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Abstract

The fraction of cases reported, known as ‘reporting’, is a key performance indicator in an

outbreak response, and an essential factor to consider when modelling epidemics and

assessing their impact on populations. Unfortunately, its estimation is inherently difficult, as

it relates to the part of an epidemic which is, by definition, not observed. We introduce a sim-

ple statistical method for estimating reporting, initially developed for the response to Ebola

in Eastern Democratic Republic of the Congo (DRC), 2018–2020. This approach uses trans-

mission chain data typically gathered through case investigation and contact tracing, and

uses the proportion of investigated cases with a known, reported infector as a proxy for

reporting. Using simulated epidemics, we study how this method performs for different out-

break sizes and reporting levels. Results suggest that our method has low bias, reasonable

precision, and despite sub-optimal coverage, usually provides estimates within close range

(5–10%) of the true value. Being fast and simple, this method could be useful for estimating

reporting in real-time in settings where person-to-person transmission is the main driver of

the epidemic, and where case investigation is routinely performed as part of surveillance

and contact tracing activities.

Author summary

When responding to epidemics of infectious diseases, it is essential to estimate how many

cases are not being reported. Unfortunately reporting, the proportion of cases actually

observed, is difficult to estimate during an outbreak, as it typically requires large surveys

to be conducted on the affected populations. Here, we introduce a method for estimating

reporting from case investigation data, using the proportion of cases with a known,

reported infector. We used simulations to test the performance of our approach by
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mimicking features of a recent Ebola epidemic in the Democratic Republic of the Congo.

We found that despite some uncertainty in smaller outbreaks, our approach can be used

to obtain informative ballpark estimates of reporting under most settings. This method is

simple and computationally inexpensive, and can be used to inform the response to any

epidemic in which transmission events can be uncovered by case investigation.

This is a PLOS Computational Biology Methods paper.

Introduction

The response to infectious disease outbreaks increasingly relies on the analysis of various data

sources to inform operation in real time [1,2]. Outbreak analytics can be used to characterise key

factors driving epidemics, such as transmissibility, severity, or important delays like the incubation

period or the serial interval [2]. Amongst these factors, the amount of infections remaining unde-

tected in the affected populations is a crucial indicator for assessing the state of an epidemic, and

yet this quantity is often hard to estimate in real time [3–6]. Indeed, estimation of the overall pro-

portion of individuals infected (attack rates) typically requires time-consuming serological surveys

[7–9] which may not be achievable in resource-limited, large-scale emergencies such as the 2014–

2016 Ebola virus disease (EVD) outbreak in West Africa [10], or the more recent EVD outbreak

in Eastern provinces of the Democratic Republic of the Congo (DRC) [11,12].

As an alternative, one may attempt to quantify reporting, i.e. the proportion of all infections

which result in notified cases. Unfortunately, this quantity is also hard to estimate, and usually

requires the analysis of epidemiological and genomic data through complex methods for

reconstructing transmission trees [13–15] or transmission clusters [16]. Such requirements

can mean that by the time estimates are available, decisions have already been made, or the

outbreak situation has changed [17–19]. Therefore, simpler approaches are needed for estimat-

ing reporting and help inform outbreak response operations.

Methods for estimating reporting during an outbreak should ideally exploit data which is

routinely collected as part of the outbreak response. In diseases where dynamics are mostly

governed by person-to-person transmission, case investigation and contact tracing can be

powerful tools for understanding past transmission events as well as detecting new cases as

early as possible [11,20–23]. For vaccine-preventable diseases, contact tracing can also be used

for designing ring vaccination strategies, as seen in recent EVD outbreaks in the DRC [11,20].

These data also contain information about reporting. Intuitively, the frequency of cases whose

infector is a known and reported case is indicative of the level of reporting: the more frequently

case investigation identifies a known infector, the higher the corresponding case reporting

should be. Conversely, cases with no known epidemiological link after investigation are indica-

tive of unobserved infections, and therefore under-reporting.

In this article, we introduce a method to estimate case reporting from contact tracing data.

