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Abstract 
Urban-scale building energy models capitalise on the 
increasing accessibility of large-scale urban data sets and 
allow the rapid evaluation of competing policy options, 
making them a vital tool for urban responses to the climate 
emergency.  However, the vast number of different inputs 
required to model a complex urban environment makes it 
impossible to precisely quantify all inputs and the 
complex energy flows within models must be simplified 
to achieve tractable solutions, as a result, the outputs of 
these models inevitably have a significant range of 
variation.  Without understanding these limits of 
inference resulting policy advice is inherently 
defective.  Uncertainty Analysis (UA) and Sensitivity 
Analysis (SA) offer essential tools to determine the limits 
of inference of a model and explore the factors which have 
the most effect on the model outputs.  Despite a well-
established body of work applying UA and SA to models 
of individual buildings, very limited work has been done 
to apply these tools to urban scale models.    
This study presents a systematic comparison of three 
different sensitivity analysis methods for a high 
resolution, dynamic thermal simulation at the 
neighbourhood scale.  Accuracy, processing time and 
complexity of application of each method is evaluated to 
provide guidance which can inform the application of 
these methods to other urban and large-scale building 
energy models.   
The results highlight the importance of considering both 
model form and input parameter scale when selecting an 
appropriate method.  In this case, the elementary effects 
method (EER) offers good performance at relatively low 
simulation cost. 

Introduction 
To date, 65% of local authorities in the UK have declared 
a climate emergency and a number have committed to 
ambitious targets for reducing carbon emissions as a 
response.  However, translating these declarations and 
targets into meaningful action and effective public policy 
remains a very significant challenge (Chatterton, 2019).  
Many, if not most, local authorities lack the basic 
knowledge of the scale of emissions in their locality 
which is an essential first step to achieving these goals.  
At the same time, the urgency of the need to reduce 
emissions has increased the importance of targeting 
policy at the interventions which will have the greatest 

impact in reducing emissions – there is little time left for 
trial and error.  Large scale building energy models 
capitalise on the increasing accessibility of large-scale 
urban data sets and allow the rapid evaluation of 
competing policy options, making them a vital tool for 
urban responses to the climate emergency.   
While the scale and complexity of these models has 
progressed rapidly in recent years, quality assurance 
processes have lagged behind: model validation is 
typically applied to the aggregate annual output of the 
whole model, giving little insight into the ability of the 
model to capture the changes in emissions resulting from 
changes in different parts of the city building stock 
(Cerezo Davila, 2017)(Cerezo Davila, 2017).  Further, 
such approaches cannot identify the most significant 
drivers for emissions.  The vast number of different inputs 
required to model a complex urban environment makes it 
impossible to precisely quantify all inputs and the 
complex energy flows within models must be simplified 
to achieve tractable solutions, as a result, the outputs of 
these models inevitably have a significant range of 
variation.  Without understanding these limits of 
inference, resulting policy advice is inherently defective.  

Uncertainty Analysis and Sensitivity Analysis  
Uncertainty Analysis (UA) and Sensitivity Analysis (SA) 
offer essential tools to determine the limits of inference of 
a model and explore the factors which have the most 
effect on the model outputs.  UA does this through 
propagation of input uncertainties through the model to 
understand the resulting model output distribution and 
thus the limits of inference. SA is used to explore the 
relationship between input and output uncertainties, by 
understanding which input factors have the greatest 
impact on outputs, data collection efforts can be focussed 
where they will have most impact and non-influential 
factors can be fixed.  However, despite a well-established 
body of work applying UA and SA to models of 
individual buildings, a review of the literature relating to 
energy models for larger groups of buildings, undertaken 
by (Fennell et al., 2019) highlighted very limited 
application.   

Challenges of applying UA and SA to UBEMs 
As simulation models are always a simplification of real 
physical processes, all models inevitably contain 
uncertainty (Refsgaard & Henriksen, 2004).  Uncertainty 
can be defined as ‘any departure from the unachievable 
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ideal of complete deterministic knowledge of the system’ 
(Walker et al., 2003) and as the systems being modelled 
increase in scale and complexity, the uncertainty in the 
model will also increase. Simulation models on individual 
building level as well as at scale involve a broad spectrum 
of uncertain inputs (Calleja Rodríguez et al., 2013; 
Eisenhower et al., 2012) and model uncertainties 
(i.e.,model structural and model technical; (Refsgaard et 
al., 2007)).  
Existing conceptualisations of the application of 
sensitivity analysis (e.g. Saltelli et al., 2019) view the 
model as a simple black box, with clearly defined inputs 
and outputs and a simple workflow which consists of 
sampling from input distributions to create sets of model 
inputs, running the model and calculating the appropriate 
SA indicators from the resulting outputs.   
 
