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dien 10, Atticus Stovall 3,11, Stéphane Momo Takoudjou 9,12, Liubov Volkova 13, Chris Weston 13, Verginia6

Wortel 10 and Kim Calders 1
7

1CAVElab, Computational and Applied Vegetation Ecology, Department of Environment, Faculty of Bioscience Engi-8

neering, Ghent University, Ghent, Belgium9

2PLECO, Plants and Ecosystems, Faculty of Science, Antwerp University, Wilrijk, Belgium10

3Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA11

4Department of Geography, University College London, London, UK12

5 NERC NCEO-UCL13

6 Independent developer of free software - Aachener Str. 5d, 56072 Koblenz, Germany14
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Abstract26

1 Improving the global monitoring of aboveground biomass (AGB) is crucial for forest management to be27

effective in climate mitigation. In the last decade, methods have been developed for estimating AGB from28

terrestrial laser scanning (TLS) data. TLS-derived AGB estimates can address current uncertainties in29

allometric and Earth observation (EO) methods that quantify AGB.30

2 We assembled a global dataset of TLS scanned and consecutively destructively measured trees from a31

variety of forest conditions and reconstruction pipelines. The dataset comprised 391 trees from 111 species32

with stem diameter ranging 8.5 to 180.3 cm and AGB ranging 13.5 – 43,950 kg.33

3 TLS-derived AGB closely agreed with destructive values (bias < 1%, concordance correlation coefficient34

of 98%). However, we identified below-average performances for smaller trees (< 1,000 kg) and conifers. In35

every individual study, TLS estimates of AGB were less biased and more accurate than those from allometric36

scaling models (ASMs), especially for larger trees (> 1,000 kg).37

4 More effort should go to further understanding and constraining several TLS error sources. We currently lack38

an objective method of evaluating point cloud quality for tree volume reconstruction, hindering the development39

of reconstruction algorithms and presenting a bottleneck for tracking down the error sources identified in our40

synthesis. Since quantifying AGB with TLS requires only a fraction of the efforts as compared to destructive41

harvesting, TLS-calibrated ASMs can become a powerful tool in AGB upscaling. TLS will be critical for42

calibrating/validating scheduled and launched remote sensing initiatives aiming at global AGB mapping.43
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Aboveground biomass, terrestrial laser scanning, carbon, Quantitative Structure Modelling, 3D reconstruction, allometric45
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1 A decade of terrestrial laser scanning for forest aboveground biomass47

estimation48

Forests can help mitigate climate change (by sequestering carbon through forest growth and subsequent storage in the49

soil), but loss of forest carbon (e.g. from deforestation) can also accelerate climate change. Improved land-use and forest50

management aimed at curbing forest loss (e.g. through mechanisms such as Reducing Emissions from Deforestation51

and forest Degradation (REDD+)) require accurate data sources to enable monitoring of forest carbon stocks at a global52

scale. Remote sensing enables systematic forest mapping and monitoring, focusing on quantifying woody aboveground53

biomass (AGB). To estimate AGB from satellite data, field estimates are required, which are conventionally generated54

2



through measurements of diameter at breast height (DBH) and, if possible, tree height (TH), wood density, and tree species55

information are collected in the field. These measurements are then converted to AGB using allometric scaling models56

(ASMs).57

New developments in earth observation (EO) demand a substantial increase in the accuracy and precision of field58

reference AGB. This is particularly important given a suite of new and forthcoming EO missions, such as NASA’s GEDI59

(Dubayah et al., 2020), NASA-ISRO SAR (NISAR) (Rosen et al., 2015), ICESat-2 (Narine et al., 2019) and the forthcoming60

ESA BIOMASS (Quegan et al., 2019) missions. While these will all collect data sensitive to 3D forest structure and biomass,61

they do not directly measure AGB, and thus rely heavily on field data. The calibration and validation of EO mission biomass62

products requires field AGB which is currently only available through ASM estimates (Duncanson et al., 2019, 2021). Yet,63

