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Abstract
We analyze the relativistic Euler equations of conservation laws of baryon number
and momentum with a general pressure law. The existence of global-in-time bounded
entropy solutions for the system is established by developing a compensated compact-
ness framework. The proof relies on a careful analysis of the entropy and entropy-flux
functions, which are represented by the fundamental solutions of the entropy and
entropy-flux equations for the relativistic Euler equations. Based on a careful entropy
analysis, we establish the compactness framework for sequences of both exact solu-
tions and approximate solutions of the relativistic Euler equations. Then we construct
approximate solutions via the vanishing viscositymethod and employ our compactness
framework to deduce the global-in-time existence of entropy solutions. The compact-
ness of the solution operator is also established. Finally, we apply our techniques to
establish the convergence of the Newtonian limit from the entropy solutions of the
relativistic Euler equations to the classical Euler equations.
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1 Introduction

The isentropic relativistic Euler equations of conservation laws of baryon number and
momentum are a natural relativistic extension of the Euler equations for classical fluid
flow (i.e., in the setting of Newtonianmechanics). These equations describe themotion
of inviscid fluids in the Minkowski space-time (t, x) ∈ R

2+ := R+ × R in special
relativity, which are given by

⎧
⎨

⎩

∂t
( n√

1−u2/c2

) + ∂x
( nu√

1−u2/c2

) = 0,

∂t
( (ρ+p/c2)u

1−u2/c2
) + ∂x

( (ρ+p/c2)u2

1−u2/c2
+ p

) = 0,
(1.1)

where ρ and p represent the mass-energy density and pressure respectively, u is the
particle speed, n is the proper number density of baryons, and c is the light speed.
Henceforth, we write ε := 1

c2
for notational convenience. We close the system by

imposing the equation of state of a barotropic gas: p = p(ρ).
The proper number density of baryons is determined by the first law of thermody-

namics:

T dS = dρ

n
− ρ + εp

n2 dn,

where T is the temperature and S is the entropy per baryon. In particular, for a
barotropic fluid under consideration (i.e., S is constant),

dn

n
= dρ

ρ + εp
,

so that

n = n(ρ) = n0e
∫ ρ
0

ds
s+εp(s) .

By rescaling the first equation in (1.1) if necessary, we may assume without loss of
generality that n0 = 1. By way of comparison with the classical Euler equations, we
observe that, in the Newtonian limit as the light speed c → ∞ (equivalently, ε → 0),
n(ρ) converges to ρ, locally uniformly.

Concerning the pressure, a typical example is: p(ρ) = κργ , the case of a polytropic

(or gamma-law) gas, with the adiabatic exponent γ ∈ (1, 3) and constant κ = (γ−1)2

4γ .
In this paper, we deal with a more general class of pressure laws, whose explicit
conditions will be given later in (1.5)–(1.6) and (1.9).

We focus on the Cauchy problem:

(ρ, u)|t=0 = (ρ0(x), u0(x)) for x ∈ R. (1.2)

Our approach to the relativistic Euler equations is motivated by the successful strate-
gies employed in resolving the Cauchy problem for the isentropic Euler equations
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in the classical setting. To motivate this comparison, we observe that, formally, in
the Newtonian limit (c → ∞), system (1.1) reduces to the classical isentropic Euler
equations for compressible fluids:

{
∂tρ + ∂x (ρu) = 0,

∂t (ρu) + ∂x (ρu2 + p(ρ)) = 0.
(1.3)

This formal observation raises the question whether the limit here can be taken rigor-
ously: Do the global entropy solutions of the relativistic Euler equations (1.1) converge
to an entropy solution of the classical Euler equations (1.3) as c → ∞? One of the
main contributions of this paper is to give an affirmative answer to this question for
the general class of pressure laws including the polytropic case.

To place the relativistic Euler equations in the general framework of hyperbolic
systems of conservation laws, we introduce some additional notation. Denote

U =
(

n√
1 − εu2

,
(ρ + εp(ρ))u

1 − εu2

)�
, F(U ) =

(
nu√

1 − εu2
,
ρu2 + p(ρ)

1 − εu2

)�
.

(1.4)
Then system (1.1) takes the form:

∂tU + ∂x F(U ) = 0.

We assume throughout the conditions of strict hyperbolicity:

p′(ρ) > 0 for ρ > 0, (1.5)

and genuine nonlinearity:

ρ p′′(ρ) + 2p′(ρ) > 0 for ρ > 0. (1.6)

We remark that, strictly speaking, the condition of genuine nonlinearity for the
relativistic Euler system (1.1) reads

ρ p′′(ρ) + 2p′(ρ) + ε
(

p(ρ)p′′(ρ) − 2p′(ρ)2
)

> 0 for ρ > 0. (1.7)

In a relativistic fluid, the sound speed is given by the expression:

cs(ρ) = √
p′(ρ).

Thus, to obey the usual laws of relativity, cs(ρ) must always be bounded by the light
speed:

cs(ρ) <
1√
ε
.
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We define ρε
max such that cs(ρε

max) = 1√
ε
if such a finite ρε

max exists, or ∞ otherwise.
The relativistic Euler system (1.1) was derived by Taub in [26], in which he also cal-

culated the Rankine-Hugoniot conditions across a shock for the system and discussed
possible pressure laws for relativistic gases. Further discussion on the pressure-density
relation may be found in the work of Thorne [27], who suggested that the pressure
should grow linearlywith the density at high densities, while behaving as a gamma-law
gas near the vacuum.

The first global existence result for the relativistic Euler equations was obtained by
Smoller–Temple [24] in the case of an isothermal flow (γ = 1) under the assumption
of bounded total variation of the initial data (1.2). In this setting, the Glimm scheme is
used to create a convergent sequence of approximate solutions by the random choice
method. Subsequently, Ding–Li [12, 13] again employed the Glimm scheme to obtain
the global existence of entropy solutions of the relativistic piston problem for the
isentropic Euler equations with initial data of small total variation, in which they were
also able to show that, in the Newtonian limit, the relativistic solutions converge to
the entropy solution of the classical piston problem for the Euler equations. Liang
[18] studied the formation of shocks and the structure of simple waves, based on the
work of Taub [26]. The existence of entropy solutions with large data was obtained
in Hsu–Lin–Makino [16] for a special class of pressure laws under the assumption of
sufficiently large speed of light (or equivalently, small data). Other large data results
were obtained by Chen–Li [6], showing the existence and stability of entropy solutions
of the Riemann problem for this system, and the same properties were shown for the
variant system of relativistic Euler equations (system (1.11) below) in [7]. For system
(1.11), Li–Feng–Wang [17] were also able to employ the Glimm scheme to show the
existence of entropy solutions for a class of large initial data. All of these results require
restrictions on the type of pressure laws that can be handled as well as, for many of
them, the conditions on the smallness of total variation. We significantly weaken these
requirements for the existence and compactness of entropy solutions in this paper,
leading to the following theorem, which is our first main result.

Theorem 1.1 (Existence and Compactness of Entropy Solutions to the Relativistic
Euler Equations) Let (ρ0, u0) be measurable and bounded initial data satisfying

|u0(x)| ≤ M0 <
1√
ε
, 0 ≤ ρ0(x) ≤ ρM0 < ρε

max for a.e. x ∈ R, (1.8)

for some constants M0 > 0 and ρM0 independent of ε. Let the pressure function p(ρ)

satisfy (1.5)–(1.6) for ρ > 0 and

p(ρ) = κργ (1 + P(ρ)) , |P(n)(ρ)| ≤ Cργ−1−n for 0 ≤ n ≤ 4, (1.9)

for some γ ∈ (1, 3). Then there is ε0 > 0 such that, if ε ≤ ε0, there exists an entropy
solution (ρ, u) of (1.1) (in the sense of Definition 3.2 below) such that
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|u(t, x)| ≤ M <
1√
ε
, 0 ≤ ρ(t, x) ≤ ρM < ρε

max

for a.e. (t, x) ∈ R
2+ := [0,∞) × R, where the constants M and ρM depend only on

M0 and ρM0 , independent of ε. Furthermore, the solution operator determined by the
above is compact in Lr

loc(R
2+), 1 ≤ r < ∞, for t > 0.

Remark 1.2 Condition (1.9) can be relaxed to the same condition as in Chen–LeFloch
[5]. For brevity, we focus on the class of pressure laws satisfying condition (1.9) in
this paper.

In addition, our analysis of the relativistic Euler equations is also sufficient to control
the convergence of a sequence of solutions of the relativistic Euler equations as ε → 0,
allowing us to prove our second main theorem.

Theorem 1.3 (Convergence of theNewtonian Limit) Let (ρ0, u0) ∈ (L∞(R))2 satisfy
(1.8) with M0 and ρM0 independent of ε. Let (ρε, uε) for ε ∈ (0, ε0) be an entropy
solution of (1.1), determined by Theorem 1.1 above, with light speed c = 1√

ε
and

initial data (ρε
0, uε

0) ∈ (L∞(R))2 with ρε
0 ≥ 0 such that

0 ≤ cs(ρ
ε
0(x)), |uε

0(x)| <
1√
ε

for all ε ∈ (0, ε0) and a.e. x ∈ R, (1.10)

and (ρε
0, uε

0) → (ρ0, u0) a.e. as ε → 0. Then there exist M > 0 and ρM , independent
of ε, such that

|uε(t, x)| ≤ M <
1√
ε
, 0 ≤ ρε(t, x) ≤ ρM < ρε

max for a.e. (t, x) ∈ R
2+,

and, up to a subsequence, (ρε, uε) → (ρ, u) a.e. and in Lr
loc(R

2+) for all r ∈ [1,∞)

as ε → 0, where (ρ, u) is an entropy solution of the classical Euler equations (1.3)
with initial data (ρ0, u0) satisfying

|u(t, x)| ≤ M, 0 ≤ ρ(t, x) ≤ ρM for a.e. (t, x) ∈ R
2+.

We remark that an alternative 2×2 system of conservation laws in the theory of spe-
cial relativity (also sometimes called the relativistic Euler equations in the literature)
is the following system of conservation laws of energy and momentum:

⎧
⎨

⎩

∂t
(
ρ + ε(ρ+εp)u2

1−εu2
) + ∂x

( (ρ+εp)u
1−εu2

) = 0,

∂t
( (ρ+εp)u

1−εu2
) + ∂x

( (ρ+εp)u2

1−εu2
+ p(ρ)

) = 0.
(1.11)

System (1.11) has the same eigenvalues and Riemann invariants as those for (1.1),
which implies that the governing entropy equation for system (1.11) is the same as
that for (1.1), so that our analysis of the entropy functions for (1.1) and the associated
compactness framework are also extended to the alternative system, (1.11). Therefore,
we also obtain the following theorem.
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Theorem 1.4 Let (ρ0, u0) ∈ (L∞(R))2 with ρ0 ≥ 0, and let the pressure function
p(ρ) satisfy (1.5)–(1.6) for ρ > 0 and (1.9) for some γ ∈ (1, 3). Then the following
statements hold:

(i) Let (ρ0, u0) satisfy (1.8). Then there is ε0 > 0 such that, if ε ≤ ε0, there exists
an entropy solution (ρε, uε) of (1.11) satisfying

|uε(t, x)| ≤ M <
1√
ε
, 0 ≤ ρε(t, x) ≤ ρM < ρε

max for a.e. (t, x) ∈ R
2+,

for some constants M and ρM depending only on the initial data, but independent
of ε. Furthermore, for any fixed ε > 0, the solution operator (ρε, uε)(t, ·), t > 0,
determined by the above is compact in Lr

loc(R
2+) for 1 ≤ r < ∞.

(ii) Let (ρε, uε) for ε ∈ (0, ε0) is an entropy solution of (1.1), determined by (i)
above, with light speed c = 1√

ε
and initial data (ρε

0, uε
0) ∈ (L∞(R))2 with

ρε
0 ≥ 0 satisfying (1.10) such that (ρε

0, uε
0) → (ρ0, u0) a.e. as ε → 0. Then, up

to a subsequence, (ρε, uε) → (ρ, u) a.e. and in Lr
loc(R

2+) for all r ∈ [1,∞) as
ε → 0, where (ρ, u) is an entropy solution of the classical Euler equations (1.3)
with initial data (ρ0, u0) satisfying

|u(t, x)| ≤ M, 0 ≤ ρ(t, x) ≤ ρM for a.e. (t, x) ∈ R
2+

for some constants M and ρM .

Before we describe our approach for the proofs of these results, we recall the
situation for the classical Euler equations (1.3). DiPerna [14] first showed the existence
of entropy solutions of (1.3) for the case of a gamma-law gas with γ = 1 + 2

N , N
odd and N ≥ 5, by developing the method of compensated compactness of Murat–
Tartar [21, 25]. The general case γ ∈ (1, 5

3 ] for polytropic gases was first solved
in Chen [2] and Ding–Chen–Luo [11] by developing new techniques for entropy
analysis which involve fractional derivatives and the Hilbert transform, combined with
the compensated compactness argument. The case γ ≥ 3 was subsequently solved
by Lions–Perthame–Tadmor [19] through the introduction of the kinetic formulation,
before Lions–Perthame–Souganidis [20] solved the problem for the remaining interval
γ ∈ ( 53 , 3), simplifying the proof for all γ ∈ (1, 3). Chen–LeFloch [4, 5] solved the
case of a more general pressure law, under the assumptions of strict hyperbolicity and
genuine nonlinearity away from the vacuum and an approximate gamma-law form
close to the vacuum; see [4, 5], as well as (1.9), for the precise assumptions on the
pressure law.

The procedure that we undertake to establish the existence of solutions to the rela-
tivistic Euler equations (1.1) ismotivated by theworks for the classical Euler equations
described above. We construct a sequence of approximate solutions to the equations
via a vanishing viscosity method and pass the viscosity to zero. As system (1.1) admits
an invariant region, we obtain the uniform bounds in L∞ of the approximate solutions.
Passing to a weak-star limit in L∞, we then associate a Young measure {νt,x } to the
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sequence, characterizing the weak convergence. As is well known, such a weak con-
vergence is insufficient to pass to a limit in the nonlinear terms of the equations, and
hence we apply the compensated compactness argument to improve this convergence.

Applying the method of compensated compactness with the uniform estimates of
the approximate solutions, we deduce the Tartar commutation relation:

〈νt,x , η1q2 − η2q1〉 = 〈νt,x , η1〉〈νt,x , q2〉 − 〈νt,x , η2〉〈νt,x , q1〉

for all weak entropy pairs (η1, q1) and (η2, q2) defined in Sect. 3 below.We then show
that this relation is sufficient to argue that the support of the probability measure νt,x

reduces to a single point and hence deduce the strong convergence of the approximate
solutions a.e. and in L p

loc.
To complete this reduction argument, we require a thorough understanding of the

entropy pairs for system (1.1). To this end, we establish the existence of fundamental
kernels generating the admissible entropy pairs. In order to do this, we make an ansatz
for the leading order behavior of the entropy kernels close to the vacuum and take
asymptotic expansions around the leading order terms. This leaves us with an equation
for the remainder that is then solved via a fixed point argument. We establish estimates
on both the leading terms and the remainder to demonstrate their respective regularity
properties. With the obtained expansions, we analyze the singularities of the kernels
and exploit properties of cancellation of singularities in the commutation relation to
conclude our arguments. As a by-product, we also obtain the compactness of the
solution operator in L p

loc.
Finally, we exploit the relationship of the relativistic entropy kernels to the classical

entropy kernels to demonstrate the convergence of the Newtonian limit. Applying the
compactness framework developed for the classical Euler equations in [4, 5], we gain
the strong convergence of the relativistic solutions to the classical solutions of the
Euler equations.

The structure of the paper is as follows: In Sect. 2, we analyze some basic proper-
ties of the relativistic Euler equations. We then introduce the definitions of the entropy
and entropy-flux kernels, and state our main theorems concerning the existence and
regularity of these kernels in Sect. 3. The proofs of these theorems are provided in
Sects. 4–5. Moreover, these sections provide a detailed analysis of the asymptotics
of the kernels as the density approaches the vacuum state (i.e., ρ → 0), as well as
the singularities of their derivatives. After this, in Sect. 6, we establish a compactness
framework for approximate or exact solutions of both systems (1.1) and (1.11) via a
careful analysis of the Tartar commutation relation for the relativistic entropies con-
structed from the kernels, established in Sect. 3. This analysis exploits the properties of
cancellation of the singularities in the entropy and entropy-flux kernels, relying on the
expansions established in the earlier sections. In Sect. 7, we outline the construction
of the artificial viscosity solutions and demonstrate that they satisfy the compactness
framework. This allows us to conclude the first main theorem, Theorem 1.1, as well as
Theorem 1.4, in Sect. 8. Finally, in Sect. 9, we prove our second main theorem, Theo-
rem 1.3, concerning the Newtonian limit of a sequence of solutions of the relativistic
Euler equations to the classical Euler equations.
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2 Basic Properties

In this section, we analyze some basic properties of system (1.1). Writing U (ρ, u) as
in (1.4) for the conserved variables, we calculate

∇U F(U ) = ∇(ρ,u)F(U )(∇(ρ,u)U )−1 =
⎛

⎝
ε(u2−p′)u
1−ε2 p′u2

n(1−εu2)
3
2

(ρ+εp)(1−ε2 p′u2)
(p′−u2)(ρ+εp)

√
1−εu2

n(1−ε2 p′u2)
(2−εp′−εu2)u

1−ε2 p′u2

⎞

⎠ ,

(2.1)
where ∇U and ∇(ρ,u) denote the gradients in variables U and (ρ, u), respectively.
Then the eigenvalues of ∇U F(U ) are

λ− = u − √
p′(ρ)

1 − εu
√

p′(ρ)
, λ+ = u + √

p′(ρ)

1 + εu
√

p′(ρ)
,

and the corresponding eigenvectors are

r− =
(

1
(ρ+εp)(u−√

p′)
n
√
1−εu2

)

, r+ =
(

1
(ρ+εp)(u+√

p′)
n
√
1−εu2

)

.

