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Abstract
We propose a novel approach to the estimation of mul-
tiple Gaussian graphical models (GGMs) to analyse pat-
terns of association among a set of metabolites, under
different conditions. Our motivating application is the
SABRE (Southall And Brent REvisited) study, a triethnic
cohort study conducted in the United Kingdom. Through
joint modelling of pattern of association corresponding to
different ethnic groups, we are able to identify potential
ethnic differences in metabolite levels and associations,
with the aim of gaining a better understanding of differ-
ent risk of cardiometabolic disorders across ethnicities.
We model the relationship between a set of metabolites
and a set of covariates through a sparse seemingly unre-
lated regressions model and we use GGMs to represent
the conditional dependence structure among metabo-
lites. We specify a dependent generalised Dirichlet pro-
cess prior on the edge inclusion probabilities to borrow
strength across groups and we adopt the horseshoe prior
to identify important biomarkers. Inference is performed
via Markov chain Monte Carlo.
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1 INTRODUCTION

Diabetes poses an enormous individual and societal burden, with high risk of major complications
and diminished quality and length of life. Hence, it is imperative to understand causal mecha-
nisms in order to identify those at highest risk and to tailor preventive and therapeutic measures
for appropriate periods during the life course. The global epidemic of type 2 diabetes dispropor-
tionately affects non-European ethnic groups. South Asians (from the Indian subcontinent) form
the largest ethnic minority group in the United Kingdom with prevalence of diabetes in South
Asians estimated to be 2–4 times higher than that of the general population (Sproston & Mindell,
2006). People of African-Caribbean origin in United Kingdom, although fewer, are also at greater
risk of developing type 2 diabetes, with prevalence also estimated at 2–4 times that of the general
UK population (Sproston & Mindell, 2006). Research to date suggests that insulin resistance and
differences in body fat distribution explain some of the ethnic differences in diabetes risk, but the
underlying mechanistic pathways are poorly understood, although are likely to involve a complex
interplay between environmental, behavioural, metabolic, genetic and epigenetic influences.

The SABRE (Southall And Brent REvisited) population-based cohort was initiated in the
late 1980s in north-west London with the aim of studying ethnic differences in cardiovascular
disease and diabetes. Since then, it has accumulated a wide range of phenotypic and disease
outcome data. The study includes people of European, South Asian and African-Caribbean
descent, aged 40–69 years at baseline. Recently, metabolic analyses have been performed on
over 3000 stored blood samples from the baseline and 20-year follow-up studies. Metabolomics
is the large-scale study of metabolites, within cells, biofluids, tissues or organisms. Collectively,
these metabolites and their interactions within a biological system are known as the metabolome.
Measurements of over 200 metabolites or ratios of metabolites, obtained through nuclear mag-
netic resonance spectroscopy (Soininen et al., 2015) are available for more than 3000 stored
baseline serum samples. Lipoproteins are classified according to their density (very-low-density,
low-density, intermediate-density and high-density lipoproteins). Each lipoprotein subclass can
be further characterised by its lipid composition (i.e. triglycerides, phospholipids, cholesterol
esters and free cholesterol) and its particle size. The full list of metabolites included in the
analysis is reported in Table S1 in Supplementary Material. We exclude from the analysis indi-
viduals with known diabetes at the time of the first visit. This is motivated by the fact that
people with known diabetes were already receiving treatment that may alter their metabolite
levels. Furthermore, we include in the analysis: (a) clinical markers, such as the homeosta-
sis model assessment as an index of insulin resistance (Matthews et al., 1985)—an important
risk factor for the development of diabetes; (b) three important enzymes (alanine aminotrans-
ferase, aspartate aminotransferase and gamma-glutamyl transferase) of which the first two are
clinical biomarkers indicators of liver health while latter is used as a diagnostic marker for
liver disease; and (c) anthropometric variables measuring the body fat distribution such as the
waist-to-hip ratio (WHR). The full list of covariates included is given in Table S2 in Supplementary
Material.

In this work, we focus on the SABRE study fasting baseline metabolic and phenotypic data
set, with a view to identifying and elucidating potential mechanistic pathways to insulin resis-
tance (and hence risk of developing type 2 diabetes), and to explore ethnic differences in these
pathways. The statistical analysis poses several challenges: intersubject variability, the large num-
ber of variables under investigation and the high correlation between metabolite levels. There is
a wealth of proposals in the statistical literature on how to tackle these problems. We employ the
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seemingly unrelated regression (SUR) model introduced by Zellner (1971). The SUR model can
be seen as a generalisation of the linear regression model, where multiple regression equations,
each one having its own dependent variable and possibly a specific set of regression covariates, are
linked together by specifying a joint distribution on the error terms, which can exhibit a correla-
tion structure. The SUR model offers a flexible modelling tool, but at the price of a large number
of parameters to be estimated. To regularise posterior inference we adopt a sparse SUR approach,
assuming a local–global shrinkage prior for the regression coefficients, that is the horseshoe prior
(Carvalho et al., 2010), and we model the associations among metabolites employing a Gaus-
sian graphical model (GGM, Dempster, 1972). Zeros in the error precision matrix are obtained
by imposing a set of conditional independence constraints arising from an underlying graphi-
cal model (Lauritzen, 1996). Two common choices of prior distribution for the precision matrix
are the G-Wishart prior of Lenkoski and Dobra (2011) and the Bayesian graphical Lasso of Wang
(2012). The G-Wishart prior explicitly treats the graph as an unknown parameter leading to a
direct inference of its underlying structure. However, the convergence of the posterior distribu-
tion can be slow due to the single edge update and the intractable normalising constant that needs
to be approximated. On the other hand, the Bayesian graphical Lasso is fast, thanks to the contin-
uous priors, which enable a block Gibbs sampler that updates the precision matrix one column
at time. However, this method does not explicitly provide a treatment of the underlying graphi-
cal structure. The problem of estimating sparse matrices of regression coefficients and precision
matrices jointly has been tackled before in the frequentist (Cai et al., 2013; Rothman et al., 2010),
as well as Bayesian (Bhadra & Mallick, 2013; Deshpande et al., 2019) framework. The former
modelling approach is usually based on 𝓁1 penalisation, while the latter exploits the specification
of spike-and-slab prior distributions. In both frameworks, the estimation of the precision matrix
is the most demanding part, as the parameter space is restricted to the cone of positive-definite
matrices, often requiring computationally intensive algorithms. Here we use the stochastic search
structure learning (SSSL) algorithm of Wang (2015) to specify the precision matrix prior distri-
bution. The SSSL uses the best aspects of the G-Wishart and Bayesian graphical Lasso priors,
enabling explicit structure learning while maintaining good scalability.

