infrastructures are some of the key challenges
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to implementing novel healthcare systems. Therefore, we continue to
review our collected data and develop measures to control data quality
in the long-term while ensuring the application is user-friendly for
healthcare professionals without being a burden to productivity.

Over the last year we have also been working with partners to
strengthen our parent, family and community engagement with prom-
ising results. Work to progress the Mummytree is ongoing, and we are
also working with Zimbabwean paediatricians to develop and test a
strategy to link Neotree data with neurodevelopmental follow-up.

The very essence of a learning healthcare system is the ability to
continuously learn from data and experience. This adaptive system
requires a skilled workforce to support ongoing development and
implementation. Therefore, future next steps will also include explicit
building of capacity and capability in the clinical and academic work-
force in low-resource settings to enable the sustainable development

and delivery of Neotree and other similar systems.
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