The sound speed in the fluid is given by cs(ρ) = √
p′(ρ), and we henceforth assume

that

√
p′(ρ) ≤ c = 1√

ε
.

As defined earlier, ρε
max is such that cs(ρε

max) = 1√
ε
if a finite ρε

max exists, or ∞
otherwise. Then, in the region:

{

|u| <
1√
ε
, 0 < ρ < ρε

max

}

,

we see that λ+ − λ− > 0 so that the system is strictly hyperbolic.
The Riemann invariants of the system are

w := v + k, z := v − k,

where

v = v(u) := 1

2
√

ε
log

(
1 + √

εu

1 − √
εu

)

(2.2)

and

k = k(ρ) :=
∫ ρ

0

√
p′(s)

s + εp(s)
ds. (2.3)
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Note that the mapping: u → v(u) is a smooth, increasing bijection from (− 1√
ε
, 1√

ε
)

to R, and that ρ → k(ρ) is a smooth, increasing bijection from (0, ρε
max) onto its

image. For the inverse of v, we write u as

u(v) := 1√
ε
tanh(

√
εv). (2.4)

As mentioned earlier, to close the system, we impose an equation of state, i.e., a
general pressure law, which satisfies conditions (1.5)–(1.6) for ρ > 0 and (1.9) close
to the vacuum.

We compare the nonlinear function k(ρ) to the equivalent function for the classical
Euler equations equipped with a gamma-law pressure (cf. [4]), for which k(ρ) = ρθ

with θ = γ−1
2 . With assumption (1.9) on the pressure, we observe the following

behavior of k(ρ) near the vacuum. For ease of reference, we state this as a lemma.

Lemma 2.1 As ρ → 0, the nonlinear function k(ρ) and its first derivative obey the
following asymptotics:

k(ρ) = ρθ + O(ρ3θ ) as ρ → 0,

k′(ρ) =
√

p′(ρ)

ρ + εp(ρ)
= θρθ−1 + O(ρ3θ−1) as ρ → 0.

(2.5)

Moreover, its derivatives k(n)(ρ), for n = 2, 3, can be expanded as

k′′(ρ) = θ(θ − 1)ρθ−2 + O(ρ3θ−2),

k(3)(ρ) = θ(θ − 1)(θ − 2)ρθ−3 + O(ρ3θ−3) as ρ → 0.

We define another exponent: λ = 3−γ
2(γ−1) > 0 for the use in the next section. Note

that λ is related to θ by the relation: 2λθ = 1 − θ .
An analysis of system (1.11) shows that it has also the same eigenvalues λ− and

λ+, and the same Riemann invariants w = v(u) + k(ρ) and z = v(u) − k(ρ), as
defined above.

3 Entropy Pairs and Entropy Solutions

In order to analyze the limit of our approximate solutions of system (1.1) and prove
the strong convergence of the sequence, we first need to understand the structure and
behavior of entropy pairs of the system. Therefore, the purpose of this section is to
provide the basis and framework for this analysis.

Definition 3.1 An entropy pair (η, q) for system (1.1) is a pair of C1 entropy and
entropy-flux functions satisfying the relation:

∇η(U )∇F(U ) = ∇q(U ).
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A weak entropy η is an entropy that vanishes at the vacuum state: η|ρ=0 = 0.

We observe that an equivalent characterization of the entropy pair in the Riemann
invariant coordinates (w, z) is given by

qw = λ+ ηw, qz = λ− ηz . (3.1)

In particular, as the eigenvalues and Riemann invariants of the two systems (1.1)
and (1.11) coincide, we deduce that the two systems share the same entropy and
entropy-flux functions.We therefore restrict our attention to system (1.1) in the sequel.

Definition 3.2 A pair of bounded, measurable functions (ρ, u) such that

|u| < c = 1√
ε
, 0 ≤ ρ < ρε

max

is an entropy solution of the Cauchy problem (1.1)–(1.2) provided that

(i) For any φ ∈ C1
c (R

2+),

∫∫

R
2+

( n√
1 − εu2

φt + nu√
1 − εu2

φx

)
dx dt +

∫

R

n0
√

1 − εu2
0

φ(0, x) dx = 0,

∫∫

R
2+

( (ρ + εp)u

1 − εu2 φt + ( (ρ + εp)u2

1 − εu2 + p(ρ)
)
φx

)
dx dt

+
∫

R

(ρ0 + εp(ρ0))u0

1 − εu2
0

φ(0, x) dx = 0;

(ii) For any nonnegative function φ ∈ C1
c (R

2+) andC1 weak entropy pair (η, q)(ρ, u)

with η convex with respect to U ,

∫∫

R
2+

(
η(ρ, u)∂tφ + q(ρ, u)∂xφ

)
dx dt +

∫

R

η(ρ0, u0)φ(0, x) dx ≥ 0,

where (η, q)(ρ, u) := (η, q)(U (ρ, u)).

An explicit entropy pair is given by

η∗(U (ρ, u)) = ρ + ε2 pu2

1 − εu2 , q∗(U (ρ, u)) = (ρ + εp)u

1 − εu2 . (3.2)

Then

∇2η∗(U ) = α0(ρ, u)

⎛

⎝

ε(ρ+εp)(p′+u2+2εp′u2)
n(1−εu2)

− ε(1+εp′)u√
1−εu2

− ε(1+εp′)u√
1−εu2

εn
ρ+εp

⎞

⎠ (3.3)

with α0(ρ, u) = (1−εu2)2

n(1−ε2 p′u2) > 0. In particular, η∗(U ) is a convex entropy.
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We remark that the entropy pair (3.2) is actually the first conservation law in the
alternative system (1.11).

We begin our analysis of the entropy functions of (1.1) by constructing a
fundamental solution of the entropy equation.

3.1 Entropy Equation

Let (η, q) be an entropy pair. Then it follows from (2.1) and Definition 3.1 that

qρ = ηρ

u(1 − εp′)
1 − ε2 p′u2 + ηu

(1 − εu2)2 p′

(ρ + εp)(1 − ε2 p′u2)
, (3.4)

qu = ηρ

ρ + εp

1 − ε2 p′u2 + ηu
u(1 − εp′)
1 − ε2 p′u2 . (3.5)

Eliminating q and changing the coordinate: u → v, as in (2.2), yields

ηρρ − k′(ρ)2ηvv + εA(ρ, v)ηρ + εB(ρ, v)vηv = 0, (3.6)

where

A(ρ, v) = 2p′(ρ)

ρ + εp(ρ)

1 − εu2
(
1 − p′′(ρ)(ρ+εp)

2p′(ρ)

)

1 − ε2 p′(ρ)u2 ,

B(ρ, v) = 2up′(ρ)
(
1 − εp′(ρ) − p′′(ρ)(ρ+εp(ρ))

2p′(ρ)

)

v(u)(ρ + εp(ρ))2(1 − ε2 p′(ρ)u2)
.

To simplify notation, we use the operator:

L := ∂ρρ − k′(ρ)2∂vv + εA(ρ, v)∂ρ + εB(ρ, v)v∂v. (3.7)

Definition 3.3 The entropy kernel χ = χ(ρ, v, s) is the unique solution of the
equation:

⎧
⎪⎨

⎪⎩

Lχ = χρρ − k′(ρ)2χvv + εA(ρ, v)χρ + εB(ρ, v)vχv = 0,

χ |ρ=0 = 0,

χρ |ρ=0 = δv=s for s ∈ R.

(3.8)

We recall that (1.1) is invariant under the Lorentz transformations:

(t, x) → (t ′, x ′) = (
t − ετ x√
1 − ετ 2

,
x − τ t√
1 − ετ 2

) for |τ | <
1√
ε
.

Under this transformation, velocity u and the associated function v also transform as:

u′ = u − τ

1 − ετu
, v′ := v(u′) = v(u) − v(τ).
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By the invariance of the equations under these transformations, the entropy equation
is also invariant under such Lorentz shifts. Thus, for s = v(τ),

χ(ρ, v, s) = χ(ρ, v − s, 0) = χ(ρ, 0, s − v),

so that it suffices to solve χ in the case that s = 0. We therefore write χ(ρ, v − s) =
χ(ρ, v, s) henceforth in a slight abuse of notation.

The kernel provides a representation formula for weak entropies of system (1.1).
That is, any weak entropy function can be represented by convolution with a test
function ψ(s) as

ηψ(ρ, u) =
∫

R

χ(ρ, v(u) − s)ψ(s) ds.

Before we continue, it is worth making an aside at this point to compare the situation
to the classical Euler equations (1.3). For system (1.3), the entropy equation is the
simpler equation:

χ∗
ρρ − k′(ρ)2χ∗

vv = 0. (3.9)

For the gamma-law gas, k′(ρ) = θρθ−1, and (3.9) has the fundamental solution:

χ∗(ρ, v) = Mλ[ρ2θ − v2]λ+, (3.10)

where λ > 0 is defined as in Sect. 2 and Mλ > 0 is a constant depending only on λ.
With this as a motivation, we make an ansatz for the entropy kernel of system (1.1)

in the form:

χ(ρ, v) = a1(ρ)[k(ρ)2 − v2]λ+ + a2(ρ)[k(ρ)2 − v2]λ+1+ + g(ρ, v). (3.11)

By the principle of finite propagation speed, we expect the remainder function g(ρ, v)

to have the same support as the first two terms.
In anticipation of the next theorem, we recall the definition of fractional derivatives:

For a function f = f (s) of compact support, the fractional derivative of order μ > 0
is

∂μ
s f = �(−μ) f ∗ [s]−μ−1

+ , (3.12)

where �(·) is the Gamma function.
Henceforth, we suppose that the density has a fixed upper bound: ρ ≤ ρM so that

ρM < ρε
max. The universal constant C > 0 is independent of ρ, but may depend on

ρM .

Theorem 3.4 (Relativistic Entropy Kernel) The entropy kernel admits the expansion

χ(ρ, v) = a1(ρ)[k(ρ)2 − v2]λ+ + a2(ρ)[k(ρ)2 − v2]λ+1+ + g(ρ, v), (3.13)

where the coefficients a1(ρ) and a2(ρ) are such that, when 0 ≤ ρ ≤ ρM ,

a1(ρ) = c∗,λk(ρ)−λk′(ρ)−
1
2 eã(ρ) > 0, (3.14)
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and
a1(ρ) + |a2(ρ)| ≤ C, (3.15)

with

ã(ρ) = ε

2

∫ ρ

0

( − A(s, k(s)) + k(s)

k′(s)
B(s, k(s))

)
ds (3.16)

as defined in (4.2)below, and c∗,λ > 0 being a constant depending only on λ. Moreover,
the remainder function g(ρ, v) and its derivatives ∂

μ
v g(ρ, v) are Hölder continuous

for 0 < μ < λ + 2, and satisfy that, for 0 < β < μ,

|∂β
v g(ρ, v)| ≤ Cρ1+(1−2μ+β)θ [k(ρ)2 − v2]μ−β

+ .

By definition, to each entropy function is associated a corresponding entropy-flux
function. These entropy-flux functions are generated by another kernel, the entropy-
flux kernel σ(ρ, v, s).

Definition 3.5 The entropy-flux kernel is defined by

⎧
⎪⎨

⎪⎩

Lσ := σρρ − k′(ρ)2σvv + εA(ρ, v)σρ + εB(ρ, v)vσv = F(ρ, v),

σ |ρ=0 = 0,

σρ |ρ=0 = u(1−εp′)
1−ε2 p′u2 δv=s,

(3.17)

where F(ρ, v) is given explicitly later in (5.3).

The entropy function generated by the convolution of a test function ψ(s) with the
entropy kernel has a corresponding entropy-flux given by

q(ρ, v) =
∫

R

σ(ρ, v, s)ψ(s) ds.

As we have seen for the entropy equation, the equation in (3.17) is invariant under the
Lorentz transformation, but the initial conditions for the entropy flux kernel are not.
We therefore consider, instead of σ , the difference σ − u(1−εp′)

1−ε2 p′u2 χ . Writing ũ(ρ, v) =
u(1−εp′)
1−ε2 p′u2 , this difference satisfies the following initial value problem:

⎧
⎪⎨

⎪⎩

L(σ − ũχ) = F̃(ρ, v),

(σ − ũχ)|ρ=0 = 0,

(σ − ũχ)ρ |ρ=0 = 0,

(3.18)

with F̃(ρ, v) defined by

F̃(ρ, v) := F(ρ, v) − L(ũχ).

Then problem (3.18) is Lorentzian invariant so that

(σ − ũχ)(ρ, v, s) = (σ − ũχ)(ρ, v − s, 0) = (σ − ũχ)(ρ, 0, s − v).
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Therefore, it suffices to solve σ − ũχ for the case: s = 0.

Theorem 3.6 (Relativistic Entropy-Flux Kernel) The entropy-flux kernel admits the
expansion:

(σ−ũχ)(ρ, v) = −v
(
b1(ρ)[k(ρ)2−v2]λ++b2(ρ)[k(ρ)2−v2]λ+1+

)+h(ρ, v), (3.19)

where coefficients b1(ρ) and b2(ρ) satisfy that, for 0 ≤ ρ ≤ ρM ,

b1(ρ) > 0, b1(ρ) + |b2(ρ)| ≤ C . (3.20)

Moreover, the remainder function h(ρ, v) and its derivatives ∂
μ
v h(ρ, v) are Hölder

continuous for 0 < μ < λ + 2 and satisfy that, for 0 < β < μ,

|∂β
v h(ρ, v)| ≤ Cρ1+(1−2μ+β)θ [k(ρ)2 − v2]μ−β

+

4 TheWeak Entropy Kernel

This section is devoted to the proof of Theorem 3.4 to show the existence of the entropy
kernel and examine its regularity properties.

4.1 Roadmap for the Construction of the Entropy Kernel

In order to aid the comprehension of the reader, we first provide a summary of the
structure of the proof and construction of the entropy kernel contained in Sects. 4.2–
4.3. A similar structure holds for the construction of the entropy flux kernel in Sect.
5, as given in Theorem 3.6.

We begin by making an ansatz of form (3.13) for the structure of the entropy
kernel χ(ρ, v). Substituting this ansatz into the equation in (3.8), we identify the most
singular terms resulting from this expansion. Enforcing the cancellation of these terms,
we derive an ordinary differential equation (ODE) for the first coefficient a1(ρ), the
solution for which is given in (4.1). This solution is normalized in order to satisfy the
initial condition χρ

∣
∣
ρ=0 = δv=0. Arguing similarly for the next most singular terms

(using the chosen function a1(ρ)), we obtain a further ODE for a2(ρ), the solution for
which is given in (4.6).

The next step is to derive a suitable equation for the remainder term g(ρ, v). To
do this, we identify an operator L̃ capturing the principal part of equation (3.8) but
with coefficients independent of v. Employing the Fourier transform with respect to
v, we obtain a formal equation for the remainder term ĝ(ρ, ξ) in Proposition 4.2.
A key observation is that the choice of a1(ρ) and a2(ρ) to cancel the leading order
singularities is manifested on the Fourier side by the cancellation of the most slowly
decaying terms in the equation for ĝ(ρ, ξ) as ξ → ±∞. This leads to the higher order
Hölder regularity of g(ρ, v) so that g(ρ, v) can be treated as a true remainder term.
Using the fundamental solutions of operator L̃ in Lemma 4.3, we may employ the
variation of parameters to find a formal representation formula for ĝ(ρ, ξ); see (4.10).
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In Theorem 4.5, we give a proof of the existence of a solution ĝ(ρ, ξ) satisfying
the representation formula via a constructive fixed point argument, before proving the
higher regularity of the obtained fixed point in Theorem 4.7. It is then straightforward
to see that the obtained function g(ρ, v) from the inverse Fourier transform satisfies
the desired equation, which leads to the existence of the entropy kernel claimed in
Theorem 3.4.

The final stage is to quantify the difference between the entropy kernel χ(ρ, v) and
the Newtonian entropy kernel χ∗(ρ, v) defined in (3.10) and the following equation.
This is done in Theorem 4.8, again by using the variation of parameters formula in
the Fourier space.