We specify a generalised Dirichlet process prior (GDP, Hjort, 2000), an extension of the
well-known Dirichlet process (DP, Antoniak, 1974; Ferguson, 1973, 1974), on the edge inclusion
probabilities, allowing for clustering of the edges and through the calibration of the GDP base
measure we ensure the desired degree of sparsity in the graph. The GDP is a probability model
defined on the space of probability distributions. Similarly to the DP (Sethuraman, 1994), the GDP
can be defined through a constructive definition of the process. If a random probability measure
P is distributed according to a GDP, with concentration parameter 𝛼, mean parameter 𝜇 and base
measure P0, then

P =
∞∑

k=1
𝜓k𝛿𝜃k

where 𝜃1, 𝜃2, … are iid realisations from P0 and 𝛿𝜃k is the Dirac measure that assigns unit mass
probability in correspondence of the location 𝜃k. The weights 𝜓k are generated according to the
stick-breaking construction:

𝜓k = 𝜙k

k−1∏

j=1
(1 − 𝜙j), k = 2, 3, …

𝜓1 = 𝜙1 (1)
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with 𝜑k
iid∼ Beta(𝛼k𝜇k, 𝛼k(1 − 𝜇k)), where 𝜇k represents the expected value of the beta random

variable and 𝛼k is a concentration parameter, for k = 1, 2, … Here we use the more parsimonious
parametrisation given by Hjort (2000), where 𝛼k = 𝛼 and 𝜇k = 𝜇, for k = 1, 2, … By construc-
tion we have 0 ≤ 𝜓k ≤ 1 and

∑∞
k=1𝜓k = 1. We extend the GDP prior to multiple GGMs, enabling

borrowing information between graphs under different biological conditions. More in detail, we
assume a SUR model for the metabolites for each ethnic group. We model the error precision
matrix in each group conditionally on an ethnic-specific graph, and we propose a joint nonpara-
metric prior for the graphs. This strategy allows us to highlight common patterns and structural
differences. In this context, each graph is characterised by the same set of nodes (representing the
dependent variables of the SUR model), connected by a set of group-specific edges. Thanks to the
clustering property of the GDP prior, we allow edges from different graphs to share the same edge
probability and consequently to inform each other.

The paper is organised as follows. Section 2 introduces the sparse SUR model, the nonparamet-
ric prior on the edge inclusion probabilities and its extension to handle multiple GGMs. Section 3
illustrates the performance of the model on simulated data sets. Section 4 presents the analysis
of the SABRE data, with a discussions of the clinical relevance of the findings. Finally, Section 5
concludes the work with a discussion of the main results and future directions.

2 METHODS

In this section, we review the main properties of the SUR model and its generalisation to sparse
SUR. We also introduce the main properties of GGMs and we present our choice of prior distri-
bution for the graph space based on the GDP. Finally, we generalise our modelling strategy to
multiple GGMs.

2.1 Sparse SUR model

Consider M response variables yl, l = 1, … ,M, each observed on n subjects, that is yl =
(yl1, … , yln)′, modelled as individual linear regressions

yl = Xl𝜷 l + ul, l = 1, … ,M (2)

where the Xl is a n × pl response-specific matrix of explanatory variables, 𝜷 l =
(
𝛽l1, … , 𝛽lpl

)
is a

pl-dimensional vector of regression coefficients and ul = (ul1, … ,uln) is the n-dimensional vector
of error terms, distributed as a multivariate normal, N (0, In), where In is the identity matrix of
dimension n × n.

The error terms are assumed to be correlated across equations. We denote by Ω the
cross-equation precision matrix. We can rewrite the system of equations in a compact matrix
form, as

y1∶M = X𝜷 + u
u ∼ N(0,Ω⊗ In)

by concatenating the responses in a unique column vector y1∶M of dimension Mn. X is now a block
diagonal matrix of dimension Mn × Q, where Q =

∑M
l=1pl is the total number of parameters. 𝜷 is
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a Q-dimensional vector containing all the regression coefficients. Here ⊗ denotes the Kronecker
product. Note that the precision matrix of the concatenated error vectors implies that error terms
within the same equation are independent (e.g. ulj and uli for j≠ i), but error terms corresponding
to the same subject in different equations are assumed to be correlated (e.g. ulj and urj for l≠ r). We
shall denote the generic element of the regression coefficients vector 𝜷 by 𝜷 lj, which corresponds
to the regression coefficient associated to the j-th covariate in the l-th equation.

2.2 Background on graphical models

We give a brief introduction to graphical models, following Lauritzen (1996). Let G = (V , E), with
V = {1, 2, … , M} the vertex set and E ⊂ {(i, j) ∈ V × V :i < j} the edge set, be an undirected graph
whose vertices are associated with a M-dimensional vector of variables y = (y1, … , yM) following
a multivariate normal distribution, N(0, Ω). Note that in this section, for simplicity of notation,
we use y to denote the vector of variable corresponding to each node in the graph. The graph
G can be represented by a set of r = M(M−1)∕2 binary variables Z = (zij)i<j, where zij = 1⟺
eij ∈ E, with eij denoting the edge between node i and j in the graph G, for i, j ∈ {1, … , M}.
Thus, r = M(M − 1)∕2 is the total number of possible edges in the graph G. There is a direct
correspondence between the elements of the precision matrix Ω and the edges in the graph G. A
missing edge in E implies 𝜔ij = 0 (Wermuth, 1976), which in turn corresponds to a conditional
independence assumption of yi and yj given the remaining variables y−ij, where y−ij denotes the
elements of the random vector y excluding the i and j coordinates. The parameterΩ is constrained
to belong to the cone PDG, that is the set of positive definite matrices with entries equal to zero
for all eij ∉ E.

2.3 Prior specification

We adopt the horseshoe prior of Carvalho et al. (2010) to impose regularisation on the regression
coefficients 𝜷. The horseshoe prior has the desirable property of being characterised by a singular-
ity at zero to strongly shrink small or negligible coefficients, while leaving important coefficients
unaffected thanks to its heavy tails. The horseshoe prior is specified as follows

𝛽lj|𝜆lj, 𝜏l ∼ N
(

0, 𝜆2
lj𝜏

2
l

)

𝜆lj ∼ C+(0, 1)
𝜏l ∼ C+(0, 1) (3)

with j = 1, … , pl and l = 1, … , M. C+ denotes the standard half-Cauchy distribution, 𝜆2
lj is the

local shrinkage parameter, specific for the coefficient 𝛽lj, while 𝜏2
l represents the overall shrinkage

level for equation l. The choice of a half-Cauchy distribution results in aggressive shrinkage over
small or negligible coefficients and is therefore suitable for variable selection in a Bayesian con-
text. Carvalho et al. (2010) compares the performance of the variable selection based on (3) with
that of a spike and slab prior (George & McCulloch, 1993), showing that the posterior selection
given by the horseshoe is consistent with that of the spike and slab. See, for instance, Piironen and
Vehtari (2017) for a discussion on how to set the horseshoe prior hyperparameters. To perform
posterior inference, we adopt the conjugate sampler proposed by Makalic and Schmidt (2016),
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which allows a fast Gibbs sampling, avoiding working directly with the half-Cauchy distribution.
Makalic and Schmidt (2016) exploit the following relationship. Let 𝜅 and 𝜌 be random variables
such that