ASMs can be problematic for a number of reasons (Duncanson et al., 2017), mostly pertaining to the model selection64

uncertainties (Picard et al., 2015), the general lack of traceability and assumptions of metabolic scaling that may or may65

not be valid (Zhou et al., 2021). In addition, the current method to obtain reference AGB for ASM calibration involves66

destructively harvesting trees. This is expensive, invasive and not always ethically or legally possible. Consequently, ASMs67

always have to rely on limited calibration data with questionable spatial and tree size representativity.68

In recent years, a number of studies have demonstrated that terrestrial laser scanning (TLS) can be an alternative,69

more accurate and precise approach to estimate AGB at tree and stand scale. TLS allows rapid capture of a highly detailed70

3D point cloud of the forest environment (Calders et al., 2020). Several algorithms have been developed that enclose the71

tree point cloud to create a volume reconstruction that can be converted to an estimate of AGB using wood basic density72

(ρbasic; ratio of oven-dry mass and green volume). These algorithms can be classified into two types: (1) voxel techniques73

that partition the tree point cloud in cubes or so-called voxels and estimate volume based on the fraction of filled voxels74

(Bienert et al., 2014); and (2) Quantitative Structure Modelling (QSM) methods that aim at reconstructing the full woody75

volume of trees by fitting geometrical primitives through the tree point cloud (Hackenberg et al., 2014; Raumonen et al.,76

2013). Some methods employ a hybrid method of both voxel filling and geometric fitting (Stovall et al., 2017).77

2 TLS-derived AGB validation experiments: a synthesis78

Destructive measurements of AGB are useful for developing ASMs but can also be used for benchmarking TLS-based79

AGB methods. Here, we pooled and re-analysed the results of ten TLS-derived biomass studies that were validated80

using destructive tree harvesting and, together, cover all forested continents (Table 1 and Fig. 1). This joint destructive81

dataset features 391 trees from 111 species (20 undetermined trees) with DBH ranging 8.5 to 180.3 cm, corresponding82

to a reference AGB range of 14 kg – 43,950 kg. TLS scans were acquired with five different scanner types. Two QSM83

methods (TreeQSM (Raumonen et al., 2013) and SimpleForest (Hackenberg et al., 2015)) and one hybrid voxelisation84

method (outer hull modelling (Stovall et al., 2017)) were used to obtain volume estimates. All studies were conducted85

in forest environments, except Kükenbrink et al. (2021) who sampled urban trees. All studies applied a tree-centered86

scanning approach sensu Wilkes et al. (2017), except for the data collected in Demol et al. (2021b) who applied a grid-wise87

procedure. All foliage conditions were represented, that is, coniferous needle-on/off, and broadleaf leaf-on/off. Point cloud88
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post-processing differed between studies. Most notably, there was diversity in the coregistration algorithms, the filtering89

procedures, whether or not leaves were stripped from the point clouds and which leaf stripping methods were used, and90

the downsampling procedures. Finally, tree volume from TLS was converted to AGB using basic wood density.91
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Figure 1: Site location of the destructive harvesting experiments included in the meta-analysis. Data from
Hackenberg et al. (2015); Calders et al. (2015); Stovall et al. (2017); Lau et al. (2019); Kükenbrink et al. (2021);
Demol et al. (2021a); Momo Takoudjou et al. (2018); Burt et al. (2021). GDT = Gonzalez de Tanago et al.
(2018).

Reference AGB was obtained either by direct weighing, by measuring the outer diameters and length of tree segments,92

or by a combination of the two. Dry matter content (DMC; the ratio of the dry mass and fresh mass of a wood sample) was93

used to convert fresh weightings to AGB. The formula of Smalian (Goulding, 1979) was used to infer tree volume from94

diameter/length measurements, which was converted to AGB with ρbasic. The specificity of the wood properties varied from95

being sourced from databases (Gonzalez de Tanago et al., 2018; Stovall et al., 2017) over DBH- and species-dependent96

local models (Demol et al., 2021a; Calders et al., 2015) to volume- and mass-weighed per-tree values (Burt et al., 2021).97