4.2 The Coefficients for the Entropy Kernel

As a preliminary observation, we note that, by the principle of finite speed of propaga-
tion, coefficients A and B may be redefined to be 0 outside the support of χ(ρ, v − s),
which is the set {|v − s| ≤ k(ρ)}. Moreover, as A and B are functions of v2, a simple
Taylor expansion around v2 = k(ρ)2 gives

Lemma 4.1 The coefficient functions A and B in equation (3.8) for the entropy kernel
can be written as:

A(ρ, v) = A0(ρ)1|v|≤k(ρ) + εA1(ρ)[k(ρ)2 − v2]+ + ε2A2(ρ, v)[k(ρ)2 − v2]2+,

B(ρ, v) = B0(ρ)1|v|≤k(ρ) + εB1(ρ)[k(ρ)2 − v2]+ + ε2B2(ρ, v)[k(ρ)2 − v2]2+,

with

|A0(ρ)| + |A1(ρ)| + |A2(ρ, v)| + ρ
(|B0(ρ)| + |B1(ρ)| + |B2(ρ, v)|) ≤ Cργ−2,

and 1|v|≤k(ρ) = 1 when |v| ≤ k(ρ) and 0 when |v| > k(ρ).

With the ansatz for the entropy kernel, we determine coefficients a1(ρ) and a2(ρ).
To do this, we substitute ansatz (3.11) into the entropy equation (3.8) and examine
the most singular terms. By choosing the coefficients such that these singular terms
vanish, we are able to solve the equation for the higher order remainder.

Denote

Gν(ρ, v) := [k(ρ)2 − v2]ν+ for ν ∈ R.

Then we have the following identities:

∂ρGν(ρ, v) = 2νk(ρ)k′(ρ)Gν−1(ρ, v), ∂vGν(ρ, v) = −2νvGν−1(ρ, v).
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Substituting (3.11) into (3.8) and grouping the terms yields:

χρρ − k′(ρ)2χvv + εAχρ + εBvχv

= Gλ−1(ρ, v)
(
4λkk′a′

1 + 4λ2k′2a1 + 2λkk′′a1 + 2λεA0kk′a1 − 2λεB0k2a1
)

+ Gλ(ρ, v)
(
a′′
1 + 4(λ + 1)kk′a′

2 + 4(λ + 1)2k′2a2 + 2(λ + 1)kk′′a2
+ εA0a′

1 + 2λεB0a1 + 2(λ + 1)εA0kk′a2 − 2(λ + 1)εB0k2a2

+ 2λε2A1kk′a1 − 2λε2B1k2a1
)

+ Gλ+1(ρ, v)
(
a′′
2 + 2(λ + 1)εB0a2 + ε(A − A0)a

′
1 + 2λε3A2kk′a1 + εA0a′

2

+ 2(λ + 1)ε(A − A0)kk′a2 + 2(λ + 1)εB0a2 + 2λε2B1a1

− 2λε3B2v
2a1 − 2(λ + 1)ε(B − B0)v

2a2
)

+ gρρ − k′(ρ)2gvv + εAgρ + εBvgv.

Thus we see that, in order to cancel the highest order singularities, a1 must solve

a′
1

a1
= − k′′

2k′ − λ
k′

k
− ε

2
A0 + ε

2

k

k′ B0,

so that
a1(ρ) = c∗,λk(ρ)−λk′(ρ)−

1
2 eã(ρ), (4.1)

where the constant c∗,λ > 0 is determined to satisfy the initial conditions and

ã(ρ) := ε

2

∫ ρ

0

( − A0(s) + k(s)

k′(s)
B0(s)

)
ds, (4.2)

as defined in (3.16). Defining α1(ρ) := a1(ρ)k(ρ)2λ+1, we obtain

α′
1

α1
= − k′′

2k′ + (λ + 1)
k′

k
− ε

2
A0 + ε

2

k

k′ B0. (4.3)

Cancelling the next highest order singularities, we obtain the following equation for
a2(ρ):

a′
2 + a2

( k′′

2k′ + (λ + 1)
k′

k
+ ε

2
A0 − ε

2

k

k′ B0

)
= − 1

4(λ + 1)kk′ W̃ ,

where
W̃ = a′′

1 + εA0a′
1 + 2λε2a1(kk′ A1 − k2B1) + 2λεB0a1. (4.4)

Defining α2(ρ) := a2(ρ)k(ρ)2λ+3, we have

α′
2 + α2

( k′′

2k′ − (λ + 2)
k′

k
+ ε

2
A0 − ε

2

k

k′ B0
)

= − k

4(λ + 1)k′
(
α′′
1 + εA0α

′
1 − εB0α1 + 2λε2α1(kk′ A1 − k2B1)

) =: �.

(4.5)
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We take the less singular solution to this singular differential equation given by

α2(ρ) = eã(ρ)k(ρ)λ+2k′(ρ)−
1
2

∫ ρ

0
e−ã(τ )k(τ )−λ−2k′(τ )

1
2 �(τ) dτ.

From the observations in Lemma 2.1, we see that k(τ )−λ−2k′(τ )
1
2 �(τ) = O(τ

γ−3
2 )

as τ → 0, so that it is integrable. Then we conclude that

a2(ρ) = eã(ρ)k(ρ)−λ−1k′(ρ)−
1
2

∫ ρ

0
e−ã(τ )k(τ )−λ−2k′(τ )

1
2 �(τ) dτ

= − 1

4(λ + 1)
eã(ρ)k(ρ)−λ−1k′(ρ)−

1
2

∫ ρ

0
e−ã(τ )k(τ )λk′(τ )−

1
2 W̃ (τ ) dτ

(4.6)

is well defined, where W̃ is defined in (4.4). Throughout the paper, we exploit the fact
that there exist C1 and C2 depending on ρM such that 0 < C1 ≤ eã(ρ) ≤ C2 < ∞.

4.3 Proof of the Existence and Regularity of the Entropy Kernel

As coefficients A and B of the first-order terms in the entropy equation depend on both
ρ and v, we isolate the principal part of the operator in order to exploit the Fourier
transform. For this purpose, we define an operator L̃ by

L̃ := ∂ρρ − k′(ρ)2∂vv + εA0(ρ)∂ρ − β(ρ), (4.7)

where

β(ρ) := α′′
� (ρ)

α�(ρ)
+ εA0(ρ)

α′
�(ρ)

α�(ρ)
,

and

α�(ρ) = c�e− ε
2

∫ ρ
0 A0(s) dsk(ρ)λ+1k′(ρ)−

1
2 ,

with constant c� > 0 to be chosen later. We observe that α� satisfies the equation:

α′
�

α�

= − k′′

2k′ + (λ + 1)k′

k
− ε

2
A0.

By the asymptotics for k(ρ) given in Lemma 2.1, we find that β(ρ) is O(ργ−3) as
ρ → 0.

With operator L̃, we work in the Fourier space. We therefore determine an equation
for the expression: F(L̃g)(ρ, ξ), where F denotes the Fourier transform in variable
v. To calculate the Fourier transform of function [k(ρ)2 − v2]λ+, we use the following
facts:
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For ease of notation, we write fλ(y) := [1 − y2]λ+ so that

[k(ρ)2 − v2]λ+ = k(ρ)2λ fλ
( v

k(ρ)

)
.

Recalling now from [15] that the Fourier transform of fλ(y) is

f̂λ(ξ) = √
π�(λ + 1)2λ+ 1

2 |ξ |−λ− 1
2 Jλ+ 1

2
(ξ),

where Jν is the Bessel function of first type of order ν, we have

F
([k(ρ)2 − v2]λ+

) = k(ρ)2λ+1 f̂λ(k(ρ)ξ) = C

(
k(ρ)

ξ

)λ+ 1
2

Jλ+ 1
2
(k(ρ)ξ).

We are therefore able to derive an equation for L̃g in the Fourier space.

Proposition 4.2 The remainder function g(ρ, v) satisfies

F(L̃g)(ρ, ξ) = F(S(g))(ρ, ξ)

:= −F(ε(A − A0)gρ) − F(εBvgv) − β(ρ)ĝ

+ H0(ρ) f̂λ+1(k(ρ)ξ) + ε2r(ρ, ξ),

where H0(ρ) = O(ρ−1+2θ ) as ρ → 0, and r(ρ, ξ) = O(ρ−1+2θ (k(ρ)|ξ |)−λ−1−α− 1
2 )

as |ξ | → ∞, for some α > 0. In particular, r(ρ, ξ) is asymptotically like
f̂λ+1+α(k(ρ)ξ) as ξ → ∞.

Proof We write X1 := a1(ρ)[k(ρ)2 − v2]λ+ and X2 := a2(ρ)[k(ρ)2 − v2]λ+1+ . From
the considerations above, we find that F(X1) = α1(ρ) f̂λ(k(ρ)ξ) and F(X2) =
α2(ρ) f̂λ+1(k(ρ)ξ). Now, rearranging the entropy equation, we obtain

F(L̃g)(ρ, ξ) = − I − I I − ε3F(A2[k2 − v2]2+ X1
ρ) − εF((A − A0)X2

ρ)

− F(ε3B2[k2 − v2]2+vX1
v + ε(B − B0)vX2

v)

− F(ε(A − A0)gρ) − F(εBvgv) − β(ρ)ĝ,

where

I :=F(X1
ρρ) + k′(ρ)2ξ2F(X1) + F(ε(A0 + εA1[k2 − v2]+)X1

ρ)

+ F(ε(B0v + εB1[k2 − v2]+v)X1
v)

and
I I :=F(X2

ρρ) + k′(ρ)2ξ2F(X2) + εA0F(X2
ρ) + εF(B0vX2

v).
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As f̂ ′
λ(y) = − 2λ+1

y f̂λ + 2λ
y f̂λ−1, we calculate

I = f̂λ
(
α′′
1 + εA0α

′
1 − εB0α1 + 2λε2α1(kk′ A1 − k2B1)

)

+ f̂λ+1
(
ε2A1α

′
1k2λ+3 + 2λε2B1k2α1

)
.

Similarly,

I I = − f̂λ
(
α′′
1 + εA0α

′
1 − εB0α1 + 2λε2α1(kk′ A1 − k2B1)

)

+ f̂λ+1

(
α′′
2 + εA0α

′
2 − εB0α2

+ 2λ + 3

2(λ + 1)

(
α′′
1 + εA0α

′
1 − εB0α1 + 2λε2α1(kk′ A1 − k2B1)

))
,

where we have used that coefficients α1 and α2 satisfy (4.3) and (4.5). Then we obtain

I + I I = f̂λ+1

(
α′′
2 + εA0α

′
2 − εB0α2 + ε2A1α

′
1k2λ+3 + 2λε2B1k2α1

+ 2λ + 3

2(λ + 1)

(
α′′
1 + εA0α

′
1 − (2λ + 1)εB0α1 + 2λε2α1(kk′ A1 − k2B1)

))
.

Denote

ε2r(ρ, ξ) := F
( − ε3(A2[k2 − v2]2+ X1

ρ) − ε(A − A0)X2
ρ

− ε3B2[k2 − v2]2+vX1
v + ε(B − B0)X2

v

)

as a higher order term. Then we have

F(L̃g)(ρ, ξ) = F(S(g)) := −F(ε(A − A0)gρ) − F(εBvgv)

− β(ρ)ĝ − H0(ρ) f̂λ+1(k(ρ)ξ) + ε2r(ρ, ξ),

where

H0(ρ) = α′′
2 + εA0α

′
2 − εB0α2 + ε2A1k2λ+3α′

1 + 2λε2B1k2α1

+ 2λ + 3

2(λ + 1)

(
α′′
1 + εA0α

′
1 − (2λ + 1)εB0α1 + 2λε2(kk′ A1 − k2B1)α1

)

as required. We note that H0(ρ) = O(ρ−1+2θ ) as ρ → 0 from the limiting forms of
k(ρ) given in Lemma 2.1.Moreover, one can check that the remainder function r(ρ, ξ)

acts as the Fourier transform of the product of a smooth (even Schwartz) function with
fλ+1+α for some α > 0, so that

r(ρ, ξ) = O
(
ρ−1+2θ (k(ρ)|ξ |)−λ−1−α− 1

2
)

as ρ → 0.
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Recalling the definition of L̃ and applying the Fourier transform with respect to v,
we obtain the following differential equation:

F(L̃g)(ρ, ξ) := ĝρρ(ρ, ξ) + k′(ρ)2ξ2ĝ(ρ, ξ) + εA0(ρ)ĝρ(ρ, ξ) − β(ρ)ĝ(ρ, ξ)

= F(S(g)). (4.8)

We solve this equation by the method of variation of parameters. In order to do this,
we require the fundamental solutions of operatorF(L̃ ·). These fundamental solutions
are, by definition, χ̂ � and χ̂ � determined by

{
F

(
L̃χ�

) = 0,

χ̂ �|ρ=0 = 0, χ̂
�
ρ |ρ=0 = 1,

and {
F

(
L̃χ�

) = 0,

χ̂ �|ρ=0 = 1, χ̂
�
ρ |ρ=0 = 0,

respectively.

Lemma 4.3 The fundamental solutions of the Fourier transformed equations are

χ̂ �(ρ, ξ) = α�(ρ)(ξk(ρ))−ν Jν(ξk(ρ)), χ̂ �(ρ, ξ) = α�(ρ)
(k(ρ)

ξ

)−ν
Yν(ξk(ρ)),

(4.9)
where ν = λ + 1

2 , Jν and Yν are the Bessel functions of order ν of first and second
type respectively, and the constant c� > 0 in the definition of α�(ρ) is chosen to satisfy
the initial conditions.

Proof This follows by a direct calculation from the identities:

C′
ν(y) = Cν−1(y) − ν

y
Cν(y) = C′

ν(y) = −Cν+1(y) + ν

y
Cν(y)

for Cν(y) = Jν(y), Yν(y); also see [23].

We solve the differential equation (4.8) by the method of variation of parame-
ters. First, we calculate the Wronskian of the fundamental solutions. Note that the
Wronskian (cf. [23]):

w(s, ξ) := Yν(ξk(s))J ′
ν(ξk(s)) − Jν(ξk(s))Y ′

ν(ξk(s)) = 2ν

ξk(s)
,

so that

W (s, ξ) := (
χ̂ �(ξk(s))∂s χ̂

�(ξk(s)) − χ̂ �(ξk(s))∂s χ̂
�(ξk(s))

) = c2�e−ε
∫ s
0 A0(τ )dτ .
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The method of variation of parameters then gives that a particular solution of (4.8) is

ĝ(ρ, ξ) =
∫ ρ

0

χ̂ �(ρ, ξ)χ̂ �(s, ξ) − χ̂ �(s, ξ)χ̂ �(ρ, ξ)

χ̂
�
s (s, ξ)χ̂ �(s, ξ) − χ̂ �(s, ξ)χ̂

�
s (s, ξ)

F(L̃g)(s, ξ) ds

=
( k(ρ)

k′(ρ)

) 1
2
e− ε

2

∫ ρ
0 A0(τ ) dτ

∫ ρ

0
K (ρ, s; ξ)e

ε
2

∫ s
0 A0(τ ) dτ

( k(s)

k′(s)

) 1
2

× F(S(g))(s, ξ) ds,

(4.10)

where

K (ρ, s; ξ) := Yν(ξk(ρ))Jν(ξk(s)) − Jν(ξk(ρ))Yν(ξk(s)).

Define a new integral kernel K̃ (ρ, s; ξ) by

K̃ (ρ, s; ξ) =
( k(ρ)

k′(ρ)

) 1
2
( k(s)

k′(s)

) 1
2

K (ρ, s; ξ)e− ε
2

∫ ρ
s A0(τ ) dτ , (4.11)

and look for a fixed point of

ĝ(ρ, ξ) =
∫ ρ

0
K̃ (ρ, s, ξ)F(S(g)) ds.

Thenwe showvia a fixed point argument that such a function ĝ(ρ, ξ) exists in Theorem
4.5.

Before proving this theorem, we first make a few observations. To simplify the
notation and bounds later, we set

Q±ν(y) :=
{

|y|±ν for |y| ≤ 1,

|y|− 1
2 for |y| ≥ 1,

and

R(y) :=
{
1 for |y| ≤ 1,

|y|−1 for |y| ≥ 1.

Then |Jν(y)| ≤ C Qν(y) and |Yν(y)| ≤ C Q−ν(y) for y > 0. Thus, we may bound

|K (ρ, s; ξ)| ≤ C Qν(ξk(ρ))Qν(ξk(s))−1R(ξk(s)), (4.12)

where C > 0 is independent of (ρ, s, ξ) for 0 ≤ s ≤ ρ ≤ ρM and ξ ∈ R.
The following lemma provides accurate estimates for various L p and weighted L p

norms of the kernel K̃ (ρ, s; ξ). These are simple consequences of (4.12).
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Lemma 4.4 For 0 ≤ s ≤ ρ ≤ ρM and ξ ∈ R,

K̃ (ρ, ρ; ξ) = 0, K̃ (ρ, 0; ξ) = 0.

