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INTRODUCTION
Arterial spin labeling (ASL) is a powerful noncontrast MRI 
technique for evaluation of cerebral blood flow (CBF). A 
key parameter in single-delay ASL is the choice of post-
label delay (PLD), which refers to the timing between the 
labeling of arterial free water and measurement of flow into 
the brain. Multidelay ASL (MDASL) utilizes several PLDs 
to improve the accuracy of CBF calculations using arterial 
transit time (ATT) correction. This approach is particularly 
helpful in situations where ATT is unknown, including 
young subjects and slow-flow conditions. In this article, we 
discuss the technical considerations for MDASL, including 
labeling techniques, quantitative metrics, and technical 
artefacts. We then provide a practical summary of key 
clinical applications with real-life imaging examples in the 
pediatric brain, including stroke, vasculopathy, hypoxic-
ischemic injury, epilepsy, migraine, tumor, infection, and 
metabolic disease.

TECHNICAL CONSIDERATIONS
ASL is a non-contrast MRI technique used for the measure-
ment of perfusion-related parameters.1,2 In its most simple 
incarnation, it uses a preparation sequence upstream from 
the tissue of interest to invert the inflowing arterial water 
spins, and measures its arrival downstream. The rate at 
which the labeled blood is delivered to the tissue is called 
cerebral blood flow (CBF), measured in standard units of 
mL/min/100g. A typical ASL measurement consists of two 
consecutive acquisitions, the first one performed following 

labeling of the water spins, and the second without such 
labeling.3 The subtraction of both acquisitions leads to a 
perfusion-weighted image, which needs further processing 
to be transformed into a quantitative CBF map. Impor-
tantly, the small inherent signal-to-noise ratio (SNR) of 
the method—a direct result of a subtraction between 
two acquisitions—can typically be compensated by using 
multiple repetitions or dedicated 3D-based acquisition 
methods, based on a combination of a rapid acquisition 
scheme (typically EPI or spiral imaging) with a fast-spin 
echo to rapidly cover large volumes.3

There are several ways to perform labeling of the arterial 
spins, and we will discuss the three most promising tech-
niques in the brain. The first and most intuitive approach 
is called pulsed arterial spin labeling or PASL, and consists 
of positioning a large inversion volume upstream from 
the tissue of the brain, typically covering the basal portion 
of the skull and part of the neck (Figure 1a).4,5 With this 
method, all spins in the arteries within this volume will be 
inverted at once, and the perfusion measurement will typi-
cally be performed after a certain postlabel delay (PLD) or 
inversion time ﻿‍TI ‍ (Figure 1b). Finally, to control the exact 
timing of the labeling pulse, extra saturation volumes can 
be added after a time ‍TI1‍.6 A second method involves repet-
itively applying a series of small volumes, forming a thin 
labelling plane of typically about 1 cm in thickness over a 
relatively long time, using reduced flip angles in a method 
dubbed pseudocontinuous arterial spin labeling or pCASL 
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(Figure 1c & d).7 This method works by inverting the spins while 
they progress through these small volumes in a pseudo adia-
batic fashion. It has several advantages over the PASL method, 
in that it allows for a much longer bolus of arterial labeling 
and ensures that all spins are labeled as close to the tissue of 
interest as possible, thereby theoretically increasing the SNR of 
the ASL sequence by a factor ‍

√
2‍.3 Finally, a third method has 

more recently been developed, based on a completely different 
labeling scheme, in which arterial water spins are labeled (either 
saturated or inverted) based on their velocities (Figure 1e & f). 
This method is therefore dubbed velocity-selective arterial spin 
labeling, or VSASL.8 The main advantage of this ASL sequence 
over the other two is that spins can be labeled much closer to the 
tissue of interest, thereby drastically reducing the arterial transit 
time. [Figure 1]

A consensus paper by the ISMRM Perfusion Study Group and 
European Consortium for ASL in Dementia3 describes in more 
detail all aspects of the first two techniques for both acquisition 
and processing steps to produce CBF maps. It also provides a 
clear set of parameters to be used to get a good first approxi-
mation of CBF measurements in multiple clinical conditions. 
Briefly, the measured difference image ‍∆M = MC −ML‍ needs 
to be scaled by a proton-density map of the tissue ‍M0‍ and a series 
of other parameters to produce a CBF map using the following 
equations, depending on whether PASL or pCASL is used:

‍CBF = 6000 λ
2α

∆M
M0

e
TI
T1b
TI1 ‍[mL/min/100g], for PASL [1]

‍

CBF = 6000 λ
2α

∆M
M0

e
PLD
T1b

T1b
(
1−e

− τ
T1b

)

‍

[mL/min/100g], for PCASL 

[2]

In both equations, the factor 6000 allows to set the units in the 
historical values of mL per min per 100g of tissue. With volumes 
in both the numerator and denominator, the resulting units are 
in units of [1/Time], which is by definition a rate. In addition, 
both equations are very similar and differ only in the last part. 
The term ‍

λ
2α‍ scales the blood flow by the blood : brain partition 

coefficient λ and the labeling efficiency α. The main data being 
scaled is the ‍

∆M
M0 ‍ term, representing the difference between both 

images normalized by the proton density-weighted image ‍M0‍ . 
In both equations, ‍T1b‍ is the blood ‍T1‍ relaxation time, while TI 
and TI1 are defined in Figure 1b an PLD and τ in Figure 1d.

