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Abstract The macroscale tensile behaviour of slender fibre-supported composite bodies is examined via an
asymptotic homogenisation approach. A series of semi-analytic three-dimensional models for linearly elastic fibre-
reinforced materials under extreme, but realistic, limiting microscale mechanical properties are derived, and imple-
mented using COMSOL Multiphysics. The key limits investigated are cases involving incompressibility of one
component material, and those where dramatic differences in the shear moduli of the component materials exist
within the composite body. Discrepancies are observed between the effective macroscale properties obtained from a
standard model, based on the published literature, and those obtained from the models of micromechanical limiting
behaviours derived here. Such discrepancies have significant implications when using such models to optimise the
material properties of composite materials.

Keywords Asymptotic homogenisation · Heterogeneous composites · Multiscale modelling

1 Introduction

A composite material has a structure composed of two or more distinct base materials with different chemical
and/or physical properties. Such composite materials have a wide variety of different applications across all areas
of engineering. Examples of man-made composite materials include reinforced concrete used in infrastructure,
carbon- or glass-reinforced polymers used in transport and energy projects [1,2], and new hydrogel-based materials
for use in tissue engineering applications [3]. Across all such examples, the microscale mechanical properties are
integral to their function [2,4,5]. By combining multiple materials and structures, the mechanical properties of the
overall composite material are able to be specialised and refined beyond what is possible with a single material
component alone [3,6,7].
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Mathematical modelling can reduce the time and cost of optimising the mechanical properties of a composite
material for their respective applications. Many composite materials are constructed using materials and structures
across disparate length scales. These materials often seek to emulate hierarchical materials from nature, despite the
fact that the mechanical properties of the component parts are very hard to fully quantify due to the difficulty of
measuring mechanical properties at micrometre or smaller scales using standard experimental techniques [8,9]. It is
therefore important to develop mathematical modelling frameworks that can describe complex multiscale composite
materials in a computationally efficient fashion, while not imposing restrictive geometric assumptions that, in turn,
inhibit the generalisability of such modelling techniques.

The problem of simulating and optimising the mechanical properties of multiscale composite structures of
materials has been addressed in numerous studies over recent years [10–15]. A wide range of methods have been used
including imaging informed direct numerical simulation down to very fine scales [16–18], area-weighted averaging
methods [19,20], complex micromechanical regimes [21–24] and asymptotic homogenisation [25–29]. Each of
these methods comes with strengths and weaknesses in terms of physical accuracy, amount of information required
and computational complexity. Of particular interest in this paper is the method of asymptotic homogenisation, due
to its focus on multiple scales within composite materials. Asymptotic homogenisation is an upscaling method that
uses asymptotic methods to derive equations describing macroscale behaviour while still factoring in geometric
and physical effects on the microscale, as well as the inherent scaling behaviours of the system [30]. This may
yield more sophisticated macroscale constitutive relationships, for example relating stress and strain, than would be
assumed using simpler approaches; a classic example of this is the derivation of poroelastic macroscale equations
in the work of Burridge and Keller, [31]. Asymptotic homogenisation has more recently been used to develop semi-
analytic mechanical models for composite materials [27,32,33]. One of the core assumptions of these asymptotic
homogenisation techniques is the requirement of a periodic microscale. Periodicity reduces the computational cost
significantly by removing the requirement to use a fine scale mesh across the whole domain, but this naturally
restricts the applicability of the method.

In this paper, we theoretically examine the macroscale tensile behaviour of slender fibre-supported composite
bodies using an asymptotic homogenisation approach. By developing a semi-analytic three-dimensional model for
a linearly, elastic, fibre-reinforced material, we demonstrate that certain limiting cases of the material properties
in the microscale lead to discrepancies in the derived effective macroscale properties. This occurs particularly
in situations where the component materials have extreme differences in terms of their compressibility or shear
moduli. Such observed discrepancies have important implications to those using asymptotic homogenisation models
for optimising composite material properties. Reasons for why such discrepancies arise are explained and guidance
is offered on the microscale parameter regimes where an alternative modelling approach to determining macroscopic
properties should perhaps be considered.

In Sect. 2, asymptotic homogenisation is used to develop a semi-analytic 3D model for a slender, linearly,
elastic, composite, fibre-reinforced material, building on an established literature around homogenisation methods
for linearly elastic composite solids [25–29,34]. The Standard Asymptotic Homogenised Model (SAH model) using
the Navier equation is derived assuming dominant scalings of unknown non-dimensional constants and this model
is shown to be equivalent to homogenised approaches developed in [26] and [27]. In Sects. 3 and 4, alternative
scalings of the non-dimensional constants are considered, particularly (i) the interaction between a compressible and
an incompressible material in the microstructure and (ii) the case of a very large difference in shear moduli between
the two component materials. In Sect. 5, numerical results are presented showing the effective Young’s modulus and
Poisson ratio determined by the models in Sects. 3 and 4, and these results are compared with those determined from
the Standard Asymptotic Homogenised Model in Sect. 2. Explanations are offered for the numerically observed
differences in macroscale behaviour and further discussion and conclusions are provided in Sect. 6.
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Fig. 1 Schematic representations of example macroscale (left) and microscale (right) geometries. The macroscale is a composite body
comprised of two materials, A and B, represented in dark and light grey, respectively (left). The microstructure is assumed periodic,
comprised of a spatially-repeating combination of materials A and B

2 Standard asymptotic homogenised model

In order to examine the effects of incorporating extreme micromechanical limits into a macroscale model via
asymptotic homogenisation, individually tailored models are developed for each specific case. In this section we
begin by deriving the SAH model, where the micromechanical scaling parameters are assumed to be of an equivalent
order to the dimensional scalings used in asymptotic homogenisation. The SAH is consistent with the established
literature [26,27], but a specific notation and method are adopted throughout this paper to enable a direct comparison
with the specialised cases explored in Sects. 3 and 4.

Consider a composite cylindrical slender body of arbitrary cross-section made up of two linearly elastic com-
pressible materials A and B, as depicted in the schematic in Fig. 1. The composite material is comprised of fibres of
material A embedded in material B, and running parallel to the axis of the cylinder (denoted z in Fig. 1). We assume
that the cross-section geometry (in the x-y plane) can be treated as uniform across the length of the cylinder. We also
assume that the diameter of these fibres is small compared to the cylinder cross-section, so that the microstructure
can be described as a spatially periodic 2D plane constructed from the repeating cells, as shown in the right-hand
schematic in Fig. 1.

We denote the microscale coordinates by X = (X,Y )T and the longitudinal displacement by z. The mechanical
behaviour of material A at the microscale in region �A is described by the dimensional Navier equations,

(λA + μA)

(
∂2uA∗

i

∂X∗
k ∂X

∗
i

+ ∂2wA∗

∂X∗
k ∂z

∗

)
+ μA

(
∂2uA∗

k

∂X∗
i ∂X

∗
i

+ ∂2uA∗
k

∂z∗2

)
= 0, (1)

and

(λA + μA)

(
∂2uA∗

i

∂z∗∂X∗
i

+ ∂2wA∗

∂z∗2

)
+ μA

(
∂2wA∗

∂X∗
i ∂X

∗
i

+ ∂2wA∗

∂z∗2

)
= 0, (2)

where k, i = 1, 2 and ∗ denotes a dimensional variable. Here, uA = (uA, vA)T is the transverse displacement and
wA is the longitudinal displacement. The Lamé parameters for material A are λA and μA. An analogous set of Navier
equations is used to describe material B in region �B , using counterpart notation. The natural boundary conditions
on the microscale interface between A and B, �, are continuity of displacement uA∗

k = uB∗
k and wA∗ = wB∗,

and continuity of normal stress τ A∗
ik ni = τ B∗

ik ni , where τik for i, k = 1, 2, 3 is the standard 3D linear elastic stress
tensor (see below), ni for i = 1, 2, 3 denotes the normal vector to the interface, and we assume n3 = 0 given our
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geometrical assumptions. The stress tensor for material A is given by

τ A∗
i j = λδi j

(
∂uA∗

k

∂X∗
k

+ ∂wA∗

∂z∗

)
+ μA

(
∂uA∗

i

∂X∗
j

+ ∂uA∗
j

∂X∗
i

)
, (3)

τ A∗
i3 = τ A∗

3i = μA

(
∂uA∗

i

∂z∗
+ ∂wA∗

∂X∗
i

)
, (4)

and

τ A∗
33 = λA

(
∂uA∗

k

∂X∗
k

+ ∂wA∗

∂z∗
+ 2μA

∂W A∗

∂z∗

)
, (5)

with similar relations for the stress tensor components for material B.