‖K̃ (ρ, s; ·)‖L2 ≤ Cρ1− θ
2 ,

and, for 0 ≤ μ < 1
2 ,

‖ξ K̃ (ρ, s; ξ)‖L∞
ξ

≤ Cρ1−θ , (4.13)

‖|ξ |μ K̃ (ρ, s; ξ)‖L2
ξ

≤ Cρ1− θ
2−μθ . (4.14)

With these bounds in hand, we are now in a position to state and prove the main
theorem of this section. This theorem gives the existence of the remainder function
ĝ(ρ, ξ), and hence the existence of the entropy kernel itself.

Theorem 4.5 (Existence of the Entropy Kernel) For all γ ∈ (1, 3), there exists

ĝ ∈ L∞(0, ρM ; L2(R))

that is a fixed point of

ĝ(ρ, ξ) =
∫ ρ

0
K̃ (ρ, s, ξ)F(S(g))(s, ξ) ds. (4.15)

The remainder function ĝ(ρ, ξ) satisfies

‖ĝ(ρ, ·)‖L2 + ‖ρ ĝρ(ρ, ·)‖L2 ≤ Cρ1+ 3θ
2 e

ρ2θ

2θ . (4.16)

Proof To establish the existence of the kernel, we argue with a constructive fixed point
scheme. Given the nth approximation ĝn(ρ, ξ), we construct ĝn+1(ρ, ξ) by setting

ĝn+1(ρ, v) :=
∫ ρ

0
K̃ (ρ, s; ξ)F

(
S(gn)

)
ds

=
∫ ρ

0
K̃ (ρ, s; ξ)

(
H0(s) f̂λ+1(k(s)ξ) + ε2r(s, ξ)

− F(ε(A − A0)g
n
s − εBvgn

v − β(s)gn)
)
ds,

and begin the procedure with ĝ0(ρ, ξ) = 0. To show that this scheme converges, we
estimate the increment: ĝn+1− ĝn . Set Ĝn+1 := ĝn+1− ĝn . By linearity of the Fourier
transform, we have

Ĝn+1(ρ, ξ) =
∫ ρ

0
K̃ (ρ, s; ξ)

(
− F(ε(A − A0)G

n
s − εBvGn

v − β(s)Gn)
)
ds.

123



Global Entropy Solutions and Newtonian. . . Page 23 of 53    10 

We first apply integration by parts (recalling from Lemma 4.4 that K̃ (ρ, 0; ξ) =
K̃ (ρ, ρ; ξ) = 0) to obtain

Ĝn+1(ρ, ξ)

=
∫ ρ

0
K̃ (ρ, s; ξ)

(
F(−ε(A − A0)G

n
s (s, v)) − F(εB(s, v)vGn

v(s, v)) − β(s)Ĝn(s, v)
)
ds

=
∫ ρ

0

(
K̃ (ρ, s; ξ)F(ε(A − A0)s Gn − ε(BvGn)v + ε(Bv)vGn − β(s)Gn(s, v))(s, ξ)

+ K̃s(ρ, s; ξ)F(ε(A − A0)G
n)(s, ξ)

)
ds.

(4.17)
We recall that the Fourier transform of a product is the convolution of the Fourier
transforms. We therefore use the bounds of Lemma 4.4 and Young’s inequality for
convolutions to estimate, for a typical term,

∥
∥
∥

∫ ρ

0
K̃ (ρ, s; ξ)F(ε(A − A0)s Gn) ds

∥
∥
∥

L2
ξ

≤
∫ ρ

0
‖K̃ (ρ, s; ·)‖L2‖F(ε(A − A0)s) ∗ F(Gn)‖L∞

ξ
ds

≤
∫ ρ

0
‖K̃ (ρ, s; ·)‖L2‖εF((A − A0)s)(s, ·)‖L2‖Ĝn(s, ·)‖L2 ds

≤ Cε2
∫ ρ

0
ρ1− θ

2 s−2+ 5θ
2 ‖Ĝn(s, ·)‖L2 ds,

where we have estimated the L2 norm of F((A − A0)s) by applying Plancherel’s
theorem and estimating with the bounds of Lemma 4.1 and the compact support of
the function to see

‖ε(A − A0)s‖2L2
v

≤ C
∫ k(s)

−k(s)
ε4s2γ−6 dv ≤ Cε4s5θ−4.

Treating the other terms of (4.17) similarly, we find

‖Ĝn+1(ρ, ·)‖L2 ≤ C
∫ ρ

0

(
‖K̃ (ρ, s; ·)‖L2‖F(ε(A − A0)s)(s, ·)‖L2‖Ĝn(s, ·)‖L2

+ ‖K̃s(ρ, s; ·)‖L2‖F(ε(A − A0))(s, ·)‖L2‖Ĝn(s, ·)‖L2

+ ‖ξ K̃ (ρ, s; ξ)‖L∞
ξ

‖F(εBvGn)(s, ·)‖L2

+ ‖K̃ (ρ, s; ·)‖L∞‖F(ε∂v(Bv)Gn)(s, ·)‖L2

+ ‖K̃ (ρ, s; ·)‖L∞|β(s)|‖Ĝn(s, ·)‖L2

)
ds

≤ C
∫ ρ

0

(
ε2ρ1− θ

2 s−2+ 5θ
2 + ερ1−θ s−2+3θ + ρs−2+2θ )‖Ĝn(s, ·)‖L2 ds.
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In particular, we have obtained

ρ−1‖Ĝn+1(ρ, ·)‖L2 ≤ C
∫ ρ

0
s−1+2θ s−1‖Ĝn(s, ·)‖L2 ds, (4.18)

where C > 0 is independent of ρ.
Before estimating Ĝ1(ρ, ξ), we note that, for 0 < s ≤ ρ,

∥
∥
∥Qν(ξk(ρ))Qν(ξk(s))−1R(ξk(s))

∣
∣
∣

Jν+1(ξk(s))

(ξk(s))ν+1

∣
∣
∣

∥
∥
∥

L2
ξ

≤ C
( ∫ 1

k(ρ)

0

(k(ρ)

k(s)

)2ν
dξ +

∫ 1
k(s)

1
k(ρ)

k(ρ)−1k(s)−2ν |ξ |−2ν−1 dξ

+
∫ ∞

1
k(s)

k(ρ)−1k(s)−2ν−4|ξ |−2ν−5 dξ
) 1

2

≤ Cρ
1−θ
2 s− 1

2 . (4.19)

It follows from Proposition 4.2 that

‖K̃ (ρ, s; ξ)r(s, ξ)‖L2
ξ

≤ C‖K̃ (ρ, s; ξ)H0(s) f̂λ+1(k(s)ξ)‖L2
ξ
.

Then we use |H0(ρ)| ≤ Cρ−1+2θ from Proposition 4.2 and employ estimate (4.19)
to calculate

‖Ĝ1(ρ, ·)‖L2 ≤ C
∥
∥
∥

( k(ρ)

k′(ρ)

) 1
2
∫ ρ

0
K (ρ, s; ξ)

( k(s)

k′(s)

) 1
2

H0(s)
Jν+1(ξk(s))

(ξk(s))ν+1 ds
∥
∥
∥

L2
ξ

≤ Cρ
1
2

∫ ρ

0

∥
∥
∥Qν(ξk(ρ))Qν(ξk(s))−1R(ξk(s))s− 1

2+2θ
∣
∣
∣

Jν+1(ξk(s))

(ξk(s))ν+1

∣
∣
∣

∥
∥
∥

L2
ξ

ds

≤ Cρ1− θ
2

∫ ρ

0
s−1+2θ ds

≤ Cρ1+ 3θ
2 . (4.20)

Thus, combining (4.18) and (4.20), we may bound iteratively

ρ−1‖Ĝn+1(ρ, ξ)‖L2
ξ

≤
∫ ρ

0
s−1+2θ
1 s−1

1 ‖Ĝn(s1, ·)‖L2 ds1

≤ C
∫ ρ

0

∫ s1

0
· · ·

∫ sn−1

0
(sn · · · s1)

−1+2θ s−1
n ‖Ĝ1(sn, ·)‖L2 dsn · · · ds1

≤ Cρ
3θ
2 +2nθ

n∏

j=1

1
3θ
2 + 2 jθ

≤ C
(2θ)−n

n! ρ
3θ
2 +2nθ .
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Hence, we obtain

‖Ĝn+1(ρ, ξ)‖L2
ξ

≤ C
(2θ)−n

n! ρ1+ 3θ
2 +2nθ .

In particular, ĝ(ρ, ξ) := limn→∞ ĝn(ρ, ξ) = limn→∞
∑n

k=1 Ĝk(ρ, ξ) exists and
satisfies

‖ĝ(ρ, ·)‖L2 ≤ C
∞∑

n=0

(2θ)−n

n! ρ1+ 3θ
2 +2nθ = Cρ1+ 3θ

2 e
ρ2θ

2θ .

Moreover, ĝ is the desired fixed point. In an analogous argument, we can obtain the
estimate for ρ ĝρ . This completes the proof.

Remark 4.6 A totally analogous argument yields that ξ ĝξ ∈ L2
ξ with

‖ξ ĝξ‖L2
ξ

≤ Cρ1+ 3θ
2 e

ρ2θM
2θ .

Theorem 4.7 (Regularity of g(ρ, v)) The remainder function g = g(ρ, v) is such
that ∂

μ
v g is Hölder continuous in (ρ, v) for ρ > 0 for all μ with 0 ≤ μ < λ + 2. In

addition, if 0 < β < μ,

|∂β
v g(ρ, v)| ≤ Cρ1+(1−2μ+β)θ [k(ρ)2 − v2]μ−β

+

for all ρ with 0 ≤ ρ ≤ ρM and v ∈ R.

Proof Recalling the definition of fractional derivatives in (3.12), we see that the
fractional derivative of order μ of the remainder function g(ρ, v) may be bounded
by

|∂μ
v g(ρ, v)| ≤ C

∫

R

|ξ |μ |̂g(ρ, ξ)| dξ.

For 0 ≤ μ < 1
2 , we apply the same method as in the proof of Theorem 4.5 with the

bounds of Lemma 4.4 to obtain
∫

R

|ξ |μ |̂g(ρ, ξ)| dξ

≤ C
∫

R

|ξ |μ
∫ ρ

0

∣
∣
∣K̃ (ρ, s; ξ)

(
H0(s)

∣
∣
∣

Jν+1(ξk(s))

(ξk(s))ν+1

∣
∣
∣

− F(
ε(A − A0)gs − εBvgv −β(s)g

))∣
∣
∣dsdξ

≤ C
∫ ρ

0

∥
∥|ξ |μ K̃ (ρ, s; ξ)

∥
∥

L2
ξ

(∥
∥
∥H0(s)

∣
∣
∣

Jν+1(ξk(s))

(ξk(s))ν+1

∣
∣
∣

∥
∥
∥

L2
ξ

+ ε‖(A − A0)s‖L∞
v

‖ĝ‖L2
ξ

+ |β(s)|‖ĝ‖L2
ξ
+ ε‖B(s, v)‖L∞

v

(‖ĝ‖L2
ξ
+ ‖ξ ĝξ‖L2

ξ

))
ds
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+ C
∫ ρ

0

∥
∥|ξ |μ K̃s(ρ, s; ξ)

∥
∥

L2
ξ
‖A − A0‖L∞

v
‖ĝ‖L2

ξ
ds

≤ C
∫ ρ

0
ρ1− θ

2 −μθ
(

s−2+2θ s1+2θ+ 3θ
2 + εs−2+2θ s1+2θ+ 3θ

2 + s−1+ 3θ
2

)
ds

≤ Cρ1+θ−μθ . (4.21)

Moreover, we observe that, for 0 ≤ μ < 1
2 ,

∫

R

|ξ |μ|ξ ĝξ (ρ, ξ)| dξ ≤ Cρ1+θ−μθ .

To extend these inequalities to μ ≥ 1
2 , we note that, for all 0 ≤ μ < ν + 3

2 ,

∥
∥
∥|ξ |μ−1 Jν+1(ξk(s))

(ξk(s))ν+1

∥
∥
∥

L1
ξ

≤ s1+2θ−μθ .

Distributing the powers of ξ appropriately within the integral and estimating as (4.21)
in a straightforward way, we obtain

|∂μ
v g(ρ, v)| ≤ Cρ1+θ−μθ for all 0 < μ < λ + 2.

Similarly, we have

ρ|∂ρ∂μ
v g(ρ, v)| ≤ Cρ1+θ−μθ for all 0 < μ < λ + 2.

Thus, by the standard embedding of the weighted Sobolev space W 1,p
ρ ⊂ C0,α

ρ , we
obtain that ∂μ

v g(ρ, v) is Hölder continuous.
To conclude the proof, we observe that [1 − z2]μ+, for z = v

k(ρ)
, is positive on the

support of g(ρ, v), and

|∂μ
z g(ρ, v)| = k(ρ)μ|∂μ

v g(ρ, v)|.

Moreover, by the Hölder continuity above, we have

|∂β
z g| ≤ sup |∂μ

z g|[1 − z2]μ−β
+ .

We then calculate that, for 0 < β < μ,

|∂β
v g(ρ, v)| = Ck(ρ)−β |∂β

z g(ρ, v)|
≤ Cρ−βθ

(
sup

z
|∂μ

z g(ρ, v)|)[1 − z2]μ−β
+

≤ Cρ−βθ+1+θ [1 − z2]μ−β
+

≤ Cρ1+(1−2μ+β)θ [k(ρ)2 − v2]μ−β
+ .

This completes the proof of Theorem 4.7, and hence Theorem 3.4.
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Theorem 4.8 As ε → 0, the relativistic entropy kernel χ(ρ, v) converges uniformly
to the classical entropy kernel χ∗(ρ, v) on {ρ ≤ ρM }. In particular, in the (k, v)–
coordinates,

|χ(k, v) − χ∗(k, v)| ≤ Cεχ∗(k, v),

where C depends only on ρM , which implies that, when ε is sufficiently small,

χ(k, v) ≥ 1

2
χ∗(k, v) > 0

in the interior of its support {|v| ≤ k}.
Proof It is clear that, as ε → 0,

k(ρ) :=
∫ ρ

0

√
p′(s)

s + εp(s)
ds −→ k∗(ρ) :=

∫ ρ

0

√
p′(s)
s

ds uniformly in ρ ∈ [0, ρM ].

Also, from the expressions given in Sect. 4.2, we see that coefficients ai , i = 1, 2,
converge uniformly to their classical counterparts (a� and a� in the notation of [4]).
Thus, it suffices to show that the remainder function g(ρ, v), determined in Sect. 4.3,
converges to the remainder function g∗ of the classical kernel.

Recall that g is defined as the fixed point of

ĝ(ρ, ξ) =
∫ ρ

0
K̃ (ρ, s; ξ)F(S(g))(s, ξ) ds,

where K̃ is defined in (4.11), S is defined in Proposition 4.2, and g∗ is defined as the
fixed point of

ĝ∗(ρ, ξ) =
∫ ρ

0
K̃ ∗(ρ, s; ξ)F(S∗(g∗))(s, ξ) ds,

where K̃ ∗ and S∗ can be found in [5].
From the expressions for K̃ ∗ and S∗ in [5], we see that the difference, K̃ − K̃ ∗,

satisfies

|K̃ (ρ, s; ξ) − K̃ ∗(ρ, s; ξ)|
≤ Cε

( k(ρ)

k′(ρ)

) 1
2
( k(s)

k′(s)

) 1
2

Qν(ξk(ρ))Qν(ξk(s))−1R(ξk(s))

for 0 ≤ s ≤ ρ and ξ ∈ R. Similarly,

|F(S(g) − S∗(g∗))| ≤ Cε| f̂λ+1(ξk(ρ))|ρ−1+2θ + ε2|r(ρ, ξ)|.
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Using

ĝ(ρ, ξ) − ĝ∗(ρ, ξ) =
∫ ρ

0
K̃ (ρ, s; ξ)F(S(g))(s, ξ) ds

−
∫ ρ

0
K̃ ∗(ρ, s; ξ)F(S∗(g∗))(s, ξ) ds

=
∫ ρ

0

(
K̃ − K̃ ∗)(ρ, s; ξ)F(S(g))(s, ξ) ds

+
∫ ρ

0
K̃ ∗(ρ, s; ξ)F(S(g) − S∗(g∗))(s, ξ) ds,

we may argue as in the proof of Theorem 4.7 to conclude the bound we want.

5 TheWeak Entropy-Flux Kernel

With Theorem 3.4, thereby demonstrating the existence of the entropy kernel, we now
move on to the entropy-flux kernel and Theorem 3.6.

To this end, we consider the expressions derived for general entropy pairs:

qρ = u(1 − εp′)
1 − ε2 p′u2 ηρ + p′(1 − εu2)2

(1 − ε2 p′u2)(ρ + εp)
ηu,

qu = ρ + εp

1 − ε2 p′u2 ηρ + u(1 − εp′)
1 − ε2 p′u2 ηu .