 
 
 
 
The limited application of SA to UBEMs is at least partly 
due to the inadequacy of this simple input-output process 
to describe the complexity of the UBEM work flow, in 
particular: 
• Models are typically amalgams 

UBEMs are a class of model defined by their outputs 
rather than their structure or inputs, consequently a 
very large variety of approachs exists.  In some 
UBEMs the unit of simulation is the neighbourhood, 
but in many, individual buildings are simulated and 
results aggregated with these aggregate results often 
being used as inputs for larger scale models.  
Determining the level of model  to which SA is to be 
applied and how these choices impact on final model 
sensitivities is important. 

• Model inputs are ill-defined 
For a city building stock comprising millions of 
premises it is not possible to specify the parameters 
of each premises individually and aggregation 
techniques must be used, typically this means 
defining clusters or groups with similar 
characteristics within the stock and assigning 
identical inputs for some or all aspects of the inputs 
to each member of the cluster.  These clusters are 
often referred to as archetypes.  Booth et al. (2012) 
introduce the concept of heterogeneity uncertainty 
which considered the variation between the value for 
a specific building and that which is assigned for the 
archetype.  For example, while the epistemic 
uncertainty around the u-value of a particular wall 
might be small, if the wall is part of archetype 
specification then the uncertainty which should be 
modelled is range of u-values for walls in all 
buildings assigned to that archetype.  It should be 
clear that this uncertainty is much greater since the 
number of archetypes is smaller than the potential 

variations in the stock and also that if the choice of 
archetypes is a subjective matter, there is unlikely to 
be precise data available for that range 

• Model inputs are highly diverse 
Characterising uncertainties in model inputs is 
challenging even for simple cases such as material 
properties due to limited data availability but the 
types of input data used in UBEMs are highly diverse, 
often including semantic data obtained from public 
records to determine the use of premises, national 
survey data to determine occupancy and usage 
profiles and LiDAR or similar data to determine 
geometric inputs.  Each of these forms of data has 
different input uncertainties which need to be 
characterised in different ways.  Different inputs may 
be dealt with differently in the model with some, such 
as geometric inputs being deeply embedded in the 
model and challenging to access as a result.  

• Temporal dynamics are complex 
The preceding discussion conceptualises model 
inputs as spatial variable but temporally-fixed, once 
the initial state of each building in the stock is 
determined, the model is specified and simulation can 
be undertaken.  In this conceptualisation, the model 
can be re-specified to represent a changed state, for 
example due to a retrofit programme but this new 
state is then fixed.  However, as identified in 
(Langevin et al., Manuscript submitted for 
publication) a subset of building stock energy models 
exist which incorporate dynamic changes over time, 
often modelled as renovation or demolition rates and 
for these models time-varying uncertainties must also 
be considered.    

The practical consequence of this picture of complex and 
varied models which use data in different ways is that the 
application of UA and SA is necessarily highly tailored to 
the specific model, generally with the aim of answering a 
model specific question and that little research exists 
evaluating the suitability of different SA methods for use 
with UBEMs. 

Aims of this study 
The computational challenges of applying SA to UBEMs 
mean that while significant limitations exist in the 
characterisation of uncertainties as described above, the 
scale of the exercise is overwhelming.  As a result, it is 
necessary to proceed incrementally: 
1. Determine which SA methods offer the best trade-off 

between precision and computational burden. 
2. Apply the resulting SA methods to determine which 

input factors can be fixed. 
3. Broaden the scope of SA to encompass the missing 

types of uncertainty in an interative process in which 
assumptions around factor fixing are sytematically 
retested. 

The study presented in this paper aims to address the first 
step in this process.  Three different SA methods are 
applied to a high resolution dynamic thermal simulation 

Model 
Inputs Outputs 

Figure 1: standard conceptualisation of SA workflow 
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of a neighbourhood to determine (i) number of model 
evaluations required to ensure robust results and (ii) the 
relative performance of the different methods. 
 
The following sections set out the SA methods which are 
applied and the framework which has been establised for 
assessing them.  The model and the study case are 
described and results are presented, followed by a 
discussion of the implications and limiatations of the 
results and the planned extensions of this work. 
 