2.1 Multiscale analysis

We denote the typical microscale width by δ and the length of the cylinder by d, as depicted in Fig. 1. The governing
equations (1), (2) are next non-dimensionalised to evaluate the dominant balance of physical effects, using the
following rescalings:

X∗
i = δXi , z∗ = dz, uA∗

k = duA
i , uB∗

k = duB
i , wA∗ = dwA, wB∗ = dwB . (6)

Here, ε = δ
d represents the ratio of the microscale width to its length, so is much smaller than 1, and we define

the non-dimensional constants which represent αA = λA
μA

, αB = λB
μB

and μ = μA
μB

. Note that we may use the stress

equations (3)–(5) to see that τ�∗
i j = μ�ε−1τ�

i j for � = A or B. The effective macroscale parameters such as Young’s
Modulus and Poisson ratio are highly dependent on the microscale mechanical properties and are challenging to
estimate. We will therefore explore different scalings of these non-dimensional constants to test different potential
behaviours of the model system.

We introduce the macroscale variable xk = εXk , and assume that the length scales are disparate so that xk and
Xk may be treated as independent variables. Under this assumption, the governing equations in �A become

(1 + αA)

(
∂

∂Xk
+ ε

∂

∂xk

) (
∂uA

i

∂Xi
+ ε

∂uA
i

∂xi
+ ε

∂wA

∂z

)

+ ∂2uA
k

∂Xi∂Xi
+ 2ε

∂2uA
k

∂Xi∂xi
+ ε2 ∂2uA

k

∂xi∂xi
+ ε2 ∂2uA

k

∂z22 = 0 (7)

and
∂2wA

∂Xi∂Xi
+ 2ε

∂2wA

∂Xi∂xi
+ ε2 ∂2wA

∂xi∂xi

+ε(1 + αA)

(
∂2uA

i

∂z∂Xi
+ ε

∂2uA
i

∂z∂xi

)
+ ε2(2 + αA)

∂2wA

∂z2 = 0, (8)

with counterpart equations in �B and boundary conditions on � such that

uA
i = uB

i , wA = wB, and μτ A
i j ni = τ B

i j ni , (9)

where

τ A
i j = δi jαA

(
∂uA

k

∂Xk
+ ε

∂uA
k

∂xk
+ ε

∂wA

∂z

)
+ ∂uA

i

∂X j
+ ε

∂uA
i

∂x j
+ ∂uA

j

∂Xi
+ ε

∂uA
j

∂xi
, (10)

τ A
3i = τ A

i3 = ∂wA

∂Xi
+ ε

∂wA

∂xi
+ ε

∂uA
i

∂z
, (11)

τ A
33 = αA

(
∂uA

k

∂Xk
+ ε

∂uA
k

∂xk

)
+ ε(2 + αA)

∂wa

∂z
, (12)
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and counterpart expressions for the stress tensors in material B. We perform asymptotic expansions of all variables
in the form

f (x,X, z) = f (0)(x,X, z) + ε f (1)(x,X, z) + ε2 f (2)(x,X, z) + ...., (13)

where we assume that all variables are periodic in X. Next we equate coefficients of different powers of ε in turn
to evaluate the behaviour of the system.

Equating coefficients of powers of ε0 in (7), (8), the leading-order governing equations are given by

∂τ
A(0)
i j

∂Xi
= ∂τ

A(0)
i3

∂Xi
= ∂τ

B(0)
i j

∂Xi
= ∂τ

B(0)
i3

∂Xi
= 0. (14)

Combining this with the leading-order boundary conditions from (9), evaluated using the Divergence Theorem and
assuming that all variables are periodic on the microscale, we see that uA(0)

k = uB(0)
k = u(0)

k (x, z) and wA(0) =
wB(0) = w(0)(x, z), so that the leading-order displacements are locally constant.

2.2 Deriving the microscale cell problem

Equating coefficients of powers of ε in the governing equations (7), (8) and boundary conditions (9), we obtain

(1 + αA)
∂2uA(1)

i

∂Xk∂Xi
+ ∂2uA(1)

k

∂Xi∂Xi
= 0 and

∂2wA(1)

∂Xi∂Xi
= 0, (15)

on �A, subject to boundary conditions on � such that

uA(1)
k = uB(1)

k , wA(1) = wB(1), and μτ
A(1)
i j ni = τ

B(1)
i j ni , (16)

where

τ
A(1)
i j = αAδi j

(
∂uA(1)

k

∂Xk
+ ∂u(0)

k

∂xk
+ ∂w(0)

∂z

)
+ ∂uA(1)

i

∂X j
+ ∂uA(1)

j

∂Xi
+ ∂u(0)

i

∂x j
+ ∂u(0)

j

∂xi
, (17)

and

τ
A(1)
i3 = ∂wA(1)

∂Xi
+ ∂w(0)

∂xi
+ ∂u(0)

i

∂z
, (18)

with counterpart equations for material B in �B .
We seek to make analytical progress by exploiting linearity of the equations for stress (17), (18), enabling us to

pose solutions of the form

uA(1)
k = Wi j

Ak(X)
∂u(0)

i

∂x j
+ V i

Ak(X)
∂u(0)

i

∂z
+ φi

Ak(X)
∂w(0)

∂xi
+ ψAk(X)

∂w(0)

∂z
+ ūk(x, z)

and

wA(1) = W̄ i j
A (X)

∂u(0)
i

∂x j
+ V̄ i

A(X)
∂u(0)

i

∂z
+ φ̄i

A(X)
∂w(0)

∂xi
+ ψ̄A(X)

∂w(0)

∂z
+ w̄(x, z).

Such ansatzes have been used in the literature to describe analogous 3D multiscale problems, for example in [26,28],
introducing 33 cell variables per domain. However, the assumption that the interface between A and B is fixed in z
(or specifically, fixed to leading order in z) allows us to propose simpler ansatz of the form

uA(1)
k = Wi j

Ak(X)
∂u(0)

i

∂x j
+ W 0

Ak(X)
∂w(0)

∂z
+ ūk(x, z), (19)
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and

wA(1) = φi
A(X)

(
∂w(0)

∂xi
+ ∂u(0)

i

∂z

)
+ w̄(x, z). (20)

Substituting these ansatz into the system of equations (15)–(18) leads to the following set of three decoupled
equations for the unknown variables W pq

�i , W 0
�i and φ

p
� that make up the microscale cell problem:

For W pq
�i :

(1 + αA)
∂2W pq

�i

∂Xk∂Xi
+ ∂2W pq

�k

∂Xi∂Xi
= 0 for � = A, or B, (21)

W pq
Ak = W pq

Bk on �, (22)

n j

(
μαA

∂W pq
Ak

∂Xk
− αB

∂W pq
Bk

∂Xk

)
+ n j (μαA − αB)δpq + μni

(
∂W pq

Ai

∂X j
+ ∂W pq

Aj

∂Xi

)

− ni

(
∂W pq

Bi

∂X j
+ ∂W pq

Bj

∂Xi

)
+ ni (μ − 1)(δi pδ jq + δiqδ j p) = 0 on �. (23)

For W 0
�i :

(1 + αA)
∂2W 0

�i

∂Xk∂Xi
+ ∂2W 0

�k

∂Xi∂Xi
= 0 for � = A, or B, (24)

W 0
Ak = W 0

Bk on �, (25)

n j

(
μαA

∂W 0
Ak

∂Xk
− αB

∂W 0
Bk

∂Xk

)
+ n j (μαA − αB)

+ μni

(
∂W 0

Ai

∂X j
+ ∂W 0

Aj

∂Xi

)
− ni

(
∂W 0

Bi

∂X j
+ ∂W 0

Bj

∂Xi

)
= 0 on �. (26)

For φ
p
�:

∂2φ
p
�

∂Xi∂Xi
= 0 for � = A, , or B, (27)

φ
p
A = φ

p
B on �, (28)

ni

(
μ

∂φ
p
A

∂Xi
− ∂φ

p
B

∂Xi

)
+ n p(μ − 1) = 0 on �. (29)

Note that, due to the form of the ansatzes (19), (20) and periodicity on the microscale, the average of the barred
terms ū and w̄ is zero across the cell. Additionally, due to the symmetry of the jump in (23) we note that W pq

Ak = Wqp
Ak

and similarly for B. Once the macroscale geometry is fixed, Eqs. (21)–(29) may be solved to determine the variables
W pq