This approach, designed during the Ebola outbreak in Eastern DRC [11,12], was originally

aimed at assessing case reporting in a context where insecurity made surveillance difficult, and

under-reporting likely [12]. The approach utilized transmission chain data and calculated the

proportion of cases with a known epidemiological link as a proxy for reporting. We provide a

derivation of the estimator and explain the rationale of this approach and assess its perfor-

mance using simulated outbreaks of different sizes with varying levels of reporting. Based on

the simulation results, we make some suggestions regarding the use of this method to inform

strategic decision making during an outbreak response.
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Methods

We present the analytical derivation of our method of estimating reporting, defined as the pro-

portion of cases actually notified during an outbreak. We then describe the simulation study,

using the ADEMP (Aim, Data generating mechanism, Estimand, Methods, Performance mea-

sures) framework as described by Morris et al 2019 [24,25], used to evaluate the performance

of the methods under various conditions.

Estimating reporting from epidemiological links

Our method exploits transmission chains derived from case investigation and contact tracing

data. The data considered are secondary cases for which epidemiological investigation was suc-

cessfully carried out, and for which a single likely infector could be clearly identified. We thus

distinguish i) cases for which the identified infector is listed amongst reported cases (cases with
a known infector) and ii) cases for which the identified infector is not listed amongst the

reported cases (cases without a known infector). Importantly, cases without any known expo-

sure, or cases for which multiple epidemiological links make it hard to disentangle a single

likely infector, are excluded from the analysis.

The rationale for the approach is to consider the proportion of cases with a known infector

as a proxy for the proportion of infections (including asymptomatic but infectious individuals)

reported. The proportion of cases with a known infector is by definition the proportion of

infectors who were reported (Fig 1), so that the reporting probability π can be estimated as

p̂ ¼
nk

nkþnu
where nk is the number of secondary cases (infectees) with a known infector and nu

is the number of secondary cases without a known infector.

Derivation of estimator for reporting

We define

mr—number of reported infectors

mu—number of unreported infectors

nk—number of secondary cases (infectees) with known infector

nu—number of secondary cases without known infector

R—reproduction number, i.e. average number of secondary cases by case; we assume

reported and unreported infectors have the same distribution of R
π—reporting probability following some unspecified probability distribution with

unknown probability parameter such that EðpÞ ¼ mr
mrþmu

where secondary cases are assumed to

follow the same reporting distribution as primary infections.

The expected number of reported infectees with a known infector is

EðnkÞ ¼ mr Rp:

Similarly, the expected number of reported infectees without a known infector is

EðnuÞ ¼ mu Rp

From this we have that

mr ¼
EðnkÞ

Rp
and mu ¼

EðnuÞ

Rp
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By definition

p ¼
mr

mr þmu

Therefore

E pð Þ ¼

EðnkÞ
Rp

EðnkÞþEðnuÞ
Rp

¼
EðnkÞ

EðnkÞ þ EðnuÞ

and replacing the expectations with their estimates from the data, we get the estimator

p̂ ¼
nk

nk þ nu
:

Fig 1. Rationale of the method for estimating reporting. This diagram illustrates transmission events inferred by

case investigation of reported secondary cases, with arrows pointing from infectors to infectees. Darker shades are used

to indicate documented transmission events, while lighter shades show unknown infectors. Numbers of secondary

cases with (blue) or without (orange) known infectors are used to estimate the reporting probability. This example uses

an approximate reporting of 50%.

https://doi.org/10.1371/journal.pcbi.1008800.g001
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Uncertainty for reporting

The uncertainty associated with this estimation can be estimated using various methods for

computing confidence intervals of proportions. Using the standard approach for standard

errors for a proportion we have that

SEp ¼
p̂ � ð1 � p̂Þ

nk þ nu
:

Here, we used exact binomial confidence intervals which can be calculated:

ð1þ
n � nk þ 1

nkF½a2 ; 2nk; 2ðn � nk þ 1Þ�
Þ
� 1
< p < ð1þ

n � nk

ðnk þ 1ÞF½1 � a

2
; 2ðnk þ 1Þ; 2ðn � nkÞ�

Þ
� 1

Where n = nk + nu, total number of secondary cases. F(c; d1, d2) is the c quantile from an F-

distribution with d1, d2 degrees of freedom and 1−α is the confidence level.