One of the main assumptions for these equations to be valid, 
and for images to truly reflect the amount of blood delivered 
to the brain, is that the PLD needs to be long enough for spins 
to be delivered via the microvasculature into the tissue.9 This 
is the greatest problem with simple single-delay ASL methods: 
while this assumption can be accepted in general for most clin-
ical applications without vessel disease, it is often incorrect in 
subjects of young or old age and various slow-flow conditions, 
e.g. arterial occlusion or abnormal circulation.10 For that reason, 
it can be preferable to use multiple acquisitions at various PLDs 
to completely characterize the whole dynamics of the arterial 
blood bolus when it passes through the brain. This approach is 
referred to as multidelay ASL (MDASL), for which each MRI 
vendor has developed a slightly different labeling approach. 
Of note, VSASL is not typically used with multiple delays, as 
labeling is already performed very close to the tissue of interest 
throughout the brain.

Labeling techniques
Look-Locker technique
The Look-Locker encoding method was the first to be devel-
oped11,12 and is based on a simple PASL scheme, followed by 
a series of equally spaced acquisitions, using a small flip angle 
together with a multislice gradient echo EPI readout. Gener-
ally, this approach is relatively rapid as it allows for acquisition 
of multiple ﻿‍TI ‍s in one acquisition, but presents with significant 
drawbacks compared to standard ASL sequences: 1) much lower 
SNR, due to a small flip angle readout to save magnetization until 
later time points; 2) SNR is further reduced by a readout that is 

Figure 1. Geometrical representation (a,c,e) and pulse 
sequence diagrams (b,d,f) for various ASL labeling schemes. 
Labeling components of pulse sequences are shown in red. 
For PASL (a), labeling is volume selective and occurs in a sin-
gle instant (b). The labeling duration is set by the additional 
saturation pulse applied so as to cut off the tail of the labeled 
blood bolus. The time TI is selected to allow the labeled spins 
to enter into the acquisition volume. For pCASL, the labeling 
volume is restricted to a thick plane (c), applied over a long 
labeling duration t (d). A corresponding postlabel delay (PLD) 
is included to allow the labeled spins to clear the intravas-
cular space. For velocity-selective ASL (VSASL), the pulse 
sequence includes a saturation pulse, and two labeling mod-
ules (also applied over a very short amount of time), which are 
non-spatially selective, but will select all the flowing spins (red 
in (e)). These can then be detected after a post-labelling delay 
(PLD) (f), in a way similar to pCASL (d).
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typically multislice rather than 3D; 3) limited imaging volume, 
due to the trade-off between number of inversion times and 
coverage. A key advantage is complete kinetic characterization 
of the bolus, including bolus arrival time (BAT) to tissue, which 
enables accurate quantification.13 This method is currently 
provided by Philips Healthcare (Best, Netherlands). It usually 
requires up to 50 averages to provide satisfactory SNR, which 
with a typical TR of 3 s, results in a total scan time of 5 min. 
[Figure 2a–b]

Multi-TI
Another way of implementing MDASL is by acquiring several 
single-delay ASL images with either a PASL or pCASL labeling 

scheme.15 As 3D readouts are much more SNR-effective, this 
method does not require many repetitions for each ﻿‍TI ‍.16 Poten-
tial disadvantages of this sequence are: 1) since each measure-
ment is completely independent, there may be subject motion 
between different ﻿‍TI ‍s; 2) generally, it takes up to 1 min per single 
‍TI ‍ to achieve adequate SNR, which forces a compromise between 
SNR and number of inversion times. This method also allows 
for quantitative assessment of the BAT.15 This method is imple-
mented by Siemens Healthineers (Enrlangen, Germany) using 
either labeling and 3D-GRASE readout. [Figure 2c–d]

Hadamard encoding
A final approach to MDASL is Hadamard encoding,14 which 
takes advantage of the multiple acquisitions required for suffi-
cient SNR to vary the labeling scheme during successive aver-
ages. Mathematical processing can then be used to synthesize 
post-hoc ASL images at various inversion times. Because of the 
improved SNR of this method over standard multi-TI,14 the 
entire sequence can usually be contained within a few minutes. 
This method seems to provide the best compromise to maximize 
both coverage and number of delays. However, the data require 
special pre-processing, which increases the risks of failure if 
any of the datasets is corrupted. This technique is implemented 
by GE Healthcare (Chicago, IL), with the bolus split into seven 
subboli of different temporal labelling and control sequences. 
A minimum of 8 averages is needed to reconstruct all images 
with varying PLDs. Each of the eight images can be added or 
subtracted in a combinatorial fashion to recreate ASL-weighted 
images at various PLDs. For example, the ASL-weighted image 
corresponding to bolus seven can be reconstructed from all data 
using the following equation:

	
‍∆M

(
bolus7

)
= Im1− Im2− Im3 + Im4− Im5 + Im6 + Im7− Im8‍

� [3]

[Figure 2e–f]

Quantitative metrics
While single-delay ASL permits assessment of CBF, MDASL 
enables calculation of several additional perfusion metrics. By 
following the bolus of labeled arterial blood through tissue, the 
arterial transit time (ATT) can be reported as the time in ms at 
which the signal ﻿‍∆M ‍ appears in the tissue of interest. In single-
delay ASL, perfusion-weighted signal can be absent or subop-
timal depending on the choice of times TI or PLD. With MDASL, 
the acquisition of perfusion-weighted images at multiple time 
points enables calculation of an ATT-corrected CBF, in which 
some of the assumptions for Equations [1] and [2] are now 
fulfilled. Multiple methods can be utilized to fit the measured 
signal and calculate perfusion parameters using models17,18 or 
model-free methods,13 analogous to other clinical perfusion 
techniques such as dynamic susceptibility contrast (DSC).19 
ASL uses blood water as an endogenous tracer, which distributes 
freely throughout the entire tissue intravascular and extravas-
cular space. Perfusion-weighted signal comes from the arte-
rial vasculature, primarily the distal vascular tree within small 

Figure 2. Multidelay ASL images acquired using the Look-
Locker technique (a), Multi-TI technique (c), and Hadamard 
encoding (e). The pulse sequence timings are represented on 
the right hand side. For the Look-Locker technique (b), a sin-
gle acquisition is needed to acquire all images, using a small 
flip angle α. For the Multi-TI technique, the same sequence 
is basically repeated multiple times after various inversion 
times TIn. Finally in the case of Hadamard encoding (here as 
an example using Walsh-ordered encoding steps14), for each 
acquisition, a different series of label (red) and control (white) 
steps is applied, and a numerical algorithm allows to recon-
struct individual perfusion-weighted images at different ΔTIs. 
Figure 2c, courtesy of M. Guenther. Figure 2e adapted from14 
with permission.
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arterioles prior to reaching the capillary system. The majority of 
the labeled water is extracted on first passage, where it almost 
instantaneously exchanges with extravascular tissue water. More 
advanced models utilize arterial cerebral blood volume (ACBV) 
as a scaling factor in units of mL/100g.13,17 Estimation of total 
cerebral blood volume (CBV) requires an endogenous or exog-
enous tracer, such as the gadolinium-based contrast agents used 
in DSC, to quantify signal from the intravascular space.19

TECHNICAL ARTEFACTS
MDASL considerably improves the accuracy and reproduc-
ibility of ASL in patient populations for which ATT is often 
unknown.20–22 However, the more basic models for CBF calcu-
lation do not correct for intravascular signal, which can lead to 
incorrect overestimation of perfusion values due to the large 
signal present in arteries.10 Many of the algorithms implemented 
on clinical platforms are indeed quite simple, such that the auto-
matically generated perfusion values need to be assessed with 
caution. One of the main assumptions for the model equations 
to be valid, and for ASL images to truly reflect the amount of 
blood delivered to the brain, is that the PLD needs to be long 
enough for spins to arrive in the tissue of interest.9 This is the 
greatest problem with single-delay ASL methods: while an 
average PLD assumption is acceptable for many clinical appli-
cations without vascular disease, it is often incorrect in subjects 
who are very young or old, as well as for slow-flow disorders, e.g. 
arterial stenosis or occlusion.10 For that reason, it can be prefer-
able to use multiple acquisitions at various PLDs to fully charac-
terize the dynamic profile of the arterial blood bolus as it passes 
through the brain.

In MDASL, transit time correction weights CBF toward longer 
PLDs, and is therefore optimally utilized in conditions of slow 
flow.23–27 In young children, particularly newborns and infants, 
the overall flow velocity is slow and it becomes difficult to esti-
mate at what time a bolus of arterial blood will enter the brain.28 
Pathologic conditions such as stroke, vasculopathy, and hypoxic-
ischemic injury can also decrease overall flow. The arterial 
transit artefact (ATA) is identified by the prolonged retention of 
spins within the arterial vasculature at PLDs when they should 
normally undergo capillary exchange.29,30 The use of longer 
labels makes the MDASL approach very important for accurate 
flow quantification in steno-occlusive disorders. In situations 
involving elevated flow, e.g. ictal epilepsy or infection, transit 
time correction may artifactually mask perfusion differences. 
This quantification error can be minimized by utilizing more 
complex models that also account for ACBV.17