�i , W 0
�i and φ

p
�, so that the order ε correction to the stresses, (17), (18), are known subject to solving for the

globally varying displacement fields. Next we move to the order ε2 system to determine the effective macroscale
equations to evaluate these fields.
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2.3 Deriving the effective macroscale model

In this section, we seek to determine a macroscale model for the leading-order displacement fields u(0) and w(0),
which only vary globally. Equating coefficients of powers of ε2 in the model (7)–(9) subject to expansions of the
form (13) yields the system of equations

(1 + αA)

(
∂2uA(2)

i

∂Xk∂Xi
+ ∂2uA(1)

i

∂Xk∂xi
+ ∂2wA(1)

∂z∂Xk
+ ∂2uA(1)

i

∂xk∂Xi
+ ∂2u(0)

i

∂xk∂xi
+ ∂2w(0)

∂xk∂z

)

+ ∂2uA(2)
k

∂Xi∂Xi
+ 2

∂2uA(1)
k

∂Xi∂xi
+ ∂2u(0)

k

∂xi∂xi
+ ∂2u(0)

k

∂z2 = 0 (30)

and
∂2wA(2)

∂Xi∂Xi
+2

∂2wA(1)

∂Xi∂xi
+ ∂2w(0)

∂xi∂xi

+(1 + αA)

(
∂2uA(1)

i

∂z∂Xi
+ ∂2u(0)

i

∂z∂xi

)
+ (2 + αA)

∂2w(0)

∂z2 = 0, (31)

subject to the expected boundary conditions on � that

uA(2)
i = uB(2)

i , wA(2) = wB(2), and μτ
A(2)
i j ni = τ

B(2)
i j ni , (32)

where

τ
A(2)
i j = δi jαA

(
∂uA(2)

k

∂Xk
+ ∂uA(1)

k

∂xk
+ ∂wA(1)

∂z

)
+ ∂uA(2)

i

∂X j
+ ∂uA(2)

j

∂Xi
+ ∂uA(1)

i

∂x j
+ ∂uA(1)

j

∂xi
, (33)

and

τ
A(2)
i3 = ∂wA(2)

∂Xi
+ ∂wA(1)

∂xi
+ ∂uA(1)

i

∂z
, (34)

with counterpart equations in material B.
Using the definitions of τi j and τi3, the governing equations (30), (31) can be rewritten as

∂τ
A(2)
ik

∂Xi
+∂2uA(1)

i

∂Xk∂xi
+ ∂2wA(1)

∂z∂Xk
+ αA

∂2uA(1)
i

∂xk∂Xi
+ (1 + αA)

(
∂2u(0)

i

∂xk∂xi
+ ∂2w(0)

∂xk∂z

)

+∂2uA(1)
k

∂Xi∂xi
+ ∂2u(0)

k

∂xi∂xi
+ ∂2u(0)

k

∂z2 = 0, (35)

and

∂τ
A(2)
i3

∂Xi
+ ∂2wA(1)

∂Xi∂xi
+ ∂2w(0)

∂xi∂xi
+ αA

∂2uA(1)
i

∂z∂Xi
+ (1 + αA)

∂2u(0)
i

∂z∂xi
+ (2 + αA)

∂2w(0)

∂z2 = 0. (36)

Integrating these final two equations over the microcell, and using both the periodicity assumption and boundary
conditions (32) to eliminate the second-order terms yields the effective macroscale equations

(Kpqik + Kpqki )
∂2u(0)

p

∂xq∂xi
+ (K 0

ik + K 0
ki )

∂2w(0)

∂z∂xi
+ Hpk

(
∂2w(0)

∂xp∂z
+ ∂2u(0)

p

∂z2

)

+Gpq
∂2u(0)

p

∂xk∂xq
+ G0 ∂2w(0)

∂xp∂z
+ A1

(
∂2u(0)

i

∂xk∂xi
+ ∂2w(0)

∂z∂xk

)
+ A2

(
∂2u(0)

k

∂xi∂xi
+ ∂2u(0)

k

∂z2

)
= 0, (37)

and

Hpi

(
∂2w(0)

∂xp∂xi
+ ∂2u(0)

p

∂z∂xi

)
+ A2

∂2w(0)

∂xi∂xi
+ Gpq

∂2u(0)
p

∂xq∂z
+ G0 ∂2w(0)

∂z2

+A1
∂2u(0)

i

∂z∂xi
+ (A1 + A2)

∂2w(0)

∂z2 = 0, (38)
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where

Kpqki = μ

∫∫
�A

∂W pq
Ak

∂Xi
dA +

∫∫
�B

∂W pq
Bk

∂Xi
dA, (39)

K 0
ik = μ

∫∫
�A

∂W 0
Ak

∂Xi
dA +

∫∫
�B

∂W 0
Bk

∂Xi
dA, (40)

Hpk = μ

∫∫
�A

∂φ
p
A

∂Xk
dA +

∫∫
�B

∂φ
p
B

∂Xk
dA, (41)

Gpq = μαA

∫∫
�A

∂W pq
Ai

∂Xi
dA + αB

∫∫
�B

∂W pq
Bi

∂Xi
dA, (42)

G0 = μαA

∫∫
�A

∂W 0
Ai

∂Xi
dA + αB

∫∫
�B

∂W 0
Bi

∂Xi
dA, (43)

A1 = (1 + αA)μ|�A| + (1 + αB)|�B |, (44)

and

A2 = μ|�A| + |�B |. (45)

Due to the symmetry in the microscale jump condition (23) we can see that W pq
�i = Wqp

�i meaning that several
symmetries in these constants can be specified, namely Kpqki = Kqpki and Gpq = Gqp.

Equations (37), (38) represent the leading-order effective model on the macroscale. They incorporate the impact
of the microscale geometry and mechanics on this macroscale behaviour, explicitly through the tensors (39)–(43),
and constants (44)–(45), which both represent averages over different microscale parameters and variables. Indeed,
once the microscale geometry is fixed, the microscale variablesW and φ can be determined by solving the microscale
problems (21)–(29), and subsequently averaged to evaluate the tensors K , G and H , noting that the other constants
(44), (45) are simply related to the microscale geometry. It is then possible to solve Eqs. (37), (38) solely on the
macroscale geometry, subject to appropriate macroscale boundary conditions.

2.4 Implementing the SAH model

Having developed an effective model for the macroscale mechanical response of a linearly elastic fibre-supported
composite material, we seek to explore the SAH model behaviour by solving it under typical macroscale geometries
and loading conditions. In this section, the computational procedure required to implement the SAH Model is
presented, alongside a demonstration of the multiscale model behaviour.

The analysis so far is applicable to any fibre-supported structure with an identifiable periodic microstructure.
Composite materials of this family are called monoclinic—a class of anisotropic materials with three distinct
orthogonal axis and a single plane of symmetry [35] (which we have taken to be in the x − y plane). To implement
this model effectively, a further assumption is made that the microscale cell is regular with both symmetric and
rotational symmetry around a single axis, for example, as in Fig. 2. This allows us to describe the composite material
as a transversely isotropic material enabling us to use standard results in our computational implementation, such
as those in [36], for example.

As an example, simulations of the macroscale model (37), (38) are carried out on a cylindrical geometry, the
microscale cross-section of which is shown in Fig. 2. Rewriting the macroscale model, (37), (38), in the form

∇ · τ eff
i j = 0,

allows us to identify the effective stress tensors as given in Appendix A. This, in turn, enables us to use the generalised
Hookes’ Law

τ eff
i j = ci jklεkl ,
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Fig. 2 Example microscale
geometry where �A and
�B are the areas containing
materials A and B,
respectively. The
non-dimensional cell fibre
radius is denoted by r

Fig. 3 Simulation results
from the macroscale model
(37), (38) showing the
Young’s Modulus of the
homogenised material as a
function of the
non-dimensional cell fibre
radius r , see Fig. 2. Material
parameters are set to
μA = 0.1 GPa, λA = 1.5
GPA, λB = 0.1 GPa and μB
is varied
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where εkl is the effective strain, and to express the elasticity tensor ci jkl entirely in terms of the microscale variables
(39)–(45). Using standard linear elasticity assumptions, it is convenient to contract the fourth-rank elasticity tensor
to the second-order Voigt or Engineering notation tensor Ci j , [35] and, thus, express Ci j in terms of the microscale
variables (39)–(45) as given in Appendix B. Given that the rudimentary geometry under consideration is transversely
isotropic, it can be shown [36] that the axial Poisson ratio is given by