Methods 
SimStock modelling platform 
SimStock is a modelling platform which combines data 
from multiple sources to automatically generate dynamic 
building energy simulation models ready to be executed 
by EnergyPlus, an open-source whole-building energy 
modelling (BEM) engine. 
High Performance Computing (HPC) or cloud computing 
is used to allow a large number of models to be simulated 
in parallel. Simulation outputs are collected and post-
processed automatically which prepares them for various 
analysis to be applied, such as sensitivity analysis, 
regressions, uncertainty quantification, etc. 
SimStock allows the automatic creation of dynamic 
thermal simulation models of all buildings within an area 
of analysis; allowing a wide range of scenario analyses to 
be performed.  A key feature of the SimStock modelling 
platform is its ability to accommodate mixed-use 
buildings, and combined addresses through the use of the 
Self-Contained Unit (SCU) as the smallest division of the 
building stock.  Evans et al. (2017b) define a SCU as the 
smallest unit which into which the stock can be 
disaggregated without splitting either premises or 
building polygons.  In the simplest case, a SCU might be 
a single building such as a single-family home but in 
dense urban centres, much more complex mixes of 
ownership and use need to be modelled.  The SimStock 
modelling platform automatically generates Energyplus 
input files from collections of SCUs bounded by roads or 
other natural breakpoints, these are referred to as built 
islands.  A single thermal zone is created per floor of each 
SCU. 

Model case 
A mixed commercial and residential neighbourhood in 
North London was selected as the case for this study.  
Geometric and activity data is extracted from the 3DStock 
model (Evans et al., 2017a).   
The study model comprises 41 built islands within which 
4 use-types are defined: Office, Retail Sales, Restaurant 
and Dwelling.  SCUs are assigned to a use-type based on 
the dominant use type identified in the UK property tax 
records.  Restricting the model to 4 use types requires 
some gross simplification, with less common uses such as 
education and religious facilities being included within 
the office use type and all food service premises being 

included within the single Restaurant use-type.  Such 
simplifications were considered necessary to reduce 
model complexity since the number of use-types drives 
the number of parameters and consequently the number 
of model evaluations required.   
In total the study area comprises 1779 thermal zones (84 
Office, 119 Retail sales, 42 Restaurant and 1534 
Dwelling).  Occupancy and equipment usage schedules 
are derived from  National Calculation Method (NCM) 
(Department for Communities and Local Government, 
2008) profiles.  Variant high and low profiles are 
developed based on the NCM profiles and assigned 
stochastically to introduce an elemnet of diversity in the 
levels of usage across the stock. 
The simulation models are configured to calculate heating 
and cooling demand based on ideal loads with equipment 
calculations added in post-processing if required. 
 

 
Figure 2: Wireframe model of study area 

 
Figure 3: Satellite view of study area (Google Imagery, 2020) 

Input uncertainties 
The choice of uncertainties is fundamental to any SA 
since parameters treated as fixed are, by definition, 
excluded from the analysis and the choice of which 
parameters to evaluate must reflect the aims of the study.  
Although geometric and model uncertainties are of 
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considerable interest, and have received little attention in 
the literature, they have been deferred to a later stage of 
this study, to be explored once the most appropriate 
methods have been selected.  The uncertainties selected 
for evaluation in this study are limited to readily 
accessible input parameters which typically represent 
either choices made by occupants or building parameters 
which might be impacted by retrofits.  Parameters which 
are variable across the stock are treated stochastically as 
described earlier. 
After initial testing with a range of material parameters 
demonstrated that stable results were not possible within 
the available computational resources due to the large 
number of uncertain parameters (103), only a single 
parameter for each material was retained.  In total 50 
uncertain parameters were evaluated.  Parameters were 
characterised with triangular distributions to avoid 
introducing technically infeasible values in the tails of 
distributions and to ensure that extreme values were not 
over-emphasised.  Space constraints preclude a full listing 
of input distributions, a summary is provided in table 1 
with the full listing available on request from the authors. 
Table 1: characterisation of input uncertainties 

PARAMETER 
TYPE 

INSTANCES UNCERTAINTIES 
CONSIDERED 

Heating and 
cooling set 
points, natural 
ventilation set 
point 

Defined per use-
type 

Heterogeneity 
across the use-type 

Occupant 
density 

Defined per use-
type 

Heterogeneity 
across the use-type 

Ventilation 
rates 

Defined per use-
type 

Heterogeneity 
across the use-type 

Power densities 
(equipment & 
lighting) 

Defined per use-
type 

Heterogeneity 
across the use-type 

Material 
conductivity 

Defined per 
material 

Aleatory uncertainty 

Glazing 
transmittance & 
emissivity 

Defined per 
material 

Aleatory uncertainty 

Infiltration rates Defined per use-
type 

Heterogeneity 
across the use-type 

 