Simulation study

Aim. We aim to test the performance of the method for different outbreak sizes and actual

reporting, in terms of bias, coverage, and precision (in an operational context) using simulated

outbreaks.

Data generating mechanism. We considered twelve data-generating mechanisms (three

reporting rates by four reported outbreaks sizes) and performed 4000 repetitions per

mechanism.

Each repetition corresponded to a hypothetical outbreak with a known transmission tree.

To simulate the reporting process, cases were removed randomly from the transmission chains

using a Binomial process with a probability (1—reporting). We will thus distinguish the total
outbreak size, which represents all cases in the outbreak, and the reported outbreak size, which
represents the number of cases reported. For simplicity, we assumed that all cases reported

were investigated, so that it is known if they had a documented epidemiological link, or not,

amongst reported cases.

For each outbreak (repetition) we removed observations so that reporting was 25%, 50%, or

75%. Therefore a single simulated outbreak will give three different observed outbreaks. We

categorised the simulations into reported outbreak sizes of 1–99, 1–499, 500–999, 1000+.

Outbreak simulation

We used the R package simulacr [26] to simulate outbreaks, the reporting process, and the sub-

sequently observed transmission chains. simulacr implements and extends individual-based

simulations of epidemics previously used to evaluate transmission tree reconstruction methods

[13,14,27]. In its basic form, simulacr implements a Poisson branching process in which the

reproduction numbers (R) is combined with the infectious period to determine individual

rates of infection. Here, to account for potential heterogeneity in transmission, we have drawn

individual values of R from a Gamma distribution fitted to empirical data from the North Kivu

EVD epidemic (rate: 1.2; shape: 2; corresponding mean: 1.7). The resulting branching process

being a combination of Poisson processes with Gamma-distributed rates is therefore a Nega-

tive Binomial branching process. The infectiousness of a given individual i at time t is, noted

λi,t, is calculated as:

li;t ¼ Riwðt � siÞ

where Ri is the reproduction number for individual i, si is their date of symptom onset, and w
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is the probability mass function of the duration of infectiousness (time interval between onset

of symptom and new secondary infections). New cases generated at time t+1 are drawn from a

Poisson distribution with a rate Λt summing the infectiousness of all cases:

Lt ¼ ðns=nÞ
P

ili;t

where ns is the number of susceptible individuals and n the total population size, so that the

branching process includes a density-dependence in which rates of infection decrease with the

proportion of susceptibles.

Transmission trees are built by assigning infectors to newly infected individuals according

to a multinomial distribution in which potential infectors have a probability λi,t / ∑i λi,t of

being drawn. The dates of symptom onset and case notification are generated for each new

case using user-provided distributions for the incubation time and reporting delays. Simula-

tions run until any of the set duration of the simulation is reached (here, 365 days).

Here, we used parameters values and distributions in line with estimates from the Eastern

DRC Ebola outbreak [12,28], the details of which are provided in Table 1. All code used for

running these simulations is available from https://github.com/jarvisc1/2020-reporting.

Estimand: Reporting. We considered a single estimand π the level of reporting.

Method

For each repetition we calculated the proportion of the number of cases with a known infector

over the total number of reported cases, that is the estimator p̂ ¼
nk

nkþnu
. We further calculated

the standard error and 95% exact binomial confidence intervals.

Performance measures

The performance of the method was measured using bias, coverage, and precision. For bias

and coverage, the Monte-Carlo standard errors were calculated to quantify uncertainty about

the estimates of the performance [29]. The equations used are detailed in Table 2 and were

taken from Morris et al [24]. In addition, results were classified according to different ranges

of absolute error, for a more operational interpretation of the results.

Table 1. Parameters used for simulating outbreaks. This table details input parameters used for simulating out-

breaks using the R package simulacr. Fixed values were used for all simulations, and reflect the natural history of the

2018–2020 Eastern DRC Ebola outbreak. Variable values changed across simulations.

Fixed values

Maximum duration of the outbreak 365 days

Incubation time distribution Discretised gamma distribution

mean of 9.7 days, sd = 5.5 days.

Infectious period distribution Discretised gamma distribution

mean = 5 days, sd = 4.7 days.

Reproduction number distribution Gamma distribution:

rate of 1.2 shape of 2.

