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A simple model for the motion of shape-changing swimmers in Poiseuille flow was
recently proposed and numerically explored by Omori et al. (J. Fluid Mech., vol. 930,
2022, A30). These explorations hinted that a small number of interacting mechanics can
drive long-time behaviours in this model, cast in the context of the well-studied alga
Chlamydomonas and its rheotactic behaviours in such flows. Here, we explore this model
analytically via a multiple-scale asymptotic analysis, seeking to formally identify the
causal factors that shape the behaviour of these swimmers in Poiseuille flow. By capturing
the evolution of a Hamiltonian-like quantity, we reveal the origins of the long-term drift
in a single swimmer-dependent constant, whose sign determines the eventual behaviour
of the swimmer. This constant captures the nonlinear interaction between the oscillatory
speed and effective hydrodynamic shape of deforming swimmers, driving drift either
towards or away from rheotaxis.

Key words: micro-organism dynamics

1. Introduction

The behaviours of microswimmers in flows have long been a topic of broad theoretical
and experimental study. Recently, Omori et al. (2022) numerically explored a model
of a shape-changing swimmer in Poiseuille flow, posed in the context of the alga
Chlamydomonas for comparison with their experimental findings. Their investigations
suggested an interesting and subtle connection between the long-time behaviours of the
microswimmer and the details of its changing speed and shape, with certain conditions
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flow profile o)

Figure 1. Notation and set-up. We illustrate a model swimmer in Poiseuille flow, located at a transverse
displacement y from the midline of the parabolic flow profile. The swimming direction 6 is measured from
the midline, with & = O corresponding to downstream swimming.

apparently necessary for long-time upstream-facing swimming in the flow, referred to as
rheotaxis by Omori et al. (2022).

Their ordinary differential equation (ODE) model may be simply stated in terms of a
transverse coordinate y and the swimmer orientation 6 as

Y _ e sing (11a)
— = wu(wt) sin 6, da
dt

do

< = 11 = B(e) cos20), (1.1b)

with given initial conditions and with reference to the set-up of figure 1, where all
quantities are considered dimensionless. We refer the interested reader to the work of
Omori et al. (2022) for a full derivation of the model. The functions u and B capture
the time-dependent active swimming speed and shape-capturing Bretherton constant
(Bretherton 1962), respectively. These prescribed functions are assumed to be oscillatory
with a shared high frequency w >> 1. In particular, the swimming speed naturally scales
with w in (1.1a), as the Stokes equations are both linear and independent of time except
via boundary conditions (Kim & Karrila 2005). However, such a velocity scaling is
absent from the explicitly stated equations of Omori et al. (2022), although it is present
in their explored parameter regimes. The equations of Stokes flow are appropriate in
the low-Reynolds-number and low-frequency-Reynolds-number regimes associated with
many microswimmers, including Chlamydomonas (Guasto, Rusconi & Stocker 2012),
and we will restrict our analysis to such regimes of practical interest. Here, y is a fixed
characteristic shear rate of the flow, non-negative without loss of generality. This model
neglects any interactions of the swimmer with solid boundaries typically associated with
Poiseuille flow, and we will proceed without additional consideration of boundary effects.

Via the numerical explorations of Omori et al. (2022), this model is noted to give rise
to a range of complex, long-time behaviours, perhaps the most remarkable of which is
conditional convergence towards a central upstream-facing configuration. In this study,
we will aim to analytically uncover the driving factors behind these long-time dynamics.
Via a multiple-scale asymptotic analysis (Bender & Orszag 1999), as recently applied to
similar models of swimming (Gaffney et al. 2022; Ma, Pujara & Thiffeault 2022; Walker
et al. 2022), we will show how the effective swimmer behaviour can be captured by a
Hamiltonian-like quantity, whose slow evolution accurately encodes the long-time trends
of behaviour noted by Omori et al. (2022). Further, we will identify a markedly simple
relation between the eventual behaviour of the swimmer and its oscillating speed and
shape, enabling the deduction of long-time dynamics through the calculation of a single
swimmer-dependent constant.
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2. Direct asymptotic analysis
The time scales present in the model of Omori ef al. (2022) are best identified through a
change of variable. Defining z(r) := y(f)/w'/?, the system reads

d

& 0 2u(wr) sin6, 2.1a)
dr

9 _ 12

i yw'“z(1 — B(wt) cos 26). (2.1b)