SA methods 
SA methods can be either local (focussed at a single point 
in the input space) or global (assessing sensitivity across 
the full range of the input space).  While local methods, 
which involve varying a single parameter at a time to 
assess the effect on the output, are appropriate for linear, 
additive models, they do not account for the interaction 
between parameters making them generally unsuitable for 
non-linear models such as UBEMs.  However, the ease of 
application of such methods means that they remain a 
popular choice (Fennell et al., 2019) and justifies their 
inclusion in this study. Three methods are evaluated in 
this study: 

• Sobol’ analysis (Saltelli et al., 2010) – global method 
in which all parameters are varied simulataneous and 
the output variance is decomposed into first and 
higher-order effects, thus accounting for interactions 
between parameters.  This method is implemented 
using the SALib library (Herman & Usher, 2017) 

𝑉"!" =
#
$%
∑ %𝑓 '𝒙𝒋
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%
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• Elementary effects (EER) (Campolongo et al., 2007) 
– a repeated One At a Time design which averages 
estimates calculated at different points in the input 
space and thus accounts for parameter interactions. 
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• Derivative based (DGSM) (Becker et al., 2018) – 
Similar to EER, this method uses a smaller increment. 
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Where: 
N is the total number of estimates required 
X is a matrix in which each column represents a vector 
containing the model inputs 
𝑥*	  is the jth set of model inputs 

𝑥*
'"!)	is a point which differs from 𝑥*	  only in value of 𝑥*

("	) 

𝑥*
'"!!)	is a point which differs from 𝑥*	  only in value of 𝑥*

("	) 
by only a small increment (1x10-5 when sampling with 
respect to the unit hypercube).  In equations (2) and (3), 
the difference between inputs is normalised to take 
account of the very different scales of different 
parameters. 
Sobol sequences are used for sampling to ensure good 
coverage of the input space and SA measures were 
applied by use-type and for the overall model. 

Evaluating the different methods 
The SA literature relies of the use of test functions for 
which analytical solutions are availble to evaluate the 
performance of different SA methods.  Since there is no 
analytical solution for the case considered here, in line 
with Saltelli et al. (2008), the baseline performance was 
set by the Sobol’ analysis with the highest number of 
model evaluations.  For this study the highest practical 
number of evaluations was 40, which represents a total of 
86,920 individual simulations requiring a total of 6,793 
hours of CPU processing time.  Two metrics are used to 
compare SA results for different number of model 
evaluations and different methods with this baseline: 
• Ranking performance - Kendall’s rank correlation (t) 

(Kendall, 1938) is a non parametric measure of the 
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correspondence between two rankings.  Values close 
to one indicate strong agreement between the two 
rankings. 

• Screening performance - Becker et al. (2018) propose 
the number of parameters wrongly identified as 
influential as a fraction of the number of influential 
parameters as a test of the accuracy of screening.  In 
this study, wrongly excluding influential parameters 
is considered less desireable than wrongly including 
non-influential parameters and so the fraction of false 
negatives is also calculated.  The set of influential 
parameters is defined as the minimum set of 
parameters which accounts for 95% of the total 
sensitivity. 

Results 
Validation 
Bootstrapping with replacement was used to resample the 
results to construct the 95% confidence interval for 
sensitivity results.  The number of model evaluations 
would be considered sufficient when all influential 
parameters are captured at the 95% confidence level.  
Figure 4 shows the  Sobol’ total sensitivity indices for all 
parameters by zone and for the whole stock with the 95% 
confidence intervals.  It can be seen that this condition is 
not entirely satisfied.  Given the very high number of 
simulations required for the baseline set (shown in Figure 
4 in green – labelled ‘40’) this was considered an 
acceptable result. 

 
Figure 4: Total sensitivity indices for cooling energy demand 
by use-type and for whole stock (95% CI) 

Ranking performance 
Figure 5 shows the relative ranking performance of the 
alternative approaches with respect to the baseline results 
of Sobol’ analysis for 40 evaluations.    Results are shown 

for the heating and cooling energy demand outputs for the 
whole stock.  It can be seen that there is no difference in 
the performance assesssment for the two outputs.  20 
Sobol’ evaluations offer slightly increased performance 
but at twice the cost in terms of CPU hours.  EER results 
offer marginal time savings but perform less well.  Results 
for DGSM show poor performance. 
  

 
Figure 5: ranking performance for different methods and 
numbers of evaluations compared with the 40 evaluation Sobol' 
baseline results 

Screening performance 
A key application of SA is to divide the input parameters 
into influential and non-influential sets allowing data 
collection and uncertainty analysis efforts to be focussed 
on the reduced parameter set. The picture of screening 
performance shown in Figure 6 is similar, to the results 
for the ranking performance with both EER results and 
the Sobol’ 20 results showing no false negatives.   It 
should be noted that while the relative performance of the 
methods is the same for both heating and cooling outputs, 
the fraction of false negatives is lower.   