Changing the variables to (ρ, v) and setting (ρ̃, ũ) := (
(ρ+εp)(1−εu2)

1−ε2 p′u2 ,
u(1−εp′)
1−ε2 p′u2 ) yield

qρ = ũηρ + ρ̃k′2ηv, qv = ρ̃ηρ + ũηv.

Lemma 5.1 ρ̃(ρ, v) and ũ(ρ, v) can be expanded as

ρ̃(ρ, v) = ρ0(ρ) + ερ1(ρ)(k(ρ)2 − v2) + ε2ρ2(ρ, v)(k(ρ)2 − v2)2, (5.1)

ũ(ρ, v) = v
(
u0(ρ) + εu1(ρ)(k(ρ)2 − v2) + ε2u2(ρ, v)(k(ρ)2 − v2)2

)
, (5.2)

with

ρ0(ρ) = (ρ + εp)(1 − εu(k)2)

1 − ε2 p′u(k)2
, u0(ρ) = u(k)(1 − εp′)

k(1 − ε2 p′u(k)2)
,

and

|ρ1(ρ)| + |ρ2(ρ, v)| ≤ C
(
ρ + εp(ρ)

)
, |u1(ρ)| + |u2(ρ, v)| ≤ C,

where C > 0 is independent of ε > 0.
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The proof of this lemma is the same as that of Lemma 4.1, by taking a Taylor
expansion in v2 around k(ρ)2.

We now need to derive an equation for the entropy-flux kernel. We recall the
operator:

L = ∂ρρ − k′2∂vv + εA∂ρ + εBv∂v

and observe that, by definition (see (3.6)), εA = ρ̃ρ−ũv

ρ̃
and εBv = ũρ−k′2ρ̃v

ρ̃
. We may

therefore calculate

L(σ − ũχ) = σρρ − k′2σvv + εAσρ + εBvσv − 2ũρχρ − ũχρρ + 2k′2ũvχv

+ k′2ũχvv − εAũχρ − εBvũχv − L(ũ)χ

= − ũρχρ + 2k′k′′ρ̃χv + k′2ρ̃ρχv − k′2ρ̃vχρ + k′2ũvχv

+ εAk′2ρ̃χv + εBvρ̃χρ − L(ũ)χ

= 2k′k′′ρ̃χv + 2k′2ρ̃ρχv − 2k′2ρ̃vχρ − L(ũ)χ

= : F̃(ρ, v), (5.3)

as claimed in (3.18). Defining F(ρ, v) := F̃(ρ, v) + L(ũχ), we derive (3.17).

5.1 The Coefficients for the Entropy-Flux Kernel

As with the entropy kernel in Sect. 4.2, we now derive the expressions for the
coefficients of the entropy-flux kernel, b1(ρ) and b2(ρ).

Expanding F̃(ρ, v) in the coefficients of Gλ(ρ, v) (recall from Sect. 4.2 that
Gλ(ρ, v) = [k(ρ)2 − v2]λ+), we find

L(σ − ũχ)(ρ, v) = − 4λvk′(k′ρ0)′a1Gλ−1(ρ, v)

− 4vGλ(ρ, v)
(
(λ + 1)k′(k′ρ0)′a2 + λεk′(k′ρ1)′a1

− εk′2ρ1a′
1 + 1

4
ωa1

) + v f̃ (ρ, v), (5.4)

where

ω(ρ) = u′′
0 + εA0u′

0 + εB0u0 + 4εkk′u′
1 + 2ε

(
4k′2 + kk′′ + εA0kk′ − εB0k2

)
u1,

and f̃ (ρ, v) is a more regular term satisfying the bound:

| f̃ (ρ, v)| ≤ Cρ2θ−2Gλ+1.

Moreover, we note from the asymptotics for k(ρ) in Lemma 2.1 and the bounds for
a1(ρ) and a2(ρ) in Theorem 3.4 that the coefficients of Gλ−1(ρ, v) and Gλ(ρ, v) also
satisfy the bounds of form Cρ2θ−2.
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We are now looking for the entropy-flux kernel in the form:

(σ − ũχ)(ρ, v) = −v
(
b1(ρ)Gλ(ρ, v) + b2(ρ)Gλ+1(ρ, v)

) + h(ρ, v).

We write bi (ρ) = Wi (ρ)ai (ρ), i = 1, 2, below to emphasize the relation between
coefficients bi (ρ) and ai (ρ). Applying operator L to this ansatz, we have

L(σ − ũχ)

= −4λva1k′(kW1)
′Gλ−1(ρ, v)

+ Gλ(ρ, v)v
( − W ′′

1 a1 − 2W ′
1a′

1 − 4(λ + 1)kk′a2(W ′
2 + k′

k
W2)

+ (W2 − W1)a
′′
1 − εA0W ′

1a1 − εB0W1a1 + εA0(W2 − W1)a
′
1

+ 2λεB0(W2 − W1)a1 − 2λε2kk′ A1a1(W1 − W2)

+ 2λε2(W1 − W2)B1a1k2
)

+ Gλ+1(ρ, v)v
( − W ′′

2 a2 − 2W ′
2a′

2 − W2a′′
2 − 2λε3A2W1a1kk′

+ 2λε3B2v
2W1a1 − ε(A − A0)W ′

1a1 − ε(A − A0)W1a′
1

− 2(λ + 1)ε(A − A0)W2a2kk′ − 2λε(B − B0)W1a1

+ 2(λ + 1)ε(B − B0)v
2W2a2 − εAW ′

2a2 − εAW2a′
2

− εBW2a2 − 2(λ + 1)εB0W2a2
)

+ L(h). (5.5)

Matching the coefficients in the terms of Gλ−1(ρ, v) in (5.4) and (5.5), W1(ρ) must
solve

(kW1)
′(ρ) = (k′ρ0)′(ρ).

This has the solution

W1(ρ) = k′(ρ)

k(ρ)
ρ0(ρ). (5.6)

For coefficient W2, comparing the next most singular terms yields

W ′
2(ρ) + k′(ρ)

k(ρ)
W2(ρ) − W̃ (ρ)

4(λ + 1)k(ρ)k′(ρ)a2(ρ)
W2(ρ) = �̃(ρ)

4(λ + 1)k(ρ)k′(ρ)a2(ρ)
,

where W̃ (ρ) is defined as in (4.4), and �̃ is given by

�̃ = − W ′′
1 a1 − 2W ′

1a′
1 − W1W̃ − εA0W ′

1a1 − εB0W1a1

+ 4(λ + 1)k′(k′ρ0)′a2 + 4λεk′(k′ρ1)′a1 − 4εk′2ρ1a′
1 + ωa1. (5.7)

Using the expressions for (W1, ũ, ρ̃) in (5.6) and Lemma 5.1, and applying once again
Lemma 2.1, we see that �̃(ρ) = O

(
ρ2θ−2

)
.
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From (4.6) and the expression for a2(ρ), we have

− W̃ (ρ)

4(λ + 1)k(ρ)k′(ρ)a2(ρ)
= d

dρ

(
log

∫ ρ

0
e−ã(τ )k(τ )λk′(τ )−

1
2 W̃ (τ ) dτ

)
.

Now we define an integrating factor:

I (ρ) = exp
( ∫ ρ (k′(s)

k(s)
+ d

ds

(
log

∫ s

0
e−ã(τ )k(τ )λk′(τ )−

1
2 W̃ (τ ) dτ

))
ds

)

= k(ρ)

∫ ρ

0
e−ã(τ )k(τ )λk′(τ )−

1
2 W̃ (τ ) dτ.

Onemay check I (ρ) = O(ρθ ) as ρ → 0. Thus, �̃(ρ)
4(λ+1)k(ρ)k′(ρ)a2(ρ)

I (ρ) = O(ρ−1+θ )

as ρ → 0, and hence is integrable. Therefore, we obtain

W2(ρ) = I (ρ)−1
∫ ρ

0

�̃

4(λ + 1)kk′a2
(s)I (s) ds. (5.8)

It is simple to verify that |W2(ρ)| ≤ C , where C depends only on ρM .

5.2 Proof of the Existence and Regularity of the Entropy-Flux Kernel

As for the remainder function in the expansion of the entropy kernel, we derive an
equation for L̃h, where L̃ is defined as in (4.7).

Proposition 5.2 The remainder function h(ρ, v) satisfies

F(L̃h)(ρ, ξ) = F(T (g))(ρ, ξ)

:= −F(ε(A − A0)gρ) − F(εBvgv)

− β(ρ)ĝ + H1(ρ)k(ρ)ξ f̂λ+2(k(ρ)ξ) + ε2r̃(ρ, ξ),

where H1(ρ) = O(ρ−1+2θ ) as ρ → 0 and r̃(ρ, ξ) = O(ρ−1+2θ (k(ρ)|ξ |)−λ−1−α− 1
2 )

as ξ → ∞, for some α > 0.

In particular, r̃(ρ, ξ) acts asymptotically like f̂λ+1+α(k(ρ)ξ) as ξ → ∞. As the proof
is very similar to that of Proposition 4.2, we omit it.

Observe that

k(ρ)|ξ f̂λ+2(k(ρ)ξ)| ≤
{

C if k(ρ)|ξ | ≤ 1,

C |k(ρ)ξ |−λ− 3
2 if k(ρ)|ξ | > 1,

so that k(ρ)ξ f̂λ+2(k(ρ)ξ) satisfies the same bound as f̂λ+1(k(ρ)ξ). We may prove
the following theorem analogously to Theorems 4.5 and 4.7–4.8.
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Theorem 5.3 (Existence and Regularity of the Entropy-Flux Kernel) For γ ∈ (1, 3),
there exists ĥ ∈ L∞(0, ρM ; L2(R)) that is a fixed point of

ĥ(ρ, ξ) =
∫ ρ

0
K̃ (ρ, s; ξ)F(T (h))(s, ξ) ds (5.9)

such that ĥ(ρ, ξ) satisfies

‖ĥ(ρ, ·)‖L2 + ‖ρĥρ(ρ, ·)‖L2 ≤ Cρ1+ 3θ
2 e

ρ2θ

2θ . (5.10)

The remainder function h = h(ρ, v) is such that ∂
μ
v h is Hölder continuous in (ρ, v)

for ρ > 0 for all μ with 0 ≤ μ < λ + 2. In addition, if 0 < β < μ,

|∂β
v h(ρ, v)| ≤ Cρ1+θ−2μθ+βθ [k(ρ)2 − v2]μ−β

+ .

Finally, as ε → 0, σ(ρ, v, s) → σ ∗(ρ, v, s) locally uniformly, where σ ∗ is the
classical entropy-flux kernel as in [4, 5]. In particular,

‖σ(ρ, ·, ·) − σ ∗(ρ, ·, ·)‖L∞({0≤ρ≤ρM }) ≤ Cε.

In what follows, especially in Sect. 6, we require not only an expansion for σ − ũχ ,
but also for σ − λ±χ , where λ± are the eigenvalues of the system defined in Sect. 2.

Corollary 5.4 σ − λ±χ satisfy the following expansions:

(σ − λ±χ)(ρ, v, s)

= (σ − λ±χ)(ρ, v − s, 0) = (∓k − (v − s))ρ0
k′

k
χ(ρ, v − s) + R±(ρ, v − s),

where |R±(ρ, v − s)| ≤ C |k(ρ)2 − (v − s)2|χ(ρ, v − s).

Proof We begin by recalling

λ± = ũ ± ρ̃k′(ρ).

To show that σ −λ±χ remain invariant under the Lorentzian transformation, it suffices
to check that the functions and their derivatives with respect to ρ at ρ = 0 remain
invariant. However, this follows from the simple fact that

(
ρ̃k′(ρ)χ(ρ, v − s)

)

ρ
→ 0 in the sense of measures as ρ → 0.
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Considering the case for s = 0 without loss of generality, we use expansions (3.11)
and (3.19) for χ(ρ, v) and (σ − ũχ)(ρ, v) to obtain

(σ − λ±χ)(ρ, v, 0) = (∓k − v)ρ0
k′

k
a1[k2 − v2]λ+

− ( ± ρ1a1k′ ± ρ2(k
2 − v2)a1k′ ± ρ̃a2k′ + vb2

)[k2 − v2]λ+1+
∓ ρ̃k′g(ρ, v) + h(ρ, v),

from which the desired conclusion follows directly.

In the reduction argument of the next section, we require an accurate analysis of the
singularities of the entropy and entropy-flux kernels constructed above. To this end,
we now provide explicit formulae for the singularities in the fractional derivatives of
order λ + 1.

Proposition 5.5 (Explicit Singularities of the Entropy Kernels) The two distributions
∂λ+1
v χ and ∂λ+1

v σ satisfy

∂λ+1
v χ = k′(ρ)−

1
2 eã(ρ)

∑

±
K ±δv=∓k(ρ) + eI (ρ, v),

∂λ+1
v (σ − ũχ) = −vρ0(ρ)k(ρ)−1k′(ρ)

1
2 eã(ρ)

∑

±
K ±δv=∓k(ρ) + eI I (ρ, v),

(5.11)
where K ± are constants, and eI and eI I are Hölder continuous functions in the interior
of the support of the kernels such that

|eI (ρ, v)| ≤ Ck(ρ)λ−1+2α[k(ρ)2 − v2]−α+ , (5.12)

|eI I (ρ, v)| ≤ Ck(ρ)λ+2α[k(ρ)2 − v2]−α+ (5.13)

for all α ∈ (0, 1].
Proof The identities for the fractional derivatives ∂λ+1

v Gλ and ∂λ
v Gλ may be found in

[4, Proof of Proposition 2.4]. The desired representations then follow from expansions
(3.11) and (3.19), exactly as in that proof.

Finally, we record a property of the coefficients to be required in the sequel.

Proposition 5.6 We define a coefficient D = D(ρ) as

D(ρ) := a1(ρ)b1(ρ) − 2k(ρ)2
(
a1(ρ)b2(ρ) − a2(ρ)b1(ρ)

)
.

Then there exists ε0 > 0 such that, for all ε ∈ (0, ε0), D(ρ) > 0 for any ρ ∈ (0, ρM ).

Proof This follows from the formulae and bounds given for the coefficients above in
Theorems 3.4 and 3.6. Indeed, a calculation shows

D(ρ) = a1(ρ)2

2(λ + 1)p′(ρ)

(
ρ p′′(ρ) + 2p′(ρ) + O(εργ−1)

)
.
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6 Compactness Framework

Now that the entropy and entropy-flux kernels have been constructed, we apply them
to analyze the compactness properties of a sequence of solutions or approximate
solutions of system (1.1). Therefore, the principal aim of this section is to show that
a uniformly bounded sequence of functions satisfying the H−1

loc compactness of the
entropy dissipation measures (see (6.1) below) can be shown to converge not only
weakly, but also strongly in L p

loc.

Theorem 6.1 (Compactness of Approximate Solutions) Let (ρδ, uδ) ∈ (L∞(R2+))2

with ρδ ≥ 0 be a function sequence for δ ∈ (0, 1) such that

|uδ(t, x)| ≤ M <
1√
ε
, 0 ≤ ρδ(t, x) ≤ ρM < ρε

max for a.e. (t, x) ∈ R
2+

for ε ∈ (0, ε0] with some ε0 > 0 defined as in Proposition 5.6, and M and ρM

independent of δ > 0. Suppose that the sequence of entropy dissipation measures

η(ρδ, uδ)t + q(ρδ, uδ)x is compact in H−1
loc (R2+) (6.1)

for any weak entropy pair (η, q). Then there exist a subsequence (still denoted) (ρδ, uδ)

and measurable functions (ρ, u) such that

|u(t, x)| ≤ M, 0 ≤ ρ(t, x) ≤ ρM for a.e. (t, x) ∈ R
2+,

and (ρδ, uδ) converges strongly to (ρ, u) as δ → 0 in Lr
loc(R

2+) for all r ∈ [1,∞).

The proof of this theorem rests on two main ingredients: the div-curl lemma
of Murat–Tartar [21, 25], and the following reduction result for Young measures
constrained by the Tartar commutation relation whose proof is temporarily postponed.

Theorem 6.2 (Reduction of Support of the Young Measure) Suppose that ν(ρ, v) is
a Young measure (probability measure) with bounded support contained in {|v| ≤
v(M), 0 ≤ ρ ≤ ρM } satisfying the commutation relation:

η1q2 − η2q1 = η1 q2 − η2 q1 (6.2)

for any two weak entropy pairs (η1, q1) and (η2, q2), where we have denoted

f :=
∫

f (ρ, v) dν(ρ, v) for any continuous function f (ρ, v).

Then either ν is supported in the vacuum line {ρ = 0} or the support of ν is a single
point.