𝜅
2|𝜌 ∼ IG(1∕2, 1∕a) and 𝜌 ∼ IG(1∕2, 1∕A2) (4)

then 𝜅 ∼ C+(0, A), where IG() is the inverse-gamma distribution. Exploiting the scale mixture
representation in Equation (4) we can express (3) as

𝛽lj|𝜆lj, 𝜏l ∼ N
(

0, 𝜆2
lj𝜏

2
l

)

𝜆
2
lj|𝜈lj ∼ IG

(
1∕2, 1∕𝜈lj

)

𝜏
2
l |𝜉l ∼ IG (1∕2, 1∕𝜉l)
𝜈lj, 𝜉l ∼ IG(1∕2, 1). (5)

We model the cross-equation precision matrixΩwith the SSSL prior of Wang (2015), specified as

p(Ω) = C(𝜃)−1
∏

i<j

{
(1 − 𝜋)N

(
𝜔ij|0, v2

0
)
+ 𝜋N

(
𝜔ij|0, v2

1
)}∏

i
exp

(
𝜔ii|

𝜂

2

)
1{Ω∈PDG} (6)

where Exp(𝜔|𝜂) represents the exponential density with expectation 1∕𝜂 and 1{⋅} is the indicator
function. The normalising constant C(𝜃), with 𝜃 = {v0, v1, 𝜋, 𝜂}, ensures that p(Ω) integrates to
one over the space PDG. The parameters v0, v1 are set to be small and large, respectively, in order
to perform variable selection on the off-diagonal elements of the precision matrix. We do not
impose regularisation on 𝜂, fixing its value to 1 as done in Wang (2015). The prior on 𝜋 is discussed
later. The first product in Equation (6) involving the off-diagonal elements of Ω, is a mixture of
two normal distributions. The second product multiplies M exponential densities for the diagonal
elements of Ω. Now, recalling the connection between the graph G and its binary representation
through the adjacency matrix Z = (zij)i<j, (6) can be rewritten as

p(Ω|Z, 𝜃) = C(Z, v0, v1, 𝜂)−1
∏

i<j
N
(
𝜔ij|0, v2

zij

)∏

i
exp

(
𝜔ii|

𝜂

2

)
(7)

p(Z|𝜃) = C(𝜃)−1C(Z, v0, v1, 𝜂)
∏

i<j

{
𝜋

zij

ij (1 − 𝜋ij)1−zij

}
(8)

where v2
zij
= v2

1 if zij = 1 and v2
zij
= v2

0 if zij = 0, and C(𝜃) and C(Z, v0, v1, 𝜂) are normalising constant
for the respective densities. The joint distribution p(Ω, Z|𝜃) admits (6) as a marginal distribution
forΩ. In the representation in Equations (7) and (8), small values of v0 give high probability to the
event zij = 0, so that the distribution of 𝜔ij is concentrated around 0, implying that the correspon-
dent edge will have a close-to-zero probability to be included in the graph G. For an appropriately
chosen large value of v1, the event zij = 1 implies that the distribution of 𝜔ij is the diffuse compo-
nent N(0, v2

1) and so 𝜔ij can be estimated to be substantially different from zero (Wang, 2015). See
also Malsiner-Walli and Wagner (2018) for a comparison of spike and slab priors.

The choice of v0 and v1 = v0 × h is important to ensure a good mixing of the MCMC and quick
convergence to the true posterior distribution. The value of v0 should be such that if the evidence
is in support of zij = 0 then 𝜔ij is small enough to be replaced by zero. Wang (2015) discuss the
choice of v0 and h and observe that, with standardised data, the MCMC converges quickly with
v0 ≥ 0.01 and h≤ 1000. Finally, choosing a value for 𝜂 is easier, as with standardised data, a choice
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of 𝜂 = 1 assigns probability to the entire region of plausible values for the inverse variances 𝜔ii.
There is a wealth of literature regarding the choice of the prior distribution for 𝜋ij, the edge inclu-
sion probability. See, for example Carvalho and Scott (2009) and Tan et al. (2017) for a review
of some popular methods. In this paper, we adopt a nonparametric Bayesian approach to model
the uncertainty about the inclusion probabilities, allowing for clustering of the edges and the
possibility to impose sparsity on the graph. We specify a GDP prior on 𝜋ij as follows

{𝜋ij}i<j|P
iid∼ P

P|𝛼, 𝜇,P0 ∼ GDP(𝛼, 𝜇,P0)
P0|a𝜋, b𝜋 = Beta(a𝜋, b𝜋)
𝛼|𝛼a, 𝛼b ∼ Gamma(𝛼a, 𝛼b)

𝜇 ∼ Beta(a𝜇, b𝜇). (9)

The choice of a nonparametric prior allows for flexible modelling of the edge inclusion proba-
bilities. Moreover, we can tune the hyperprior parameters characterising the base measure P0 to
achieve the desired level of sparsity. The parameters 𝛼 and 𝜇 control the clustering structure of
the GDP (note that posterior clustering depends also on the choice of the base measure). The
choice of the hyperparameters depends on the particular application. The model for eij is then
given by:

eij|𝜋ij
ind∼ Ber(𝜋ij), i < j

{𝜋ij}i<j|P
iid∼ P

P|𝛼, 𝜇,P0 ∼ GDP(𝛼, 𝜇,P0). (10)

The above equations defines a GDP Mixture model (GDPM, Lo, 1984; Barcella et al., 2017) for
{eij}i<j. Recalling the discrete nature of the GDP. we can rewrite (10) as

{eij}i<j|P
iid∼

∞∑

k=1
𝜓kBer(e|𝜋k)

where the 𝜋k denote the (unique) locations of the GDP prior.

2.4 Degree distribution

One of the main consequences of choosing a GDP prior is that the edges are clustered on the basis
of their inclusion probability. A priori, the GDP does not constrain the number of clusters to a
finite value, indeed their number can grow as new data become available. Only a posteriori, once
we observe the data, the estimated number of clusters is finite, potentially equal to the number
of edges. We now investigate the possible graph structures supported by a GDP prior. We follow
the framework of Tan et al. (2017) and describe some properties of the degree distribution. The
degree Di of a node i is the number of connections that involve node i, so Di =

∑
j≠i eij, where eij is

the edge connecting nodes i and j. The degree Di is then bounded between 0 and M − 1, the total
number of nodes minus one. The following properties hold (proofs in Supplementary Material):
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1. Conditionally on 𝜋ij, the probability that a node i is connected to a node j is 𝜋ij.
2. The degree of a node i is distributed as a mixture of Binomial distributions, with mixing weights

given by the GDP

Di|P ∼
∞∑

k=1
𝜓kBinomial(M − 1, 𝜋k)

where, once again for ease of notation, we have substituted the index (ij) with k. We have
that E [Di|P] =

∑∞
k=1𝜓k(M − 1)𝜋k Var [Di|P] = (M − 1)

∑∞
k=1𝜓k𝜋k [(1 − 𝜋k) + (M − 1)𝜋k] −[∑∞

k=1𝜓k(M − 1)𝜋k
]2.