Variable values

Population size� 200, 500, 1000, 2000, 5000, 7500, 10000, 15000, 20000

Outbreak size� 10–99, 100–499, 500–999, 1000+

Proportion of cases not reported 0.25, 0.50, 0.75

�Population size is controlled in each simulation, the outbreak sizes are determined after the outbreaks have been

simulated and the proportion of cases not reported have been removed.

https://doi.org/10.1371/journal.pcbi.1008800.t001
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Bias is the difference between the expected value and the true value. It was measured by tak-

ing the difference between the average estimate of reporting versus the true reporting. Unbi-

asedness is a desirable statistical quality but a small amount of bias may be tolerated in

exchange for other desirable qualities of an estimator. The estimates of reporting were pre-

sented visually by displaying the estimates of all 4000 simulations for each scenario.

Coverage is the percentage of CIs containing the true value. In the case of a 95% CI this

should contain the true value 95% of the time. We counted the number of repetitions where

the true value was contained in the 95% CI and divided by the total number of repetitions. The

coverage was visualised through the use of Zip plots. This new visualisation created by Morris

et al [24], helps to assess the coverage of a method by viewing the CIs directly. Assessing an

expected 95% coverage with a Monte-Carlo standard error of 0.35 requires 3877 simulations

[24] which is well within our 4000 simulations.

Precision represents how close the estimates are to each other. The model-based and empir-

ical standard error were also calculated to provide an indication of precision. The model based

standard error is the root of the mean estimated variance, and the empirical standard error

represents the spread of the estimates. This gives an indication of how much the point esti-

mates vary across simulations based on the level of reporting and sample size. Although the

method may give unbiased estimates with good coverage under repeated sampling, an impre-

cise method could lead to large differences from the true value when applied to a single dataset

(that is, confidence intervals may cover the true value honestly but are wide).

We further explored the impact of bias and precision of the estimator by considering the

deviations of the estimates from the true value termed absolute error. The absolute error is

defined as the absolute difference between the estimated reporting and its true value, expressed

as percentages. For instance, estimates of 43% and 62% for a true reporting of 50% would cor-

respond to absolute errors of 7% and 12%, respectively. During a disease outbreak, decisions

are frequently made in the face of large uncertainties, and small absolute differences in the esti-

mated level of reporting are unlikely to result in strategic changes. Therefore, as a perhaps

more operationally relevant metric, we categorised results according to how far from the true

value estimates were, using an arbitrary scale: very close (�5% absolute error), close (�10%),

approximate (�15%) or inaccurate (�20%).

Sensitivity to R values

In order to explore the sensitivity of the method to the distribution of R, we repeated the simu-

lations and analyses using different distributions of the reproduction number, using Gamma

Table 2. Metrics used to measure performance in the simulation study.

Performance measure Definition

Bias d ¼ E½^y^� � y where θ is the true value and
^
y

^
is the estimate of value

Coverage If we define a confidence interval ð
^
y

^

low;
^
y

^

uppÞ as the Pð^y^low � y �
^
y

^

upp Þ ¼ c where ψ2

[0, 1] then a 95% CI is when Pð^y^low � y �
^
y

^

uppÞ ¼ 0:95. It follows that coverage is the

Pð^y^low � y �
^
y

^

uppÞ.

Precision

Model based

standard error

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½V̂ar^ð^y^Þ
q

�

Empirical based standard

error

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varð^y^Þ
q

Absolute error ^
jyi

^
� yj

https://doi.org/10.1371/journal.pcbi.1008800.t002
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(rate = 0.95, shape = 2) and Gamma(rate = 1.475, shape = 2), resulting in average R values of

2.1 and 1.3, respectively, broadly in line with values reported in the literature for other EVD

outbreaks [30].

Results

Bias

There was very little bias across all the simulated scenarios (Table 3 and Fig 2). For outbreaks

with over 100 cases all estimates of bias were 0 with decreasing Monte Carlo error from 0.04 to

0.01 as the size of the reported outbreak increased. For outbreaks reported as less than 100

cases the bias was -0.1 for reporting of 0.50 and 0.75 and 0 for 0.25 with Monte Carlo error of

0.07. Table 3 presents the bias for each scenario and it can be seen that all of these estimates

were within one standard error from zero, suggesting reasonable confidence that this is an

overall unbiased estimator.