As for any clinical sequence, there are practical tradeoffs between 
time and information. Different techniques for MDASL may 
result in longer imaging times, or conversely lower SNR for 
the same imaging time since measurements are split between 
different PLDs. Other artefacts, such as head positioning, 
motion, and susceptibility, are analogous to single-delay ASL and 
can be further complicated by differences between individual 
acquisitions.30–32 A number of protocol optimization techniques 
have been developed to reduce artefacts and improve contrast in 
MDASL.33–41

CLINICAL APPLICATIONS
Stroke
Acute stroke can be arterial or venous in aetiology. Arterial 
infarcts are caused by stenosis or occlusion of arteries supplying 
brain tissue, reducing cerebral blood flow and leading to energy 
failure with cytotoxic parenchymal injury. The severity of cere-
bral ischemia has been linked to ATA and CBF measurements on 
ASL,42,43 and accuracy improves with multidelay approaches.44–47 
MDASL metrics have also been correlated with other perfusion 
imaging modalities including DSC MRI, computed tomography 
(CT) perfusion, single photon emission computed tomog-
raphy (SPECT), and positron emission tomography (PET).48–50 
[Figure 3]

Venous infarcts result from thrombosis within the deep and/or 
superficial draining cerebral veins, including the dural venous 
sinuses. This results in outflow obstruction with blood-brain 
barrier disruption and vasogenic edema. Over time, rising tissue 
pressures can lead to parenchymal hemorrhage and secondary 
arterialization of stroke due to inflow impairment. On ASL, 
the “bright sinus” sign is a harbinger of trapped arterial spins 
proximal to the venous obstruction and can resolve following 
antithrombotic therapy.51–53 MDASL helps to more accurately 
quantify perfusion metrics in the setting of slow flow. [Figure 4]

Vasculopathy
Moyamoya disease is an obliterative vasculopathy that causes 
progressive stenosis of cerebral vessels, most commonly the supr-
aclinoid internal carotid arteries. When associated with a predis-
posing condition, such as neurofibromatosis, Down syndrome, 
sickle cell anaemia, or radiation, it is known as moyamoya 

Figure 3. Arterial stroke. (a) Acute right MCA infarct with 
abrupt arterial cutoff and restricted diffusion (arrows). MDASL 
shows prolonged ATT with arterial transit artefact (arrows), 
indicating slow flow with attempted leptomeningeal collat-
eralization. Transit time-corrected CBF is decreased (arrows) 
beyond the area of core infarct. This DWI-ASL mismatch indi-
cates tissue at risk (ischemic penumbra), which can theoret-
ically be rescued by early recanalization. In the absence of 
intervention, this region is likely to progress to completed 
infarct. (b) Subacute left MCA infarct, with edema evolving to 
encephalomalacia (arrows). MDASL shows minimal attempted 
collateralization with arterial transit artefact on ATT map and 
matched decrease in CBF (arrows). Transit time correction 
improves estimation of normal CBF and homogeneity across 
the field-of-view.
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syndrome. Compensatory formation of multiple tortuous 
collateral vessels in the lenticulostriate, basal, and leptomenin-
geal circulations produces the characteristic “puff-of-smoke” 
appearance and “ivy sign” on angiography. By far, the most well-
established application of MDASL is for quantifying perfusion 
in moyamoya patients, since flow through collateral vessels is far 
slower and more disorganized than in the normal arterial tree. 
As a result, short-delay ASL performed at conventional PLDs 
can yield a false-positive impression of ischemia. Longer labels 
are required to more accurately characterize the delayed inflow 
to brain parenchyma through collateral pathways.54,55 In both 
preoperative and postoperative moyamoya patients, MDASL 
has been used to effectively characterize the degree of collaterals, 
tissue oxygenation, and cerebrovascular reserve (CVR) using 
acetazolamide or other vasoactive challenges.56–58 These metrics 
have also been benchmarked against other perfusion imaging 
modalities.59–63 [Figure 5]

Flow dynamics of other vasculopathies affecting the large, 
medium, and small vessels can also be characterized using 
MDASL. In comparison with the adult population, where such 
cases are often attributed to atherosclerosis or drug use, pedi-
atric vasculopathies tend to be milder and in occasionally revers-
ible. Major etiologies include connective tissue disorders, blood 
dyscrasias, inflammatory/infectious conditions, and vascular 
dysautoregulation.64–72 [Figure 6]

Hypoxic-Ischemic injury
Hypoxic-ischemic injury (HII) has different imaging mani-
festations, depending on the severity and duration of cerebral 
flow compromise, as well as the timing of imaging after injury. 
Age of is also very important: children experience higher flow 
to actively developing brain regions, thus makes these areas 

Figure 4. Venous stroke. (a) Acute venous infarct in patient 
with genetic malformations and coagulopathy. Bifrontal 
hematomas with layering fluid-blood levels, cortical and 
medullary venous thrombosis (arrows). MDASL with tran-
sit time correction shows elevated bifrontal ACBV and CBF, 
reflecting combined venous congestion and inflammation. (b) 
Chronic right anterior temporal hemorrhagic venous infarct 
(black asterisks) with thrombus in the right vein of Labbe and 
transverse sinus (arrows). MDASL shows decreased flow to 
the right anterior temporal lobe (white asterisks) with high 
venous signal in the transverse sinus (arrows). Transit time 
correction better quantifies flow to parenchyma.

