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a b s t r a c t 

Pathological brain appearances may be so heterogeneous as to be intelligible only as anomalies, defined 

by their deviation from normality rather than any specific set of pathological features. Amongst the hard- 

est tasks in medical imaging, detecting such anomalies requires models of the normal brain that combine 

compactness with the expressivity of the complex, long-range interactions that characterise its structural 

organisation. These are requirements transformers have arguably greater potential to satisfy than other 

current candidate architectures, but their application has been inhibited by their demands on data and 

computational resources. Here we combine the latent representation of vector quantised variational au- 

toencoders with an ensemble of autoregressive transformers to enable unsupervised anomaly detection 

and segmentation defined by deviation from healthy brain imaging data, achievable at low computational 

cost, within relative modest data regimes. We compare our method to current state-of-the-art approaches 

across a series of experiments with 2D and 3D data involving synthetic and real pathological lesions. On 

real lesions, we train our models on 15,0 0 0 radiologically normal participants from UK Biobank and eval- 

uate performance on four different brain MR datasets with small vessel disease, demyelinating lesions, 

and tumours. We demonstrate superior anomaly detection performance both image-wise and pixel/voxel- 

wise, achievable without post-processing. These results draw attention to the potential of transformers in 

this most challenging of imaging tasks. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Transformers have revolutionised language modelling, be- 

oming the de-facto network architecture for language tasks 

 Radford et al., 2019 , 2018 ; Vaswani et al., 2017 ). They rely on at-

ention mechanisms to capture the sequential nature of an input 

equence, dispensing with recurrence and convolutions entirely. 

his mechanism allows the modelling of dependencies of the in- 

uts without regard to their distance, enabling the acquisition of 

omplex long-range relationships. Since the approach generalises 

o any sequentially organised data, applications in other areas such 

s computer vision are increasingly seen, with impressive results 

n image classification ( Chen et al., 2020 ; Dosovitskiy et al., 2020 )

nd image synthesis ( Child et al., 2019 ; Esser et al., 2020 ; Jun et al.,

020 ; Ramesh et al., 2021 ; Yu et al., 2021 ). The power to absorb re-
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ationships varying widely in their distance makes transformers of 

otential value in the arguably the hardest of neuroimaging tasks: 

nomaly detection. 

The detection and segmentation of lesions in neuroimaging 

upport an array of clinical tasks, including diagnosis, prognosis, 

reatment selection and mechanistic inference. However, the fine 

haracterisation of these lesions requires an accurate segmentation 

hich is generally both ill-defined and dependent on human ex- 

ertise ( Kamnitsas et al., 2017 ). Manual segmentation is expensive 

nd time-consuming to obtain, greatly limiting clinical applica- 

ion, and the scale and inclusivity of available labelled data. Qual- 

tative, informal descriptions or reduced measurements are often 

sed instead in clinical routine ( Porz et al., 2014 ; Yuh et al., 2012 ).

or this reason, the development of accurate computer-aided au- 

omatic segmentation methods has become a major endeavour in 

edical image research ( Menze et al., 2014 ). Most methods, how- 

ver, depend on an explicitly defined target class, and are sensi- 

ive to the scale and quality of available labelled data, a sensitivity 

mplified by the many sources of complex variability encountered 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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n clinical neuroimaging. Under real-world distributional shift, such 

odels behave unpredictably, limiting clinical utility. 

In recent years, many machine learning algorithms have 

een proposed for automatic anomaly detection. To overcome 

he necessity of expensive labelled data, unsupervised methods 

ave emerged as promising tools to detect arbitrary pathologies 

 Baur et al., 2020b , 2018 ; Chen et al., 2020 ; Pawlowski et al., 2018 ),

elying mainly on deep generative models of normal data to de- 

ive a probability density estimate of the input data defined by the 

andscape of normality. Pathological features then register as de- 

iations from normality, avoiding the necessity for either labels or 

nomalous examples in training. The state of the art is currently 

eld by variational autoencoder (VAE)-based methods ( Baur et al., 

020a ) which try to reconstruct a test image as the nearest sam- 

le on the learnt normal manifold, using the reconstruction error 

o quantify the degree and spatial distribution of any anomaly. This 

pproach’s success is limited by the fidelity of reconstructions from 

ost VAE architectures ( Dumoulin et al., 2016 ), and unwanted re- 

onstructions of pathological features not present in the training 

ata, suggesting a failure of the model to internalise complex rela- 

ionships between remote imaging features. 

In an effort to address these problems, we propose a method 

or unsupervised anomaly detection and segmentation using trans- 

ormers, where we learn the distribution of brain imaging data 

ith an ensemble of Performers ( Choromanski et al., 2020 ). This 

tudy extends the details about the experiments that we per- 

ormed on Pinaya et al. (2021) , where we create and evaluate a 

obust method and compare its performance on synthetic and real 

atasets with recent state-of-the-art unsupervised methods. Be- 

ides that, we evaluate the performance of our method on 3D brain 

ata for anomaly segmentation and detection. 

.1. Related work 

Most previous unsupervised approaches can be categorized 

s reconstruction-based methods. These methods use models ca- 

able of outputting a “healed” version of the input data and 

elying on the pixel-wise residuals obtained from the differ- 

nce to identify anomalies and lesions. Previously, these meth- 

ds have used autoencoders (AE) ( Baur et al., 2018 ; Chen and 

onukoglu, 2018 ; Zimmerer et al., 2018 ), VAEs ( Baur et al., 

018 ; Zimmerer et al., 2019 ), generative adversarial networks 

 Schlegl et al., 2019 ), and vector quantized variational autoencoders 

VQ-VAE) ( Marimont and Tarroni, 2021 ; Wang et al., 2020 ). 