3. Marginalising over the random measure, we obtain (see Supplementary Material):

E [Di] = (M − 1) a𝜋
a𝜋 + b𝜋

E
[
D2

i
]
= (M − 1)

{
a𝜋

a𝜋 + b𝜋
+ (M − 2) (a𝜋 + 1)a𝜋

(1 + a𝜋 + b𝜋)(a𝜋 + b𝜋)

}
.

The shape of the degree distribution highlights structural characteristics of the graph implied
by the prior choice, which are relevant in data analysis. In particular, we focus on sparsity. In a
dense graph, each node is connected to many others and, as a consequence, there are few pair-
wise conditional independences, while a sparse graph presents fewer connections and hence the
graph can be decomposed into subgraphs defined by conditional independence structures. A care-
ful choice of prior hyperparameters allows us to obtain the desired level of sparsity, retaining at
the same time a good level of flexibility. To better understand the shape of the degree distribu-
tions implied by the GDP prior in Equation (9), we perform a sensitivity analysis for different
values of 𝛼 and 𝜇 and different parametrisation of the base distribution P0. Figures S1 and S2
in Supplementary Material present the resulting degree distribution for different combinations
of hyperparameters. It is evident that our prior choice is able to accommodate different shapes.
However, simulations show that, by appropriate choice of hyperparameters, we can obtain an
exponential decay in the tails of the functions, but not a power law decay.

2.5 Multiple GGMs

Often in applications we observe groups of subjects under different experimental conditions. In
the SABRE study, for example, we are interested in understanding how patterns of association
between metabolites vary across three different ethnicities, in particular in relation with cardio-
vascular diseases and diabetes. In our application, ethnicity defines three natural subsamples,
each characterised by its own graph. In general, we expect different groups to share some com-
mon structure as well as group-specific connection patterns. Estimating a single graphical model
would lead to an implicit assumption of homogeneity of the underlying graphs across the eth-
nicities, with a consequent loss of information about their heterogeneity and a consequent high
risk of false positives. On the other hand, inferring each graph individually might lead to a loss
of power given the reduction in sample size. There is a growing research interest in multiple
graphical models. For example, Saegusa and Shojaie (2016) estimate multiple graphs specifying a
global penalisation and using optimisation techniques, while in a Bayesian framework Peterson
et al. (2015) propose a joint model for multiple GGMs employing a Markov random field prior,
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encouraging sharing of common edges. The Markov random field prior is also used by Lin et al.
(2017) for multiple graphs presenting both spatial and temporal dependence. Also relevant are
the works of Tan et al. (2017), which propose a multiplicative prior to capture common and
group-specific structures, and of Bilgrau et al. (2020), which presents a penalisation approach
to estimate multiple precision matrices, allowing for the incorporation of prior information. We
propose to model multiple graphs through an extension of the GDP prior, that is the dependent
generalised Dirichlet process (DGDP, Barcella et al., 2017). Due to the discrete nature of the DGDP,
each edge can be clustered together with any other edge, independently of the g-th group of
origin. This ensures sharing of structural information among groups, at the same time maintain-
ing parsimony in the number of parameters to be estimated. This strategy also allows detecting
group-specific connections.

Suppose we observe R groups, for example defined by ethnicity in the SABRE study. Each
sub-sample g is characterised by a specific sample size ng and its own graph Gg, for g = 1, … , R.
Here, we assume that the vector of regression parameters 𝜷 is common to all groups, although
this assumption can be easily relaxed. The prior distributions in Equations (7) and (8) are gener-
alised to handle multiple precision matrices Ωg, and therefore multiple adjacency matrices Zg as
follows:

p(Ωg|Zg, 𝜃g) = C(Zg, v0, v1, 𝜂g)−1
∏

i<j
N
(
𝜔g,ij|0, v2

zg,ij

)∏

i
exp

(
𝜔g,ii|

𝜂g

2

)
(11)

p(Zg|𝜃g) = C(𝜃g)−1C(Zg, v0, v1, 𝜂g)
∏

i<j

{
𝜋

zg,ij

g,ij (1 − 𝜋g,ij)1−zg,ij

}
. (12)

The hyperparameters v2
0 and v2

1 remain unchanged and are common to all groups. We can
see that, conditional on the inclusion probabilities 𝝅g,ij, 𝜂g, v2

0 and v2
1, Equations (11) and (12) are

independent across groups. The prior in Equation (9) on 𝜋g,ij can be extended in the presence of
multiple groups, so that the random measures associated to each group are dependent. Depen-
dence can be introduced in the weights of the stick-breaking representations, by allowing𝜓k to be
a function of a categorical x, identifying the group. Note that dependence on other group-specific
covariates (when available) can be easily introduced. The resulting process is called DGDP, which
is defined as follows. Let

Pg =
∞∑

k=1
𝜓kg𝛿𝜃k

be the random measure associated to the g-th group, for g = 1, … , R. The locations are iid
draws from a common base measure P0, as before. The weights still admits the stick-breaking
representation:

𝜓kg = 𝜙kg

k−1∏

j=1
(1 − 𝜙jg), k = 2, 3, …

𝜓1g = 𝜙1g.

Each𝜑kg has a beta distribution, Beta(𝛼𝜇g, 𝛼(1 − 𝜇g)), but now 𝜇g is group specific. (Barcella et al.,
2017) propose to introduce dependence across the {𝜇g} employing a beta regression framework
and letting the 𝜇g depend on a categorical covariates denoting group. Using the DGDP, the model
in Equation (9) can then be extended to the multiple graphs as follows, for g = 1, … , R:
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{𝜋g,ij}i<j|Pg
ind∼ Pg

Pg|𝛼, 𝜇g,P0 ∼ DGDP(𝛼, 𝜇g,P0)
P0|a𝜋, b𝜋 = Beta(a𝜋, b𝜋)
𝛼|𝛼a, 𝛼b ∼ Gamma(𝛼a, 𝛼b)

𝜇g = logit(xg𝜻)
𝜻|𝜻

𝜇
, 𝜻Σ ∼ NR(𝜻𝜇, 𝜻Σ)

where xg is a categorical design vector of dimension R which includes an intercept term and iden-
tifies the group from which the observations come from. 𝜻 is a vector of regression coefficients,
to which we assign a normal prior. In our application, the European ethnicity is the reference
group. The DGDP process offers a convenient way to share information across different groups
and ensures a greater flexibility than the GDP thanks to the richer parametrisation. Note that xg
can include other group specific covariates when available. The MCMC algorithm for posterior
inference from a DGDP process is based on a truncation of the infinite mixture (Ishwaran & James,
2001). A discussion on how to choose the truncation level can be found in Ishwaran and James
(2001) and Barcella et al. (2017). Details of the MCMC algorithm can be found in Supplementary
Material.