ν = C13

C11 + C12
, (46)

and the non-dimensional axial Young’s Modulus can be expressed as

E = C11C33 − 2C2
13 + C33C12

C11 + C12
. (47)

The Young’s Modulus may be redimensionalised using μB , consistent with the definition of μ in Sect. 2.1.
The significant computational effort in this case, therefore, is to determine the averaged microscale parameters

(39)–(45) in the microscale geometry. COMSOL Multiphysics, a finite element software, is used to conduct the
simulations given its flexibility for solving complex PDEs in different geometries. The three microscale systems
of equations (21)–(29) are solved for the specified 2D microscale cell geometry, given in Fig. 2, and the aver-
aged microscale parameters (39)–(45) are determined for varying ranges of microscale mechanical properties and
geometric variables. This, in turn, allows us to explore the impact of the microscale parameters on the effective
macroscale predictions using formulae (46), (47). Some example plots are presented in Fig. 3, showing, as expected,
that axial Young’s Moduli increases as the proportion of stiffer material increases in the composite material, and
this occurs at different rates dependent on the shear moduli.
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Fig. 4 Comparison between macroscale model (37), (38), denoted by solid line and other elastic homogenisation models developed
by Parnell and Abrahams, [26], denoted by starred line, and Penta and Gerisch, [27], denoted by line with circles. Non-dimensional
cell fibre radius, r is varied with μA = 0.2 GPa and λA = λB = 0.1 GPa, and μB = 0.05 (blue), 0.1 (red) or 0.3 (yellow) GPa. (Color
figure online)

Figure 4 shows a comparison between the model derived in this paper and two recent homogenisation models
[26,27]. For all three models the axial Young’s Moduli and Poisson ratios vary dependent on the proportion of stiffer
material present in the composite material. Our model is consistent with the values obtained from the other two
models as would be expected, as the same constitutive equations have been adopted. In the next two sections, we
explore how the model can be modified to deal with different assumptions on the microscale behaviour by taking
various limits in the material properties.

3 Compressible–incompressible interaction model

Incompressibility is a common assumption made of the mechanical properties of many materials. This is, of course,
an approximation as many materials relevant to the tissue engineering community have a large bulk modulus in
reality, but are not absolutely incompressible [37,38]. In this section, we explore how the model developed in
Sect. 2 can be adapted to account for an incompressible component in the composite material. Primarily, this
involves a different formulation of the microscale mechanical model, due to the differing constitutive equations on
the microscale. Without loss of generality we have chosen to set the inner material A to be incompressible, noting
that the analysis would follow similarly if the outer material B was chosen to be incompressible instead.

The analysis follows that of the SAH model given in Sect. 2, except that in material A, instead of using (1), (2),
we use the incompressible linearly elastic Navier equations, which are given by

− ∂p∗

∂X∗
k

+ μA

(
∂2uA∗

k

∂X∗
i ∂X

∗
i

+ ∂2uA∗
k

∂z∗2

)
= 0, (48)

−∂p∗

∂z∗
+ μA

(
∂2wA∗

∂X∗
i ∂X

∗
i

+ ∂2wA∗

∂z∗2

)
= 0, (49)

and
∂uA∗

k

∂X∗
k

+ ∂wA∗

∂z∗
= 0, (50)

where p∗ is the non-dimensional pressure in A. The same non-dimensionalise scalings (6) as in Sect. 2 are adopted,
but with the addition of the unknown isotropic unknown pressure which is scaled p∗ = Pp + p0 where p0 is
atmospheric pressure.
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Note, as in the compressible–compressible case, the stress tensor scaling τ B∗
i j = μBε−1τ B

i j is used and therefore,

to ensure continuity of stress on the interface � between the two materials, we must take τ A∗
i j = μAε−1τ A

i j . Moreover,
assuming that the pressure in the incompressible material can potentially contribute to the leading-order effective
composite stress, the scaling P = μAε−1 is assumed. As before ε = δ

d , μ = μA
μB

and αB = λB
μB

. As in the general
case, we assume μ, αA,B and βA,B to be of order unity and the non-dimensional equations in �A are now

− ∂p

∂Xk
+ ∂2uA

k

∂Xi∂Xi
+ ε2 ∂2uA

k

∂z2 = 0, (51)

−ε
∂p

∂z
+ ∂2wA

∂Xi∂Xi
+ ε2 ∂2wA

∂z2 = 0, (52)

and
∂uA

k

∂Xk
+ ε

∂wA

∂z
= 0. (53)

In �B the non-dimensional equations are

(1 + αB)

(
∂2uB

i

∂Xk∂Xi
+ ε

∂2wB

∂Xk∂z

)
+ ∂2uB

k

∂Xi∂Xi
+ ε2 ∂2uB

k

∂z2 = 0, (54)

and

(1 + αB)

(
ε

∂2uB
i

∂z∂Xi
+ ε2 ∂2wB

∂z2

)
+ ∂2wB

∂Xi∂Xi
+ ε2 ∂2wB

∂z2 = 0. (55)

The same usual conditions of continuity of displacement and stress, (9), are applied at the interface � between the
two materials, but note that now

τ A
i j = −pδi j + ∂uA

i

∂X j
+ ∂uA

j

∂Xi
and τ A

i3 = ∂wA

∂Xi
+ ε

∂uA
i

∂z
. (56)

As utilised in Sect. 2, we introduce the macroscale coefficient xk = εXk and equate coefficients of ε0 in equations
(51)–(55) and in the boundary conditions (9) on �. Then leading-order solution is identical to the general case as
expected with the addition requirement that p(0) = p(0)(x, z). The continuity of stress boundary condition reduces
this to p(0) = 0 on � and, hence, we require p(0) = 0 for all x and z. Leading-order variations in incompressible
pressure, therefore, only occur on the microscale.

3.1 Microscale problem

By equating coefficients of ε1 in Eqs. (51)–(55) and boundary conditions (9), we obtain the counterparts of Eqs.
(15) for material B (with incompressible version for A) that define the microscale cell problem. The same ansatzes,
(19), (20), as the general case applies, but an additional expression of the form

p(1) = P1(X)
∂u(0)

∂x
+ P2(X)

∂v(0)

∂y
+ Q(X)

∂w(0)

∂z
(57)

is included to account for the isotropic pressure term in material A. These ansatzes allow us to consider coefficients
of macroscale derivatives and so formulate the cell problem solely in terms of the microscale. This microscale cell
problem again conveniently uncouples into three systems as in (21)–(29) that may be stated separately as follows:
For W pq

�i :

∂2W pq
Ak

∂Xi∂Xi
=

{
∂P p

∂Xk
when p = q,

0 otherwise
and

∂W pq
Ak

∂Xk
+ δpq = 0 on �A, (58)

(1 + αB)
∂2W pq

Bi

∂Xk∂Xi
+ ∂2W pq

Bk

∂Xi∂Xi
= 0 on �B, (59)
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with boundary conditions on � that W pq
Ak = W pq

Bk , as before, and

αBn j

(
∂W pq

Bk

∂Xk
+ δpq

)
+ ni

(
∂W pq

Bi

∂X j
+ ∂W pq

Bj

∂Xi

)
+ ni (δi pδ jq + δ j pδiq)

= niμ

(
∂W pq

Ai

∂X j
+ ∂W pq

Aj

∂Xi

)
+ niμ(δi pδ jq + δ j pδiq) +

{
−P pμn j when p = q,

0 otherwise.
(60)

For W 0
�i :

∂2W 0
Ak

∂Xi∂Xi
= ∂Q

∂Xk
and

∂W 0
Ak

∂Xk
+ 1 = 0 on �A, (61)

(1 + αB)
∂2W 0

Bi

∂Xk∂Xi
+ ∂2W 0

Bk

∂Xi∂Xi
= 0 on �B, (62)

with boundary conditions on � that W 0
Ai = W 0

Bi as before and

αBn j

(
∂W 0

Bk

∂Xk
+ 1

)
+ ni

(
∂W 0

Bi

∂X j
+ ∂W 0

Bj

∂Xi

)
= −n jμQ + niμ

(
∂W 0

Ai

∂X j
+ ∂W 0

Aj

∂Xi

)
. (63)

For φ
p
�:

this system of φ
p
� is identical to Eqs. (27)–(29) in the general case.