The closest studies to our own are the ones that rely on 

he VQ-VAE coupled with an autoregressive model with self- 

ttention to help to create the healed version of the data. 

ang et al. (2020) propose using a VQ-VAE to compress the in- 

ut image and then obtain the probability distribution of this la- 

ent code using a PixelSNAIL ( Chen et al., 2018 ). At the prediction

tage, if the latent code is out-of-distribution, they use the Pixel- 

NAIL to resample it. Similarly, Marimont and Tarroni (2021) use 

 PixelSNAIL, but they obtain multiple restorations by changing 

he temperature of the sampling operation and then weight them 

ased on it. However, recent computer vision studies have pointed 

o the superiority in modelling the probability density estimate of 

he data using autoregressive transformers compared to the Pixel- 

NAIL ( Esser et al., 2020 ; Jun et al., 2020 ). We believe that a pre-

ise estimation of the likelihood of the latent variables is essential 

o determine which values need to be resampled to obtain a higher 

uality reconstruction. 

Most of these previous studies rely only on the premise, com- 

on to reconstruction-based methods, that the raw pixel dif- 

erences between the source and its reconstruction indicate the 

egree of anomaly. This introduces dependence on the fidelity 

nd quality of the reconstructions, potentially resulting in resid- 
2 
al maps that lack sufficient specificity. Here, we propose an alter- 

ative approach where the probabilities obtained from the trans- 

ormer are used to identify the spatial characteristics of anomalous 

egions (more details in Section 2.4 ), decreasing dependence on 

he quality of the reconstructions of the underlying autoencoder. 

. Proposed method 

The core of the proposed anomaly detector is a highly ex- 

ressive transformer that learns the probability density function 

f healthy brain data. This requires us to express the contents of 

ach image as a sequence of observations on which transformers- 

ike models can operate. Owing to the size and complexity of 

rain imaging data, instead of learning the distributions on indi- 

idual pixels or voxels directly, we use the compact latent dis- 

rete representation of a vector quantised variational autoencoder 

 Razavi et al., 2019 ; Van Den Oord et al., 2017 ). This approach al-

ows us to compress the input data into a spatially smaller quan- 

ised latent representation, thus reducing the computational re- 

uirements and sequence length, making transformers feasible in 

euroimaging applications. 

.1. Vector quantized variational autoencoder 

In the first step, we trained our VQ-VAE model. The VQ-VAE 

 Razavi et al., 2019 ; Van Den Oord et al., 2017 ) is a model that

earns latent discrete representations of images ( Fig. 1 a). It com- 

rises an encoder E that maps observations x ∈ R 

D onto a latent 

mbedding space z ∈ R 

d×n z , where n z is the dimensionality of each 

atent embedding vector, D and d are the spatial dimensions of the 

bservations and latent embedding, respectively. An element-wise 

uantization is performed for each spatial code z e ∈ R 

n z onto its 

earest vector e k ∈ R 

n z , k ∈ 1 . . . K from a codebook, where K

enotes the vocabulary size of the codebook and k is selected us- 

ng k = argmi n j ‖ z e − e j ‖ 2 2 
. This codebook is learnt jointly with the 

ther model parameters. A decoder G reconstructs the observations 

ˆ  ∈ R 

D from the quantized latent space. We obtain the latent dis- 

rete representation z q ∈ R 

d by replacing each code by its index k 

rom the codebook. 

In our training, the VQ-VAE loss function is described using the 

ollowing: 

 V QVAE = L recons + L codebook + βL commit (1) 

 recons = ‖ x − ˆ x ‖ 

2 
2 (2) 

 codebook = ‖ sg [ z e ] − e k ‖ 

2 
2 (3) 

 commit = ‖ sg [ e k ] − z e ‖ 

2 
2 (4) 

here the operator sg denotes the stop-gradient operation, which 

asses zero gradients during backpropagation. Here, the L recons pe- 

alizes for the distance between the input and its reconstruction, 

 codebook penalizes the codebook for the distance between the en- 

odings z e and their nearest neighbours e k from the codebook, and 

 commit prevents the encodings from fluctuating too much, where 

controls the reluctance to change the code corresponding to the 

ncoder output. To speed up training, we used the exponential 

oving average updates for the codebook ( Van Den Oord et al., 

017 ), as a replacement for the codebook loss. 

.2. Transformers 

In the next step, we need an approach that explicitly models 

he likelihood function of the discrete elements from the latent 
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Fig. 1. Our method uses a VQ-VAE to learn the latent discrete representation of brain data. This latent representation is transformed into a 1D sequence that is learned by 

the autoregressive transformer. 
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epresentations. We chose to use autoregressive models, employ- 

ng a transformer-based approach because transformers have con- 

istently outperformed other autoregressive models (such as Pix- 

lCNN and PixelSNAIL) ( Esser et al., 2020 ; Jun et al., 2020 ). After

raining the VQ-VAE, we assumed an arbitrary ordering to trans- 

orm the latent discrete variables of healthy brains z q into a 1D 

equence s and learn its probability density function p(s ) using an 

utoregressive transformer ( Fig. 1 b). 

During transformer training, given indices s <i , the transformer 

earns to predict the distribution of the next indices p( s i ) = 

p( s i | s <i ) . This way, we can compute the likelihood of the full se- 

uence s as p(s ) = 

∏ 

i p( s i | s <i ) and we can maximize the training 

ata’s log-likelihood using the following loss function: 

 T rans f ormer = E x ∼p ( x ) [ −log p ( s ) ] (5) 

Since the transformer’s attention mechanism relies on the in- 

er products between all elements in the sequence, its compu- 

ational costs scale quadratically with the sequence length. Sev- 

ral “efficient transformers” have recently been proposed to re- 

uce this computational requirement ( Tay et al., 2020 ). Our study 

ses the Performer, a model which uses an efficient (linear) gen- 

ralized attention framework implemented by the FAVOR + algo- 

ithm ( Choromanski et al., 2020 ). This framework provides a scal- 

ble estimation of attention mechanisms expressed by random fea- 

ure map decompositions, making transformers feasible for longer 

equences, of the size needed for neuroimaging data. 