3 SIMULATION RESULTS

We perform a simulation study to investigate the efficacy of the proposed model. We simulate data
from multivariate normal distributions, focussing on the estimation of the precision matrix and
the multiple graphs. We present here two simulation scenarios, while further simulated exam-
ples can be found in Section 4 of Supplementary Material, together with details on the required
computational times.

To assess the performance of the proposed model, we consider 20 replicas for each scenario
described and we compare the resulting estimates with existing methods. In particular, we con-
sider: (a) the ANOVA-DDP Ishwaran and James (2001) and Barcella et al. (2017); (b) a parametric
version of the proposed SSSL model, in which the edge-inclusion probabilities are beta distributed
and group specific; (c) the Bayesian structure learning model of Mohammadi et al. (2015), based
on a birth–death MCMC in a standard conjugate model specification involving a multivariate
normal likelihood and a G-Wishart prior distribution for the precision matrix, available through
the R package BDgraph; (d) the graphical Lasso (Friedman et al., 2008) as implemented in the R
package glasso; (e) the graphical group Lasso (Danaher et al., 2014), which imposes an additional
regularisation between multiple precision matrices to enforce a similar structure, as implemented
the R package JGL. We use different metrics for the comparisons: (a) the receiver operating
characteristic-area under the curve (ROC-AUC), which is a normalised measure of the area under
the ROC curve created by plotting the true positive rate against the false positive rate at various
thresholds; (b) the mean square error (MSE), evaluated as the mean squared difference between
the true precision matrices and the estimated ones; (c) the MSE restricted to the set of non-zero
entries present in the simulated graph. Notice that some of the models implemented for com-
parison purposes do not allow for direct estimation of the multiple graph structures, namely the
graphical Lasso and the graphical group Lasso. Therefore, these two methods are only compared
in terms of MSE in the following analyses. Throughout all simulations, we run the Bayesian
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algorithms for 15000 iterations (of which 10,000 are discarded for the burn-in period) and we use
the following parameter specifications:

1. DGDP K = 10, 𝜈0 = 0.01, h = 100, 𝛼a = 0.1, 𝛼b = 1, a𝜋 = 0.01, b𝜋 = 0.01, 𝜻
𝜇
= 0, 𝜻

𝜇
= IG

2. ANOVA-DDP K = 10, 𝜈0 = 0.01, h = 100, 𝛼a = 0.1, 𝛼b = 1, 𝜼
𝜇
= 0, 𝜼Σ = IG

3. Parametric 𝜈0 = 0.01, h = 100, a𝜋 = 1, b𝜋 = 1
4. BDgraph Default parametrisation, G-Wishart diagonal base measure = IM
5. Graph-LASSO 𝜌 = 0.15
6. Group-LASSO 𝜆1 = 0.15, 𝜆2 = 0.2

3.1 Scenarios with 20 nodes and 4 groups

We first generate four multiple graphs following the guidelines of Peterson et al. (2015). We con-
struct four precision matrices Ω1,Ω2,Ω3 and Ω4 corresponding to graphs G1,G2,G3 and G4, of
M = 20 nodes (for a total number of possible edges of r = M(M − 1)∕2 × 4 = 760). We first
define the precision matrix Ω1 and then we derive the others as a perturbation of the first. Ω1 is
a M × M symmetric matrix with the main diagonal elements equal to one, first off-diagonal ele-
ments𝜔i,i+1 = 𝜔i+1,i = 0.5, for i= 1, … , 19 and second off-diagonal elements 𝜔i,i+2 = 𝜔i+2,i = 0.4,
for i = 1, … , 8, while the rest of the elements are set to zero. This defines an AR structure for
the element of Ω1. The total number of non-zero off-diagonal elements is 37. To construct Ω2,
we remove ten edges at random from Ω1, setting the corresponding entries to zero. Then, we
randomly add ten edges that are not present inΩ1, giving a value of 0.5 to the new precision coef-
ficients. The procedure is repeated similarly for Ω3 and Ω4, avoiding the replacement of edges
that were previously modified. The newly created matrices are not necessarily positive definite, to
this end, we compute the nearest positive-definite approximation through the R function nearPD
(Higham, 2002), from the R package Matrix. The precision matricesΩ2,Ω3,Ω4 constructed with
this procedure are a perturbation of Ω1: as a result they exhibit some common edges and some
group specific connections. The number of observations is 60, 50, 50 and 40 for group 1, 2, 3 and
4, respectively.

The second simulation scenario is similar to the first, but Ω1 is now a unit diagonal matrix
and we add 60 non-zero off-diagonal elements, chosen randomly from the r possible edges, and
fix the corresponding entries of Ω1 to 0.5. Ω2, Ω3 and Ω4 are constructed removing 10 edges and
adding 10 new edges, randomly selected as before. Once again the number of observations is fixed
to 60, 50, 50, 40 for group 1, 2, 3 and 4, respectively.

The ROC-AUC distributions for 10 simulated data sets for the first and second scenarios are
displayed in Figure 1. The distributions are concentrated between 0.7 and 1 for all groups in the
scenario with the AR structures, denoting the ability of all models to recover the true graphical
structure. In the second scenario, the performance is very similar across models, but none of them
seems to be able to effectively estimate the edges in the graph.

The boxplots of the MSE distributions are displayed in Figures 2 (full precision matrix) and
3 (considering only the non-zero entries of the precision matrix) for all models considered. The
error metric takes low values in general, with the Lasso-based algorithms achieving the lowest
values of MSE in the random structure scenario. The DGDP model shows an almost identical
performance when compared with the ANOVA-DDP and the parametric models in both sce-
narios and all groups. The BDgraph yields higher MSE values in most groups and scenarios.
In general, while the comparison between the models yields similar results in Figures 2 and 3,
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F I G U R E 1 Scenarios with 20 nodes and 4 groups: receiver operating characteristic-area under the curve
(ROC-AUC) boxplots comparing dependent generalised Dirichlet process, ANOVA-DDP, parametric and
BDgraph models over the two simulated scenarios. The ROC-AUC distributions are evaluated over 20 replicas for
each scenario.
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F I G U R E 2 Scenarios with 20 nodes and 4 groups: mean square error (MSE) boxplots comparing
dependent generalised Dirichlet process, ANOVA-DDP, parametric and BDgraph models plus graph-Lasso and
group-Lasso, over the two simulated settings. The MSE distributions are evaluated over 20 replicas for each
scenario. The MSE is computed considering all the entries of the precision matrices.

overall the MSE values are higher when only the non-zero entries of the precision matrix are
considered.