This suggests a natural fast time scale T := wt, that of the oscillating swimmer speed and
shape. Additionally, O(1) oscillations of u# and B in (2.1) drive O(1) changes in z and
6 over an intermediate time scale of t = O(w~/2). We will later see that these changes
correspond to quasi-periodic orbits of the swimmer in the flow, quantifying motion on
this time scale via T := w'/?¢. In addition to the two time scales T and T evident from
this system of equations, Omori et al. (2022) observed behavioural changes over longer
time scales, with # = O(1). Hence, we expect the system to evolve on three separated time
scales, corresponding to 7', T and ¢ each being O(1). Our overarching aim is to characterise
and understand the behaviours of the system over the time scale t = O(1).

To this end, we conduct a multiple-scale analysis and formally write z(¥) = z(T, 7, t)
and 6(¢) = 0(T, 7, t), treating each time variable as independent (Bender & Orszag 1999).
This transforms the proper time derivative via

R I
S0l 2.9 22
o T e Tar (2.2)

which transforms (2.1) into the system of partial differential equations

wzr + 0%z + 2 = 0"?u(T) sin b, (2.3a)
w0 + ©'%6; + 6, = 0'/*yz(1 — B(T) cos 26). (2.3b)

Here and hereafter, subscripts for #, t and 7 denote partial derivatives. We will later
remove the extra degrees of freedom that we have introduced by imposing periodicity of
the dynamics in the intermediate and fast variables T and 7. Expanding z and 6 in powers
of w12 as z ~ 20 +o 2 4+0 4+ and 6 ~ 6o +o V20 +07 0+, we
obtain the O(w) balance

2or =0, 6or =0, (2.4a,b)

so that zg = zo(7, 1) and 6y = 6p(7, f) are independent of 7. To determine how zg and 6y
depend on t and 7, we must proceed to higher asymptotic orders.
We next consider the balance of O(w'/?) terms in (2.3), which reads

217 + 200 = u(T) sin 6, (2.5a)

011 + 6pr = yz0(1 — B(T) cos 26p). (2.5b)

The Fredholm solvability condition for (2.5) is equivalent to averaging over a period in T
and enforcing T-periodicity of z; and 6. Introducing the averaging operator (- ), defined
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via its action on functions v(7, t, t) via

1
W) (z, 1) == / (T, 7, 1)dT, (2.6)
0

we obtain the averaged equations

20 = (u) sin b, (2.7a)
Bor = yzo(1 — (B) cos 26y), (2.7D)

where (u) and (B) are the averages of u(T) and B(T), respectively, representing the average
speed and shape of the model swimmer. In particular, (#) and (B) are constant, with
the dynamics being rendered trivial if (u) = 0; we exclude this case from our analysis
and henceforth take (u) > 0 without further loss of generality (the mapping 6 — 6 + &
transforms (u#) < O into the positive case). We will also assume that |(B)| < 1, which
imposes only a minimal restriction on the admissible swimmer shapes, since |B| > 1 is
typically associated with objects of exceedingly large aspect ratio (Bretherton 1962).

Of particular note, if viewed as a system of ODEs in 7, the system of (2.7) corresponds
precisely to the original dynamical system of (2.1), suitably scaled, but with the
time-varying speed and shape parameters replaced by their averages. We will shortly return
to these equations and explore the ramifications of this observation in detail, in particular
noting the existence of a Hamiltonian-like quantity, but first complete our analysis of the
O(w'/?) problem to determine the form of z; and 6; for later convenience.

Without solving (2.7), we can deduce the form of z; and 6; by substituting (2.7) into
(2.5), yielding the simplified system

ar = [u(T) — (u)]sin 6o, (2.8a)
6117 = —yz0[B(T) — (B)] cos 26y. (2.8b)

Integrating (2.8) in 7, recalling that zo and 6y are independent of 7', yields the solution

71 = 1,(T) sinfy + 71 (7, 1), (2.9a)
01 = —yzolp(T) cos 200 + 01 (T, 1), (2.9b)

where 7, and 0 are functions of 7 and ¢, undetermined at this order, and we define

T T
1(T) = / (u(T) — W) dT, Ig(T) := / [B(T) — (B)]dT. (2.10a,b)
0 0

Noting that 1,,(T) and Ip(T) are T-periodic with period one, it follows that z; and 6; are
T-periodic with the same period.