.3. Anomaly segmentation 

To segment an anomaly, first, we obtain the latent discrete rep- 

esentation z q from the VQ-VAE model. Next, we reshape z q into 

 sequence s , and we use the autoregressive transformer to ob- 

ain the likelihood of each latent variable value p( s i ) ( Fig. 2 a).

hese likelihood values indicate which latent variable has a low 

robability of occurring in normal data. Using an arbitrary thresh- 

ld (we empirically determined a threshold of 0.005 on a hold- 

ut set for the 2D experiments and a threshold of 0.001 for the 

D experiments), we then can select indices with the lowest likeli- 

ood values and create a “resampling mask” m ∈ { 0 , 1 } where m i = 

 1 , if p(s i ) ≤ thre shold ; 0 , othe rwise } . The resampling mask indi- 

ates which latent variables are abnormal and should be corrected 

o produce a “healed” version of the sequence ˆ s . For every position 
3 
 from ˆ s , if m i = 0 , then ˆ s i = s i ; if m i = 1 , then ˆ s i ∼ p( ̂ s i | ̂ s <i ) . This

ay, we replace the abnormal values with values sampled by the 

ransformer ( Fig. 2 b). After we obtain ˆ s , we use the inverse order- 

ng operation and reshape our 1-dimensional sequence back to the 

riginal z q shape (i.e., d). This discrete latent representation is then 

ecoded by G to obtain the reconstruction ˆ x ′ without the anoma- 

ies, in “healed” form ( Fig. 2 c). Finally, we obtain the pixel-wise 

esiduals from the difference | x − ˆ x ′ | . The anomalies ar e segmented 

y thresholding the highest residuals values. 

.4. Spatial information from the resampling mask 

Most previous anomaly detectors based on autoencoders are 

ighly dependent on the reconstructive fidelity of the autoencoder. 

owever, autoencoders (in special, variational autoencoders) are 

nown for creating blurry reconstructions at reasonable compres- 

ion rates ( Dumoulin et al., 2016 ). These blurry reconstructions can 

reate residual maps with high values in areas of the image with 

ne details, creating false positives and reducing the method speci- 

city. Since our method relies on VQ-VAE to obtain ˆ x ′ , it is sus- 

eptible to the same problem. To mitigate the influence of blurry 

econstructions, we exploit spatial information present in the “re- 

ampling mask”. 

The resampling mask m indicates the position in the sequence 

hat, according to the transformer, has a low likelihood of occur- 

ence in the dataset with healthy brain data. If we use the same 

nverse ordering and reshape operations that we applied to ˆ s , we 

btain a 2D (or 3D) coarse-grained information about the loca- 

ion of the anomalies in the input space (again, according to the 

ransformer). Since our VQ-VAE is relatively shallow, this latent 

pace mask preserves most of the spatial information of the in- 

ut data. As expected, it lacks precision when delineating the con- 

ours of the anomalies, but we can still use this spatial information 

rom the latent space to avoid mislabelling finely detailed regions. 

his is achieved by upscaling the reshaped resampling mask from 

he latent space resolution to the input data resolution. Next, we 

mooth the mask using a Gaussian filter, and finally, we multiply 

he mask with the residuals ( Fig. 3 ). This approach “cleans” areas 

f the residuals that were not specified as anomalous by our trans- 

ormer but where the reconstructions might be largely due to lack 

f VQ-VAE capacity. 
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Fig. 2. Anomaly segmentation method. A) the sequence obtained from the VQ-VAE is fed to the transformer with an “begin of sentence” token prepended. For each position 

of the sequence, the transformer will predict the value of the next element. Using the output probability of each real value, we apply a threshold (in this example, we use 

a threshold of 0.05) to identify which one is anomalous. A binary mask (the “resampling mask”) is created to indicate which value is below the threshold and should be 

corrected. B) For each position indicated in the resampling mask, we use the transformer to obtain values that have a higher probability of occurrence and we create a 

healed sequence. C) The healed 1-dimensional sequence is reshaped and processed by the VQ-VAE decoder to create a reconstruction without anomalies. 

Fig. 3. Using the spatial information from the resampling mask to improve segmentation. First, we reshape the resampling mask back to the format of the VQ-VAE latent 

space. Then, we upsample it to have the input image shape and we smooth it with a Gaussian filter. Finally, we use this mask to filter the residuals maps obtained from the 

difference between the inputted image and its healed reconstruction. 
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.5. Multiple views of the latent space through reordering 

The proposed resampling mask is not only used to select latent 

ariables to "heal" the abnormal regions, but also to mask noisy 

esiduals. The accuracy of our anomaly segmentation therefore 

eavily depends on its quality. To maximise it, we employ state-of- 

he-art autoregressive models based on transformers ( Esser et al., 

020 ; Jun et al., 2020 ; Ramesh et al., 2021 ; Yu et al., 2021 ). Be-

ides that, inspired by Choi et al. (2018) , we also made our method

ore robust using an ensemble of models. Using the same VQ- 

AE model, we trained an ensemble of autoregressive transform- 

rs. However, unlike Choi et al. (2018) , each of our transformers 

ses a different reordering of the latent representation to create a 

equence. 

The autoregressive nature of transformers means they will use 

he “past” latent variables s <i as “context” when predicting the 

robability of a latent value p( s i ) . However, the unidirectional, 

xed ordering of sequence elements disregards large parts of the 

rain until the sequence analysis is almost complete; in order 

ords, the transformers do not have access to the global informa- 

ion of the brain, and this can affects the accuracy when predict- 

ng the first elements of the sequence s . This way, anomalies will 

iffer in their identifiability with variations in the image parts by 

hich they are contextualised. For example, anomalies in the left 
n

4 
emisphere can be easier to identify if the model has access to a 

ontext where the homologous part of the right hemisphere is part 

f it than if it is only considering the background in the left side of

he head ( Fig. 4 ). Using different orderings, we compel each trans- 

ormer to learn different interactions between parts of the image 

ased on their availability in the model’s context. 

