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Abstract—Indoor positioning systems have been explored for
decades to facilitate universal location-based services. However,
complex environment conditions and sensing imperfections con-
tinue to be limiting factors to their large scale adoption. Rather
than customising more ingenious solutions to handle corner cases
in complex environments, we believe that a more efficient solution
is to learn entirely from data with minimal engineering effort.
We develop neural network based solutions for two positioning
approaches, modelling Dead Reckoning with recurrent neural
networks and WiFi Fingerprinting with deep neural networks.
We propose a multimodal deep neural network architecture
(MM-Loc) that bridges the features extracted by the modality-
specific complements (sensor based and WiFi based) to join the
two perspectives. We observe that this multimodal approach is
better than single-modality models, and elegantly trains directly
from raw data with minimal intervention.

Index Terms—Indoor Localization, Multimodal Sensing, Sen-
sor Fusion, WiFi Fingerprinting, Location Tracking, Dead Reck-
oning, Recurrent Neural Networks

I. INTRODUCTION

A growing number of mobile applications offering intel-
ligent and adaptive services require contextual information,
with location being an important part of context [1]. However,
to enable these services in complex environments, heavily-
engineered systems [2, 3, 4] have been designed to be tuned
to each deployment environment. Although effective in their
evaluation conditions, it is uncertain if these can adapt to new
observations or changing environments, being rigid with their
design – requiring engineering effort to calibrate.

Complex conditions inside buildings such as radio fre-
quency interference, dynamic environment conditions, and
noisy sensor data make it hard to model WiFi fingerprints
through simple modelling techniques (Bayesian models). Simi-
larly, imperfect inertial sensors (accelerometer, gyroscope and
magnetometer), drift and noise make it perform estimations
on sensor data with simple techniques. These limitations
have encouraged different ingenious engineering solutions to
address their challenges, such as particle filters [3, 5], Kalman
filters, graph-conditions [4] and constraint modelling [6]. How-
ever, these engineered systems make strong assumptions from
isolated data observations by proposing rigid mathematical for-
mulation. These formulations model the conditions available
in those evaluation scenarios, but not necessarily proposing
generalisable observations. More prevalent data is exposing

the limits of these models with rigid assumptions, which fail
when run-time data is imperfect.

In the age of big data, we propose a data-driven approach
for modelling indoor localization. Our approach adopts deep
learning techniques, which have proven efficient in other do-
mains (natural language processing, computer vision, machine
translation), where large datasets are already available for
training deep neural networks. We transform traditional meth-
ods used for indoor localization by modelling their underlying
process with deep neural networks in end-to-end machine
learning solutions. This replaces the hand-tuned models that
just approximate limited data observations. Deep learning
models move the focus onto automatic feature extraction
that capture the complexity of large datasets. Using deep
learning, we model two main localization methods: Pedestrian
Dead Reckoning and WiFi Fingerprinting, separately and in
conjunction. Dead Reckoning produces a sequence of estima-
tions starting from a known location, followed by sequential
position estimations using the direction of movement and
displacement distance. We adopt a recurrent neural network
solution to model the sequential chain of estimations based
on our previous work [7]. We model WiFi Fingerprinting
with a deep neural network. It reads the received signal
strength (RSS) sampled from all visible access points (AP),
the WiFi fingerprints, to produce latitude-longitude coordinate
estimations as regression outputs.

Although we find each of these models to produce good
estimations independently, our hybrid proposal built on a
multimodal deep learning architecture, improves the overall
localization accuracy. This bridges information from each
modality-specific architecture to compensate the unbalanced
sensing data issues. This is facilitated by integrating neural
network structures from each of the sensing modalities with
joint neural network structures. Model training process is
efficient, due to uniform optimisation across the two branches
of the network. Since WiFi scans are available on mobile
phones at a lower rate than inertial sensors, our model rely
continuously on inertial sensors, and opportunistically on WiFi
data, when a fresh sample is available in the system.