AGB was also predicted with species- or genus-specific, or pantropical ASMs, using DBH and if available tree height as98

predictors (Table 2). If required in the model, we used the same value for ρ is in the original study. We calculated bias (b)99

as the sum of the residual AGB divided by the sum of the harvested AGB. Additionally, we tested if harvested (reference)100

AGB and ASM/TLS-derived AGB corresponded with the 1:1 line by computing the significance of the coefficients of a linear101

regression of the form: AGBASM - AGBharvest = α + β * AGBASM and AGBTLS - AGBharvest = α + β * AGBTLS (Valbuena et al.,102

2017; Piñeiro et al., 2008). Models correspond to the 1:1 line if the null hypotheses H0 : α = 0 and H0 : β = 1 are not103

rejected.104

3 Results from the synthesis105

Across these 10 studies, TLS-derived AGB was in accordance with destructive values (Fig. 2). The total destructively106

assessed AGB was 1,174 Mg versus a nearly unbiased TLS estimate of 1,183 Mg (b of +0.75% and the RMSE of 1140 kg).107
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The concordance correlation coefficient (CCC) between destructive and TLS AGB was 98.3%. For the individual studies b108

ranged from -9.5% to +22%. For every study, the CCC was > 96%, except for the data from Demol et al. (2021b) (CCC of109

85%) and Lau et al. (unpublished) (CCC of 88%).110
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Figure 2: Comparison of destructively assessed aboveground biomass (AGB) and estimates from terrestrial
laser scanning (left) and allometric scaling models (right). Each point represents one tree. Points are coloured
by study (see Table 1 for a method overview of each study). For visualisation purposes the axes are truncated
in B (up to 10 Mg) and C (up to 1 Mg). The 95% confidence interval of a linear regression of the form AGBharvest
= a + b * AGBTLS/ASM truncated to the same limits is added in grey.
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The TLS method performed less well for conifers (n = 69, b = +16%, CCC = 88%) than for broadleaves (n = 322, b =111

+0.47%, CCC = 98.2%). Conifers in the dataset were in general much smaller than broadleaf trees (mean AGB of 312112

kg and 3,600 kg, respectively). Trees that were foliated during data acquisition were slightly overestimated (n = 281, b =113

+1.4%, CCC = 98.2%), whereas leafless and needleless trees were underestimated (n = 110, b = -3.8%, CCC = 97.4%).114

The TLS-derived AGB of trees lighter than 1,000 kg AGB was overestimated (n = 216, b = 19.7%, CCC = 87%). This115

phenomenon occurred for all small trees regardless of site and study and contrasts with the nearly unbiased estimates116

for trees > 1,000 kg AGB (n = 176, b = 0.62%, CCC = 98%). Biomass of trees of intermediate size (between 1,000 and117

10,000 kg) was also fairly well estimated with TLS (n = 142, b = 0.34%, CCC = 90%). This results was confirmed with the118

hypothesis tests (Table 3), with a significant (p < 0.001) β coefficient for TLS-derived AGB for trees lighter than 1,000 kg.119

TLS-derived tropical tree biomass was nearly unbiased (n = 148, b = +0.69%, CCC = 97.9%), while temperate tree AGB120

was slightly underestimated (n = 178, b = -2.60%, CCC = 97.7%). The only sub-tropical study (Calders et al., 2015) had an121

AGB overestimation of 9.7% (n = 65, Table 1).122

ASMs sourced from literature performed less well in predicting AGB than TLS. For every individual study, ASM-predicted123

AGB was less precise and less accurate and had a lower CCC than its TLS-derived counterpart (Table 1 and 2). Overall,124

ASM-derived AGB was underestimated by 7.8% (whereas 0.75% for TLS), the RMSE was 1,730 kg (whereas 1140 kg for125

TLS) and the CCC was lowered to 95.6% (whereas 98.3% for TLS). Residual AGB increased with DBH for both TLS and126