In our study, we focused on the raster scan class ordering. We 

btain different orderings by reflecting the input data in different 

ays, e.g., for 2D experiments, we reflected the image horizontally, 

ertically, and both ways at the same time. We also define our or- 

erings in inputs rotated 90 degrees, generating 8 different order- 

ngs from a single latent representation for the 2D experiments. 

ince the 3D experiments introduce many more combinations, we 

elected only 7 of them for our analysis. Each resampled latent 

epresentation is independently reconstructed, i.e., each model in- 

ependently creates a residuals map. We use the mean residual to 

egment the anomalies. 

.6. Image-wise anomaly detection 

So far, the proposed methodology has been focusing on seg- 

enting abnormalities. However, transformers can also be used 

o perform image-wise anomaly detection, i.e., detecting if an ab- 

ormality exists somewhere in the input data. To do so, we use 
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Table 1 

Performance of the methods on anomaly segmentation using the synthetic dataset. The performance is measured with best 

achievable DICE-score ( � DICE 	 ) and area under the precision-recall curve (AUPRC) on the test set. 

Method � DICE 	 AUPRC 

AE (Dense) [Baur, Denner, et al., 2020] 0.213 0.129 

AE (Spatial) [Baur, Denner, et al., 2020] 0.165 0.093 

VAE (Dense) [Baur, Denner, et al., 2020] 0.533 0.464 

f-AnoGAN [Schlegl et al., 2019] 0.492 0.432 

VQ-VAE [Van Den Oord et al., 2017] 0.457 0.346 

VQ-VAE + Transformer [Ours] 0.675 0.738 

VQ-VAE + Transformer + Masked Residuals [Ours] 0.768 0.808 

VQ-VAE + Transformer + Masked Residuals + 8 different orderings [Ours] 0.895 0.956 

Fig. 4. To predict the probability of the value in the red square, the transformer 

using the ordering of the left image (raster ordering, left → right, top → bottom) 

mostly uses the information of the image background as context (blue squares). If 

the transformer uses the ordering of the right image (raster ordering, right → left, 

bottom → top), it will have a richer context, with more information about the brain, 

that could help make a more accurate prediction about the value in the red square. 
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Table 2 

Performance of our method on anomaly segmentation using 

different classes of ordering, and the performance when us- 

ing an ensemble with all classes. 

Method � DICE 	 
8 different raster orderings 0.895 

8 different S-curve orderings 0.883 

8 different Hilbert curve orderings 0.890 

8 different random orderings 0.843 

32 different orderings 0.899 
he likelihood predicted by the transformers. Like the segmenta- 

ion approach, first, we obtain the 1D latent representation s . Then, 

e use the transformers to obtain the likelihood p(s ) of each 

atent variable. To obtain the log-likelihood image-wise, we com- 

ute logp(x ) = logp(s ) = 

∑ 

i logp( s i ) . Finally, we combined the pre-

icted log-likelihood of each transformer (per orientation/ordering) 

y computing the mean value. 

. Experiments 

.1. Experiment #1 – anomaly segmentation on 2D synthetic data 

First, to develop our method in a controllable scenario, where 

e have a large quantity of data, the delineation of the anomalies 

nd the ability to changes its characteristics, we performed our ex- 

eriments on 2D synthetic data. Training settings and model archi- 

ecture are described in the supplementary materials. 

Dataset : We utilised a subsample of the MedNIST dataset, 

here we used the 2D images of the “HeadCT” category to train 

ur VQ-VAE and transformer models. From the original 10,0 0 0 

eadCT images (each one with 6 4 ×6 4 pixels), we used 8,0 0 0

mages as the training set and 1,0 0 0 images for the validation 

et. The test set was comprised of 100 images contaminated 

ith sprites (i.e., synthetic anomalies) obtained from the dsprites 

ataset ( Matthey et al., 2017 ). We selected the sprites images that 

verlapped a significant portion of the head, and their values were 

et as 0 or 1. 

State-of-the-art models : We compared our models against 

tate-of-the-art methods (AE dense, AE spatial, f-AnoGAN and 

AE). We used a network architecture adapted from a recent com- 

arison study ( Baur et al., 2020a ) (more details presented in the 

upplementary materials). 
5 
Results : We measure the performance using the best achiev- 

ble DICE-score ( � DICE 	 ), which constitutes a theoretical upper- 

ound to a model’s segmentation performance and is obtained via 

 greedy search for the residual threshold, which yields the high- 

st DICE-score on the test set. We also obtained the area under 

he precision-recall curve (AUPRC) as a sensible measure for seg- 

entation performance under class imbalance. We compared our 

esults against state-of-the-art autoencoder models and f-AnoGAN. 

e also performed an ablation study of the proposed method, 

emonstrating the importance and the contribution of each step. 

As presented in Table 1 , the models without transformers ex- 

ibited a � DICE 	 no higher than 0.533 (VAE). We observed a per- 

ormance improvement when using the transformer to learn latent 

epresentations distributions and resample the latent values with 

ow probability, changing the VQ-VAE only performance from 0.457 

o 0.675. The spatial information in the resampling mask also con- 

ributed by attenuating the false positives created by the blurry 

econstructions ( Fig. 5 ), achieving a 0.768 score. Finally, the vari- 

bility of the autoregressive models with different orderings gave 

nother boost in performance, achieving a � DICE 	 = 0.895 for eight 

ifferent raster ordering models. 

Different ordering classes : We also analysed three other 

lasses of orderings ( Fig. 6 ): a S-curve order that traverses rows 

n alternating directions, a Hilbert space-filling curve order that 

enerates nearby pixels in the image consecutively, and a ran- 

om ordering where the sequence of latent variables was randomly 

orted. Similar to the raster class, we augmented the number of 

ossible orderings by reflecting and transposing the images, gener- 

ting in total 8 different orderings per class. 