We evaluate our proposed multimodal deep neural network
architecture to find that it improves the performance by about
50% over the independent sensing modalities.

The contributions of this work are as follows:



• We model Dead Reckoning with recurrent neural net-
works operating on smartphone inertial sensor data. Es-
timations of displacement and direction of movement
are directly learned from data within the structure of a
recurrent neural network.

• To model WiFi Fingerprinting, we develop a regression
approach which offers several benefits, shallow models
(ideal for mobile devices with limited energy), and does
not require exhaustive sampling from each space of
the target building. This achieves a median estimation
accuracy of about 2.6 metres.

• We introduce an efficient sensor fusion solution relying
on a multimodal deep neural network architecture. This
extracts modality-specific features independently from
inertial sensors and WiFi fingerprints data, followed by
cross-modality features to boost the performance of the
two independent solutions with the ultimate median pre-
diction accuracy within 2 metres.

II. MOTIVATION AND RELATED WORK

Position estimation of smartphones inside buildings is not
easy due to the GPS being unreliable in environments shielded
by walls and ceilings. At the same time, other radio sig-
nals with longer penetration (cellular and FM) are limited
to the granularity of position estimation they can offer [8].
Alternative methods have been proposed to take advantage
of a broader range of sensors available on smartphones [9].
However, none have managed to produce a robust and scalable
system for efficient indoor position estimation. We believe the
reasons are: i) indoor spaces are too complex to model with
limited and fragmented observations from the environment
(limited data), and ii) current systems rely on human inter-
preted features extracted from data (e.g., engineered solutions
to estimate the number of steps and direction of movement).
This complexity makes it extremely hard to model their propa-
gation from scarce observations and with simplistic modelling
techniques.

The best approach, in our opinion, is to rely on models
with high generalisation to learn directly from data, taking
advantage of growing data volumes. Deep neural networks
have proven successful in other fields with increasing access
to data (computer vision, text processing, speech, etc.). We be-
lieve that deep neural networks can tackle the aforementioned
long-standing problems that limiting indoor localization.

A. Dead Reckoning on Inertial Sensors

Dead Reckoning builds on inertial sensors to calculate cur-
rent location by estimating displacement distance and direction
of movement. However, the sensor drift problem limits its
applications, making it hard to double integrate acceleration
to estimate displacement [10]. The same issue is experienced
when estimating the direction of movement. To avoid stiff and
rigid engineered solutions, other works use machine learning
to identify characteristics in inertial sensors, such as for step
size estimation based on neural networks [11].

B. WiFi Fingerprinting on Received Signal Strength

The WiFi Fingerprinting localization approach consists of
two phases: i) training phase or commonly called offline phase
that collects samples prior in a training set, and ii) the run-
time phase or so-called online phase that produces estimations
based on incoming observations [3]. However, indoor spaces
experience a challenging radio propagation environment with
multi-path effect, shadowing, signal fading and other forms
of signal degradation and distortion. Any slight change in
the environment affects the estimation, so a model should
be able to assimilate information from new data easily and
capture more of the unexpected variations. Others use deep
neural networks in WiFi fingerprints signal strength based
indoor localization [12], and also on WiFi signals with a
formulation of the propagation model for EZ [13, 14], while
more recent work has been using neural networks on Channel
State Information (CSI) [15].

C. Multimodal Approaches

Multimodal approaches make estimations from multiple
perspectives of cross-modality data. Filtering methods like
particle filters and Kalman filters have been proposed to
address multimodalities of data. Specifically, HiMLoc uses
particle filters to integrate inertial sensors with WiFi fin-
gerprints based on prior observations of Gaussian processes
for direction estimation, distance estimation and correlation
between samples and location in buildings, and admissible
human activity [3]. Similarly, WiFi-SLAM and Zee build
on particle filters emphasising their importance for random
system initialisation [5], while Kalman filters are used to
integrate inertial sensing modalities [6]. Other engineered
approaches, such as UnLoc, combining sensing modalities
based on empirical observations of how some locations are
unique across one or more sensors [2], MapCraft uses con-
ditional random fields [16], LiFS uses graph constraints to
map and position estimations on the trajectory [4]. Similarly,
WILL builds a connected graph to estimate location at room
level [17].