Section 4.1 of Supplementary Material shows the results relative to an additional simulation
based on the one just described, but characterised by M = 200 nodes and two groups with n1 =
n2 = 100 in the first scenario, while n1 = 100 and n2 = 50 in the second one. The comparison with
alternative models, based on the computation of ROC-AUC and MSE values for 10 replicas, shows
comparable performance of the proposed model with the ANOVA-DDP and parametric models,
and improvements with respect to the BDgraph and Lasso-based methods.

3.2 Scenario with 91 nodes and 3 groups

We investigate the model performance on three imbalanced groups as in the SABRE study. We
construct three graphs, with M = 91 nodes each, which is equal to the number of metabolites used
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F I G U R E 3 Scenarios with 20 nodes and 4 groups: mean square error (MSE) boxplots comparing
dependent generalised Dirichlet process, ANOVA-DDP, parametric and BDgraph models plus graph-Lasso and
group-Lasso, over the two simulated settings. The MSE distributions are evaluated over 20 replicas for each
scenario. The MSE is computed considering only the non-zero entries of the precision matrices.

in the application presented in Section 4. The precision matrices of each group are set equal to the
empirical precision matrix among all metabolites of each ethnic group in the SABRE study, setting
to zero those elements smaller than 0.1 in absolute value. The resulting graphs have 683, 706 and
2259 non-zero edges, respectively. The new empirical precision matrices are not positive definite;
therefore, we use as before the R package nearPD (Higham, 2002). We simulate observations for
each group using the same sample sizes of the three groups in the SABRE study, that is 1103, 978
and 119.

In Figure 4, we show the ROC-AUC for each group. We can see that the ROC-AUC values
are concentrated around 0.9 for the DGDP model on the first and second group, and are higher
than 0.6 for the third group, which is clearly the most difficult to accurately estimate because of
the much smaller sample size. In general, the DGDP model outperforms the alternative models
considered.

In Figure 5 we report the boxplots of the MSE, where we can notice a good performance of
the proposed model when compared to BDgraph and Lasso-based models. The performance in
terms of MSE compared to the ANOVA-DDP and the parametric models is slightly worse for the
DGDP, but comparable. Once again, the MSE values are in general higher when only the non-zero
entries of the precision matrix are considered.

We also examine the posterior distribution of the partition induced by the proposed model,
in comparison with the one obtained from the Anova-DDP model. In Figure 6, we present a
summary of the posterior distribution of the number of clusters K⋆ within each group. The distri-
bution of the number of clusters is concentrated on lower values for the DGDP model, indicating
that the proposed model favours coarser partitions. Considering the partition estimate obtained
by minimising the Binder loss function (Binder, 1978; Lau & Green, 2007), the medians and ranges
of the number of clusters across replicas for the three groups are 1 (1, 2), 1 (1, 3) and 1 (1, 2) for the
DGDP. For the ANOVA-DDP, they are equal to 6 (1, 9), 6 (1, 10) and 5 (1, 10), respectively. To better
highlight the features of the partitions implied by the two models, in Table 1, we report summary
statistics for the following features of the partitions: the number of singleton clusters (posterior
median and range) and the size of the largest cluster (posterior median and range). The results
are averaged over the 20 replicas. The Table shows that the DGDP provides a more parsimonious
representation of the data in terms of number of singleton clusters and size of the largest cluster.
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F I G U R E 4 Scenario with 91 nodes and 3 groups: receiver operating characteristic-area under the curve
boxplots obtained over 20 replicas of the proposed scenario, comparing the dependent generalised Dirichlet
process, the ANOVA-DDP, the parametric and the BDgraph models.

Section 4.2 of Supplementary Material shows the results for an additional simulation similar
to the one described in this section, with the inclusion of a non-zero mean term. The comparison
shows a general difficulty in estimating the graph structure in the smallest group, especially
when the graph structure in the third group is characterised by a large number of edges, as in
our case.

4 SABRE RESULTS

In this Section, we fit the proposed model for multiple GGMs to the SABRE metabolic data set.
The data set described in Section 1 has a total of 2200 observations, stratified in three ethnici-
ties, 1103 Europeans, 978 South Asians and 119 African-Caribbean. The number of nodes (i.e.
the number of equations in the SUR model) is M = 91, a list of which can be found in Table S1
in Supplementary Material. The number of metabolites is reduced here from 200 to 91 because
we focus on the absolute concentrations of the metabolites and we exclude the ratios between the
concentrations. As predictors in the regression term of the mean, we include the covariates listed
in Table S2, consisting of measures of body-fat distributions, liver health and other risk factors,
such as smoking habits, sex and age (the total number of the covariates is p= 18 with an additional
intercept). All the covariates are included in each equation, but variable selection is equation spe-
cific. We specify the following prior distributions. The scale parameters for the normal mixture in
Equation (11) are chosen to ensure sparsity in the estimated graph, so that negligible and small
off-diagonal coefficients of the precision matrix are set to zero. We choose v0 = 0.01 and h = 100,
while 𝜂g = 1 following the recommendations of Wang (2015). The DGDP base measure P0 is a
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F I G U R E 5 Scenario with 91 nodes and 3 groups: mean square error (MSE) boxplots obtained over 20
replicas of the proposed scenario, comparing the dependent generalised Dirichlet process, the ANOVA-DDP, The
parametric, the BDgraph, the graph-Lasso and the group Lasso models. The top row refers to MSE computed
considering all the entries of the precision matrices, while the bottom row only considers the non-zero entries of
the precision matrices.
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F I G U R E 6 Scenario with 91 nodes and 3 groups: posterior distribution of the number of clusters for the
dependent generalised Dirichlet process and ANOVA-DDP models, for each group. The x-axis reports the
number of clusters. The boxplots are obtained from 20 replicas and represent the distribution across replicas of
the probability of the number of clusters to be equal to a particular value.

Beta(a𝜋 = 0.5, b𝜋 = 0.5). The concentration parameter 𝛼 is assigned a Gamma(𝛼a = 0.1, 𝛼a = 2)
prior, while the vector of coefficients 𝜻 in the beta regression is given a normal distribution with
mean 𝜻

𝜇
= 0 and covariance matrix 𝜻Σ = 10 × IR. We specify a horseshoe prior for regression

coefficients 𝜷 as described in Equation (5). We run the MCMC for 12,000 iterations, comprising
a burn-in period of 2000 iterations and thinning every 5 iterations. In addition to the multiple
graphs, using the output of the MCMC algorithm, we also estimate the differential networks
(De la Fuente, 2010; Valcárcel et al., 2011) arising from the pairwise comparison between the
three ethnicities. A differential network includes all the edges that are present only in one of
the two groups (i.e. present in one group and not the other and vice-versa), thus helping us to
understand the main differences between two ethnicities. Here we focus mainly on the differ-
ences between Europeans and South Asians, since the African-Caribbean ethnicity has a very
small sample size that heavily affects the estimation of the latent graph, as it was also observed
in the simulation scenarios with analogous sample sizes of Section 3.2 and 4.2 in Supplementary
Material.