Coverage

The coverage varied across the simulated scenarios with all but reported outbreak size 10–99

with reporting at 0.25 displaying under-coverage (Fig 3). The coverage was poor with all cover-

age estimates more than one standard error away from 95%, and most several standard errors

away (Table 3). There was some suggestion of the counterintuitive pattern that coverage

decreased as the reporting increased and that coverage decreased as the outbreak size increased.

Precision

The model based standard error was below 0.07 for all estimates and below 0.04 for reported

outbreaks of over 100 cases. Similar patterns are seen for the empirical standard error. Impre-

cise estimates were most marked when reported outbreaks were less than 100 cases and had

0.75 reporting. The precision increased (model based and empirical standard error decreased)

as the reported outbreak size increased (Fig 2 and Table 3). Overall the precision appears rea-

sonable when outbreaks are larger than 100.

Absolute error

Results showed that the estimates were rarely more than 15% away from the true reporting

value in all simulation settings (Fig 4 and Table 4). The absolute error was negligible in all

Table 3. Performance measures from 4000 simulation by reported outbreak size and true reporting level. Estimate (Monte-carlo standard error).

Reported outbreak size

Performance measures (MCSE) Proportion reported 10–99 100–499 500–999 1000 or more

Bias 0.25 0 (0.07) 0 (0.03) 0 (0.02) 0 (0.01)

0.5 -0.01 (0.07) 0 (0.04) 0 (0.02) 0 (0.01)

0.75 -0.01 (0.07) 0 (0.04) 0 (0.02) 0 (0.01)

Coverage 0.25 95.7% (0.3) 94.1% (0.4) 94.4% (0.4) 93% (0.4)

0.5 92.6% (0.4) 92.4% (0.4) 91.3% (0.4) 91.2% (0.4)

0.75 92.3% (0.4) 91.5% (0.4) 89.2% (0.5) 88.6% (0.5)

Model standard error 0.25 0.065 (0) 0.024 (0) 0.015 (0) 0.01 (0)

0.5 0.061 (0) 0.038 (0) 0.019 (0) 0.011 (0)

0.75 0.059 (0.001) 0.036 (0) 0.014 (0) 0.011 (0)

Empirical standard error 0.25 0.071 (0.001) 0.025 (0) 0.016 (0) 0.01 (0)

0.5 0.07 (0.001) 0.044 (0) 0.022 (0) 0.012 (0)

0.75 0.068 (0.001) 0.043 (0) 0.017 (0) 0.013 (0)

https://doi.org/10.1371/journal.pcbi.1008800.t003
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larger reported outbreaks (500 cases and above), with nearly all estimates very close (within

5%) to the true reporting value. Performance decreased in smaller outbreaks, but most esti-

mates remained close (within 10%) to the true value. Results were worse in smaller outbreaks

(10–99 reported cases), but even there about half of the estimates were very close (within 5%)

to the true value, and more than 80% of estimates were within 10% of the target.

Sensitivity to R values

Repeating the analyses with different R distributions in line with reproduction numbers

reported in other outbreaks [30] showed negligible impact of R on bias, coverage, precision,

and absolute error (Tables A and B in S1 Text). Coverage was the most sensitive to the change

in R, which slightly decreased with higher mean R values. Overall though, variations were neg-

ligible compared to variations of coverage with epidemic size.

Fig 2. Comparison of estimated versus actual reporting. This graph shows the results of reporting estimated by the method for 4000 simulated outbreaks,

broken down by outbreak size category (y-axis). Each dot corresponds to an independent simulation. The vertical red bars indicate the average within each

category. True reporting used in the simulations is indicated by colors.

https://doi.org/10.1371/journal.pcbi.1008800.g002

PLOS COMPUTATIONAL BIOLOGY Estimating reporting of cases in disease outbreaks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008800 May 23, 2022 9 / 16

https://doi.org/10.1371/journal.pcbi.1008800.g002
https://doi.org/10.1371/journal.pcbi.1008800


Discussion

We have presented a new estimator for the levels of reporting in an outbreak based on the pro-

portion of cases with known infectors, which can be derived from case investigation data.