However, when samples are formed in multimodalities,
solutions building on machine learning show their advantages
of understanding correspondences between communicative
multimodalities and capturing in-depth features from natural
representations instead of focusing on a single modality with-
out alternative feature inputs.

Neural networks across sensing modalities have not been
used for indoor localization before, although it has been used
for other context recognition tasks, like for human activity
recognition [18]. We aim to customise an end-to-end multi-
modal deep neural network for the indoor localization task to
produce location estimation based on inertial sensors and WiFi
fingerprints data. Training directly on data has its drawbacks,
that of moving the challenges to the quality of training dataset
and cross-sensor modality alignment, although this can be
eventually automated by other systems such as vision-based
systems [19].



III. METHODS

This section illustrates the algorithms we deploy on the
single-modality models for inertial sensors and WiFi finger-
prints data, following by the description of our proposed MM-
Loc architecture: The cross-sensor multimodal neural network.

A. Dead Reckoning with Recurrent Neural Network

Dead Reckoning is the process of estimating continuous
location by starting from a known location and estimating con-
secutive locations based on a stream of observations coming
into the system (direction of movement and displacement).
This resembles the process performed by recurrent neural
networks, building on previous estimations (or features within
previous estimations) and new observations to produce a
sequence of predictions. Our previous work has shown the
fundamental concepts of one class of the recurrent neural
networks called the Long-Short Term Memory (LSTM) net-
work that performs similarly as Dead Reckoning to estimate
positions from streaming inertial sensor data [7].

Figure 1 illustrates the unrolled chain of the LSTM network,
where Ct is the long-term memory at time t and ht is the
block output at time t, or short-term memory, both transmitted
to the following LSTM block in the chain. The sample size
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Fig. 1. Unrolled Chain of LSTM Neural Network

of the time-sequential sensor data is (Timestep ∗Features).
The feature of each data point is the magnitude value of
acceleration, gyroscope and magnetic field data. The number
of data points in each sample is determined by the chosen
time window (here, we set the time window as one second
sampled every 100 milliseconds). Each sample is offered a
target position in coordinate (Xi, Yi). The regression output
of the LSTM model is the estimated position in coordinates
(Xest, Yest) based on inertial sensor data.

B. WiFi Fingerprinting with Deep Neural Networks

For periodic recalibration, the WiFi is a reliable anchoring
mechanism, used extensively in previous research [2, 3, 5, 17]
due to this relying on instantaneous observations to match on
a database or with a pre-trained model for position estimation.
The configuration of modelling WiFi Fingerprinting with Deep
Neural Network (DNN) is shown in figure 2. The end-to-end
DNN takes WiFi scans from sensed access points at each
sampling timestep as input features and (Xi, Yi) coordinate
of where the fingerprint is collected as target variables during
the training phase while producing two numerical outputs
of (Xest, Yest) for each coordinate as geographical location
estimations.
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Fig. 2. WiFi Fingerprinting Deep Neural Network

C. Sensor Fusion by Multimodal Deep Neural Networks

By joining both inertial sensors and WiFi fingerprints
modalities, their unique perspectives can contribute to more
robust estimations. Similar to our previous work in multimodal
deep learning for context recognition [18], here we explore
the capacity of such a construction to combine the two
aforementioned neural networks operating on each sensing
modality.

Sensors

LSTM

AP1 AP2 ... APn

X Y

Fig. 3. MM-Loc: our proposed multimodal deep neural network architecture
for indoor localization with two parallel single-modality extractors at the
bottom and a joint deep neural network as a sensor-fusion regression network
on the top.

Figure 3 presents our proposed MM-Loc architecture, an
end-to-end multimodal deep neural network for indoor local-
ization, which brings in the perspectives of inertial sensors and
WiFi fingerprints modalities.