3.2 Deriving the effective macroscale equations

By equating coefficients of ε1 in Eqs. (51)–(55) and boundary conditions (9), and following the same process as
in Sect. 2.3 the second-order governing equations are obtained for the compressible–incompressible setup. These
equations are further reduced using the coefficients of ε in the continuity equation (53) to obtain

∂τ
A(2)
ik

∂Xi
+ ∂2uA(1)

i

∂Xk∂Xi
+ ∂2wA(1)

∂Xk∂z
+ ∂2u(0)

i

∂xk∂xi
+ ∂2w(0)

∂xk∂z
− ∂p(1)

∂xk

+∂2uA(1)
k

∂xi∂Xi
+ ∂2u(0)

k

∂xi∂xi
+ ∂2u(0)

k

∂z2 = 0, (64)

and

∂τ
A(2)
i3

∂Xi
− ∂p(1)

∂z
+ ∂2wA(1)

∂Xi∂xi
+ ∂2w(0)

∂xi∂xi
+ ∂2u(0)

i

∂z∂zi
+ 2

∂2w(0)

∂z2 = 0. (65)

By integrating over the cell, adding the equations in the two materials, and then using the continuity of stress
boundary condition and the Divergence Theorem, we are able to eliminate terms involving second-order variables.
From this, we obtain the same homogenised equations (37), (38) as derived in the general case, with the same
microscale averaged parameters Kpqki , K 0

ik , Hpk and A2, given by (39)–(41), (44), (45). The incompressibility of
material A, however, causes Gpq , G0 and A1 to be redefined in terms of the isotropic pressure terms of the ansatz
as follows:

Gpq = αB

∫∫
�B

∂W pq
Bi

∂Xi
dA − μ

{∫∫
�A

P p dA when p = q,

0 otherwise,
(66)

G0 = αB

∫∫
�B

∂W 0
Bi

∂Xi
dA − μ

∫∫
�A

Q dA, (67)

and

A1 = μ|�A| + (1 + αB)|�B |. (68)
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3.3 Implementation of the compressible–incompressible model

As the homogenised equations in Sects. 2 and 3 are unchanged, we may use the same macroscale elastic tensors as
those given in Appendix B. The setup of the microscale to evaluate the averaged microscale parameters requires
modification as described below.

Solving the microscale system of equations, (27)–(29), for φ
p
� is trivial to input into COMSOL Multiphysics as

described in Sect. 2. Due to the presence of the constraints from the continuity equation, however, the implementation
of the other systems is more complex. For solving Eqs. (58)–(60) with p = q and Eqs. (61)–(63), it is helpful to
introduce a potential function ψ i for i = 1, 2 or 3 such that

W 0
A1 = ∂ψ3

∂X
, W 0

A2 = ∂ψ3

∂Y
, (69)

W 11
A1 = ∂ψ1

∂X
, W 11

A2 = ∂ψ1

∂Y
, (70)

W 22
A1 = ∂ψ2

∂X
, W 22

A2 = ∂ψ2

∂Y
. (71)

Without loss of generality, we set that

Q = ∂2ψ3

∂Xi∂Xi
and Pi = ∂2ψ i

∂X j∂X j
, (72)

for i = 1, 2, to ensure that the only equation we need to solve for each ψ i will be the constraints resulting from the
continuity equations in each case.

On the other hand, for Eqs. (58)–(60) where p �= q we introduce a streamfunction ζ such that

W 12
A1 = ∂ξ1

∂Y
, W 12

A2 = −∂ξ1

∂X
, W 21

A1 = ∂ξ2

∂Y
, and W 21

A2 = −∂ξ2

∂X
, (73)

that satisfies the constraints resulting from the continuity equation and leaves us with the two remaining governing
equations to solve for ξ and the pressure variable in each case.

4 Other physically-relevant limiting behaviours

The previous section investigates the case of an incompressible inner material which can be physically interpreted
as the limit of large αA. In this section, we consider other relevant limiting behaviours of the model, providing a
framework to guide the reader on how to approach any possible combination of parameter regimes. We begin by
firstly examining the impact of alternative scalings of μ, the ratio of the shear moduli of the two components of the
composite material, before moving onto considering the effect of a highly compressible material by considering
small αA. The results from these limiting models are compared in Sect. 5 with the results of simulations of these
differing limiting behaviours using the SAH approach presented in Sect. 2.

4.1 Varying the ratio of the shear moduli

We first consider the effect of varying the size of μ, the ratio of the shear moduli of the two materials making up the
composite material. As μ only appears in the boundary condition (9), this means that in taking the large or small
limit of μ we are effectively decoupling the stresses in the two materials. It is worth noting, therefore, that large
and small limits of μ have symmetric effects on the theoretical model. Here, the approach taken when μ is large is
presented along and with comments on the differences that occur when considering μ small.
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Again the same non-dimensionalisation and model setup is used as in Sect. 2, except that we impose the scaling
μ = ε−1μ̄, where μ̄ ∼ O(1). The stress continuity boundary condition (9) becomes

μ̄τ
A(0)
i j ni = 0 and μ̄τ

A(k)
i j ni = τ

B(k−1)
i j ni , (74)

for k ≥ 1 where τ
A(k)
i j and τ

B(k)
i j are as defined in Sect. 2.

The analysis follows as in the SAH Model in Sect. 2, but while the same ansatz holds as before in A, due
to the continuity of displacement boundary condition, using the same ansatz for the displacements in B leads to
a contradiction. In order to resolve this, displacement boundary conditions of the form uB(0)

i = Pik(X)u(0)
i and

wB(0) = Q(X)w(0) are adopted to create the ansatz. The equations then uncouple and allow us to derive a system
of equations to be solved in either �A or �B . The complete system of equations obtained for the microcell problem
are given in Appendix C.

Using a combination of the order ε2 and ε systems, we are able to integrate over the cell and apply the boundary
conditions to obtain the resulting homogenised equations:

(Kpqik + Kpqki )
∂2u(0)

p

∂xi∂xq
+ (K 0

ki + K 0
ik)

∂2w(0)

∂z∂xi
+ Hik

(
∂2w(0)

∂xi∂z
+ ∂2u(0)

i

∂z2

)

+Gpq
∂2u(0)

p

∂xk∂xq
+ G0 ∂2w(0)

∂z∂xq
+ (K̄ pik + K̄ pki )

∂u(0)
p

∂xi
+ K̄ 0

k
∂w(0)

∂z
+ Ḡ p

∂u(0)
p

∂xk

+A1

(
∂2u(0)

i

∂xk∂xi
+ ∂2w(0)

∂z∂xk

)
+ A2

(
∂2u(0)

k

∂xi∂xi
+ ∂2u(0)

k

∂z2

)
= 0 (75)

and

Hpi

(
∂2w(0)

∂xp∂xi
+ ∂2u(0)

p

∂xi∂z

)
+ (Kkqii + Gpq)

∂2u(0)
p

∂xq∂z
+ (G0 + K 0

i i )
∂2w(0)

∂z2

+K̄ 0
i
∂w(0)

∂xi
+ Ḡ p

∂u(0)
p

∂z
+ A2

∂2w(0)

∂xi∂xi
+ A1

∂2u(0)
i

∂z∂xi
+ (A1 + A2)

∂2w(0)

∂z2 = 0, (76)

where

A1 = μ̄|�A|(1 + αA), A2 = μ̄|�A|, A3 = βAμ̄|�A|, (77)

Kpqki = μ̄

∫∫
�A

∂W pq
Ak

∂Xi
dA, K 0

ik = μ̄

∫∫
�A

∂W 0
Ak

∂Xi
dA, Hpk = μ̄

∫∫
�A

∂φ
p
A

∂Xk
dA, (78)

Gpq = μ̄αA

∫∫
�A

∂W pq
Ai

∂Xi
dA and G0 = μ̄αA

∫∫
�A

∂W 0
Ai

∂Xi
dA. (79)

The following terms with bars are not seen in the general case of Sect. 2:

K̄ pik =
∫∫

�B

∂Ppi

∂Xk
dA, K̄ 0

k =
∫∫

�B

∂Q

∂Xk
dA (80)

and

Ḡ p = αB

∫∫
�B

∂Ppi

∂Xi
dA. (81)

These new terms are due to the effective softening of the outer material in the analytical work resulting in terms
from the previous order contributing to the effect of material B in the homogenised equations.