In the Table 2 , we can observe the performance of each order- 

ng class. The orderings had a best achievable DICE-score varying 

rom 0.843 to 0.895. We can observe that the random ordering 

chieved the lowest performance. Since the random ordering may 

ot include the local data in the context to predict a latent value 

utoregressively, this might be the reason for the inferior perfor- 

ance as anomaly detector. 

Finally, we evaluated the performance when combining all the 

rderings. A small gain was observed when using an ensemble of 

ll four classes compared to the raster class only. In the following 

nalysis, we opt to use the raster ordering to reduce the time of 

raining and processing. 
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Fig. 5. Residual maps on the synthetic examples from the variational autoencoder and different steps of our approach. 

Fig. 6. Different orderings used to transform the 2D latent representation into a 1D 

sequence. 
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Fig. 7. Performance with synthetic anomalies with different intensity values. We 

also performed the analysis including an additive Gaussian noise into the anomalies. 

The performance is measure by the best achievable DICE-score. 
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Same ordering but different random seed : We assume that 

he different ordering used in the ensemble is essential to increase 

he robustness of our method because different models use dif- 

erent parts of the input data as the context in their predictions. 

o verify its importance, we trained eight models using the same 

aster ordering but with the model parameters with different ini- 

ial values (i.e., we used different random seed in each trial). We 

bserved a drop in best achievable DICE-score when using an en- 

emble of transformers using the same ordering but different ran- 

om seeds, from 0.895 to 0.826. 
6 
Anomaly intensity : We also evaluated the influence of the syn- 

hetic anomalies’ intensity and texture. For this, we varied the in- 

ensity of the sprites in the image from 0 to 1 (MedNIST images 

re normalized between 0-1 in our experiments) and measured the 

egmentation performance (best achievable DICE-score). We also 

erformed this approach by including an additive Gaussian noise 

ith a standard deviation of 0.2. From Fig. 7 , we can observe that 
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Fig. 8. Log-likelihood distribution of the classes of examples evaluated by our ensemble of models, in-distribution, near out-of-distribution (near OOD), and far out-of- 

distribution (far OOD). The model assigned higher log-likelihoods for examples similar to the training set, intermediary values for examples with small synthetic lesions and 

lower values for examples of different classes. 
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ur transformer-based method is more robust to the change in in- 

ensity with a sharp but narrow drop in performance when the 

nomaly intensity is closer to the tissue mean values. 

.2. Experiment #2 – image-wise anomaly detection on 2D synthetic 

ata 

Next, we evaluated our method to detect anomalous (out-of- 

istribution - OOD) images, again in a synthetic setting. 

Dataset : In this experiment, we used the same training set from 

xperiment #1. For evaluation, we used 1,0 0 0 images from the 

eadCT class as the in-distribution test set, the 100 HeadCT images 

ontaminated by sprites anomalies as the near out-of-distribution 

et (near OOD), and 1,0 0 0 images of each other classes from the 

edNIST dataset (“AbdomenCT”, “BreastMRI”, “CXR”, “ChestCT”, 

nd “Hand”) as the far out-of-distribution set (far OOD). 

Results : Using the log-likelihood image-wise (described in 

ection “Image-wise Anomaly Detection”) ( Fig. 8 ), we use the 

rea under the receiver operating characteristic curve (AUROC) 

s performance metric, with in-distribution test set and out- 

f-distribution being the labels. This metric permit to have a 

hreshold-independent evaluation. We also measure the AUPRC, 

here it provides a meaningful measure for detection performance 

n the presence of heavy class-imbalance. Finally, we also com- 

uted the false positive rate of anomalous examples when the true 

ositive rate of in-distribution examples is at 80% (FPR80), 95% 

FPR95) and 99% (FPR99). 

Table 3 shows that our transformer-based method achieved an 

UROC of 0.921 and 1.0 0 0 for near OOD and far OOD, respectively.

his is an improvement compared with a method based on the er- 

or of reconstruction obtained from a VAE model, where the re- 

onstruction error was used to compute the performance metrics. 

General-purpose VQ-VAE for anomaly detection and segmen- 

ation : In this analysis, we evaluated how our method performs 

hen using a VQ-VAE trained using all classes from the MedNIST 

ataset. The idea was to try to mitigate the influence of the en- 

oder in the anomaly detection tasks and just use it to compress 

he input data. By training the VQ-VAE with all classes, we try to 

educe its ability to map an OOD image to a “healed” latent repre- 
7 
entation. If the VQ-VAE corrects the latent representation during 

ts encoding part, the transformer will not find the anomaly area 

s a low likelihood area, affecting the segmentation performance. 

To train our general purpose VQ-VAE, we added 8,0 0 0 images 

rom each other classes to our training set and 1,0 0 0 images to 

ur validation set. The ensemble of transformers was trained us- 

ng only the HeadCT images. This configuration achieves slightly 

etter performance for anomaly detection (AUROC = 0.932 for near 

OD and AUROC = 1.0 0 0 for far OOD), and a small decrease in best

chievable DICE-score for anomaly segmentation ( � DICE 	 = 0.886). 

.3. Experiment #3 – anomaly segmentation on real 2D 

euroimaging data 

Finally, we evaluate our method’s performance on real-world 

esion data. In this experiment, we focus on evaluating its perfor- 

ance using 2D slices. Training settings and model architecture are 

escribed in the supplementary materials. 

MRI Datasets : In our experiment, we used FLAIR images from 

our datasets: the UK Biobank (UKB) ( Sudlow et al., 2015 ), the 

hite Matter Hyperintensities Segmentation Challenge dataset 

WMH) ( Kuijf et al., 2019 ), the Multimodal Brain Tumor Im- 

ge Segmentation Benchmark (BRATS) ( Bakas et al., 2018 , 2017 ; 

enze et al., 2014 ), and the Multiple Sclerosis dataset from the 

niversity Hospital of Ljubljana (MSLUB) ( Lesjak et al., 2018 ). 