The MM-Loc neural network first reads time-sequential
inertial sensor data by LSTM sub-network and WiFi RSS
data by DNN sub-network synchronously from the beginning,
where the sample size of the sensor modality at the LSTM
side is (Timestep ∗ Sensor num) and for the DNN side
is (Timestep ∗ AP num). Both modalities are reshaped to
128-dimensional hidden outputs from each branch. These
two parallel 128 units hidden outputs are then integrated by
concatenation to 256 units. The 256-dimensional joint vectors
are fed into three fully-connected layers (FC) with the input
size of 256, 128 and 64, then transferred to the top prediction
layer. This operates as a regression, producing continuous
values in two-dimensional outputs of (Xest, Yest) from the
joint cross-modalities hidden layers.



The contribution of LSTM to the cross-modality compo-
nent is in the form of its multiple LSTM layers worked as
feature extractor, which passes sensor hidden feature towards
the higher layer. The WiFi component contributes as WiFi
feature extractor. We replace the two units regression outputs,
originally from single modality based neural networks, with
additional fully-connected layers to transfer extracted hyper-
dimensional vectors to joint layers. Both neural network com-
ponents pass the individual sensor modality hidden features
to the cross-modality layers with element-wise calculation
and then passed to the final layer for location prediction
regression. The MM-Loc containing three sub-components of
LSTM, DNN and cross-modality neural networks are trained
synchronously with computing the loss in the forward pass
and splitting the gradients on each branch on the backward
pass.

What is unique about this construction is that it can handle
missing inputs from the WiFi modality. This is because WiFi
scans are produced at a much lower rate than inertial sensors,
so when there is not WiFi scan available, the input is a vector
with all components value of 0 (by normalising -100 dBm), so
the WiFi branch of the network contributes negligibly to the
cross-modality component, in which case the majority of the
contribution comes from the inertial sensor modality branch.
When both modalities have inputs, the same multimodal archi-
tecture automatically adjusts the weights of cross modalities
to produces estimations based on both modality contributions.

IV. DATA

In this experiment, we build the cross-sensor datasets of two
scenarios by collecting multimodalities of data with ground
truth locations from scratch and eventually processing them
to a uniform machine learning dataset with strategies of
interpolation, normalisation, overlapping, down-sampling and
data alignment.

A. Data Collection

Cross-sensor data are collected by an Android application
designed specially for data gathering task. It uses Android
APIs, which provides sensor samples on event base, updating
on value change, continuously logs inertial sensor data of
accelerometer, magnetometer, gyroscope and WiFi received
signal strength with sampling timestep in background. Mean-
while, the interactive map interface (aligned to Google Map
API) allows user to click on the screen to mark down the
ground truth location as latitude and longitude coordinates.

In order to collect the machine learning dataset of sensor
features with labels, we activate the application logging on two
smartphones synchronously, with one in the pocket to resemble
the perspective of sensors in natural motions and another one
used to record ground truth locations when passing special
locations such as corners, elevators, etc. Table I shows the
description of two datasets.

In order to evaluate the generalisation of the model, we
decide to collect data from two representative office buildings.
Both scenarios contain variational factors which impact indoor

TABLE I
DATASET DESCRIPTION

Dataset Description
Dataset.1 Walking along the corridor to collect samples from inertial

sensors and WiFi scans.
Dataset.2 Collecting ground truth geographical location labels syn-

chronously by clicking the screen to log latitude and longi-
tude information when passing key locations such as corners.

complexity. Factors include people walking through frequently
that affects how we walk along the corridors during data
gathering; Various indoor working electronic equipment such
as elevators, computers, printers and portable devices, which
generates electromagnetic radiation; Grouped WiFi access
points mixed with personal hotspot; Building materials contain
reinforced concrete, metal and glass, which impact on signal
propagation. Furthermore, both datasets are collected from
multiple mobile devices with different hardware sensitivity
and sampling rate. During the data gathering process, different
walking speeds and gestures are considered to add the variety
of the samplings.