Figure 5. Moyamoya disease. (a) Right moyamoya disease 
with high-grade stenosis of the right carotid terminus and 
branches (yellow arrow), with incomplete reconstitution of 
distal branches via leptomeningeal collaterals. In this slow-
flow condition, single-delay ASL markedly underestimates 
CBF. MDASL more accurately calculates CBF by accounting 
for slow flow through collateral vessels at long PLDs. At rest, 
there is increased ATT and decreased CBF in the right MCA 
distribution (arrows). Following intravenous acetazolamide 
challenge, maximal vasodilation induces diffusely elevated 
perfusion with reduction of ATT and CBF defects. This indi-
cates intact residual cerebrovascular reserve, meaning that 
the patient is not at immediate risk of ischemia, and surgery 
can be delayed. (a) Down syndrome with right moyamoya 
post pial synangiosis (arrows). Chronic white matter ischemia 
and lacunar infarcts are present in the right hemisphere, with 
overlying enhancing leptomeningeal collaterals. seven con-
secutive PLDs demonstrate slow retrograde flow through 
the synangiosis (arrows) into the right MCA territory. There is 
progressive regional improvement in right hemispheric perfu-
sion defects, with residual borderzone hypoperfusion. MDASL 
shows persistently increased ATT and decreased CBF to the 
right external vascular borderzones, better quantified after 
transit time correction. (b) Bilateral moyamoya disease with 
high-grade ICA occlusions, post bilateral synangiosis (arrows) 
communicating with leptomeningeal vessels. Multifocal lacu-
nar infarcts are present, with numerous lenticulostriate and 
thalamoperforator moyamoya collaterals. MDASL shows 
patent synangioses with decreased ATT and increased CBF 
(arrows). Slow flow through synangiosis and collateral vessels 
is reflected in transit time-corrected CBF. There is residual 
hypoperfusion to the external vascular borderzones with ele-
vated ATT and decreased CBF.
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selectively vulnerable in the setting of profound HII.73 In cases 
of mild or partial HII, overall decreased cerebral inflow results in 
watershed infarcts at the junctions of cerebral artery territories. 
On ASL, this manifests as the “borderzone” sign with symmetri-
cally symmetric wedge-shaped areas of hypoperfusion along the 
anterior/middle and middle/posterior cerebral artery border-
zones.74,75 With severe and prolonged HII, critical and highly 
metabolic structures are affected including the cerebral cortex, 
basal ganglia, hippocampi, and cerebellum. Global anoxic injury 
may occur in the setting of cardiac arrest, attempted hanging, 
motor vehicle accidents, abusive head injury, and iatrogenic 
etiologies.76–79

MDASL is highly useful in assessing newborns and infants, who 
have low CBF values at baseline. Overall flow velocities may be 
further reduced in the setting of perinatal asphyxia and other 
birth complications.28,80 In preterm infants, the cerebral circula-
tion and neuroglial progenitor cells are immature, such that isch-
emic injury impacts the draining medullary veins and germinal 
matrix remnants. This can lead to white matter injury and intra-
ventricular hemorrhage, respectively. In term infants, the actively 
developing corticospinal tracts and basal ganglia are selectively 
vulnerable.81–84 Therapeutic hypothermia is the clinical stan-
dard for neuroprotection, and is intended to minimize rebound 
hyperperfusion leading to secondary energy failure with brain 
necrosis. ASL is a useful biomarker for quantifying hyperperfu-
sion injury to vulnerable structures, and the resulting ischemic 
steal from other areas of brain.84 Neonatal abstinence syndrome 
refers to infants with in utero opioid exposure from maternal 
drug use. At birth, infants suffer from opioid withdrawal auto-
nomic, motor, and sensory dysregulation. MDASL perfusion 
metrics are elevated both globally and regionally, and correlate 
with abnormalities on neurologic examination.85 [Figure 7]

Figure 6. Other vasculopathies. (a) Sickle cell anaemia with 
scattered lacunar infarcts and radiating linear white matter 
FLAIR hyperintensities (yellow arrows). MDASL with transit 
time correction shows increased ATT and decreased CBF to 
the bilateral vascular watershed zones, between major arterial 
territories and within deep white matter (white arrows). (b) 
Posterior reversible encephalopathy with edema in the deep 
gray nuclei, parieto-occipital cortex and white matter (yellow 
arrows). MDASL shows increased ATT and decreased CBF to 
the bilateral posterior watershed zones with arterial transit 
artefact (white arrows). Transit time correction increases sen-
sitivity for seizure-induced cortical hyperperfusion, with the 
watershed hypoperfusion areas less apparent.