Proof of Theorem 6.1 For convenience,wework in the (ρ, v)–coordinates.As the func-
tion sequence (ρδ, vδ) with vδ = v(uδ) is uniformly bounded in L∞(R2+), we may
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extract a weakly-star convergent subsequence (still labelled as) (ρδ, vδ)
∗
⇀(ρ, v) in

L∞(R2+). By the fundamental theorem of Young measures (cf. [1]), we may asso-
ciate, for a.e. (t, x) ∈ R

2+, a probability measure νt,x such that, for a.e. (t, x),
supp νt,x ⊂ {|v| ≤ v(M), 0 ≤ ρ ≤ ρM } and

f (ρδ(t, x), vδ(t, x))
∗
⇀ f (t, x) =

∫

R
2+

f (ρ, v) dνt,x (ρ, v) in L∞(R2+)

for any continuous function f : R2+ → R.
We take any two weak entropy pairs (η1, q1) and (η2, q2) and, for simplicity of

notation, we define ηδ
i = ηi (ρ

δ(t, x), vδ(t, x)) and qδ
i = qi (ρ

δ(t, x), vδ(t, x)) for
i = 1, 2. Then, by definition of the Young measure, we have

ηδ
1 qδ

2 − ηδ
2 qδ

1
∗
⇀ η1q2 − η2q1 in L∞(R2+) as δ → 0.

On the other hand, by the H−1-compactness assumption (6.1), we may apply the
div-curl lemma (cf. [21, 25]) to sequences wδ

1 = (ηδ
1, qδ

1) and wδ
2 = (qδ

2,−ηδ
2) to

obtain

ηδ
1 qδ

2 − ηδ
2 qδ

1 ⇀ η1 q2 − η2 q1 in the sense of distributions onR2+ as δ → 0.

Thus, by uniqueness of weak limits, for a.e. (t, x), we have the Tartar commutation
relation:

η1q2 − η2q1 = η1 q2 − η2 q1

for any two weak entropy pairs (η1, q1) and (η2, q2).
We conclude by applying Theorem 6.2 to show that, for a.e. (t, x), νt,x is either

constrained to a point, so that νt,x = δ(ρ(t,x),v(t,x)), or νt,x is supported in the vacuum
line: supp νt,x ⊂ {ρ = 0}. In either case, changing back to the conserved variables U
implies that the Young measure νt,x is a point mass a.e.. Then we conclude the strong
convergence as claimed.

The rest of this section is devoted to the proof of Theorem6.2. As a preliminary step,
we extend a result of DiPerna [14] for the classical Euler equations to the relativistic
case. This lemma tells us that, in the (w, z)–plane, the smallest triangle containing the
support of the Young measure νt,x (considered as a measure in (w, z)) must have its
vertex in the support of νt,x . Note that the vacuum line {ρ = 0} corresponds to line
{w = z}.
Lemma 6.3 Let ν be a probability measure on set {w ≥ z} with non-trivial support
away from the vacuum line, i.e., supp ν ∩ {w > z} �= ∅, and let ν further satisfy the
commutation relation (6.2) for all weak entropy pairs (η1, q1) and (η2, q2). Let

{(w, z) : zmin ≤ z ≤ w ≤ wmax}

be the smallest triangle containing the support of ν in the (w, z)-plane. Then its vertex
(wmax, zmin) belongs to supp ν.
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Proof We argue by contradiction. Suppose that there exists α > 0 such that

supp ν ∩ ([wmax − α,wmax] × [zmin, zmin + α]) = ∅.

From the commutation relation (6.2) (dropping the test functions and working directly
with the kernels), we have

χ(s1)σ (s2) − χ(s2)σ (s1)

χ(s1) χ(s2)
= σ(s2)

χ(s2)
− σ(s1)

χ(s1)

for s1, s2 ∈ R such that χ(s1) χ(s2) �= 0, (6.3)

where χ(s j ) = ∫
χ(ρ, v, s j ) dν(ρ, v), j = 1, 2. Setting s− := zmin and s+ := wmax,

we consider s1 and s2 such that 0 < s+ − s2 < α and 0 < s1 − s− < α. As
suppχ(s) = supp σ(s) = {z ≤ s ≤ w}, we see that (w, z) ∈ supp(χ(s1)σ (s2))
implies that (w, z) /∈ supp ν. Arguing in the same way for χ(s2)σ (s1), we see that the
left-hand side of (6.3) vanishes.

We recall from Corollary 5.4 that

(σ − λ±χ)(ρ, v − s) = ( ∓ k − (v − s)
)
ρ0

k′

k
χ(ρ, v − s) + R±(ρ, v − s),

where |R±(ρ, v − s)| ≤ C |k(ρ)2 − (v − s)2|χ(ρ, v − s). Then

σ(s)

χ(s)
= λ±χ(s)

χ(s)
+ (∓k − (v − s))ρ0

k′
k χ(s)

χ(s)
+ R±(s)

χ(s)
. (6.4)

We define the probability trace measures μ+ and μ− by

f χ(s2)

χ(s2)
→ 〈μ+, f (wmax, ·)〉 :=

∫

f (wmax, z) dμ+(z) as s2 → s+,

f χ(s1)

χ(s1)
→ 〈μ−, f (·, zmin)〉 :=

∫

f (w, zmin) dμ−(w) as s1 → s−,

for any continuous function f = f (w, z). It is now standard to see that these measures
are well defined (cf. [14]). We note that

∣
∣
∣
∣
∣
∣

(−k − (v − s2))ρ0
k′
k χ(s2)

χ(s2)

∣
∣
∣
∣
∣
∣
≤ C max

(w,z)∈supp ν ∩{w≥s2}
|w − s2| → 0 as s2 → s+,

∣
∣
∣
∣
∣
∣

(k − (v − s1))ρ0
k′
k χ(s1)

χ(s1)

∣
∣
∣
∣
∣
∣
≤ C max

(w,z)∈supp ν ∩{z≤s1}
|z − s1| → 0 as s1 → s−.
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Moreover,

∣
∣
∣
∣
∣

R±(s)

χ(s)

∣
∣
∣
∣
∣
≤ C max

(w,z)∈ supp ν
[k2 − (v − s)2]+ ≤ C max

supp ν
|w − s2||z − s1| → 0

as either s → s+ or s → s−. Thus, we deduce from (6.4) that

〈μ+, λ+〉 − 〈μ−, λ−〉 = 0. (6.5)

Now suppose that (wmax, z1) and (w2, zmin) are the points on the edges of the triangle
with the coordinates given by z1 = v1 − k(ρ1) and w2 = v2 + k(ρ2). Observe that
necessarily v1 ≥ v2 with equality only at the vertex of the triangle. Now we calculate

λ+(wmax, z1) − λ−(w2, zmin)

= (u1 − u2)
(
1 + ε

√
p′(ρ1)

√
p′(ρ2)

) + (√
p′(ρ1) + √

p′(ρ2)
)
(1 − εu1u2)

(
1 − εu1

√
p′(ρ1)

)(
1 − εu2

√
p′(ρ2)

) > 0,

as either u1 > u2 or u1 = u2 and ρ1 = ρ2 > 0. As both μ+ and μ− are probability
measures, this gives the desired contradiction to (6.5).

To prove Theorem 6.2, we exploit the existence of an imbalance of regularity in
the commutation relation (6.2), following the approach as developed in [4, 20] (also
see [14]).

We write Pj := ∂λ+1
s j

, j = 2, 3, for the fractional derivative operators, and define
χ j = χ(ρ, v − s j ), j = 2, 3, and similarly for the other terms. Then distributions
Pjχ(s j ), j = 2, 3, are defined as acting on test functions ψ ∈ C∞

c (R) by

〈Pjχ(s j ), ψ〉 = −
∫

R

∂λ
s j

χ(s j )ψ
′(s j ) ds j for j = 2, 3.

Wechoose standard (but distinct)mollifiersφ j ∈ C∞
c (R), j = 2, 3, so thatφ j (s j ) ≥ 0,

∫

R
φ j (s j ) ds j = 1, and suppφ j (s j ) ⊂ (−1, 1), and set φ�

j (s j ) = 1
�
φ j (

s j
�

) for � > 0.
The strategy of the proof is first to apply operators P2 and P3 to the commutation

relation (6.2) and then to mollify them. To make clear the claimed imbalance of
regularity, we make use of the fact that the limit of a mollified product of a measure
with a BV function depends on the choice of mollifiers used (cf. [10]). Mollifying the
entropy and entropy-flux kernels and taking s2, s3 → s1, we obtain the expressions of
form:

Pjχ
�

j = Pjχ j ∗ φ
�

j (s1) =
∫

∂λ
s j

χ(s j )
1

�2 φ′
j (

s1 − s j

�
) ds j for j = 2, 3. (6.6)

Once we have differentiated and mollified the commutation relation (6.2), we pass
� → 0, relying on the properties of cancellation of singularities of the entropy and
entropy-flux kernels to obtain a limit depending on φ2 and φ3. These properties are
stated in the following lemma.
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Lemma 6.4 (Cancellation of singularities) As � → 0, we have the following
convergence properties:

(i) For j = 2, 3, functions χ1Pjσ
�

j −σ1Pjχ
�

j are Hölder continuous in (ρ, v, s1) and
uniformly in �. Moreover, there exists a continuous function X1 = X(ρ, v, s1),
independent of the choice of mollifying sequence, such that χ1Pjσ

�

j −σ1Pjχ
�

j →
X1 uniformly in (ρ, v, s1) when � → 0.

(ii) P2χ
�

2 P3σ
�

3 − P3χ
�

3 P2σ
�

2 are uniformly bounded measures such that, as � → 0,

P2χ
�

2 P3σ
�

3 − P3χ
�

3 P2σ
�

2 ⇀ Y (φ2, φ3)M(ρ)D(ρ)
∑

±
(K ±)2δs1=v±k(ρ)

weakly-star in measures in s1 and uniformly in (ρ, v), where

Y (φ2, φ3) =
∫ 1

−1

∫ 1

s

(
φ3(t − s − 1)φ2(t) − φ2(t − s − 1)φ3(t)

)
dt ds,

M(ρ) = (λ + 1)c−2
∗,λk(ρ)2λ for ρ > 0, and D(ρ) is as in Proposition 5.6.

The proof of this lemma is analogous to [4, Lemma 4.2–4.3]. For the sake of
completeness, we include a proof here in the relativistic setting. It is based on the
structure of the fractional derivatives of the kernels given in Proposition 5.5.

Proof of Lemma 6.4(i) Since we only require the fine properties of the leading order
term in each of the two expansions, we set

g̃(ρ, v − s1) = a2(ρ)Gλ+1(ρ, v − s1) + g(ρ, v − s1),

h̃(ρ, v − s1) = − (v − s1)b2(ρ)Gλ+1(ρ, v − s1) + h(ρ, v − s1).

With this notation, recalling that b1(ρ) = ρ0(ρ)
k′(ρ)
k(ρ)

a1(ρ), we employ the expansions
of Theorems 3.4–3.6 to write the product as

χ1Pjσ
�

j − Pjχ
�

j σ1 = E I ,� + E I I ,� + E I I I ,�,

where

E I ,� := a1ρ0k−1k′ 12 eãGλ,1

∑

±
K ±((s j − s1)δs j =v±k) ∗ φ

�

j ,

E I I ,� := ρ0k−1k′ 12 eã
∑

±
K ±g̃1((s j − s1)δs j =v±k) ∗ φ

�

j

− k′− 1
2 eã

∑

±
K ±h̃1δs j =v±k ∗ φ

�

j ,

E I I I ,� := (a1Gλ,1 + g̃1)e
I I
j ∗ φ

�

j − (
(s1 − v)b1Gλ,1 + h̃1

)
eI

j ∗ φ
�

j .
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Using the bounds given by Lemma 2.1 for k(ρ) and k′(ρ), we bound E I ,� by

|E I ,�(ρ, v, s1)| ≤ Cρ
1−θ
2 [k − (v − s1)]λ+[k + (v − s1)]λ+

×
∑

±
K ±|s1 − v ∓ k|φ�

j (s1 − v ∓ k)

≤ Cρ
1−θ
2

∑

±
K ±|s1 − v ∓ k|λ+1�−1φ j (

s1 − v ∓ k

�
)

≤ Cρ
1−θ
2 �λ → 0

locally uniformly in (ρ, v, s1), as � → 0, where we have used the fact that suppφ j ⊂
(−1, 1).

Next, for E I I ,�, we make the bound:

|E I I ,�(ρ, v − s1)| ≤ Cρ
1−θ
2 [k2 − (v − s1)

2]λ+1+
∑

±
φ

�

j (s1 − v ∓ k) ≤ Cρ
1−θ
2 �λ → 0.

Finally, we consider the remainder term, E I I I ,�(ρ, v − s1). Using bounds (5.12)–
(5.13), we observe

|s1−v||eI
j (ρ, v−s1)|+|eI I

j (ρ, v−s1)| ≤ Cρ
1−θ
2 +2αθ G−α(ρ, v−s1) forα ∈ (0, 1).

Clearly, this is not Hölder continuous up to the boundary of its support. However, in
the region {|k2 − (v − s1)2| ≤ �} for � > 0, we may bound

|E I I I ,�(ρ, v − s1)| ≤ Cρ
1−θ
2 +2αθ Gλ−α(ρ, v − s1) ≤ ρ3 1−θ

2 +2αθ�λ−α,

whichmay bemade arbitrarily small by taking 0 < α < min{1, λ} and� small. On the
other hand, in the complement region, {|k2 − (v− s1)2| > �} so that we conclude that
Gλ, eI

j , and eI I
j are all uniformly Hölder continuous, and hence E I I I ,� converges to a

Hölder continuous limit on this set, independent of the choice of mollifying sequence.

The proof of Lemma 6.4(ii) rests on the observation of [19] (and of [10] in greater
generality) that the limit of a regularized product of a function of bounded variation
with a measure depends on the choice of regularization. In particular, for the case of
the product of a Heaviside function and a Dirac mass, we use the following lemma.

Lemma 6.5 For any m2, m3 ∈ R,

(
Hs2=m2 ∗ φ

�
2

) (
δs3=m3 ∗ φ

�
3

)
⇀�φ2,φ3(m2, m3)δs1=m3

weak-star in measures as � → 0, where

�φ2,φ3(m2, m3) :=

⎧
⎪⎨

⎪⎩

0 if m2 > m3,
∫ 1
−1

∫ 1
s φ2(t − s − 1)φ3(t) dt ds if m2 = m3,

1 if m2 < m3.
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Proof of Lemma 6.4(ii) We employ the expansions of Theorems 3.4 and 3.6 to obtain

P2χ(ρ, v − s2)P3σ(ρ, v, s3) − P3χ(ρ, v − s3)P2σ(ρ, v, s2)

= P2χ2P3(σ3 − ũχ3) − P3χ3P2(σ2 − ũχ2)

= (a1P2Gλ,2 + a2P2Gλ+1,2 + P2g2)

× (
(s3 − v)(b1P3Gλ,3 + b2P3Gλ+1,3) + P3h3 + (λ + 1)b1∂

λ
s3Gλ,3

+ (λ + 1)b2∂
λ
s3Gλ+1,3

)

− (a1P3Gλ,3 + a2P3Gλ+1,3 + P3g3)

× (
(s2 − v)(b1P2Gλ,2 + b2P2Gλ+1,2) + P2h2 + (λ + 1)b1∂

λ
s2Gλ,2

+ (λ + 1)b2∂
λ
s2Gλ+1,2

)

= E I + E I I + E I I I ,

where we have decomposed the expression as

E I := (s3 − s2)a1b1P2Gλ,2P3Gλ,3,

E I I := a1P2Gλ,2
(
(s3 − v)b2P3Gλ+1,3 + (λ + 1)b1∂

λ
s3Gλ,3

)

− a1P3Gλ,3
(
(s2 − v)b2P2Gλ+1,2 + (λ + 1)b1∂

λ
s2Gλ,2

)

+ a2b1
(
P2Gλ+1,2(s3 − v)P3Gλ,3 − P3Gλ+1,3(s2 − v)P2Gλ,2

)
,

and E I I I is the remainder.
We now take mollification for the mollifiers defined above. This yields

P2χ
�

2 P3σ
�

3 − P3χ
�

3 P2σ
�

2 = (
E I + E I I + E I I I ) ∗ φ

�

2 ∗ φ
�

3 .

We recall that, as our mollified expressions are evaluated at s1 (compare (6.6)), this is
now a function of (ρ, v, s1) only. From symmetry considerations, the limit of E I I I ,�

is 0 as � → 0, since this term contains only the products of measures with Hölder
continuous functions and more regular products. This convergence is uniformly in
(ρ, v) and weak-star in measures in s1.

We consider next the most singular terms, arising in E I ,� = E I ∗ φ
�

2 ∗ φ
�

3 . From
Proposition 5.5, we see that this expression involves products of measures, products
of measures with L p functions, and products of L p functions. Again, by symmetry
considerations, the last group of these terms vanishes in the limit as � → 0, so that
we focus only on the first two. Observe first that a typical product of measures is of
the form:

(s3 − s2)a1b1k′(ρ)−1e2ã(ρ)δs2=v±k(ρ) δs3=v±k(ρ) ∗ φ
�

2 ∗ φ
�

3 .

If both Dirac masses are based at the same point s2 = s3 = v ± k(ρ), then the factor
(s3 − s2) leads the expression to vanish. Then it suffices to consider the case that
they are based at different points. The action of this measure on a continuous function
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ψ(s1) is then

a1b1e2ãk′(ρ)−1
∫

(w − z)φ�

2 (s1 − w)φ
�

3 (s1 − z)ψ(s1) ds1.