The UKB is a study that aims to follow the health and well- 

eing of 50 0,0 0 0 volunteer participants across the United King- 

om. From these participants, a subsample was chosen to collect 

ultimodal imaging, including structural neuroimaging. Here, we 

sed an early release of the project’s data comprising 33,318 par- 

icipants. More details about the dataset and imaging acquisition 

an be found elsewhere ( Alfaro-Almagro et al., 2018 ; Elliott and 

eakman, 2008 ; Miller et al., 2016 ; Sudlow et al., 2015 ). The

K Biobank dataset has available a mask for hyperintensities 

hite matter lesions obtained using BIANCA ( Griffanti et al., 2016 ; 

enkinson et al., 2012 ). We selected the 15,0 0 0 subjects with the 

owest lesion volume to train our models (14,0 0 0 for training set 

nd 1,0 0 0 for validation set). 
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Table 3 

Performance of the methods on image-wise anomaly detection using the synthetic dataset. The performance is measured using 

the area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), and false- 

positive rates (FPR). For the AUROC and AUPRCs, higher is better; for the FPRs, lower is better. 

AUROC AUPRC FPR80 FPR95 FPR99 

vs. far OOD classes 

AE (Dense) [Baur, Denner, et al., 2020] 0.894 0.978 0.260 0.530 0.677 

AE (Spatial) [Baur, Denner, et al., 2020] 0.785 0.953 0.506 0.845 0.881 

VAE (Dense) [Baur, Denner, et al., 2020] 0.889 0.977 0.237 0.579 0.738 

f-AnoGAN [Schlegl et al., 2019] 0.918 0.983 0.135 0.471 0.596 

VQ-VAE [Van Den Oord et al., 2017] 0.976 0.995 0.013 0.147 0.425 

Our approach 1.000 1.000 0.000 0.000 0.001 

vs. near OOD class 

AE (Dense) [Baur, Denner, et al., 2020] 0.648 0.141 0.589 0.880 0.982 

AE (Spatial) [Baur, Denner, et al., 2020] 0.663 0.142 0.526 0.838 0.926 

VAE (Dense) [Baur, Denner, et al., 2020] 0.702 0.185 0.541 0.746 0.995 

f-AnoGAN [Schlegl et al., 2019] 0.717 0.191 0.517 0.743 0.857 

VQ-VAE [Van Den Oord et al., 2017] 0.759 0.251 0.488 0.780 0.879 

Our approach 0.921 0.707 0.102 0.409 0.885 
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The BRATS challenge is an initiative that aims to evaluate meth- 

ds for the segmentation of brain tumours by providing a 3D MRI 

ataset with ground truth tumour segmentation annotated by ex- 

ert board-certified neuroradiologists. Our study used the 2018 

ersion of the dataset composed by the MR scans of 420 patients 

ith glioblastoma or lower grade glioma. The images were ac- 

uired with different clinical protocols and various scanners from 

ultiple (n = 19) institutions. Note, the available images from the 

RATS dataset were already skull stripped. 

The WMH dataset is an initiative to directly compare automated 

MH segmentation techniques ( Kuijf et al., 2019 ). The dataset was 

cquired from five different scanners from three different vendors 

n three different hospitals in the Netherlands and Singapore. It 

s composed by 60 subjects where the WMH were manually seg- 

ented according to the STandards for ReportIng Vascular changes 

n nEuroimaging (STRIVE) ( Wardlaw et al., 2013 ). 

The MSLUB dataset is a publicly available dataset for the vali- 

ation of lesion segmentation methods. The dataset consists of 30 

mages from multiple sclerosis patients that were acquired using 

onventional MR imaging sequences. For each case, a reference le- 

ion segmentation was created by three independent raters and 

erged into a consensus. This way, we have access to a precise 

nd reliable target to evaluate segmentation methods. Full descrip- 

ion regarding data acquisition and imaging protocol can be found 

t Lesjak et al. (2018) . 

MRI Pre-processing : We pre-process our images to be nor- 

alized in a common space. For this reason, all scans and le- 

ion masks were registered to MNI space using rigid + affine 

ransformation. This registration was performed using the Ad- 

anced Normalisations Tools (ANTs - version 2.3.4) ( Avants et al., 

011 ). Since our anomaly segmentation method relies on a train- 

ng set composed of a population with a low occurrence of le- 

ions and anomalies, we tried to minimize the occurrence of le- 

ions on the transformers’ training set. For this reason, after the 

raditional MRI pre-processing, we used the NiftySeg package (ver- 

ion 1.0) ( Prados et al., 2016 ) to mitigate the influence of the le-

ions present in our training set. Using the seg_FillLesions function 

nd the lesion maps supplied by the UKB dataset, we in-painted 

he few white matter hyperintensities present in the FLAIR im- 

ges using a non-local lesion filling strategy based on a patch- 

ased inpainting technique for image completion. Since the VQ- 

AE performs mainly a dimensionality reduction in our method, 

t was trained using the normalized dataset without the Nifty- 

eg inpainting. We believe that the presence of the lesions in 

he VQ-VAE training set is important to avoid the encoder per- 

orming any “healing” during the encoding process. If the en- 
8 
oder heals the latent code by itself, the transformer would not 

e able to detect the presence of a lesion. This missing detection 

ould result in a resampling mask that filters out the encoder 

orrection creating false negatives. In Experiment #2, we show 

hat the presence of a lesion and anomalous classes in the VQ- 

AE training set does not prejudice the performance of the seg- 

entation. Finally, we selected four axial slices (z = 89, 90, 91, 

2) per FLAIR image and, we centre cropped these slices to have 

he dimensions of 224 ×224 pixels. Before feeding the images to 

he models, we independently scale their values to be between 0 

nd 1. 

State-of-the-art Models: We used the same unified network ar- 

hitecture from Baur, Denner, et al. (2020a) for the autoencoder- 

ased and f-AnoGAN approaches (more details presented in the 

upplementary materials). 