Figure 7. Hypoxic-ischemic injury.(a) Watershed infarcts 
in patient with coagulopathy and septic shock. DWI shows 
bilateral external watershed infarcts (yellow arrows). MDASL 
shows mildly elevated ATT and decreased CBF in the external 
vascular borderzones (white arrows). (b) Acute anoxic injury 
post-cardiac arrest with diffuse cerebral edema and diffusion 
restriction noted throughout gray and white matter. MDASL 
with transit time correction shows prominent rebound hyper-
perfusion with diffusely elevated CBF and ACBV. (c) Preterm 
birth injury with Grade 3 intraventricular hemorrhage involv-
ing the bilateral caudothalamic grooves (arrows), choroid 
plexi, and ventricular ependyma with hydrocephalus. There 
is immature sulcation and patchy white matter injury with 
faint periventricular T2 hyperintense signal. MDASL shows 
decreased periventricular white matter perfusion, with more 
accurate estimation following transit time correction. (a) 
Term birth injury. ADC map shows mild diffusion restriction 
in the posterior limbs of internal capsules and ventrolateral 
thalami (yellow arrows), as well as T2 hyperintense white 
matter signal in the external vascular borderzones. MDASL 
shows elevated ATT to the external vascular borderzones 
(white arrows). CBF shows mild rebound hyperperfusion to 
the bilateral basal ganglia and corticospinal tracts (black 
arrows), representing areas of perinatal selective vulnerabil-
ity. Transit time correction improves estimation of brain per-
fusion. (b) Neonatal abstinence syndrome in an infant born to 
an opioid-dependent mother. MDASL is useful in accurately 
quantifying neonatal brain perfusion, which is typically low at 
birth. Increased CBF at birth has been observed both globally 
and regionally in NAS babies relative to normal controls. Opi-
oids alter CBF depending on baseline cerebrovascular tone, 
such that acute drug withdrawal likely impacts both cerebral 
autoregulation and autonomic activity.
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Epilepsy
Epilepsy is a complex disorder characterized by recurrent unpro-
voked seizures with synchronized neuronal hyperexcitability. 
The International League Against Epilepsy has established a 
framework for classification of the epilepsies. Seizures can be 
focal in onset, with localizing neurologic symptoms; or general-
ized with diffuse involvement of the brain. Etiologies are diverse 
and include structural, vascular, infectious, genetic, metabolic, 
and immune causes.86–88 In the pediatric population, congenital 
brain malformations are an important diagnostic consideration. 
Focal cortical dysplasia (FCD) is a cause of medically refractory 
focal epilepsy in children that is challenging yet important to 
diagnose early, as appropriate intervention may enable seizure-
free outcomes.89

Diagnostic evaluation of epilepsy consists of clinical, electro-
physiologic, and imaging workup to identify the epileptogenic 
zone (EZ) responsible for seizure generation, which if surgi-
cally targeted leads to seizure freedom. Multimodal imaging 
approaches are used to lateralize and/or localize the EZ, including 
anatomic imaging and some combination of ASL, DSC, SPECT, 
and PET.90–93 Concordance between modalities increases the 
likelihood of seizure-free surgical outcomes. Perfusion imaging 
findings in epilepsy depend on seizure pattern and timing: in 
focal epilepsy, the seizure focus shows hypoperfusion in the 
interictal period and hyperperfusion in the peri-ictal period, 
with statistical subtraction increasing sensitivity for EZ local-
ization.93 If imaging is performed after seizure onset, spreading 
hyperperfusion can be seen throughout the ipsilateral cerebral 
hemisphere. Associated limbic system connectivity can manifest 
with CBF increases in the ipsilateral hippocampus and thalamus 
(Papez circuit) and contralateral cerebellum (corticopontocer-
ebellar pathway).94 In patients with status epilepticus, ongoing 
seizure activity may yield lead to diffuse cerebral hyperperfu-
sion with excitotoxic complications.95,96 In patients with chronic 
epilepsy, MDASL can be helpful for longitudinal CBF quantifi-
cation to assess treatment response (both medical and surgical). 
[Figure 8]

Migraine
Migraine is a neurological condition characterized by recurrent 
headaches and associated symptoms that can include nausea, 
vomiting, photophobia, phonophobia, aphasia, vision changes, 
and weakness or paresthesias. Migraine presents in distinct 
phases: prodrome (premonitory phase); aura (focal neurolog-
ical deficits); headache (cephalalgic phase); and postdrome 
(recovery phase). There is a familial and genetic association, 
with hemiplegic migraine linked to mutations in ion channel 
and transport proteins. The theorized pathogenesis relates to 
cortical spreading depression with cascading effects on neural 
and vascular function. In patients with migraine aura, there is 
characteristic decreased perfusion on ASL, with accompanying 
vasoconstriction in some cases. Patients experience transient 
stroke-like symptoms corresponding to the affected brain terri-
tory. Neurologic symptoms subsequently resolve in the ceph-
alalgic phase, with rebound vasodilation leading to headache 
symptoms and elevated perfusion on ASL.97–100 Triptans are a 
family of serotonin receptor agonists used as abortive treatments 

for migraine. Therapeutic effectiveness can be monitored by 
ASL.101 [Figure 9]