Using simulated outbreaks to assess the performance of the method, we found that this

approach generally had little bias, reasonable precision, but poor coverage. Across all simula-

tions, estimated reporting was most often within 10% of the true value, suggesting the method

will retain operational relevance under different settings. The results were not sensitive to the

range of reproduction numbers simulated in the scenarios, suggesting that the method can be

applied in settings of somewhat higher and lower transmission.

Simulation results indicate a first limitation of the method lies in the analysis of smaller out-

breaks. Overall, the approach performed better in larger outbreaks, with all metrics pointing to

improved results in outbreaks of more than 100 case investigations. This observation suggests

Fig 3. Zip plot of showing coverage results. This graph shows the 95% confidence intervals estimated by the method, broken down by reported outbreak size

category and true reporting value. The vertical axis represent the fractional centile of |Z| where Z ¼ ðpi � pÞ

SEi
and π is reporting. The confidence intervals are

ranked by their level of coverage and thus the vertical axis can be used to determine the proportion of confidence intervals that contain the true value where

0.95 would represent a coverage of 95%.

https://doi.org/10.1371/journal.pcbi.1008800.g003
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that our method may struggle to identify heterogeneities in reporting across time, space, or

sections of the population (e.g. age groups) if the corresponding strata have small numbers of

reported cases. It also means that estimates of reporting made in the early stages of an out-

break, when few cases have been reported and investigated, will be prone to larger statistical

uncertainty.

Fig 4. Absolute error in reporting estimation. This graph shows, for different simulation settings, the proportion of results within a given margin of absolute

error, expressed as the absolute difference between the true and the estimated reporting (in %). Rows correspond to different outbreak size categories (outbreak

size as reported). True reporting is indicated in color.

https://doi.org/10.1371/journal.pcbi.1008800.g004
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Our approach also assumes a uniform sampling of the transmission tree over the time

period on which the analysis is carried. It would in theory be prone to under-estimating

reporting when entire branches of the transmission tree remain unobserved. For instance, if

an epidemic is spreading in a location where surveillance is totally absent, a substantial number

of cases may remain unnoticed, and such under-reporting would not be accounted for in our

estimates. As a consequence, our method is best applied for estimating the overall reporting

over geographic areas and time periods where surveillance has not varied drastically, and

which are large enough to yield sufficient case investigations (typically at least 100) for report-

ing to be accurately estimated. Note that in terms of outbreak response, decisions for altering

surveillance strategies would generally be made at coarse geographic scales and considering

months of data, so that our method should retain operational value despite its inability to

detect changes in reporting at small temporal or spatial scales.

Similarly, the fact that a single overall value of reporting is estimated for the data considered

also implies that changes in reporting across different transmission chains will be overlooked.

In situations where reporting varies across chains, for instance if super-spreading events are

systematically ‘better’ investigated, the estimated reporting would effectively be an average of

the reporting levels of the different chains weighted by their respective numbers of successful

case investigations.

We also assumed that the reproduction number (R) was independent from the reporting

process, so that reported source cases cause the same average number of secondary cases as

non-reported ones. This condition may not always be met, for instance if unreported individu-

als tend to cause more super-spreading events. In the context of Ebola, this may occur through

community deaths, in which funeral exposure of a large number of relatives may give rise to a

new cluster of cases from a single, unreported source case. Under such circumstances, we

would expect our method to under-estimate reporting, although this should be further quanti-

fied by dedicated simulation studies.

Another limitation of our method relates to data availability and quality. Our approach

relies on case investigation data, a time-consuming but often standard process of contact trac-

ing usually requiring interviews of patients and/or their close relatives. There are several possi-

ble outcomes from such investigation: i) identifying a single likely infector amongst reported

cases (cases with a known infector) ii) establishing that the infector was not amongst the

reported cases (cases without a known infector) iii) failing to identify a single likely infector.

Table 4. Comparison of absolute error from 4000 simulations between true reporting levels and estimate of reporting by reported outbreak size and true reporting

level.