Results : Our method showed a better performance than the 

ther approaches in all datasets ( Fig. 9 and Table 4 ). Compared to 

he numbers in Baur, Denner, et al. (2020a) , our autoencoder-based 

odels got a lower performance on the common dataset (MSLUB), 

here they achieved an best achievable DICE-score of 0.271 with 

he AE (dense), 0.154 with the AE (spatial), and 0.323 with the VAE 

dense). We believe that the discrepancy comes mostly from their 

ignificant post-processing as presented in Table 8 of this refer- 

nce. Differences might also arise from the difference in resolution, 

s the DICE score is not invariant to resolution. 

Post-processing Impact : Similar to Baur et al. (2020) , we ver- 

fied the performance of the methods using the prior knowledge 

hat multiple sclerosis lesions would appear as positive residuals 

s these lesions appear as hyper-intense in FLAIR images. We as- 

umed the same for the white matter hyperintensities. Using only 

he residuals’ positive values as a post-processing step, we ob- 

erved an improvement in the autoencoders-based methods, the 

-AnoGAN method, and our approach ( Table 5 ). 

Impact of Mitigating Lesions in the Training set : In our pre- 

rocessing, we in-painted the white matter hyperintensity of the 

raining set using the NiftySeg package to simulate completely 

esion-free data. Our method without this step exhibited a drop 

n the best achievable DICE-score, from 0.232 to 0.051 in the UKB 

ataset, from 0.378 to 0.264 in the MSLUB dataset, from 0.429 to 

.349 in the WMH dataset, and from 0.759 to 0.677 in the BRATS 

ataset. We believe that the highly expressive transformers can 

earn from the few white matter hyperintensities present in the 

riginal dataset and associate a higher probability of occurrence, 

ecreasing detection performance. 
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Fig. 9. Residual maps on the real lesions from the variational autoencoder, the f-AnoGAN, and our transformer-based method. 
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.4. Experiment #4 – anomaly segmentation on real 3D 

euroimaging data 

Three-dimensional imaging is widely used in research and clin- 

cal practice, and it allows us to obtain essential information about 

he global condition of the brain. Since brain lesions and patho- 

ogical deviations have a 3D structure, the ability of an anomaly 

etector to explore the third dimension is crucial for its success. 

owever, the use of 3D deep neural networks is challenging in na- 

ure as it results in increased computational requirements. In this 

xperiment, we evaluate our segmentation method’s performance 

n 3D real-world lesion data. Training settings and model architec- 

ure are described in the supplementary materials. 

Dataset and MRI Pre-processing : We used the high-resolution 

olumes from the pre-processed FLAIR images from Experiment 

3, where each volume has 192 ×224 ×192 voxels. We use the same 

raining set from the UKB for our models, where we use the data 

ersion corrected by NiftySeg to train our transformers. In contrast 

ith the previous experiment, we use a percentile scaling (using 

ercentile 1 and 99) to scale the values of the volumes to be be-

ween 0 and 1. 

Results : Our method showed a better performance than the 

ariational autoencoder approach in all datasets ( Table 6 ). Com- 

ared with the results from Experiment #3 (2D data), we observed 

hat our method had higher performance on the UKB data (the 

ame dataset from which we extracted the training set) while pre- 

o

9 
enting a lower performance in the other datasets. As reported in 

revious studies, 3D models are more difficult to generalise well. 

or example, in Bengs et al. (2021) , the authors rely on several reg- 

larisation strategies to make their unsupervised anomaly detec- 

ors achieve higher DICE scores with a 3D architecture compared 

o their 2D architecture. 

.5. Experiment #5 – image-wise anomaly detection on real 3D 

euroimaging data 

In this last experiment, we evaluated our method to identify 

ubjects with a diagnosis on their hospital inpatient records from 

ubjects with no reported diagnosis in their records. 

Dataset : In this experiment, we use only the subjects from the 

KB. We used the diagnosis codes that each UKB participant has 

ecorded across all their hospital inpatient records (fields 41202-0 

nd 41204-0 “Diagnoses – main and secondary ICD 10”) to select 

he subjects. From the test set from Experiment #4, we selected 

he subjects that had the diagnosis for multiple sclerosis (diagno- 

is code “G35”), resulting in 60 participants. As “healthy control”

roup, we created a balanced group (for age and gender) by select- 

ng 60 subjects from the test set that did not have any inpatient 

ecord and had a lesion size smaller than 50 0 0 voxels according 

o the UKB lesion masks. In this experiment, we verify the perfor- 

ance of our models to detect anomalies using only the likelihood 

btain from the transformers (similar to Experiment #2), and we 
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Table 4 

Performance on anomaly segmentation using real 2D lesion data. We compared our models against the state-of-the-art au- 

toencoder models and f-AnoGAN model based on the architecture proposed in Baur, Denner, et al. (2020) . We measured the 

performance using the theoretically best possible DICE-score ( � DICE 	 ) and AUPRC on each dataset. 