ASM estimates (Fig. 3) albeit increasing stronger for the latter.127
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Figure 3: Residual tree aboveground biomass (AGB) against diameter at breast (DBH). Residual AGB was
calculated as the estimated AGB minus the reference AGB from harvesting. Panel A contains the TLS-derived
AGB estimates and panel B contains the allometric estimates. The grey lines represent the median (solid) and
5% and 95% quantiles (dotted) of a power model quantile regression. The black dash-dotted line indicates
residuals are zero. Contributing study legend is split in two panels.
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4 Insights from the synthesis128

Here we show that TLS is already successfully applied for estimating AGB over a large range of forest types and TLS129

methods. This synthesis showcases new insights and increased experience with TLS over the years. For instance, the130

scanning grid size in Calders et al. (2015) of 40 meters would, today, be regarded as sparse for volumetric reconstructions,131

especially for forests that are more dense and complex. Results from Momo Takoudjou et al. (2018) have been truncated132

to 5 cm diameter and needed manual interaction to correct erroneous cylinder fits, while applying a different QSM method133

(TreeQSM or SimpleForest instead of SimpleTree) might have allowed fully automatic full volume extraction. The adverse134

effects of wind on the scan image quality are currently better understood; for reference measurements, windy scan135

acquisition conditions as in Hackenberg et al. (2015) should have been avoided. Using the new generation of faster136

scanners will allow reducing wind effects in scan images by scanning in between windy periods. Leaf-on reconstructions137

(such as in Calders et al. (2015); Demol et al. (2021b)) could be improved by applying a suitable leaf-stripping algorithm.138

The oldest included TLS data was collected in 2012. It is likely that using present-day knowledge and methods would139

further increase concordance, as the knowledge base of TLS in forestry has rapidly expanded in recent years (Calders140

et al., 2020).141

Nevertheless, several sources of error need to be further constrained. For correctly segmented point cloud data, we142

identify four causes of inaccurate volume estimations: 1) misalignment in the scan data due to wind and coregistration143

inaccuracies; 2) foliage interference; 3) scattering errors when the beam footprint is partially intersecting; and 4) occlusion144

and sparse point cloud issues. AGB of smaller trees was generally overestimated with TLS. This suggests they share145

a common, more fundamental cause of volume overestimation (that is, if wood basic density conversion errors are not146

considered, and if we assume tree reconstruction algorithms to be scale-invariant). Quantitative evidence that only very147

recently emerged showed that small branches are disproportionately impacted by misalignment and scattering errors148

(Vaaja et al., 2016; Abegg et al., 2021; Wilkes et al., 2021) and that these errors tended to overestimate rather than to149

underestimate branch dimensions (Hackenberg et al., 2015). Smaller trees have proportionally more small branches and150

foliage, which introduces another level of uncertainty in TLS reconstructions.151

New developments in coregistration, scattering filters (Wilkes et al., 2021) and foliage separation algorithms (Vicari152

et al., 2019; Wang and Fang, 2020; Krishna Moorthy et al., 2020) are projected to mitigate these errors. Occlusion is most153

effectively avoided with improving data acquisition protocols (Wilkes et al., 2017) yet can be to some extent overcome with154

QSMs. Therefore, while we advise to be well aware of the aforementioned error sources when modelling volumes of small155

trees or branches, we do not expect these to stand in the way of future tree volume estimates using TLS.156

Destructive approaches for obtaining reference biomass values also have several caveats. First, direct weighings are157

preferred over sectioned measurements of tree dimensions (converted to volume using Smalian, Huber) (Goulding, 1979).158

Second, converting fresh mass (or green volume for sectional measurements) to AGB needs precise quantification of wood159

properties such as dry matter content or green density (Hackenberg et al., 2015; Sagang et al., 2018; Demol et al., 2021a;160

Burt et al., 2021). Last, material lost during these operations (branch loss when felling the tree, chainsaw swarf) can be161

substantial (Burt et al., 2021). These considerations are important for future validation studies.162
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5 Perspective: Towards a point cloud quality index163