In the case of μ small, i.e. μ = εμ̄ where μ̄ ∼ O(1), this will be analogous to taking material A, to leading order,
to be a void. Computationally it would effectively be the similar to the μ large case, but with labels for materials A
and B being swapped (with μ̄ still attached to the material A terms).
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4.2 Considering highly compressible interactions

In Sect. 3, we considered the effect of the assumption incompressibility in one of the components of the composite
material, here we very briefly consider the opposite extreme where one material is highly compressible. We begin
by making a re-scaling of αA = εᾱA where ᾱA ∼ O(1). Following through the standard homogenisation procedure
with the same scalings and ansatz as in the SAH model shown in Sect. 2, the same homogenised equations, (37),
(38), are obtained but the following averaged microscale parameters are redefined:

Gpq = αB

∫∫
�B

∂W pq
Bi

∂Xi
dA, G0 = αB

∫∫
�B

∂W 0
Bi

∂Xi
dA (82)

and

A1 = μ|�A| + (1 + αB)|�B |. (83)

5 Comparison with the SAH model

So far, we have described the analytical and computational procedure using asymptotic homogenisation to investigate
the effective mechanical properties of fibre-supported composite materials. The semi-analytic SAH Model of a
linearly elastic fibre-reinforced composite material, which agrees well with previous models in the literature,
is derived in Sect. 2. We then proceeded to adapt the homogenisation procedure to incorporate the mechanical
effects of differing extreme limits in the micromechanical properties of the composite material. In this section, we
numerically compare the general and limiting models and offer explanations for the discrepancies observed in the
obtained results.

Figure 5 shows the limits of axial Young’s Modulus predicted by the small and large μ models which correspond
well with the values obtained by simulations of the SAH model. Such consistency is to be expected as the averaged
microscale parameters (77)–(81) can be obtained straightforwardly by taking the limits of μ large and small in the
SAH averaged microscale parameters (39)–(45).

More interestingly, however, is the comparison of axial Poisson ration values in the small and large μ limits,
shown in Fig. 6. Here, we see that the SAH Model matches the small limit but does not converge to the large limit.
This can be explained by considering the consequences of uncoupling the boundary conditions when taking extreme
limits of μ. The small and large limits directly correspond to the axial Poisson ratios of material A (the large limit)
and material B (the small limit). When μ is small the Poisson ratio of the material A is also small and the composite
material reacts as if material A is a void matching the Poisson ratio of material B. As μ grows the contribution to
the Poisson ratio also increases but plateaus at the area-weighted average between the two Poisson ratios. This limit
is different to that of the Poisson ratio of material A and leads to discrepancies between the large μ limit and the
SAH solution.

Turning now to cases where αA is varied from very small (highly compressible limit) to very large (incompressible
limit) the discrepancy in agreement now occurs both the calculation of the effective axial Young’s Modulus and
the calculation of effective axial Poisson ratio, see Figs. 7 and 8. The figures consistently show that the small α

limit trend is consistent with the Standard Asymptotic Homogenised Model for both the axial Young’s Moduli and
Poisson ratios, but the incompressible limit (αA � 1) differs. The small α limit can be expected to match the SAH
model as the effective equations are the same as those in the SAH model, (37), (38). When αA is small, material
A softens and contributes less to the effective mechanical properties, resulting in the revised averaged microscale
parameters (82), (83) and the resulting limit obtained in the SAH model.

However, when we consider the compressible–incompressible limit in Figs. 7 and 8, we see a very different limit
to that exhibited by the SAH model as αA becomes large. Both the compressible–incompressible model and the
SAH model have the same effective macroscale equations, (37), (38), but the behaviour of the microscale solutions
varies markedly. This is due to the additional constraint of continuity equation (50) and the variable the isotropic
pressure p∗ in Eqs. (48), (49). These additions follow through into the microscale cell problem (58), (61) and add
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Fig. 5 Plots using simulations of the SAH model described in Sect. 2, small μ and large μ, described in Sect. 4.1, for a range of
micromechanical properties to demonstrate that simulations for small and large simulations are the limits of the axial Young’s Modulus
as given by the general model. Solid blue line shows results from the SAH model. Dashed red line denotes small μ simulation and green
stars denote large μ simulation. Micromechanical properties are set to μA = μμB , μB = λB = 0.1 GPa and λA = 0.5μA (top left),
μA (top right), 1.5μA (bottom left) or 2μA (bottom right). (Color figure online)

additional terms to the respective cell boundary conditions (60), (63). This ultimately results in revised expressions
for Gpq (66), G0 (67) and A1 (68) which are independent of αA. Such expressions lie in stark contrast to the same
tensors for the SAH model (42)–(44) which are linear in αA and grow unbounded as αA increases, resulting in
the differing limits in the effective macroscale axial Poisson ratio and Young’s Moduli. The observed discrepancy
between the two models ultimately stems from how we interpret the incompressible limit. A material categorised
as incompressible, by considering the effective mechanical properties of the material, must have a Poisson ratio of
0.5. We can write the Poisson ratio of a given material i in terms of the ratio of the Lamé parameters, αi of that
material

νi = 1

2(1 + 1
αi

)
. (84)

Using Eq. (84), we infer that the condition of νi = 0.5 is equivalent to αi tending to infinity. This would suggest that
taking the general model in the limit αA → ∞ should be equivalent to the compressible–incompressible model. To
obtain the incompressible governing equations (48)–(50), however, more stringent limits are conventionally taken,
[39], namely that

p = lim
ε→0

−μi

ε
∇ · u, (85)

where αi = 1
ε
, for a nearly incompressible material, leading to the inconsistent trends observed in Figs. (7, 8).
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Fig. 6 Plots using simulations of the SAH model described in Sect. 2, small μ and large μ, described in Sect. 4.1, for a range of
micromechancial properties to show that the small and large limits of the axial Poisson ratio do not match those of the general case.
Solid blue line shows results from SAH model. Dashed red line denotes small μ simulation and green stars denote large μ simulation.
Micromechanical properties are set to μA = μμB , μB = λB = 0.1 GPa and λA = 0.5μA (top left), μA (top right), 1.5μA (bottom
left) or 2μA (bottom right). (Color figure online)

6 Discussion and conclusion

A series of 3D fibre-reinforced composite elastic models, valid for various material parameter regimes, has been
presented. By separating the microscale and macroscale problems using asymptotic homogenisation, we are able to
derive new effective descriptions for the mechanical behaviour of fibre-supported composite materials, which encode
information on the microscale geometry and mechanics. Our parallel fibre approach reduces the complexity of the
homogenisation procedure for composite materials. However, this approach ultimately requires an understanding
of the intrinsic microscale mechanical properties of the composite material in relation to the overall geometry—
information which is not always available in the current literature.

Throughout this paper, our computational results have shown how different microscale conditions change the
macroscopic behaviour of the material. Such a model is likely to be of interest to a range of different industries
interested in optimising the mechanical behaviour of composite materials.

Our results are built on the SAH derived in Sect. 2, a model which is analogous to other similar models in
the literature, but can also be adapted to account for a broader range of microscale behavioural limits. The key
contribution of this work is highlighting how uncertainty in the micromechancial properties of a composite material
can potentially translate to different predictions of the effective mechanical properties, depending on the microscale
assumptions made in the homogenisation process. For instance, when considering the small and large limits of the
ratio of shear moduli in a composite material (Figs. 5, 6), discrepancies in the calculated effective Poisson’s Ratio are
observed in the case of a large difference in shear moduli, where homogenisation models constructed using different
microscale assumptions produce different values. Despite this, the calculated effective Young’s Moduli remained
consistent. The discrepancies in this case are due to the fact that the models constructed assuming the extreme limits
of this ratio weigh the mechanical contributions of each material differently than the SAH homogenisation setup.
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Fig. 7 Plots using simulations of SAH model described in Sect. 2, small μ and large μ, described in Sect. 4.1, for a range of
micromechancial properties to show that the small and large limits of the axial Young’s Modulus do not match those of the SAH model.
Dashed red line denotes small μ simulation and green stars denote large μ simulation. Micromechanical properties are set to μB = 50
MPa, λB = 0.1 GPa and λA = αAμA, where μA = 50 MPa (top left), 0.1 GPa (top right), 0.15 GPa (bottom left) or 0.2 GPa (bottom
right). (Color figure online)

Hence, for a composite material where there is likely to be an extreme difference in shear moduli, our analysis
suggests care must be taken in using an asymptotic homogenised model to determine the effective macroscale
parameters, as the assumptions of such a model may possibly either neglected or overemphasised the contribution
of one material over the other at leading order.

Even more interesting are the observed discrepancies in both effective Young’s Modulus and Poisson’s Ratio
of the composite material arising as a result of considering near-incompressibility of one microscale component
(the large α limit) using the general model, versus incorporating the incompressibility assumption (85) throughout
the homogenisation process, as is done in Sect. 3. This indicates again that care must be taken when using an
asymptotic homogenisation model for optimising a composite material if one of the component materials has a
large bulk modulus, a common occurrence in many industrial fields as absolute incompressibility is an assumption
often made for nearly incompressible materials.