In Figure 7 are shown the posterior means of the regression coefficients 𝛽lj, for equation
l = 1, … , M and covariate j = 1, … , p. The only covariates that do not show association with
any metabolite are waist-to-hip ratio and diastolic blood pressure. It is worth noting that WHR
has a strong positive correlation with some of the other measures of adiposity, such as sagittal
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T A B L E 1 Scenario with 91 nodes and 3 groups: summary statistics of the number of singleton clusters and
size of the largest cluster (posterior median and range) under the dependent generalised Dirichlet process
(DGDP) or ANOVA-DDP models. The estimates are obtained by averaging over the 20 replicas

Summary Group DGDP ANOVA-DDP

Number of singletons 1 0 (0, 2.45) 0.3 (0, 2.95)

2 0 (0, 2.15) 0.3 (0, 3.10)

3 0 (0, 2.40) 0.3 (0, 2.90)

Size of the largest cluster 1 3993.05 (3882.8, 4017.2) 2839.4 (2723, 2959.3)

2 3954.95 (3743.85, 4011.3) 2837.5 (2722.55, 2956.05)

3 3885.07 (3719.2, 3959.95) 2838.2 (2731.6, 2958.15)
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F I G U R E 7 Southall And Brent REvisited study: Each dot represents the mean of the posterior distribution
of a coefficient 𝛽lj. Red dots denote coefficients whose 95% credible interval does not contain the zero.

diameter, which can result in the selection of a variable over the other. The same scenario applies
to the variable diastolic blood pressure, which is positively correlated with systolic blood pressure.

We summarise the attributes of the three group-specific networks inferred by the proposed
model (i.e., Europeans, South Asians and African-Caribbean) in Table 2, while their plots can
be found in Figures S11, S12 and S13 of Supplementary Material. Table 2 shows the main fea-
tures of the individual networks, namely: the number of inferred edges, the number of connected
and isolated nodes; the average edge and node betweenness (i.e. the number of shortest paths
passing through an edges or node); the average node degree (i.e. the number of connections
departing a node) and the average clustering coefficient (also called transitivity, i.e. the proba-
bility that the adjacent nodes of a node are connected). All these measures are computed using
the R package igraph. The individual networks are characterised by a high number of edges,
especially in the European and South Asian groups, connecting all nodes in the networks. In
particular, the first two groups are very similar in all the features reported in Table 2, while
the African-Caribbean group is characterised by less connections and lower betweenness and
clustering coefficient. This indicates different network organisations and metabolite interactions
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T A B L E 2 Southall And Brent REvisited (SABRE) study: properties of the inferred networks for each ethnic
group

Europeans South Asians Africans-Caribbean

Number_edges 2803 2834 632

Number_connected_nodes 91 91 91

Number_isolated_nodes 0 0 0

Edges_betweenness 1.922 1.890 14.372

Nodes_betweenness 0.004 0.003 0.014

Node_degree 61.604 62.286 13.890

Clustering coeff. 0.846 0.838 0.423

within the three ethnic groups, especially when comparing the European and South Asian groups
with the African-Caribbean group.

In Figure 8, we show the differential network between Europeans and South Asians, where
an edge between two nodes is added to the differential graph if the posterior mean of the absolute
difference between the adjacency matrices in the corresponding position is higher than 0.5. This
quantity is computed by averaging over the posterior MCMC chain. It is worth noting that there
are no edges among the majority of lipoproteins subfractions, which implies that the presence
or absence of those connections are shared by both of these ethnicities. On the other hand, the
majority of the amino acids have some distinct connections, highlighting potential differences in
the underlying metabolic processes. For example, the amino acid Histidine features many con-
nections with other amino acids and a subset of lipoprotein subfractions, with these edges only
present in the South Asian group. Other central nodes in the differential network are acetoacetate,
acetate, pyruvate and lactate.

We also show the differential networks between Europeans or South Asians and
African-Caribbean in Figures S14 and S15 in Section 5 of Supplementary Material. These differ-
ential networks have more edges compared to the one between Europeans and South Asians, due
to the fact that the network for the African-Caribbean ethnic group is much sparser. Therefore,
in order to highlight the few connections unique to the Africans Caribbean, we limit the inclu-
sion of differential edges in the Europeans and South Asian groups to those with an inclusion
probability higher than 0.8.

To gain a better understanding of the estimated connections and to relate the estimated
graph to known metabolic pathways, we conduct a pathway over-representation analysis (ORA)
using the online software MetaboAnalyst (Chong et al., 2018). We include in the analysis all
metabolites that have a connection in the differential network of Figure 8. ORA evaluates sta-
tistically the fraction of metabolites in a particular pathway found among the user-specified set
of metabolites, in our case, the metabolites with connections in the differential network. For
each pathway, input metabolites that are part of the pathway are counted. Next, every pathway is
tested for over or under-representation in the list of input metabolites using the hypergeometric
test. The most represented pathways are the ones with smaller p-value levels and higher number
of over-represented metabolites. Here we discuss the first four top-ranked conditions identified
by this pathway analysis, pyruvate dehydrogenase deficiency (E3), pyruvate carboxylase deficiency,
diabetes mellitus (MODY) non-insulin-dependent and chronic progressive external ophthalmople-
gia (CPEO)∕Kearns–Sayre syndrome (KSS). Pyruvate dehydrogenase and pyruvate carboxylase
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F I G U R E 8 Southall And Brent REvisited study: differential network between Europeans and South Asians
groups. The red edges represent the connections between metabolites for the European ethnicity whose
probability of inclusion in the differential network is higher than 0.5, while blue edges represent the connections
between metabolites for the South Asian ethnicity whose probability of inclusion in the differential network is
higher than 0.5.