Hence, we bound

k′(ρ)−1
∣
∣
∣

∫

(w − z)φ�

2 (s1 − w)φ
�

3 (s1 − z)ψ(s1) ds1
∣
∣
∣

≤ C(w − z)1+2λ
∫

φ
�
2 (s1 − w)φ

�
3 (s1 − z)|ψ(s1)| ds1

≤ C�2λ(w − z

�

)1+2λ
∫ 1

−1
φ2(s1)φ3

(
s1 + w − z

�

)
|ψ(w + �s1)| ds1

≤ C�2λ → 0,

where we have used suppφ3 ⊂ (−1, 1). Arguing similarly for the other terms, we
obtain

E I ,� → 0 as � → 0

weak-star in measures in s1 and uniformly in (ρ, v).
We now come to the most significant term: E I I ,� = E I I ∗ φ

�

2 ∗ φ
�

3 . Replacing s2
and s3 with s1 gives a remainder equipped with good factors of form s j − s1, which
may be shown to converge to 0 as above. Taking account of cancellations, we therefore
consider the expression:

Ẽ I I ,� = (λ + 1)a1b1
(
P2Gλ,2∂

λ
s3Gλ,3 − P3Gλ,3∂

λ
s2Gλ,2

) ∗ φ
�

2 ∗ φ
�

3

+ (s1 − v)(a1b2 − a2b1)
(
P2Gλ,2P3Gλ+1,3 − P3Gλ,3P2Gλ+1,2

) ∗ φ
�

2 ∗ φ
�

3 .

Observe that

∂λ+1
s Gλ+1(ρ, v − s)

= [k2 − (v − s)2]+∂λ+1
s Gλ(ρ, v − s) − 2(λ + 1)(s − v)∂λ

s Gλ(ρ, v − s),

and that the contributions from the first of these terms may be seen to converge to 0.
Thus, it suffices to consider the contribution from

(λ + 1)a1b1
(
P2Gλ,2∂

λ
s3Gλ,3 − P3Gλ,3∂

λ
s2Gλ,2

) ∗ φ
�

2 ∗ φ
�

3

− 2(λ + 1)(s1 − v)2(a1b2 − a2b1)
(
P2Gλ,2∂

λ
s3Gλ,3 − P3Gλ,3∂

λ
s2Gλ,2

) ∗ φ
�

2 ∗ φ
�

3

= (λ + 1)
(
a1b1 − 2k2(a1b2 − a2b1)

)(
P2Gλ,2∂

λ
s3Gλ,3 − P3Gλ,3∂

λ
s2Gλ,2

) ∗ φ
�

2 ∗ φ
�

3

+ Gerror,

where Gerror also converges to 0. Applying now the expansions for the explicit
singularities calculated in Proposition 5.5 and Lemma 6.5, we conclude the result
expected.
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With the above results, the proof of Theorem 6.2 follows the same strategy as the
proof of [4, Theorem 4.2], included here for completeness.

Proof of Theorem 6.2 We begin by applying the commutation relation (6.2) with the
weak entropy pairs generated by test functions ψ1 and ψ2 and use the density of
test functions to derive the commutation relation directly for the entropy kernels
themselves:

χ(s1)σ (s2) − χ(s2)σ (s1) = χ(s1) σ (s2) − χ(s2) σ (s1)

for any s1, s2 ∈ R, as in the proof of Lemma 6.3, where, for example, χ(s1) =∫
χ(ρ, v, s1) dν(ρ, v). We choose s1, s2, s3 ∈ R and apply this identity to each of

the pairs (s2, s3), (s3, s1), and (s1, s2). Multiplying these identities by χ(s1), χ(s2),
and χ(s3), respectively, and summing them together, we see that the right-hand side
vanishes (by an obvious symmetry), which leads to

χ(s1) χ(s2)σ (s3) − χ(s3)σ (s2) + χ(s2) χ(s3)σ (s1) − χ(s1)σ (s3)

+ χ(s3) χ(s1)σ (s2) − χ(s2)σ (s1) = 0.

Applying now operators P2 and P3 defined above, we obtain

χ(s1) P2χ(s2)P3σ(s3) − P3χ(s3)P2σ(s2) + P2χ(s2) P3χ(s3)σ (s1) − χ(s1)P3σ(s3)

+ P3χ(s3) χ(s1)P2σ(s2) − P2χ(s2)σ (s1) = 0

distributionally in (s1, s2, s3).
We mollify this expression with mollifiers φ2 and φ3 as described above to obtain

χ1 P2χ
�

2 P3σ
�

3 − P3χ
�

3 P2σ
�

2 + P2χ
�

2 P3χ
�

3 σ1 − χ1P3σ
�

3 + P3χ
�

3 χ1P2σ
�

2 − P2χ
�

2 σ1 = 0
(6.7)

with obvious notation. Passing now � → 0, we recall that, as Pjχ j is a bounded
measure in s j with coefficients uniformly bounded in (ρ, v), we may pass

Pjχ
�

j → P1χ1

weak-star with respect to measures in s1 and uniformly with respect to (ρ, v).
Therefore, we have

Pjχ
�

j → P1χ1

weak-star in measures in s1.
Considering now the last two terms of (6.7), we may combine this convergence

with the uniform convergence of Lemma 6.4(i) to deduce

P2χ
�

2 P3χ
�

3 σ1 − χ1P3σ
�

3 + P3χ
�

3 χ1P2σ
�

2 − P2χ
�

2 σ1 → P1χ1 X1 − P1χ1 X1 = 0,
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weak-star in measures in s1. On the other hand, wemay apply Lemma 6.4(ii) to deduce
that the first term of (6.7) converges weak-star in measures in s1 to

χ(s1) Y (φ2, φ3)M(ρ)D(ρ)
∑

±
(K ±)2δs1=v±k(ρ),

so that, for any test function ψ(s1),

Y (φ2, φ3)
∑

±
(K ±)2

∫

χ(v ± k(ρ))M(ρ)D(ρ)ψ(v ± k(ρ)) dν(ρ, v) = 0.

By assumption, we take Y (φ2, φ3) �= 0 so that

∑

±

∫

χ(v ± k(ρ))M(ρ)D(ρ) dν(ρ, v) = 0.

As M(ρ)D(ρ) > 0 for ρ > 0 by Proposition 5.6 (recall that ε < ε0), we deduce

supp ν ∩ {(ρ, u) : zmin < z(ρ, u) < w(ρ, u) < wmax} = ∅,

since, for all s ∈ (zmin, wmax), χ(s) (considered in the (w, z)–coordinates) con-
tains point (wmax, zmin) in the interior of its support and, by Lemma 6.3, point
(wmax, zmin) ∈ supp ν so that χ(s) > 0 for all s ∈ (zmin, wmax). Thus, the support of
ν must be contained in the vacuum line V and point (wmax, zmin). Writing

ν = νV + ωδ(wmax,zmin),

where νV is supported in the vacuum state V and ω ∈ [0, 1], we deduce from the
commutation relation that, for all s1, s2 ∈ R,

(ω − ω2)
(
χ(wmax, zmin, s1)σ (wmax, zmin, s2)

− χ(wmax, zmin, s2)σ (wmax, zmin, s1)
) = 0.

Choosing s1 and s2 such that the second factor is non-zero, we deduce that ω = 0 or
ω = 1.

Then the proof of Theorem 6.1 directly follows from Theorem 6.2.

7 Global Viscosity Solutions

In this section, we demonstrate amethod for the construction of a sequence of approxi-
mate solutions satisfying the compactness framework above. We address this problem
via the introduction of artificial viscosity by considering the system:
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⎧
⎨

⎩

∂t
( n√

1−u2/c2

) + ∂x
( nu√

1−u2/c2

) = δ∂xx
( n√

1−u2/c2

)
,

∂t
( (ρ+p/c2)u

1−u2/c2
) + ∂x

( (ρ+p/c2)u2

1−u2/c2
+ p

) = δ∂xx
( (ρ+p/c2)u

1−u2/c2
)
,

(7.1)

where δ > 0 is the viscosity parameter. As with the classical Euler equations, the
viscosity system admits an invariant region, which is one of the conditions we require
to apply our compactness framework.

Before we state the theorem for the existence of the solutions to this system, a few
remarks on the end-point states are in order. To allow for the possibility that the density
and velocity do not vanish at infinity, we impose the end-point states (ρ±, u±) such that
ρ± ≥ 0 and |u±| < c for the approximate solutions. We introduce smooth, monotone
functions (ρ̄(x), ū(x)) such that (ρ̄(x), ū(x)) = (ρ±, u±) for ±x ≥ 1 and require
that the approximate initial data functions satisfy (ρδ

0 − ρ̄, uδ
0 − ū) ∈ C∞

c (R). The
existence and uniform bounds of solutions for this system are given in the following
theorem.

Theorem 7.1 Let (ρδ
0, uδ

0) be approximate initial data functions such that

(ρδ
0 − ρ̄, uδ

0 − ū) ∈ C∞
c (R)

and, for some M0 > 0 independent of δ > 0,

|uδ
0| ≤ M0 <

1√
ε
, 0 < ρδ

0 ≤ ρM0 < ρε
max.

Then there exist global solutions U δ = U (ρδ, uδ) of system (7.1) such that

(ρδ(t, ·) − ρ̄, uδ(t, ·) − ū) ∈ C1 ∩ H1

and

|uδ(t, x)| ≤ M <
1√
ε
, 0 < ρδ(t, x) ≤ ρM < ρε

max for all (t, x) ∈ R
2+,

where M and ρM are independent of δ > 0.

The proof is by now standard. The uniform bounds on ρ and u follow from the
following lemma,whose proof is a standard argument based on the parabolicmaximum
principle for the Riemann invariants. Throughout this section, we drop the explicit
dependence of the functions on δ > 0, which is assumed to be fixed.

Lemma 7.2 Any C1,1 solution (ρ(t, x), u(t, x)) to system (7.1) admits the following
bounds:

‖(k(ρ), v(u))‖L∞(R2+) ≤ C‖(w0, z0)‖L∞(R),

where w0(x) = w(ρ0(x), u0(x)), z0(x) = z(ρ0(x), u0(x)), and C > 0 is independent
of δ and ε, which implies that there exist M and ρM depending on ‖(w0, z0)‖L∞(R),
but independent of ε, such that
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|u(t, x)| ≤ M <
1√
ε
, 0 ≤ ρ ≤ ρM < ρε

max.

To apply the compactness framework in Sect. 6, we require the H−1
loc compactness

of the entropy dissipation measures η(U δ)t + q(U δ)x . This compactness requires the
uniform estimates of (ρδ

x , uδ
x ) in δ > 0.We obtain this via the relative entropy method.

We recall the physical entropy pair (η∗, q∗) from (3.2). Writing U = U (ρ, u) and
Ū = U (ρ̄, ū), we define a modified entropy pair (designed via the relative entropy
method) by

η∗(U ) = η∗(U ) − η∗(Ū ) − ∇η∗(Ū ) · (U − Ū ) ≥ 0. (7.2)

As η∗ is convex, we see that η∗(U ) ≥ 0 and ∇2η∗(U ) = ∇2η∗(U ).

Lemma 7.3 Suppose that

∫

R

η∗(U (ρ0, u0))(x) dx < ∞.

Then there exists C > 0, independent of δ, such that any solution U (ρ, u) of (7.1)
satisfies

sup
t∈[0,T ]

∫

R

η∗(U (ρ, u))(t, x) dx + δ

∫ T

0

∫

R

(Ux )
�∇2η∗(U )Ux dx dt ≤ C .

In particular,

δ

∫ T

0

∫

R

(
ργ−2|ρx |2 + ρ|ux |2

)
dx dt ≤ C . (7.3)

The proof is by now standard. When γ ≤ 2, this suffices to deduce the desired
compactness of the entropy dissipation measures. However, when γ > 2, this bound
is insufficient. The following lemma provides the necessary improved control.

Lemma 7.4 Let � ∈ (0, 1
2 ), and let K ⊂ R be compact. Then any solution (ρ, u) of

(7.1) satisfies

δ

∫ T

0

∫

K∩{ρ<�}
|ρx |2 dx dt ≤ C� + C

�2

δ
+ C�

4−γ
2

for some C > 0 independent of δ > 0.

Proof We denote N = n(ρ)√
1−εu2

so that the first equation in (7.1) becomes

Nt + (Nu)x = δNxx .

For � ∈ (0, 1
2 ) to be determined later, we set

φ(N ) :=
{

1
2 N 2 for N < �,
1
2�

2 + �(N − �) for N ≥ �.
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Observe now that φ′(N ) = N1N<� + �1N≥� = min{N ,�} and φ′′(N ) = 1N<�.
Multiplying the first equation in (7.1) by φ′(N )ω2(x), where ω ∈ C∞

c (R) is a spatial
test function such that ω = 1 on K and ω ≥ 0,

(φ(N )ω2)t + φ′(N )(Nu)xω
2 = δφ′(N )Nxxω

2.

Then integrating by parts yields

∫

suppω

φ(N )ω2 dx
∣
∣T
0 −

∫ T

0

∫

suppω

φ′′(N )Nx Nuω2 dx dt

−
∫ T

0

∫

suppω

2φ′(N )Nuωxω dx dt

= −δ

∫ T

0

∫

suppω

φ′′(N )N 2
x ω2 dx dt − 2δ

∫ T

0

∫

suppω

φ′(N )Nxωxω dx dt .

Rearranging this equation and recalling the expressions for φ′(N ) and φ′′(N ) above,
we see

δ

∫ T

0

∫

suppω∩{N<�}
N 2

x ω2 dx dt

=
∫

suppω

φ(N )ω2 dx
∣
∣T
0 +

∫ T

0

∫

suppω∩{N≤�}
Nx Nuω2 dx dt

+ 2
∫ T

0

∫

suppω

min{N ,�}Nuωxω dx dt − 2δ
∫ T

0

∫

suppω∩{N<�}
N Nxωxω dx dt

− 2δ
∫ T

0

∫

suppω

�Nxωxω dx dt .

Recall now that there is a uniform bound on (N , u) from Lemma 7.2, as well as on
(ω, ωx ). We therefore note that φ(N ) ≤ � and apply the Hölder inequality to obtain

δ

∫ T

0

∫

suppω∩{N<�}
N 2

x ω2 dx dt

≤ C� + C�
( ∫ T

0

∫

suppω∩{N<�}
N 2

x ω2 dx dt
) 1

2 + C
√

δ�
4−γ
2 ,

where we have used

δ

∫ T

0

∫

suppω

1N≥��2N 2
x ω2 dx dt ≤ C�4−γ .

Thus

δ

∫ T

0

∫

K∩{N<�}
N 2

x ω2 dx dt ≤ C
(
� + �2

δ
+ �

4−γ
2

)
.
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Note that Nx = ρx n(ρ)

(ρ+εp)
√
1−εu2

+ εnuux
(1−εu2)3/2

. Then

N 2
x ≥ 1

2
ρ2

x − C
(εnuux )

2

(1 − εu2)3
≥ 1

2
ρ2

x − C Nρu2
x ,

where we have used that n′(ρ) = n
ρ+εp , the uniform bound on u, and n(ρ) ≤ Cρ.

Thus, applying again the energy estimate of Lemma 7.3, we have

δ

∫ T

0

∫

K∩{N<�}
ρ2

x ω2 dx dt ≤ C
(
� + �2

δ
+ �

4−γ
2

)
,

which is the desired conclusion since there exists a constant C > 0 such that C−1ρ ≤
N ≤ Cρ.

We also use the following fact, verified by direct calculation from the representation
formula of Theorem 3.4.

Lemma 7.5 For any weak entropy pair (η, q), the ordering

|∇2η| ≤ C∇2η∗

holds with matrices ordered in the usual way.

Weprove the H−1
loc compactness of the entropy dissipationmeasures in the following

lemma.

Proposition 7.6 Let U δ = U (ρδ, uδ) be a sequence of solutions of (7.1) with initial
data U δ

0 satisfying the assumptions of Theorem 7.1 and Lemma 7.3. Then, for any
weak entropy pair (η, q), the sequence of entropy dissipation measures

η(U δ)t + q(U δ)x is compact in H−1
loc (R2+). (7.4)

Proof Throughout the proof, we write (ηδ, qδ) := (η(U δ), q(U δ)). Multiplying the
equation:

U δ
t + F(U δ)x = δU δ

xx

by ∇η(U δ), we find
ηδ

t + qδ
x = δηδ

xx − δ(U δ
x )�∇2ηδU δ

x . (7.5)

By Lemmas 7.3 and 7.5, we may bound the last term in L1
loc(R

2+) by observing that,
for any compact K ⊂ R,

∫ T

0

∫

K

∣
∣δ(U δ

x )�∇2ηδU δ
x

∣
∣ dx dt ≤

∫ T

0

∫

K

∣
∣δ(U δ

x )�∇2ηδ∗U δ
x

∣
∣ dx dt ≤ C,
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independent of δ > 0. Applying the compact embedding of L1(K ) into W −1,q(K )

with 1 < q < 2, we find that this term is compact in W −1,q
loc for q < 2.