Our work shows the importance of fully quantifying the micromechanical properties to ensure that the correct
underlying assumptions for the asymptotic homogenisation process are consistent with the measured and/or antic-
ipated microscale parameter ranges. The balance between over simplification and complexity when taking into
account micromechanics and geometry of a composite material is a problem for constitutive setups, particularly
those more complex than linear elasticity. Restricting this work to purely linear elastic materials, however, has
allowed a clearer discussion here of the effects of different limiting behaviours within linear elasticity, such as
incompressibility and the effects of comparative shear moduli. By considering slender fibre-supported geometries
we are able to reduce the number of dimensions in the microscale allowing us to consider easily generalisable
models analytically in detail. This geometry also replicates the physical situation of fibre-reinforced biological
tissues such as peripheral nerves, tendons and plant cell walls, as well as those potentially used for fibre-reinforced
polymer composites for use in aerospace or construction industries.
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Fig. 8 Plots using simulations of SAH model described in Sect. 2, small μ and large μ, described in Sect. 4.1, for a range of
micromechancial properties to show that the small and large limits of the axial Poisson ratio do not match those of the SAH model.
Dashed red line denotes small μ simulation and green stars denote large μ simulation. Micromechanical properties are set to μB = 50
MPa, λB = 0.1 GPa and λA = αAμA where μA = 50 MPa (top left), 0.1 GPa (top right), 0.15 GPa (bottom left) or 0.2 GPa (bottom
right). (Color figure online)

Many practical applications of fibre-reinforced materials require other, more complex, constitutive setups. A nat-
ural next step would be to consider composite materials constructed of non-linear elastic micromechanical materials.
However, this would significantly increase the complexity of the microscale setup via additional micromechanical
parameters, the relative non-dimensional scalings of which must be carefully considered across various limits. Fur-
ther theoretical work into fully microscale non-linear behaviour in these limiting cases is thus necessary, as similar
discrepancies could arise between asymptotic homogenised models that are based on different scaling assumptions.

Ultimately more experimental work is required to determine the true effective mechanical properties of composite
materials. The answer as to whether to use the SAH model in Sect. 2, currently published models such as [26,27],
or a limiting microscale behaviour case (i.e. the models in Sects. 3 and 4.1) relies on the complex interplay of the
orders of αA, αB and μ which this paper highlights. Further interdisciplinary work in the limit of incompressibility
and extreme shear moduli ratios to fully understand the exact progression of effective properties, such as axial
Possion ratio and Young’s Moduli, are required in the future.
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Appendix A: Effective macroscale stresses for general case

τ eff
xx = (G11 + A1 + A2 + 2K1111)

∂u(0)

∂x
+ (G12 + 2K1211)

∂u(0)

∂y
+ (G21 + 2K2111)

∂v(0)

∂x

+(A1 − A2 + G22 + 2K2211)
∂v(0)

∂y
+ (A1 − A2 + G0 + 2K 0

11)
∂w(0)

∂z
, (86)

τ eff
xy = (K1112 + K1121)

∂u(0)

∂x
+ (K1212 + K1221 + A2)

∂u(0)

∂y
+ (K2112 + K2121 + A2)

∂v(0)

∂x

+(K2212 + K2221)
∂v(0)

∂y
+ (K 0

12 + K 0
21)

∂w(0)

∂z
, (87)

τ eff
yy = (G11 + A1 − A2 + 2K1122)

∂u(0)

∂x
+ (G12 + 2K1222)

∂u(0)

∂y
+ (G21 + 2K2122)

∂v(0)

∂x

+(G22 + A1 + A2 + 2K2222)
∂v(0)

∂y
+ (G0 + A1 − A2 + 2K 0

22)
∂w(0)

∂z
, (88)

τ eff
xz = (H11 + A2)

(
∂u(0)

∂z
+ ∂w(0)

∂x

)
+ H21

(
∂v(0)

∂z
+ ∂w(0)

∂y

)
, (89)

τ eff
yz = H12

(
∂w(0)

∂x
+ ∂u(0)

∂z

)
+ (H22 + A2)

(
∂w(0)

∂y
+ ∂v(0)

∂z

)
(90)

and

τ eff
zz = (G11 + A1 − A2)

∂u(0)

∂x
+ G21

∂v(0)

∂x
+ G12

∂u(0)

∂y
+ (G22 + A1 − A2)

∂v(0)

∂y

+(G0 + A1 + A2)
∂w(0)

∂z
. (91)
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Appendix B: Effective macroscale elastic tensors for general case

C11 = 2K1111 + G11 + A1 + A2, (92)

C22 = 2K2222 + G22 + A1 + A2, (93)

C33 = G0 + A1 + A2, (94)

C44 = H22 + A2, (95)

C55 = H11 + A2, (96)

C66 = K1221 + K1212 + A2 = K2112 + KK2121 + A2, (97)

C12 = 2K2211 + G22 + A1 − A2 = 2K1122 + G11 + A1 − A2, (98)

C13 = G11 + A1 − A2 = 2K 0
11 + G0 + A1 − A2, (99)

C16 = 2K2111 + G21 = KK1211 + 1

2
G12 + 1

2
K1121 + 1

2
K1112 = K1112 + K1121, (100)

C23 = G22 + A1 − A2 = 2K 0
22 + G0 + A1 − A2, (101)

C26 = 2K1222 + G12 = K2122 + 1

2
G21 + 1

2
K2212 + 1

2
K2221 = K2221 + K2212, (102)

C36 = K 0
12 + K 0

21 = G21 = G12 (103)

and

C45 = H12 = H21. (104)

Appendix C: Cell problem: large μ limit

System A1

(1 + αA)
∂2W pq

Ai

∂Xk∂Xi
+ ∂2W pq

Ak

∂Xi∂Xi
= 0 on �A, (105)

with boundary condition on � that

n j μ̄αA

(
∂W pq

Ak

∂Xk
+ δpq

)
+ μ̄ni

(
∂W pq

Ai

∂X j
+ ∂W pq

Aj

∂Xi
+ δi pδ jq + δiqδ j p

)
= 0. (106)

System A2

(1 + αA)
∂2W 0

Ai

∂Xk∂Xi
+ ∂2W 0

Ak

∂Xi∂Xi
= 0 on �A, (107)

with boundary condition on � that

n j μ̄αA

(
∂W 0

Ak

∂Xk
+ 1

)
+ μ̄ni

(
∂W 0

Ai

∂X j
+ ∂W 0

Aj

∂Xi

)
= 0. (108)

System A3

∂2φ
j
A

∂Xi∂Xi
= 0 on �A,

with boundary condition on � that

ni μ̄
∂φ

p
A

∂Xi
+ n pμ̄ = 0.
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System B1

(1 + αB)
∂2Pji

∂Xk∂Xi
+ ∂2Pjk

∂Xi∂Xi
= 0 on �B, (109)

with boundary conditions on � that

Pi j = δi j (110)

and

αBn j
∂Prk
∂Xk

+ ni

(
∂Pri
∂X j

+ ∂Pr j
∂Xi

)
= 0. (111)

System B2

∂2Q

∂Xi∂Xi
= 0 on �B, (112)

with boundary conditions on � that

Q = 1 (113)

and

ni
∂Q

∂Xi
= 0. (114)

Appendix D: Cell problem: small α case

System 1:

∂2W pq
Ai

∂Xk∂Xi
+ ∂2W pq

Ak

∂Xi∂Xi
= 0 on �A, (115)

and

(1 + αB)
∂2W pq

Bi

∂Xi∂Xi
+ ∂2W pq

Bi

∂Xk∂Xi
+ ∂2W pq

Bk

∂Xi∂Xi
= 0 on �B, (116)

with boundary conditions on � that

W pq
Ak = W pq

Bk (117)

and

μni

(
∂W pq

Ai

∂X j
+ ∂W pq

Aj

∂Xi

)
+ ni (μ − 1)(δi pδ jq + δiqδ j p) = n jαB

(
∂W pq

Bk

∂Xk
+ δpq

)

+ni

(
∂W pq

Bi

∂X j
+ ∂W pq

Bj

∂Xi

)
. (118)

System 2:

∂2W 0
Ai

∂Xk∂Xi
+ ∂2W 0

Ak

∂Xi∂Xi
= 0 on �A, (119)

and

(1 + αB)
∂2W 0

Bi

∂Xk∂Xi
+ ∂2W 0

Bk

∂Xi∂Xi
= 0 on �B, (120)
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with boundary conditions on � that

W 0
Ak = W 0

Bk (121)

and

μni

(
∂W 0

Ai

∂X j
+ ∂W 0

Aj

∂Xi

)
= n jαB

(
∂W 0

Bk

∂Xk
+ 1

)
+ ni

(
∂W 0

Bi

∂X j
+ ∂W 0

Bj

∂Xi

)
. (122)

System 3:

∂2φ
p
A

∂Xi∂Xi
= 0 on �A, (123)

with a counterpart equation for B and boundary equations on � that

φ
p
A = φ

p
B (124)

and

ni

(
μ

∂φ
p
A

∂Xi
− ∂φ

p
B

∂Xi

)
+ n p(μ − 1) = 0. (125)

References

1. Mangalgiri P (1999) Composite materials for aerospace applications. Bull Mater Sci 22(3):657–664
2. Saba N, Jawaid M, Sultan MT (2018) An overview of mechanical and physical testing of composite materials. Elsevier, Amsterdam
3. Sheffield C, Meyers K, Johnson E, Rajachar RM (2018) Application of composite hydrogels to control physical properties in tissue

engineering and regenerative medicine. Gels 4(2):51
4. Greenhall J, Homel L, Raeymaekers B (2019) Ultrasound directed self-assembly processing of nanocomposite materials with

ultra-high carbon nanotube weight fraction. J Compos Mater 53(10):1329–1336
5. Lakes R (1993) Materials with structural hierarchy. Nature 361(6412):511–515
6. Khalesi H, Lu W, Nishinari K, Fang Y (2021) Fundamentals of composites containing fibrous materials and hydrogels: a review

on design and development for food applications. Food Chem 364:130329
7. Mertiny P, Ellyin F (2002) Influence of the filament winding tension on physical and mechanical properties of reinforced composites.

Composites Part A 33(12):1615–1622
8. Ebenstein DM, Pruitt LA (2006) Nanoindentation of biological materials. Nano Today 1(3):26–33
9. Hemker K, Sharpe W (2007) Microscale characterization of mechanical properties. Annu Rev Mater Res 37(1):93–126

10. Dixit A, Mali HS (2013) Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: a review.
Mech Compos Mater 49(1):1–20

11. Fang F, Lake SP (2016) Modelling approaches for evaluating multiscale tendon mechanics. Interface Focus 6(1):20150044
12. Haghighi M, Golestanian H, Aghadavoudi F (2021) Determination of mechanical properties of two-phase and hybrid nanocom-

posites: experimental determination and multiscale modeling. J Polym Eng 41(5):356–364
13. Khezrzadeh H (2017) A statistical micromechanical multiscale method for determination of the mechanical properties of composites

with periodic microstructure. Composites Part B 115:138–143
14. Lurie SA, Belov PA, Tuchkova NP (2005) The application of the multiscale models for description of the dispersed composites.

Composites Part A 36(2):145–152
15. Piatnitski A, Ptashnyk M (2017) Homogenization of biomechanical models for plant tissues. Multiscale Model Simul 15(1):339–387
16. Buljac A, Shakoor M, Neggers J, Bernacki M, Bouchard PO, Helfen L, Morgeneyer TF, Hild F (2017) Numerical validation

framework for micromechanical simulations based on synchrotron 3d imaging. Comput Mech 59(3):419–441
17. Lebensohn RA, Brenner R, Castelnau O, Rollett AD (2008) Orientation image-based micromechanical modelling of subgrain

texture evolution in polycrystalline copper. Acta Mater 56(15):3914–3926
18. Masad E, Tashman L, Somedavan N, Little D (2002) Micromechanics-based analysis of stiffness anisotropy in asphalt mixtures. J

Mater Civil Eng 14(5):374–383
19. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11(5):357–372
20. Hill R (1964) Theory of mechanical properties of fibre-strengthened materials. 1: elastic behaviour. J Mech Phys Solids 12(4):199–

212
21. Hashin Z (1979) Analysis of properties of fiber composites with anisotropic constituents. J Appl Mech Trans ASME 46(3):543–550
22. Hori M, Nemat-Nasser S (1999) On two micromechanics theories for determining micro-macro relations in heterogeneous solids.

Mech Mater 31(10):667–682

123



    6 Page 24 of 24 E. A. Doman et al.

23. Lanir Y (1983) Constitutive equations for fibrous connective tissues. J Biomech 16(1):1–12
24. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall

21(5):571–574
25. Pinho-da Cruz J, Oliveira J, Teixeira-Dias F (2009) Asymptotic homogenisation in linear elasticity. Part I: mathematical formulation

and finite element modelling. Comput Mater Sci 45(4):1073–1080
26. Parnell WJ, Abrahams ID (2008) Homogenization for wave propagation in periodic fibre-reinforced media with complex microstruc-

ture. I-Theory. J Mech Phys Solids 56(7):2521–2540
27. Penta R, Gerisch A (2015) Investigation of the potential of asymptotic homogenization for elastic composites via a three-dimensional

computational study. Comput Vis Sci 17(4):185–201
28. Penta R, Gerisch A (2017) The asymptotic homogenization elasticity tensor properties for composites with material discontinuities.

Continuum Mech Thermodyn 29(1):187–206
29. Ramírez-Torres A, Penta R, Rodríguez-Ramos R, Merodio J, Sabina FJ, Bravo-Castillero J, Guinovart-Díaz R, Preziosi L, Grillo

A (2018) Three scales asymptotic homogenization and its application to layered hierarchical hard tissues. Int J Solids Struct
130–131:190–198

30. Davit Y, Bell CG, Byrne HM, Chapman LA, Kimpton LS, Lang GE, Leonard KH, Oliver JM, Pearson NC, Shipley RJ, Waters SL,
Whiteley JP, Wood BD, Quintard M (2013) Homogenization via formal multiscale asymptotics and volume averaging: how do the
two techniques compare? Adv Water Resour 62:178–206

31. Burridge R, Keller JB (1981) Poroelasticity equations derived from microstructure. J Acoust Soc Am 70(4):1140
32. Chen MJ, Kimpton LS, Whiteley JP, Castilho M, Malda J, Please CP, Waters SL, Byrne HM (2020) Multiscale modelling and

homogensation of fibre-reinforced hydrogels for tissue engineering. Eur J Appl Math 31(1):143–171
33. Daly KR, Roose T (2018) Determination of macro-scale soil properties from pore-scale structures: model derivation. Proc R Soc

A 474(2209):20170141
34. Meguid SA, Kalamkarov AL (1994) Asymptotic homogenization of elastic composite materials with a regular structure. Int J Solids

Struct 31(3):303–316
35. Bauchau O, Craig J (2009) Structural analysis. Springer, Dordrecht
36. Parnell WJ, Vu MB, Grimal Q, Naili S (2012) Analytical methods to determine the effective mesoscopic and macroscopic elastic

properties of cortical bone. Biomech Model Mechanobiol 11(6):883–901
37. Nolan D, McGarry J (2016) On the compressibility of arterial tissue. Ann Biomed Eng 44(4):993–1007
38. Saraf H, Ramesh K, Lennon A, Merkle A, Roberts J (2007) Mechanical properties of soft human tissues under dynamic loading. J

Biomech 40(9):1960–1967
39. Howell P, Kozyreff G, Ockendon J (2009) Applied solid mechanics, vol 4343. Cambridge University Press, Cambridge

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

123


	Influence of asymptotically-limiting micromechanical  properties on the effective behaviour of fibre-supported  composite materials
	Abstract
	1 Introduction
	2 Standard asymptotic homogenised model
	2.1 Multiscale analysis
	2.2 Deriving the microscale cell problem
	2.3 Deriving the effective macroscale model
	2.4 Implementing the SAH model

	3 Compressible–incompressible interaction model
	3.1 Microscale problem
	3.2 Deriving the effective macroscale equations
	3.3 Implementation of the compressible–incompressible model

	4 Other physically-relevant limiting behaviours
	4.1 Varying the ratio of the shear moduli
	4.2 Considering highly compressible interactions

	5 Comparison with the SAH model
	6 Discussion and conclusion
	Acknowledgements

	Appendix A: Effective macroscale stresses for general case
	Appendix B: Effective macroscale elastic tensors for general case
	Appendix C: Cell problem: large µ limit
	Appendix D: Cell problem: small α case
	References