Our synthesis showcased the thriving diversity in forest point cloud datasets and processing pipelines. These methods164

have drastically improved (see Synthesis). The most recent studies, Burt et al. (2021) and Kükenbrink et al. (2021), have165

implemented these best-practices and achieved comparatively best results in respectively evergreen trees and leaf-off166

trees. Our synthesis included older studies that, retrospectively, applied suboptimal methods. We argue that our pooled167

dataset can be regarded as representative for an operational, real-life implementation of TLS for AGB quantification. It is168

encouraging that TLS-derived AGB estimates in this synthesis were in good agreement with harvested values and were169

nearly unbiased.170

It is highly unlikely that a single scanner, or tree segmentation procedure, or leaf-stripping algorithm, or volume171

reconstruction method, performs best in all circumstances. Therefore, we think data collection and processing pipeline172

diversity should be encouraged and further strengthened. Currently state-of-the-art scanners are prohibitively expensive173

for certain groups and some software is proprietary or requires thorough IT knowledge, requiring more democratization174

and automation before large-scale TLS can be implemented (Disney et al., 2018). Segmenting single trees from forest175

point clouds is currently one of the most time-consuming steps in the pipeline, especially for complex tropical forests176

(Martin-Ducup et al., 2021). Automatic tree segmentation algorithms (Burt et al., 2018; Wang et al., 2020) allow drastically177

increasing the number of tree AGB observations with TLS - something that would represent colossal efforts if to be178

achieved by destructive measurements (Stovall et al., 2017).179

Operational TLS campaigns will no longer be accompanied by destructive validation experiments. How trustworthy are180

point clouds from future TLS missions for tree volume reconstruction? Currently, there is no objective way of assessing point181

cloud quality across different datasets in the context of 3D tree modelling, yet this is indispensable for the intercomparability182

of TLS data (Calders et al., 2020). Meticulously recording metadata is a must (but unfortunately not consistently done):183

providing a detailed description of TLS data acquisition (scanner type and settings, scan position layout and meteo184

conditions) and post-processing procedures (coregistration, filtering, downsampling, tree segmentation) is indispensable.185

Conversely, applying identical procedures in different forest types (or different seasons; cf. foliage condition) is no guarantee186

for similar point cloud quality.187

Alternatively, indices that objectively grade point cloud quality could be calculated for single tree point clouds a posteriori188

as a proxy for the accuracy of TLS-derived estimates. To our knowledge, no such index currently exists. This hinders the189

development of reconstruction algorithms (as testing data is not intercomparable) and can be a bottleneck for tracking190

down the error sources outlined in our synthesis. Such indexes could be quite simple (e.g. point density variation in the191

tree point cloud, point count normalised by tree size) or more complex (e.g. occlusion mapping approaches in voxel space192

or ray tracing simulations (Schneider et al., 2019)).193

A benchmarking dataset is a powerful tool to develop such a point cloud quality index and could at the same time194

provide testing data for reconstruction modellers. For this, the data from the experiments that were synthesised here could195

serve, supplemented by new simultaneous TLS and reference measurements of tree mass from harvesting (Clark and196

Kellner, 2012), as well as measurements at finer scales such as individual branch dimensions. To improve geographical197
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and climatic coverage, more data is needed from boreal and sub-tropical biomes (Fig. 1).198

6 An outlook on implementing TLS for global biomass mapping199

TLS-based tree inventories have become popular because they are versatile and enable fast measurements of novel200

structural data. Within this synthesis exercise, we showed that TLS is not only a capable alternative to allometric models,201

but also performed better across a global set of forest AGB observations. This is an encouraging and timely finding202

given the importance of accurate reference data for EO product calibration and validation, and improved land-use and203

forest management toward climate change mitigation (Duncanson et al., 2021). This is particularly important for trees204

where destructive harvesting is unavailable or logistically impractical (e.g. in previously understudied forest types or where205