For scenario A, the cross-sensor dataset contains 24450
inertial sensor movement data samples and 25541 WiFi scans
from the total 102 WiFi access points. For scenario B, the
dataset includes 29836 inertial sensor data samples and 8390
WiFi scans among 750 WiFi APs.

B. Data Pre-processing

1) Inertial Sensors Dataset: Similar to our previous work in
inertial sensor based LSTM model [7], to make the time-series
sensor dataset fits the model, we take the same data processing
strategy to generate the machine learning dataset. Specifically,
it contains three parameters settings of the time window, over-
lapping rate and down-sampling rate. A proper time window
setting is considered to balance between location estimation
refreshing frequency on time window and on-device inference
computational cost. An appropriate overlapping rate setting
could emphasise the information between inter-samples since
the information from previous time windows are reinforced
on overlapping for better inferences. To improve forward-pass
speed, the down-sampling operation shrinks the time-series
input by discrete samples while maintaining the time window
interval of one second.

We first assure position invariant condition by working with
the magnitude value on the three orthogonal axes from raw
samplings in 3-dimension, where sensor{x, y, z} are the
values measured on each of the three Cartesian axes.

sensormagnitude =
√

sensor2x + sensor2y + sensor2z

After calculating the magnitude value of accelerator, gyro-
scope and magnetometer, we normalise the input frequency
by interpolating at a rate of 1 kHz. These are grouped
in a time window of one second and associated with one
position (deploying interpolation in between marked ground
truth location labels to generate continuous values of latitude
and longitude) to each time window. The sensor data is then



overlapped with 90% and down-sampled from (1000 * 3) to
(10 * 3) per sample with one second time interval.

2) WiFi Fingerprints Dataset: Inputs to neural networks
are provided as vectors of the RSS values for each AP
mounted inside the building. To construct this vector, we
first scan the whole WiFi logfile to identify all unique APs
observed throughout the data collection process (total of n
APs observed inside the building), as well as the minimal
and maximum signal strength encountered throughout, which
are used to normalise the vector input to [0,1] interval by
linear scaling. By observation, the min-max interval is [-
100,-40] in dBm. Hence, for missing APs in WiFi scans, a
value of -100 is associated with their representation in the n-
dimensional vectors as input to the neural network. To keep
the original features of the sampled data without unnecessary
human intervention, we keep those occasionally seen personal
hotspots, considered as noise, in the dataset to add complexity,
which simulates the real environments of changeable WiFi
signal distribution.

3) Cross-sensor Dataset: As two synchronously-logged
datasets contain not only inertial sensor and WiFi RSS samples
but also ground truth location information within the same
time duration, the time record is utilised for matching mul-
timodalities with geographical labels. Table II illustrates the
components of the cross-sensor dataset after alignment.

TABLE II
CROSS-SENSOR DATASET

Time Acc Gyro Mag AP0 AP1 ... APn X Y
t0 a0 g0 m0 -100 -85 ... -100 X0 Y0

t1 a1 g1 m1 -100 -100 ... -100 X1 Y1

t2 a2 g2 m2 -70 -100 ... -65 X2 Y2

... ... ... ... ... ... ... ... ... ...
tn an gn mn -100 -100 ... -100 Xn Yn

It is noticed that the WiFi sampling frequency is signifi-
cantly slower than the inertial sensing rate due the hardware
limitations. For some timesteps, if there only contains inertial
sensor samplings, same as the strategy applied on the missing
WiFi, we use -100 dBm to represent missing WiFi scans for
all APs. They are added in parallel for a uniform size of
multimodal dataset. Meanwhile, location labels are normalised
to the extreme boundaries chosen for the building and scaled
to [0,1] interval. Estimations of neural network models are
converted back into latitude and longitude coordinates in
meters to measure the estimation errors as the euclidean
distance between predict and target locations.