Trauma
Traumatic brain injury (TBI) has varying clinical manifestations 
depending on the mechanism, severity, and duration of injury. 
Anatomic imaging can be negative in mild TBI, though ASL may 
reveal perfusion abnormalities suggestive of occult cerebrovas-
cular dysregulation. Low-impact injuries are associated with 
cerebral contusions, which tend to be greatest along the inferior 
frontal and anterior temporal lobes, adjacent to the rigid falx 
cerebri and sphenoid wings. In high-speed motor vehicle acci-
dents, acceleration-deceleration injuries can yield diffuse axonal 

Figure 8. Epilepsy. (a) Cortical dysplasia of the right parieto-
occipital region, showing disorganized sulcation with irregular 
gray-white junction (dotted circle). MDASL performed in inter-
ictal phase demonstrates corresponding focally decreased 
flow to the area of dysplasia (arrows). Because seizures are 
a high-flow phenomenon, transit time correction does not 
significantly alter the CBF results in normal brain. The area 
of hypoperfusion is present, though less apparent due to 
weighting towards longer PLDs. (b) Sturge-Weber of the left 
posterior quadrant with enhancing dysplastic veins in the sub-
arachnoid space, parenchymal atrophy and gyriform calcifi-
cations (arrows). MDASL shows increased ATT and decreased 
CBF in the affected region (arrows). Transit time correction 
leads to better and more homogeneous flow quantification 
in normal brain. (c) Infantile spasms in West syndrome. Ana-
tomic imaging is normal. MDASL shows diffusely elevated 
perfusion to cerebral cortex and basal ganglia. Findings are 
similar after transit time correction in this high-flow condition. 
(d) Chronic epilepsy in patient with Down syndrome. There is 
mild global volume loss and white matter signal abnormality. 
MDASL shows prolonged ATT and decreased CBF throughout 
the brain, more so along the external vascular borderzones. 
Transit time correction improves estimation of brain perfusion.
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injury with shearing of the gray-white matter junction and deep 
structures. MDASL is helpful for quantifying cerebrovascular 
derangements in addition to the macrostructural findings. Multi-
modal advanced imaging approaches can help provide imaging 
biomarkers that better predict patient outcomes in TBI.101 
Abusive head trauma can also be associated with anatomic and 
perfusion deficits, commonly related to head-shaking and/or 
strangulation mechanisms.78 [Figure 10]

Tumor
Although DSC is the clinical standard for tumor perfusion eval-
uation, the use of intravenous gadolinium contrast is contra-
indicated in certain situations—e.g. renal failure with risk of 
nephrogenic systemic fibrosis, pregnant patients in whom 
contrast crosses the placental barrier. Especially in children, 
there are concerns regarding gadolinium tissue deposition, espe-
cially when the clinical indication merits multiple follow-up MRI 

examinations. The use of MDASL provides quantitative perfu-
sion metrics for CBF and ACBV, which correlates with tumor 
histology, grade, and and histopathologic vascular density in 
multiple studies.102–105 ASL metrics also correlate well with DSC 
and other perfusion imaging modalities.106 [Figure 11]

Infection/Inflammation
Central nervous system infection can be caused by viral, bacterial, 
fungal, and parasitic organisms. Potential complications include 
meningitis, cerebritis, brain abscess, septic thrombophlebitis, 

Figure 9. Migraine. (a) Migraine aura. Transient right facial 
droop and receptive (Wernicke) aphasia. MDASL shows ele-
vated ATT and decreased CBF to the left motor strip and 
posterior quadrant in a non-arterial distribution, with cor-
responding cortical venous engorgement (arrows). Transit 
time correction improves estimation of overall brain perfu-
sion, though the hypoperfused areas are less apparent. (b) 
Migraine cephalalgia. Several days of right headache with left 
homonymous hemianopsia. MDASL with transit time correc-
tion shows rebound hyperperfusion with elevated CBF and 
ACBV to the right posterior quadrant, including visual cortex 
(arrows). There is also decreased deoxyhemoglobin content 
within cortical veins on SWI. (c) Therapy-resistant right hemi-
plegic migraine. Subtle fullness and restricted diffusion of the 
left cerebral cortex, with decreased cortical venous suscep-
tibility (arrows). MDASL shows rebound hyperperfusion with 
decreased ATT And increased CBF throughout the left cere-
bral hemisphere (arrows).