conventional allometries are poorly calibrated). TLS seems to be particularly well suited for the characterisation of big trees206

that also contain most carbon (Bastin et al., 2018; Disney et al., 2020). Where destructive measurements are undesirable207

or impossible (urban and heritage trees, protected or remote areas,...) TLS is the only (tested) alternative to ASMs (Stovall208

et al., 2017; Lau et al., 2019).209

TLS campaigns for estimating the volume of individual trees (e.g. for calibration of allometric equations) are not210

necessarily comparable to plot-scale campaigns (e.g. for upscaling and remote sensing calibration objectives). All except211

one of the included studies used a tree-centered scanning approach. Tree-centered scanning likely results in reduced212

occlusion compared to a grid-wise approach, especially for dense environments with multiple canopy layers and leaf-on213

conditions. One obvious disadvantage is that TLS is not able to provide information on the inside of the tree: internal decay214

or cavities cannot be mapped (but whether or not this is represented in harvest data underpinning ASMs is also unclear).215

Whereas we conclude that TLS has the potential to provide higher accuracy AGB estimates than traditional ASM216

approaches, TLS data are currently far less available than traditional tree measurements. Methodological and practical217

advances propel the increased collection and availability of TLS, yet significant funding and logistical support would be218

required to operationally replace existing field estimates with TLS. At present, TLS represents an important pathway forward219

to complement and improve traditional estimates. Floristic inventories remain important to complement TLS missions, as220

well as wood basic density measurements (da Páscoa et al., 2020; Momo et al., 2020; Demol et al., 2021a).221

Overall, the nature of the current limitations in TLS (small trees, foliage,...) is not fundamental but technical. We expect222

significantly improved TLS-estimates of AGB by applying the best current and imminent methods. In our opinion, TLS223

will therefore be crucial for the calibration of several remote sensing biomass products (possibly through intermediary224

sensors, e.g. UAV or airborne laser scanning) (Stovall et al., 2018; Duncanson et al., 2021). Specifically, the development225

of non-destructive ASMs with TLS will enable the widespread application of high-quality tree-level biomass predictions to226

existing global forest inventory plots. Fundamental questions of tree scaling, inter alia the ASM assumption of invariant tree227

mass scaling with size, remain open. Potential uncertainty and bias in ASM-predicted AGB, particularly for large trees, can228

be assessed using destructive harvesting and TLS. Robustly validated remote sensing biomass products will be critical to229

the effectiveness of carbon financing markets, while strengthening REDD+ type of initiatives by bringing more objective230

AGB estimates to the table.231

9



Acknowledgements232

Collecting reference tree biomass data is hard work. We sincerely thank the many, many people involved in the field and233

lab work that made this study possible.234

Conflict of Interest Statement235

The authors declare that the research was conducted in the absence of any commercial or financial relationships that236

could be construed as a potential conflict of interest.237

Author Contributions238

Miro Demol: methodology; formal analysis; investigation; writing—original draft. Kim Calders, Hans Verbeeck, Bert Gielen:239

conceptualisation; resources; funding acquisitions. Miro Demol, Andy Burt, Jan Hackenberg, Daniel Kükenbrink, Alvaro240

Lau, Pierre Ploton, Artie Sewdien, Atticus Stovall, Momo Takoudjou, Liubov Volkova, Chris Weston, Verginia Wortel, Kim241

Calders: data collection and processing. All Authors: writing (review and editing).242

Funding243

MD was funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement244

no 730944—RINGO: Readiness of ICOS for Necessities of Integrated Global Observations. The Research Foundation245

Flanders (FWO) supported ICOS Flanders and ICOS ETC. KC was funded by the European Union’s Horizon 2020246

research and innovation programme under the Marie Sklodowska-Curie grant agreement No 835398. DK was supported247

by the Swiss National Forest Inventory. MDY acknowledges funding from Natural Environment Research Council grant248

NE/N00373X/1, ERC grant no. 757526, and capital and travel funding from NERC NCEO and UCL.249