V. EXPERIMENTS

In this section, we implement single-modality location esti-
mators and our multimodal sensor fusion estimator (MM-Loc).
We test these models on senor and WiFi datasets collected
from two buildings (deployment scenarios). To explore the
opportunity to reduce energy consumption further, we vary
the WiFi scan frequency in our proposed MM-Loc system.

We split the data using the ratio 8:5:1 (for training, valida-
tion and testing respectively). Results are here presented using
Cumulative Distribution Function (CDF) charts.

A. Single Modality Implementations

1) Sensor based Recurrent Neural Network: Similar to our
previous work on the end-to-end independent LSTM model,
we use a recurrent neural network to extract observations from
inertial sensor data [7]. However, instead of estimating the
location directly from the model, the RNN integrated into the
multimodal architecture behaves as a robust feature extractor
for sensor fusion. Here, to evaluate the independent sensor
model, the head of the network accepts a fully-connected layer
to estimate the locations. The parameter settings of the LSTM
model are shown in table III.

TABLE III
SENSOR NEURAL NETWORK PARAMETER SETTINGS

Parameter Settings
Epoch 100
Batch Size 100
LSTM Hidden Units 128
LSTM Layer 1 Layer
Learning Rate 0.005
Learning Rules RMSprop

2) WiFi based Deep Neural Network: WiFi scans are
received through the Android API at an irregular frequency,
which average update rate of about one second. Here we
evaluate the performance of the independent WiFi model
using only the samples with available fresh samples. For the
multimodal architecture, we construct data tuples for every
100ms. Those inputs with missing WiFi samples are masked
with an input vector of zero values after normalisation. The
WiFi based estimator is modelled with a three-layer neural
network regression model. The model details are shown in
table IV. The only variation of the model structure is the input
sizes caused by the number of APs seen in a building. For
our two evaluation scenarios, there are 102 APs and 750 APs
respectively.

TABLE IV
WIFI NEURAL NETWORK PARAMETER SETTINGS

Parameter Settings
Epoch 100
Batch Size 100
DNN Hidden Units 128
DNN Layer 3 Layers
Dropout Rate 0.5
Learning Rate 0.001
Learning Rules RMSprop

B. Single Modality Model Evaluation

Figure 4(a) shows the performances of the sensor model
and WiFi model on scenario A. It is noticed that the WiFi
model perform significantly better than the sensor model with
2.6× better accuracy. Within the estimation accuracy of 80%,
the WiFi model has a precision of 2.6 metres error while
the sensor model holds 6.9 metres prediction error. Training
the model on the dataset collected in scenario B, we observe
similar performances as presented in figure 4(b). The WiFi
model has an error of 3 metres and the sensor based model
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Fig. 4. Single-modality model performances over two scenarios.
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Fig. 5. The comparison between MM-Loc models running at different WiFi sampling rates and two independent single-modality models.

TABLE V
MULTIMODAL DEEP NEURAL NETWORK ARCHITECTURE

Layers Output Shape
LSTM Layer (sensor) (Batch Size,128)
FC Layer.1 (WiFi) (Batch Size,128)
Dropout Layer.1 (WiFi) (Batch Size,128)
FC Layer.2 (WiFi) (Batch Size,128)
Dropout Layer.2 (WiFi) (Batch Size,128)
FC Layer.3 (WiFi) (Batch Size,128)
Fusion Layer (joint) (Batch Size,256)
FC Layer.4 (joint) (Batch Size,128)
FC Layer.5 (joint) (Batch Size,64)
FC Layer.6 (joint) (Batch Size,2)
Batch Size Learning Rate Learning Rules Dropout Rate

100 0.001 RMSprop 0.5

has an error of 6.2 metres. The similar performances in the
two scenarios give us confidence in the generalisation power
of the two models.