 
Figure 6: screening performance (fraction of false negatives) 
for different methods and numbers of evaluations compared with 
the 40 evaluation Sobol' baseline results 



uSIM2020 - Building to Buildings: Urban and Community Energy Modelling, November 12th 2020 

 

Figure 7 shows the other side of this picture, with EER 
methods identifying significantly more false positives 
than Sobol’ and DGSM methods. 

 
Figure 7: screening performance (fraction of false negatives) 
for different methods and numbers of evaluations compared 
with the 40 evaluation Sobol' baseline results 

The DGSM method performs least well of all those 
considered.  This seems to be due to the underlying nature 
of the model - Becker et al. (2018) demonstrated that 
allow the DGSM method performs well on smooth 
functions, the small increment results in poor performanc 
in step-functions.  It is likely that the setpoint temperature 
regime for heating and cooling demand represents a 
significant enough step to make this method unsuitable 
for use with building energy simulation.  
 
The results presented in Figure 5, Figure 6 Figure 7 
indicate that the EER method output performs Sobol’ at 
lower numbers of evaluations.  Although the methods are 
very similar in approach, a key difference is the inclusion 
of the input difference in calculating the µ* index as 
shown in equation (2).  Including this input difference 
means that parameters are highlighted as influential when 
a small perturbation in the input parameters results in a 
relatively large change in the output even if the overall 
change in the output is not enough to indicate influence 
on its own.  This is particularly the case for building 
material parameters which do not appear as influential 
parameters in the Sobol analyses but show greater 
influence in the EER analyses (see Figure 8).   
These results suggest that the widely differing scales of 
input parameters in UBEMs are more effectively explored 
using the EER method. 

Influential parameters by use-type and by whole 
stock 

 
Figure 8: parameter influence by use-type and whole stock 

It can be seen from the heatmaps in Figure 8, that when 
sensitivity indices are calculated by use-type as as well for 
the whole stock, many other parameters begin to show 
influence.  For both Sobol and EER methods the 
dominance of the Dwelling use type means that the 
influence of parameters which only affect other use-types 
is diluted.  This suggests the importance of undertaking 
SA at a variety of scales to ensure that influential 
parameters are not missed. 
Care has been taken in this document to avoid focussing 
on the parameters which have been identified as 
influential.  The aim of this exercise has been to evaluate 
the performance of different methods rather than to 
undertake a comprehensive sensitivity analysis for this 
particular building stock.  Nonetheless, some notes about 
which parameters are identified as influential are 
important: Firstly, only those parameters which were 
included in the study can be shown to be influential, this 
does not mean that other parameters are non-nfluential, 
only that they were not included.  Factors such as glazing 
ratio and storey height are assumptions within the model 
but embedded within the model code.  This lack of 
accessibility led to their exclusion from this study 
although it might be expected that they would have been 
shown to be influential if included.  Secondly, care also 
needs to be taken with the specification of input 
parameters, glazing emissivity shows more influence than 
other building parameters but this is likely to be related to 
how materials are specified across the stock – the glazing 
is common to much of the stock while other materials are 
not included in as many buildings and thus show little 
influence at the stock level. 

Conclusions and further work 
The results of this study highlight the importance of 
choosing sensitivity measures which are well-suited to the 
underlying model.  For a UBEM based on bottom-up 
dynamical thermal simulation, two important 
considerations emerged: (i) the need to incorporate widely 
differening scales of input parameter and (ii) the stepped 
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nature of responses to changes in temperature.  Together 
these considerations suggest that EER is the best-suited 
method.   
It is also clear that the outputs for which sensitivity indices 
are calculated need to be carefully considered, in this case, 
much information is lost if results are considered only at 
the whole stock level and not at the level of use types. 
The performance of the EER method has been shown to 
be acceptable at fairly low numbers of evaluations (10 
evaluations for each index).  However, this since each 
evaluation requires (k+1) simulations, where k is the 
number of input parameters this still requires a total of 
1600 of CPU time meaning that access to high 
performance computing resources is required. 
The aim of this study has been to evaluate the relative 
performance of a subset of SA methods for a fine spatial 
grain of UBEM based on dynamic thermal simulation.  
The methods evaluated here belong to the same class of 
variance based methods and further work remains to be 
done to compare the performance of other classes of SA 
method including regression methods. 
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