Absolute error from true value

Proportion reported Reported outbreak size � 5% � 10% � 15% � 20%

0.25 10–99 2213 (55.3%) 3376 (84.4%) 3849 (96.2%) 3973 (99.3%)

100–499 3817 (95.4%) 4000 4000 4000

500–999 3995 (99.9%) 4000 4000 4000

1000+ 3999 (100%) 4000 4000 4000

0.5 10–99 2110 (52.8%) 3430 (85.8%) 3860 (96.5%) 3978 (99.4%)

100–499 2981 (74.5%) 3899 (97.5%) 3998 (100%) 4000

500–999 3905 (97.6%) 4000 4000 4000

1000+ 4000 4000 4000 4000

0.75 10–99 2400 (60%) 3575 (89.4%) 3835 (95.9%) 3942 (98.6%)

100–499 3067 (76.7%) 3890 (97.2%) 3991 (99.8%) 4000

500–999 3988 (99.7%) 4000 4000 4000

1000+ 3992 (99.8%) 4000 4000 4000

https://doi.org/10.1371/journal.pcbi.1008800.t004
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Our approach requires case investigations to fall within the first two categories. In practice, the

second and third situations may be easily confused—the third likely being the most frequent.

To avoid such confusion, we would recommend recording investigation outcomes as two sep-

arate questions: Has a single likely infector been identified? And if yes, is this individual listed

amongst reported cases?

In our simulations, we assumed for simplicity that all reported cases were successfully investi-

gated, so that the reported outbreak size effectively corresponds to the number of data points avail-

able for the estimation. In practice, the actual sample size will be the number of case investigations

which led to identifying a single source case (reported, or not). As our method performs better in

larger datasets, the data requirement for estimating reporting from transmission chains will

involve substantial field work. This also implies that case investigations need to be thorough.

Indeed, in situations where the infector has actually been reported, but investigations failed to

identify the epidemiological links with their secondary cases, our approach will tend to under-esti-

mate reporting by a factor directly proportional to the frequency of mis-identified links. As a con-

sequence, the proposed methodology is mostly applicable to diseases for which person-to-person

transmission can be reliably traced through epidemiological investigation such as EVD. In disease

settings where transmission chains are harder to establish, such as COVID-19 where pre-symp-

tomatic and asymptomatic transmission plays an important role, we recommend resorting to

other surveillance approaches such as serological surveys to estimate reporting.

Unfortunately, alternative approaches for estimating under-reporting are very demanding

in terms of data, typically needing to combine information on dates of onset, location of the

cases, full genome sequences of the pathogen for nearly all cases, good prior knowledge on key

delays (e.g. incubation period, serial interval) [13,16], and ideally contact tracing data [14].

These methodologies are also much more complex and computer-intensive, as they either

involve the reconstruction of transmission trees [13,14] or of outbreak clusters [16]. In contrast,

the approach introduced here is fast and simple, and can be used in real time to estimate report-

ing based on data routinely collected as part of contact tracing activities and surveillance.

We evaluated the performance of the method using simulated EVD outbreaks in line with

estimates of transmissibility and epidemiological delays of the Eastern DRC Ebola epidemic

[12,28], as this was the original context in which the method was developed. Further work

should be devoted to investigating the method’s performance for other diseases and different

epidemic contexts. In particular, it would be interesting to study the potential impact of corre-

lations between transmissibility and under-reporting, i.e. situations in which non-reported

cases may exhibit increased infectiousness and cause super-spreading events.

Conclusion

In this paper, we provided a derivation of a straightforward and pragmatic estimator to real-

time estimation of case reporting in outbreak settings, and tested this approach under a range

of simulated conditions. The method exhibited little bias, reasonable precision, and while cov-

erage was suboptimal under some settings (in large outbreaks with higher reporting), most

estimates were within a reasonable range (10–15%) of the true value. This suggests the method

will be useful for informing the response to outbreaks in which person-to-person transmission

is the main driver of transmission, and where enough (ideally > 100) chains of transmissions

can be retraced through epidemiological investigation.

Supporting information

S1 Text. Table A. Performance measures from 4000 simulation by the mean of the R distribu-

tion, reported outbreak size, and true reporting level. Table B. Comparison of absolute error
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from 4000 simulations between true reporting levels and estimate of reporting by the mean of

the R distribution, reported outbreak size, and true reporting level.
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