C. MM-Loc Implementation

Table V indicates the architecture and parameter settings of
our proposed multimodal model (MM-Loc). Here, we evaluate

the performances of all the models on data collected from the
two scenarios, but using different WiFi sampling frequency.
Specifically, for scenario A, as the default WiFi sampling
rate is about 10Hz as sourced from the system, we reduce
the scanning frequency of the dataset from 10Hz to 5Hz and
1Hz with a filter. The purpose of adjusting WiFi frequency
is to assess the impact on location estimation accuracy of this
energy-saving strategy of scanning at lower frequencies. It also
shows how this would behave on systems where a high refresh
rate is not available. For Scenario B, we decrease the WiFi
sampling frequency from the original 1Hz to 0.1Hz and even
0.05Hz for the same reasons.

D. MM-Loc Evaluation

Figure 5 presents the comparison between the performances
of MM-Loc running at different WiFi sampling frequencies,
and the single-modality baseline models. Generally, MM-Loc
with the highest sampling rate performs best. MM-Loc median
accuracy is within 2 metres error for 80% of the prediction
cases, which is 3.5× better than the sensor baseline model. By
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Fig. 6. MM-Loc Footpath Visualisation

comparing figure 5(a) and 5(b), we observe that in scenario
A, MM-Loc reaches a better accuracy of 2.6 meters median
precision at the intersection point with WiFi model. However,
the WiFi model has consistently good performance even for
the extreme cases, with the maximum error being better than
that of any other models. In scenario B, MM-Loc performs
better than any other models. Another observation is that with
decreasing sampling rates, the multimodal model prediction
accuracy experiences the same trend. MM-Loc with interme-
diate refreshing rate data still predicts with approximately
4 meters precision. Hence, a proper sampling rate setting
contributes to minimum on-device computing cost and power
consumption with reliable positioning accuracy.

E. MM-Loc Visualisation

Figure 6 visualises the predicted footpath of MM-Loc in
both scenarios. Error red lines indicate the distance between
the coordinates of the ground truth and the predicted coordi-
nates of MM-Loc.

We observe that MM-Loc predicts the footpath along the
corridor with high quality, having clear estimation boundaries.
However, some predictions are over 5 metres away from the
ground truth, especially at the corners of corridors. We put this
on the difficulty of observations in the WiFi component near
corners. The other aspect introducing errors is the magnetic
interference present in some places on the pathway (elevators
and heavy iron materials in building materials).

VI. DISCUSSION

We showed that traditional smartphone indoor localization
methods could be modelled through deep neural network
architectures, both as individual components with specific
modality neural architectures (RNN and DNN) and also as
sensor-fusion with multimodal neural networks. Through this,
we are moving the effort from engineering each component,
step counting, direction and creative integration methods (par-
ticle filters, Kalman filter and graph-based constraints) to a

purely data-driven approach, relying entirely on an end-to-end
neural network solution.

This approach is not tuned to the conditions of a single
building, but being trained on data from the target building.
This data-driven approach generalises better than algorithms
designed for specific buildings and their local conditions.
Although the effort is moved entirely on the quality of
training data, we believe that in the age of big data, access
to such datasets will become much easier, potentially through
automated systems of labelling position from vision-based
systems [19], and adopting transfer learning.

Our multimodal architecture shows its ability to capture
fine-grained observations distilled in features on each sens-
ing modality branch and brings complementary perspectives
together through the cross-modality network structure in the
joint architecture.

VII. CONCLUSIONS

In this work, we present how the task of performing indoor
localization can be modelled with a multimodal deep neural
network. First, we assess candidates for modality-specific
neural network architectures to model two popular localiza-
tion techniques, Dead Reckoning through recurrent neural
networks and WiFi Fingerprinting using deep neural networks.
We observe that these can perform location estimation in-
dependently with a median error rate of 2.6 and 6.9 metres
respectively. Their combination with a multimodal architecture
captures the perspective of each to reduce median error to
under 2 metres. Our multimodal deep neural network can
efficiently combine diverse sensing modalities with automatic
training purely from data to achieve high accuracy instead of
relying on heavily engineered localization components.
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