Supplemental Data250

There is no Supplementary Material document associated with this manuscript.251

Data Availability Statement252

The dataset generated and analysed for this study can be found in a Zenodo repository: doi.org/10.5281/zenodo.5236762.253

10

https://doi.org/10.5281/zenodo.5236762


References254

Abegg M, Boesch R, Schaepman M. E, and Morsdorf F. Impact of Beam Diameter and Scanning Approach on Point255

Cloud Quality of Terrestrial Laser Scanning in Forests. IEEE Transactions on Geoscience and Remote Sensing, 59(10):256

8153–8167, oct 2021. doi: 10.1109/TGRS.2020.3037763.257

Bastin J, Rutishauser E, Kellner J. R, Saatchi S, Pélissier R, Hérault B, Slik F, Bogaert J, De Cannière C, Mar-258
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Table 2: Allometric scaling models to derive aboveground biomass (AGB) from predictor variable diameter
at breast height (DBH, from field inventory) with additionally tree height (h) and wood basic density (ρ). In
Kükenbrink et al. (2021) AGB is modelled from the stem volume Vstem and volume expansion factor (VEF). Wood
basic density was either obtained from literature (ρGWDD, from Chave et al. (2009)), or by sampling wood
disc specimens in the destructive measurements and computing a volume-weighted (ρvw) or mass-weighted
(ρmw) average. Whenever possible, a species-specific model was used with field-measured DBH as predictor
variable. Tree height, on the contrary, was taken from reference measurements on the felled tree (as tree height
measurements from ground observations were often incomplete).

Dataset Model form Type Source

Burt et al. (2021) AGB = .067(DBH 2 · h·ρmw).976 Pantropical Chave et al. (2014)
Calders et al. (2015) AGB = a ·DBH b Species-specific Paul et al. (2013)
Demol et al. (2021b) AGB = a ·DBH b Species-specific Forrester et al. (2017)

Hackenberg et al. (2015) AGB = a ·DBH b Species-specific Xiang et al. (2011);
Forrester et al. (2017)

Gonzalez de Tanago et al.
(2018); Lau et al. (2019)

AGB = .067(DBH 2 · h·ρGWDD).976 Pantropical Chave et al. (2014)

Momo Takoudjou et al.
(2018)

AGB = .067(DBH 2 · h·ρvw).976 Pantropical Chave et al. (2014)

Kükenbrink et al. (2021) AGB = Vstem · ρvw ·VEF (*) Species-specific Swiss NFI; Herold et al.
(2019)

Stovall et al. (2017) AGB = a ·DBH b Genus-specific Chojnacky et al. (2014)
∗ Stem volume in Kükenbrink et al. (2021) is modelled with a combination of tree and site characteristics: Vstem = f(DBH, site index,
elevation, dominant diameter, canopy layer, bifurcation).
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Table 3: Coefficients and standard errors (se) of a linear regression between the harvested AGB (AGBharvest)
and either AGB from terrestrial laser scanning (TLS) or allometric scaling models (ASM) (AGBTLS/ASM respec-
tively): AGBharvest = a + b * AGBTLS/ASM. Significances of the associated hypothesis tests sensu Piñeiro et al.
(2008); Valbuena et al. (2017) to test for agreement with the 1:1 line (Fig. 2) taking the form AGBTLS/ASM -
AGBharvest = α + β * AGBTLS/ASM (in Mg) are added (only one model disagreed significantly with the 1:1 line;
***: p < 0.001).

TLS ASM

a (Mg, ± se) b (± se) a (Mg, ± se) b (± se)

AGB > 10 Mg 0.312 (±1.386) 0.97 (± 0.06) 1.108 (± 2.140) 1.05 (± 0.10)
1 Mg < AGB < 10 Mg -0.061 (± 0.146) 1.04 (± 0.04) 0.018 (± 0.257) 1.06 (± 0.06)
AGB < 1 Mg 0.006 (± 0.014) 0.87 (± 0.03) *** 0.008 (± 0.021) 1.01 (± 0.04)
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