UKB Dataset � DICE 	 AUPRC 

AE (Dense) [Baur, Denner, et al., 2020] 0.016 0.005 

AE (Spatial) [Baur, Denner, et al., 2020] 0.054 0.015 

VAE (Dense) [Baur, Denner, et al., 2020] 0.016 0.006 

f-AnoGAN [Schlegl et al., 2019] 0.060 0.025 

VQ-VAE [Van Den Oord et al., 2017] 0.028 0.005 

VQ-VAE + Transformer [Ours] 0.079 0.080 

VQ-VAE + Transformer + Masked Residuals [Ours] 0.104 0.082 

VQ-VAE + Transformer + Masked Residuals + different orderings [Ours] 0.232 0.159 

MSLUB Dataset 

AE (Dense) [Baur, Denner, et al., 2020] 0.041 0.016 

AE (Spatial) [Baur, Denner, et al., 2020] 0.061 0.026 

VAE (Dense) [Baur, Denner, et al., 2020] 0.039 0.016 

f-AnoGAN [Schlegl et al., 2019] 0.034 0.012 

VQ-VAE [Van Den Oord et al., 2017] 0.040 0.016 

VQ-VAE + Transformer [Ours] 0.097 0.050 

VQ-VAE + Transformer + Masked Residuals [Ours] 0.234 0.130 

VQ-VAE + Transformer + Masked Residuals + different orderings [Ours] 0.378 0.272 

BRATS Dataset 

AE (Dense) [Baur, Denner, et al., 2020] 0.159 0.094 

AE (Spatial) [Baur, Denner, et al., 2020] 0.329 0.215 

VAE (Dense) [Baur, Denner, et al., 2020] 0.173 0.107 

f-AnoGAN [Schlegl et al., 2019] 0.243 0.167 

VQ-VAE [Van Den Oord et al., 2017] 0.197 0.125 

VQ-VAE + Transformer [Ours] 0.288 0.226 

VQ-VAE + Transformer + Masked Residuals [Ours] 0.328 0.292 

VQ-VAE + Transformer + Masked Residuals + different orderings [Ours] 0.537 0.555 

WMH Dataset 

AE (Dense) [Baur, Denner, et al., 2020] 0.073 0.024 

AE (Spatial) [Baur, Denner, et al., 2020] 0.150 0.054 

VAE (Dense) [Baur, Denner, et al., 2020] 0.068 0.022 

f-AnoGAN [Schlegl et al., 2019] 0.048 0.017 

VQ-VAE [Van Den Oord et al., 2017] 0.100 0.036 

VQ-VAE + Transformer [Ours] 0.205 0.109 

VQ-VAE + Transformer + Masked Residuals [Ours] 0.269 0.158 

VQ-VAE + Transformer + Masked Residuals + different orderings [Ours] 0.429 0.320 

Table 5 

Performance on anomaly segmentation using post-processing step. 

UKB Dataset � DICE 	 
AE (Dense) + post-processing [Baur, Denner, et al., 2020] 0.079 

AE (Spatial) + post-processing [Baur, Denner, et al., 2020] 0.054 

VAE (Dense) + post-processing [Baur, Denner, et al., 2020] 0.071 

f-AnoGAN + post-processing [Schlegl et al., 2019] 0.112 

VQ-VAE + post-processing [Van Den Oord et al., 2017] 0.046 

VQ-VAE + Transformer + Masked Residuals + different orderings + post-processing [Ours] 0.297 

MSLUB Dataset 

AE (Dense) + post-processing [Baur, Denner, et al., 2020] 0.106 

AE (Spatial) + post-processing [Baur, Denner, et al., 2020] 0.067 

VAE (Dense) + post-processing [Baur, Denner, et al., 2020] 0.106 

f-AnoGAN + post-processing [Schlegl et al., 2019] 0.057 

VQ-VAE + post-processing [Van Den Oord et al., 2017] 0.077 

VQ-VAE + Transformer + Masked Residuals + different orderings + post-processing [Ours] 0.465 

WMH Dataset 

AE (Dense) + post-processing [Baur, Denner, et al., 2020] 0.166 

AE (Spatial) + post-processing [Baur, Denner, et al., 2020] 0.151 

VAE (Dense) + post-processing [Baur, Denner, et al., 2020] 0.161 

f-AnoGAN + post-processing [Schlegl et al., 2019] 0.110 

VQ-VAE + post-processing [Van Den Oord et al., 2017] 0.143 

VQ-VAE + Transformer + Masked Residuals + different orderings + post-processing [Ours] 0.441 
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lso use the lesion size predicted by our segmentation algorithm. 

e used the residual maps from the validation set (10 0 0 subjects) 

o determine the best threshold to apply to the residual mask and 

reate binary masks. Since we include two variables to perform 

nomaly detection, we are also training a one-class support vec- 

or machine (OC-SVM) on the validation set. 
10 
Results : Using only the log-likelihood image-wise from the 

ransformers, our method achieved an AUCROC of 0.698 when clas- 

ifying the subjects with multiple sclerosis diagnosis in their hos- 

ital inpatient records from subjects with no reported diagnosis 

ode. Our performance increase to an AUCROC of 0.866 when we 

nclude the lesion segmentation component ( Fig. 10 ). 
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Table 6 

Performance of the methods on anomaly segmentation using real 3D lesion data. We measured the performance using the 

theoretically best possible DICE-score ( � DICE 	 ) on each dataset. 

UKB Dataset � DICE 	 
VAE (Dense) [Baur, Denner, et al., 2020] 0.018 

VQ-VAE + Transformer + Masked Residuals + different orderings [Ours] 0.368 

MSLUB Dataset 

VAE (Dense) [Baur, Denner, et al., 2020] 0.021 

VQ-VAE + Transformer + Masked Residuals + different orderings [Ours] 0.133 

BRATS Dataset 

VAE (Dense) [Baur, Denner, et al., 2020] 0.192 

VQ-VAE + Transformer + Masked Residuals + different orderings [Ours] 0.617 

WMH Dataset 

VAE (Dense) [Baur, Denner, et al., 2020] 0.021 

VQ-VAE + Transformer + Masked Residuals + different orderings [Ours] 0.133 

Fig. 10. Anomaly detection image-wise on 3D data. In this experiment, we use the log-likelihood obtained from the transformers and the lesion size from the binary mask 

predicted by our models to train a one-class SVM and classify subjects with multiple sclerosis diagnosis in their records as out of distribution. 
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. Conclusion 

Automatically determining the presence of lesions and delin- 

ating their boundaries is essential to the introduction of com- 

lex models of rich neuroimaging features in clinical care. In 

his study, we propose a novel transformer-based approach for 

nomaly detection and segmentation that achieves state-of-the- 

rt results in all tested tasks when compared with competing 

ethods. Transformers are making impressive gains in image anal- 

sis, and here we show that their use to identify anomalies 

olds great promise. We hope that our work will inspire fur- 

her investigation of the properties of transformers for anomaly 

etection in medical images, the development of new network 

esigns, exploration of a wider variety of conditioning infor- 

ation, and the application of transformers to other medical 

ata. 
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