For the first term δηδ
xx on the right-hand side of (7.5), we note that

|ηδ
x | ≤ C

(|ρδ
x |(1 + (ρδ)θ ) + ρδ|uδ

x |
)
.

Now, for 1 < γ ≤ 2, Lemma 7.3 implies that

√
δηδ

x is uniformly bounded in L2(R2+),

so that

δηδ
xx is compact in W −1,2

loc (R2+).

In the case that γ > 2, we apply the estimate of Lemma 7.4 to deduce that, on a
compact set K ⊂ R,

δ2
∫ T

0

∫

K
|ηδ

x |2 dx dt ≤ Cδ2
∫ T

0

∫

K

(|ρδ
x |2 + ρδ|uδ

x |2
)
dx dt

≤ Cδ2
∫ T

0

∫

K

(|ρδ
x |2(1ρδ<� + 1ρδ≥�) + ρδ|uδ

x |2
)
dx dt

≤ C
(
δ� + �2 + δ�

4−γ
2 + δ�2−γ + δ),

where� > 0 is to be chosen now. In fact, choosing� = δα with α ∈ (0, 1
γ−2 ) implies

that this expression converges to 0. Hence, we see that

δηδ
xx is compact in W −1,2

loc (R2+).

We have therefore shown that the sequence of entropy dissipation measures

ηδ
t + qδ

x is compact in W −1,q
loc (R2+) for some q ∈ (1, 2).

On the other hand, since the approximate solutions (ρδ, uδ) are uniformly bounded,
we also have

ηδ
t + qδ

x is bounded uniformly in W −1,∞
loc (R2+).

Applying now the compensated compactness interpolation theorem (cf. [3]), we see
that

ηδ
t + qδ

x is compact in W −1,2
loc (R2+),

as desired.

It is an easy exercise to see that the same arguments apply also to the vanishing
viscosity approximation to the alternative system (1.11).
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8 Proof of theMain Theorem

For clarity, we restate the main theorem of this paper here.

Theorem 8.1 (Existence of Entropy Solutions) Let (ρ0, u0) be measurable and
bounded initial data function satisfying

|u0(x)| ≤ M0 <
1√
ε
, 0 ≤ ρ0(x) ≤ ρM0 < ρε

max for a.e. x ∈ R,

for some M0 and ρM0 , and let the pressure function p(ρ) satisfy p′(ρ) > 0, (1.6),
and (1.9). Then there exists ε0 > 0 such that the following holds: There exists a
sequence (ρδ, uδ) of the viscosity solutions to the approximate equations (7.1) such
that, if ε ≤ ε0, then sequence (ρδ, uδ) converges to an entropy solution (ρ, u) of (1.1)
in the sense of Definition 3.2 such that

|u(t, x)| ≤ M <
1√
ε
, 0 ≤ ρ(t, x) ≤ ρM < ρε

max for a.e. (t, x) ∈ R
2+,

for some M and ρM depending only on M0 and ρM0 , where the convergence is a.e.
and strong in L p

loc(R
2+) for all p ∈ [1,∞).

To prove the theorem, we begin by constructing approximate initial data satisfying
the assumptions of Theorem 7.1 and Lemma 7.3. For each δ > 0, we cut off the initial
data outside interval (−δ−1, δ−1), mollifywith a standard Friedrichsmollifier, and add
a small positive constant ρ̄δ > 0 to the approximate density. This gives us the initial
data (ρδ

0, uδ
0) satisfying the desired assumptions such that (ρδ

0, uδ
0) → (ρ0, u0) a.e.

and in L p
loc(R). Then Theorem 7.1 gives the existence of the approximate solutions,

and the results of Sect. 7 then imply that these approximate solutions are uniformly
bounded and satisfy the condition:

η(U δ)t + q(U δ)x are compact in H−1
loc (R2+)

for all weak entropy pairs (η, q).
The uniform bound on the approximate solutions gives a constant ρM > 0 indepen-

dent of δ such that ρδ ≤ ρM for all δ. Taking ε0 > 0 as in Proposition 5.6 then implies
that the sequence of approximate solutions (ρδ, uδ) satisfies the assumptions of the
compactness framework of Sect. 6. Thus Theorem 6.1 gives the strong convergence
of the approximate solutions (ρδ, uδ) → (ρ, u) in Lr

loc(R
2+) for all r ∈ [1,∞). We

can see that the obtained limit is an entropy solution of (1.1).
Finally, we remark that the proof of the existence part of Theorem 1.4 is similar.

9 Newtonian Limit

The final section of this paper is devoted to the proof of our second main result,
Theorem 1.3, concerning the Newtonian limit. We first introduce some notation to
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make the explicit dependence of the quantities on ε in this section. For ε ∈ (0, 1), we
rewrite (1.1) as

∂tU
ε + ∂x Fε(U ε) = 0, (9.1)

where U ε(ρε, uε) =
(

n(ρε)√
1−ε(uε)2

,
(ρε+εp(ρε))uε

1−ε(uε)2

)�
and Fε is the associated flux. We

recall the definition of vε = vε(uε) from §2:

vε(uε) = 1

2
√

ε
log

(1 + √
εuε

1 − √
εuε

)
.

We write the Euler equations (1.3) as

∂tU + ∂x F(U ) = 0, (9.2)

where U = (ρ, m)�, F(U ) is the associated flux, and F = (m, m2

ρ
+ p(ρ))�.

9.1 Proof of Theorem 1.3

By assumption, (ρε, vε) is a uniformly bounded sequence in L∞. Thenwemay extract
a subsequence such that

(ρε, vε)
∗
⇀ (ρ, v) weakly-star in L∞.

To this sequence, we associate a Young measure νt,x . Our aim now is to show that
we may apply a reduction argument analogous to that of Theorem 6.2. However, we
observe that Theorem 6.2 holds only for fixed ε > 0, not for a sequence. We therefore
recall the following theorem from [4, 5].

Theorem 9.1 (Theorem 4.2, [4]) Let ν(ρ, v) be a probability measure with bounded
support in {ρ ≥ 0, v ∈ R} such that

〈ν, χ∗(s1)σ∗(s2) − χ∗(s2)σ∗(s1)〉 = 〈ν, χ∗(s1)〉〈ν, σ∗(s2)〉 − 〈ν, χ∗(s2)〉〈ν, σ∗(s1)〉

for any s1, s2 ∈ R, where χ∗ and σ∗ are the entropy and entropy-flux kernels of the
classical Euler equations (1.3). Then the support of ν is either a single point or a
subset of the vacuum line, {ρ = 0}.

Defining mε := ρεvε, we show that

η(ρε, mε)t + q(ρε, mε)x is compact in H−1
loc

for any weak entropy pair of (η, q) of system (9.2), and hence argue by using the
div-curl lemma as in the proof of Theorem 6.1 to deduce the commutation relation:

〈ν, χ∗(s1)σ∗(s2) − χ∗(s2)σ∗(s1)〉 = 〈ν, χ∗(s1)〉〈ν, σ∗(s2)〉 − 〈ν, χ∗(s2)〉〈ν, σ∗(s1)〉.
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We may then apply Theorem 9.1 to deduce the strong convergence of the sequence
(ρε, vε).

It remains to prove the H−1 compactness of the entropy dissipation measures. In a
slight abuse of notation, we simply write the argument of (η, q) as U ε. Then

η(U ε)t +q(U ε)x = (
η(U ε)−ηε(U ε)

)

t +
(
q(U ε)−qε(U ε)

)

x +ηε(U ε)t +qε(U ε)x ,

(9.3)
where (η, q) and (ηε, qε) are weak entropy pairs generated by the same test functionψ

by convolution with the weak entropy and entropy-flux kernels associated to systems
(9.2) and (9.1), respectively.

Since, for each ε, U ε is an entropy solution of (9.1), we know that, for any convex
weak entropy pairs (ηε, qε),

ηε(U ε)t + qε(U ε)x ≤ 0.

Moreover, ηε(U ε)t + qε(U ε)x is uniformly bounded in H−1
loc since U ε is uniformly

bounded. Then Murat’s lemma [22] indicates that the injection of the positive cone
in H−1 into W −1,q , 1 ≤ q < 2, is compact, which implies that the convex entropy
dissipation measure sequence ηε(U ε)t + qε(U ε)x is compact in W −1,q

loc for any q ∈
[1, 2). Likewise, for any concave entropy pair (η, q), we have

ηε(U ε)t + qε(U ε)x is compact in W −1,q
loc for any q < 2.

On the other hand, this expression is clearly bounded in W −1,∞
loc by the uniform bounds

on U ε. Then the interpolation compactness theorem of [3, 11] yields that

ηε(U ε)t + qε(U ε)x is compact in W −1,2
loc

for any convex or concave entropy.
Considering now the first term on the right-hand side of (9.3),

(
η(U ε) − ηε(U ε)

)

t + (
q(U ε) − qε(U ε)

)

x ,

we apply the bounds of Theorems 4.8 and 5.3 to estimate the difference between the
relativistic and classical entropies generated by the same test function ψ(s) by

|η(ρ, v) − ηε(ρ, v)| ≤
∫

|v−s|≤k(ρ)

|ψ(s)||χ∗(ρ, v − s) − χε(ρ, v − s)| ds

≤ Cε

∫

|v−s|≤k(ρ)

|ψ(s)| ds,
(9.4)

where χε is the relativistic entropy kernel of Theorem 3.4. Similarly, |q(ρ, v) −
qε(ρ, v)| ≤ Cε.

Thus, for any set K � R
2+, we have

(η(U ε) − ηε(U ε))t + (q(U ε) − qε(U ε))x → 0 in H−1(K ) as ε → 0. (9.5)
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Therefore, the sequence of weak entropy dissipation measures in (9.3) is compact
in H−1

loc . We have therefore shown the compactness of the weak entropy dissipation
measures (9.3) such that the entropy functions are either convex or concave. Applying
the div-curl lemma in the standard way, as in the proof of Theorem 6.1, we deduce the
commutation relation

〈ν, η1q2 − η2q1〉 = 〈ν, η1〉〈ν, q2〉 − 〈ν, η2〉〈ν, q1〉

for all such weak entropy pairs.
We recall now that a weak entropy for the classical Euler equations (9.2) is convex

(respectively concave) if the generating test function is also convex (respectively con-
cave). As the linear span of convex functions and concave functions is dense in our
space of test functions, we argue by density to conclude that the commutation relation
also holds for the kernels themselves:

〈ν, χ∗(s1)σ∗(s2) − χ∗(s2)σ∗(s1)〉 = 〈ν, χ∗(s1)〉〈ν, σ∗(s2)〉 − 〈ν, χ∗(s2)〉〈ν, σ∗(s1)〉

for any s1, s2 ∈ R. We therefore apply Theorem 9.1 to deduce the strong convergence
of sequence (ρε, vε) a.e. and in Lr

loc(R
2+) for all r ∈ [1,∞). Then the proof of

Theorem 1.3 is concluded in the usual way.
The proof of the Newtonian limit of Theorem 1.4(ii) is similar.

Acknowledgements The research of Gui-Qiang G. Chen was supported in part by the UK Engineering
and Physical Sciences Research Council Award EP/L015811/1, EP/V008854, and EP/V051121/1, and the
Royal Society–Wolfson Research Merit Award WM090014 (UK). The research of Matthew Schrecker was
supported in part by the UK Engineering and Physical Sciences Research Council Award EP/L015811/1.
This paper is a continuation of the program initiated by Gui-Qiang G. Chen, Philippe LeFloch, and Yachun
Li in [4–7]. The authors thank Professors Ph. LeFloch andYachun Li for their inputs and helpful discussions.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ball, J. M.: A version of the fundamental theorem for Young measures, In: PDEs and Continuum
Models of Phase Transitions (Nice, 1988), 207–215, Lecture Notes in Physics, 344, Springer: Berlin
(1989)

2. Chen, G.-Q.: Convergence of the Lax–Friedrichs scheme for isentropic gas dynamics (III). Acta Math.
Sci. 6, 75–120 (1986) (in English); 8, 243–276 (1988) (in Chinese)

3. Chen, G.-Q.: The compensated compactness method and the system of isentropic gas dynamics,
Preprint MSRI-00527-91. Math. Sci. Res. Inst., Berkeley (1990)

4. Chen, G.-Q., LeFloch, P.G.: Compressible Euler equations with general pressure law. Arch. Ration.
Mech. Anal. 153, 221–259 (2000)

123

http://creativecommons.org/licenses/by/4.0/


Global Entropy Solutions and Newtonian. . . Page 53 of 53    10 

5. Chen, G.-Q., LeFloch, P.G.: Existence theory for the isentropic Euler equations. Arch. Ration. Mech.
Anal. 166, 81–98 (2003)

6. Chen, G.-Q., Li, Y.: Relativistic Euler equations for isentropic fluids: stability of Riemann solutions
with large oscillation. Z. Angew. Math. Phys. 55, 903–926 (2004)

7. Chen, G.-Q., Li, Y.: Stability of Riemann solutions with large oscillation for the relativistic Euler
equations. J. Differ. Eqs. 202, 332–353 (2004)

8. Chen, G.-Q., Perepelitsa, M.: Vanishing viscosity limit of the Navier–Stokes equations to the Euler
equations for compressible fluid flow. Comm. Pure Appl. Math. 63, 1469–1504 (2010)

9. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer: Berlin (2016)
10. Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J.

Math. Pures Appl. 74, 483–548 (1995)
11. Ding, X., Chen, G.-Q., and Luo, P., Convergence of the Lax-Friedrichs scheme for isentropic gas

dynamics (I)–(II), Acta Math. Sci. 5 (1985), 483–500, 501–540 (in English); and 7 (1987), 467–480;
8 (1989), 61–94 (in Chinese)

12. Ding, M., Li, Y.: Global existence and non-relativistic global limits of entropy solutions to the 1D
piston problem for the isentropic relativistic Euler equations. J. Math. Phys. 54, 031506 (2013)

13. Ding, M., Li, Y.: Non-relativistic limits of rarefaction wave to the 1-D piston problem for the isentropic
relativistic Euler equations. J. Math. Phys. 58, 081510 (2017)

14. DiPerna, R.J.: Convergence of the viscosity method for isentropic gas dynamics. Commun. Math.
Phys. 91, 1–30 (1983)

15. Gelfand, I.M., Shilov, G.E.: Generalised Functions, vol. I. Academic Press, Cambridge (1964)
16. Hsu, C.-H., Lin, S.-S., Makino, T.: On the relativistic Euler equation. Methods Appl. Anal. 8, 159–207

(2001)
17. Li, Y., Feng, D., Wang, Z.: Global entropy solutions to the relativistic Euler equations for a class of

large initial data. Z. Angew. Math. Phys. 56, 239–253 (2005)
18. Liang, E.P.T.: Relativistic simple waves: shock damping and entropy production. Astrophys. J. 211,

361–376 (1977)
19. Lions, P.-L., Perthame, B., Tadmor, E.: Kinetic formulation for the isentropic gas dynamics and p-

system. Commun. Math. Phys. 163, 415–431 (1994)
20. Lions, P.-L., Perthame, B., Souganidis, P.E.: Existence and stability of entropy solutions for the hyper-

bolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Comm. Pure Appl.
Math. 49, 599–638 (1996)

21. Murat, F.: Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 5, 489–507 (1978)
22. Murat, F.: L’injection du cône positif de H−1 dans W−1,q est compacte pour tout q<2. J. Math. Pures

Appl. 60, 309–322 (1981)
23. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical

Functions. Cambridge University Press, Cambridge (2010)
24. Smoller, J., Temple, B.: Global solutions of the relativistic Euler equations. Commun. Math. Phys.

156, 67–99 (1993)
25. Tartar, L.: Compensated compactness and applications to partial differential equations, In: Research

Notes inMathematics,NonlinearAnalysis andMechanics,Herriot-Watt Symposium,Vol. IV, 136–212,
Res. Notes in Math. 39, Pitman, Boston (1979)

26. Taub, A.H.: Relativistic Rankine–Hugoniot equations. Phys. Rev. 74, 328–334 (1948)
27. Thorne, K.S.: Gravitational collapse and the death of a star. Science 150, 1671–1679 (1965)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Global Entropy Solutions and Newtonian Limit for the Relativistic Euler Equations
	Abstract
	1 Introduction
	2 Basic Properties
	3 Entropy Pairs and Entropy Solutions
	3.1 Entropy Equation

	4 The Weak Entropy Kernel
	4.1 Roadmap for the Construction of the Entropy Kernel
	4.2 The Coefficients for the Entropy Kernel
	4.3 Proof of the Existence and Regularity of the Entropy Kernel

	5 The Weak Entropy-Flux Kernel
	5.1 The Coefficients for the Entropy-Flux Kernel
	5.2 Proof of the Existence and Regularity of the Entropy-Flux Kernel

	6 Compactness Framework
	7 Global Viscosity Solutions
	8 Proof of the Main Theorem
	9 Newtonian Limit
	9.1 Proof of Theorem 1.3

	Acknowledgements
	References