Figure 10. Trauma. (a) Concussion in high school athlete 
with persistent language difficulties. Anatomic MRI is normal. 
MDASL shows heterogeneous perfusion to gray and white 
matter, better quantified after transit time correction. (b) 
Low-impact trauma from fall with bifrontal hemorrhagic cer-
ebral contusions (arrows). MDASL shows increased ATT and 
decreased corrected CBF (arrows). (c) Diffuse axonal injury 
from motor vehicle accident with comminuted fractures, 
subgaleal and extraaxial hemorrhage, pontine hematoma 
(arrows), and diffuse cerebral edema. MDASL shows heter-
ogeneously elevated cerebral perfusion adjacent to hem-
orrhage, and hypoperfusion in areas of edema. (d) Diffuse 
axonal injury from motor vehicle accident. Microstructural 
shear injury involves the gray-white junction and deep white 
matter (arrows). MDASL shows heterogeneously reactive cor-
tical flow and hypoperfusion to areas of injury.
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and mycotic aneurysm. ASL is helpful in assessing areas of 
hyperemia or ischemia due to direct parenchymal or vascular 
involvement.107,108 Inflammatory and demyelinating conditions 
can also disrupt cerebral blood flow, presenting with hyperemia 
in acute disease, CBF normalization in the subacute stage, and 
low flow in chronic lesions.109 [Figure 12]

Metabolic
Inherited metabolic disorders are genetic conditions that impair 
normal energy metabolism. Hundreds of different mechanisms 
exist, including failure of energy production or utilization, accu-
mulation of toxic intermediary metabolites, and challenges with 
complex molecule processing and transport. Depending on the 
affected gene(s) and mutational severity, the clinical presentation 
can vary widely in terms of age and timing of onset, symptoms, 

and organ systems affected. Episodes of illness or stress can 
precipitate or exacerbate energy decompensation.110 ASL can 
be useful for distinguishing metabolic stroke-like episodes from 
vascular stroke. In general, metabolic crises present with one 
or more areas of hyperperfusion in non-vascular territories., 
thought to represent transient energy failure with vascular reac-
tivity and blood-brain barrier breakdown. Perfusion abnormal-
ities can be seen in the preclinical stage of disease and may help 
predict cognitive deficits.111–115 [Figure 13]

CONCLUSIONS
MDASL is a clinically robust technique for noncontrast evalu-
ation of cerebral blood flow. MRI labeling approaches vary by 

Figure 13. Metabolic disease. (a) Batten disease with patchy 
white matter signal abnormality, global cerebral and cerebel-
lar volume loss. MDASL shows prolonged ATT in the exter-
nal vascular borderzones, with heterogeneous decrease in 
white matter CBF. (b) Nonketotic hyperglycinemia with dif-
fuse white matter edema and restricted diffusion in bilateral 
corticospinal tracts (yellow arrows). MDASL with transit time 
correction shows elevated ACBV and CBF in the basal ganglia 
and corticospinal tracts (white arrows), suggesting primary 
energy failure. There is low perfusion to the edematous white 
matter.

Figure 11. Tumor. (a) Ependymoma of fourth ventricle and left 
foramen of Luschka, with heterogeneous internal enhance-
ment. MDASL shows elevated CBF within tumor, more accu-
rately quantified following transit time correction. (b) Right 
cerebellar pilocytic astrocytoma with solid & cystic compo-
nents. MDASL shows mildly elevated CBF within solid tumor, 
and decreased CBF within cystic components. (c) Recurrent 
disseminated medulloblastoma with left frontal lobe paren-
chymal and leptomeningeal metastases, demonstrating 
enhancement and surrounding vasogenic edema (yellow 
arrows). MDASL shows elevated perfusion within the metas-
tases, on a background of posttreatment encephalomalacia. 
Tumoral flow is better detected after transit time correction 
(white arrows).(d) Metastatic rhabdomyosarcoma with infil-
trative cortical enhancement and vasogenic edema of left 
parietal lobe. MDASL shows elevated perfusion within the 
metastasis, and decreased perfusion in the areas of edema.

Figure 12. Infection. (a) Streptococcus pneumonia meningitis 
with leptomeningeal enhancement and right frontal subdural 
empyema (arrows). MDASL shows diffusely elevated cortical 
perfusion accompanying the meningeal inflammation, better 
estimated after transit time correction. (b) Group B strepto-
coccus meningitis. Mild leptomeningeal enhancement with 
left subdural empyemas (yellow arrows). MDASL shows heter-
ogeneously elevated flow (CBF and ACBV) along the left dura 
mater and cerebral cortex (white arrows).
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vendor and include Look-Locker, multi-TI, and Hadamard 
encoding approaches. Compared to single-delay ASL, MDASL 
enables more accurate and reproducible quantification of CBF 
and other perfusion parameters, such as ATT and ACBV. Due to 
practical limitations in imaging time and SNR, as well as poten-
tial overestimation with simpler models, MDASL is most helpful 
in young subjects and slow-flow conditions. We review major 
clinical applications in the pediatric brain including stroke, 
vasculopathy, hypoxic-ischemic injury, epilepsy, migraine, 
tumor, infection, and metabolic disease.
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