deficiency are the most common disorders in pyruvate metabolism. Pyruvate dehydrogenase
(PDH) is an enzyme complex made of three catalytic subunits, pyruvate dehydrogenase (E1),
dihydrolipoamide acyltransferase (E2) and dihydrolipoamide dehydrogenase (E3), and two cofac-
tors, thiamine pyrophosphate and lipoic acid. The enzyme complex converts pyruvate, after
it enters the mitochondria, into acetyl-CoA, that together with oxaloacetate, are two essential
substrates in the production of citrate. PDH complex deficiency therefore leads to a limited pro-
duction of citrate and because citrate is the first substrate in the tricarboxylic acid cycle, the cycle
is blocked and other metabolic pathways need to be stimulated to produce acetyl-CoA. How-
ever, the most common deficiency involves the E1 subunit, while mutations in E2 and E3 are
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less often the cause for PDH Complex Deficiency. The enzyme defect causes more pyruvate to be
metabolised to lactate and leads to lactic acidosis (Bissonnette & Bissonnette, 2006). Overall, PDH
complex plays a key role in regulating the supply of adenosine triphosphate during the feed-fast
cycle, where cells must select fatty acid or glucose as energy source. Therefore, PDH Complex
is important in regulating the glucose metabolism with PDH deficiency related to metabolic dis-
eases, e.g. type 2 diabetes and obesity (Lee, 2014). Of particular interest is pyruvate carboxylase
deficiency. Lao-On et al. (2018) explore the roles of pyruvate carboxylase in human diseases, such
as diabetes. Pyruvate carboxylase (PC) is an anaplerotic enzyme which plays an essential role
in various cellular metabolic pathways, including gluconeogenesis and glucose-induced insulin
secretion. Pyruvate originates as the final product of the pathway pyruvate. In aerobic condi-
tions, pyruvate enters mitochondria via the mitochondrial pyruvate carrier, where may be further
metabolised in two different means. In non-gluconeogenic tissues, like muscles and brain, pyru-
vate is decarboxylated to form acetyl-CoA catalysed by the pyruvate dehydrogenase complex. In
gluconeogenic tissues, where pyruvate carboxylase is highly abundant, most of pyruvate entering
mitochondria is carboxylated by the enzyme pyruvate carboxylase to form oxaloacetate. Given
the importance of oxaloacetate in various biochemical pathways, perturbation of oxaloacetate
production by PC can produce serious diseases such as type 2 diabetes or neurological disorder.
MODY is an autosomal dominant monogenic disorder of pancreatic beta cells that usually man-
ifests itself before the age of 30 and accounts for 1%–3% of diabetes in this age group (Misra &
Owen, 2018), although the prevalence of MODY in South Asians is low, despite their increased
risk of type 2 diabetes (Ehtisham et al., 2004). Finally, CPEO is one of the most common mitochon-
drial disorders in adults. The main symptom is a slowly progressive extra-ocular muscle weakness.
KSS and CPEO are probably the same disorder but differ in the degree of severity (Gilman, 2011).
In both CPEO and KSS, hearing loss and diabetes mellitus can precede the onset of muscle
involvement by years (Shoffner et al., 1990). Additionally, involvement of systems other than mus-
cle is common in CPEO. Multi-system involvement can cause functional impairments secondary
to dysfunction of (proximal) skeletal muscles, retina, cochlea, cerebrum, cerebellum and heart
(Smits et al., 2011). Ocular manifestations include retinopathy, optic atrophy, and rarely, cataracts.
Cardiac manifestations include cardiac conduction block and cardiomyopathy. Cerebral mani-
festations include epilepsy, cerebellar ataxia and dementia. The peripheral nervous system can
also be affected, typically with axonal sensory neuropathy. Endocrine involvement includes dia-
betes mellitus, hypothyroidism, hypoparathyroidism and hypogonadism. Sensorineural hearing
loss and gastrointestinal involvement are also possible (Vorgerd & Deschauer, 2011). In inter-
preting the pathway over-representation analysis, we note that all the highlighted conditions are
associated with defective mitochondrial function and altered pyruvate metabolism. We therefore
speculate that alterations in metabolic flexibility and mitochondrial aerobic metabolism (Smith
et al., 2018) may be a fruitful area for further study. Consistent with this suggestion, a previous
small experimental study reported that overweight South Asian men had impaired metabolic
flexibility compared with matched European counterparts (Bakker et al., 2015) and we have pre-
viously observed poorer oxidative capacity in skeletal muscle independent of diabetes in South
Asians compared with Europeans (Jones et al., 2020).

To evaluate the sensitivity of the model to the prior choice of v0, playing a major role in
determining the level of sparsity of the graphs, we repeat the analysis for v0 ∈ {0.01, 0.1}. A com-
parison of the estimates given v0 = 0.01 and v0 = 0.1 shows differences in the number of edges
included in each of the three graphs and consequently in the differential networks. However, the
main characteristics of the individual graphs and the differential network are maintained. For
example, the differential network between Europeans and South Asians estimated with v0 = 0.1,
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reported in Figure S16 in Supplementary Material, highlights similar connectivity patterns to the
one estimated with v0 = 0.01, for example the amino acid Histidine presents connections with
other amino acids and lipids subfractions, with these edges being only present in the South Asian
group, as before. Furthermore, varying the prior values of 𝜋a, 𝜋b between 0.01 and 0.5 does not
lead to substantial changes in posterior inference.

5 CONCLUSIONS

This paper proposes the use of a GDP prior on the edge inclusion probabilities of a GGM together
with the SSSL prior on the precision matrix. The model allows the specification of a desired level
of sparsity in the graph and the inclusion of prior information about specific connections between
pairs of nodes, when prior knowledge is available, for example, from literature or from expert
opinions. We analyse the properties induced on the graph by the GDP prior in terms of the degree
distribution. We demonstrate that this prior is able to capture a wide range of structures, from
sparse to more dense graphs. The GDP prior allows us to cluster a posteriori the edges based on
their inclusion probabilities. Using an extension of the GDP process, the DGDP, we develop a
framework for inference on multiple GGMs. The DGDP offers a convenient way to share infor-
mation across groups and allows for the possibility to include group specific information in the
model. The SSSL prior ensures good scalability of the MCMC thanks to its efficient update scheme
and good convergence rates. The SUR model is completed by specifying a global-local shrinkage
prior on the coefficients in the mean regression term, allowing each equation to have its own
vector of regression parameters and its variable selection. The horseshoe prior effectively shrinks
small and negligible coefficients to zero, while leaving important coefficients unaffected thanks
to its heavy tails, as such performing (group-specific) variable selection. We illustrate the perfor-
mance of the proposed model, and compare it with an alternative nonparametric prior on the
edge inclusion probabilities (the ANOVA-DDP prior) in a simulation study. The results highlight
the ability of the model to recover the true underlying structure of the graphs and to correctly
identify association between covariates and response.

Finally, we employ the proposed sparse SUR model to analyse the SABRE metabolomics data
set. Our clinical interest focuses on different patterns of metabolite associations within the three
ethnicities. Our approach allows us to provide an interpretable set of unique associations patterns
which can aid mechanistic understanding of between-group differences in the development of
insulin resistance and diabetes and can highlight areas for further research. In doing this, we still
correct for potential confounders within the SUR framework. Our findings are interesting because
they can lead to formulation of new hypothesis, for example metabolic pathways associated with
diabetes and cardiovascular disorders, and guide further experimentation.
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