In principle, one could proceed to the next asymptotic order to determine how zp and
6p evolve in t through the derivation of an additional solvability condition. However,
here, this procedure would be complicated by the absence of an explicit solution to the
nonlinear system of equations (2.7), compounded by the potentially z-dependent period
of the solution, which would require using the generalised method of Kuzmak (1959).
To circumvent this difficulty, we instead turn our attention back to (2.7), seeking further
understanding of the leading-order dynamics over the intermediate time scale t.
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Figure 2. Phase portrait of motion on the intermediate time scale 7. Solutions of (3.1) are closed orbits in
the zo—0p plane for constant Hy, symmetric in both zo = 0 and 6y = 7. Solutions in the shaded region, where
Hp > g(0), do not cross zg = 0, corresponding to tumbling motion and monotonic evolution of . Trajectories
with Hy < g(0) instead exhibit swinging motion, with 6y oscillating between two values. The black contour
Hy = g(0) separates these regimes, with the direction of motion in the phase plane indicated by arrowheads,
recalling that y > 0. The point (zo, 8p) = (0, ) corresponds to rheotaxis, with Hy = g().

3. A Hamiltonian-like quantity

If treated as a system of ODEs, we noted that (2.7) closely resembles the original
swimming problem, with averages taking the place of oscillatory swimming speeds and
swimmer shapes. In fact, the equivalent ODE problem has been extensively studied,
with Zottl & Stark (2013) thoroughly exploring this dynamical system and identifying
a Hamiltonian-like constant of motion. Motivated by their study, we identify an analogous
first integral of (2.7):

Ho(r) = ﬁzg + 5(60). G.1)
for Hy(t) € [g(m), 00), where, for (B) € (—1, 1),
2(B)
arctanh ( m cos 00) sinf
g(0o) := 2B+ (B) , &(0) = —m, (3.2a,b)

taking the appropriate limits and branches where required. As Hy(?) is effectively a
constant of motion over the intermediate time scale 7, (3.1) demonstrates that solutions
to (2.7) are closed orbits in zo—6y phase space over this time scale, with 8y appropriately
understood to be taken modulo 2.

We illustrate this phase space in figure 2, equivalent to the plot of Zottl & Stark (2013,
figure 2b). In particular, it is helpful to emphasise the two distinct behavioural regimes
on this time scale: (1) endless tumbling, where the swimmer does not cross zo = 0
and 6y varies monotonically; and (2) periodic swinging, where the swimmer repeatedly
crosses the midline of the flow and 6y oscillates between two values, 6y € [0in, Omaxls
readily computed from (3.1). The separating trajectory passes through (zp, 6p) = (0, 0)
and corresponds to Hy = g(0). Here, Hy > g(0) corresponds to tumbling, shaded grey in
figure 2, and Hy < g(0) corresponds to swinging. Of note, the period of these dynamics
over the intermediate time scale, which we denote by P, depends non-trivially on H.

We can identify these dynamics with those reported both numerically and
experimentally by Omori et al. (2022). In particular, as Hy(#) approaches its minimum
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of g(m), the trajectory in the phase space approaches a single point, (zg, 6p) = (0, 1),
corresponding to a swimmer that is directed upstream on the midline of the flow. This
is precisely the so-called rheotactic behaviour observed by Omori et al. (2022), which
they noted as the long-time behaviour of (1.1) for particular definitions of u(7T) and B(T),
corresponding also to the experimentally determined behaviours of Chlamydomonas in
channel flow. This agreement suggests that the long-time dynamics of the full system may
be captured by the evolution of the Hamiltonian-like quantity Hy (7).

In order to examine this evolution, we consider the dynamics of the following
Hamiltonian-like expression:

H(p) = ﬁzz +5(6). (3.3)

Taking the proper time derivative of (3.3) and inserting (2.1) yields

— =yw '“zsinb - .
(u) 1 — (B) cos 26

” (3.4

Transforming the time derivative following (2.2), we then insert our expansions of z and 0
into (3.4), noting that H is equal to Hy at leading order. Expanding H ~ Ho + ™~ '/?H; +
o 'H, + - - -, the balance at O(w) is simply Hor = 0, so we deduce that Hy = Hy(z, 1),
as expected. At O(w'/?), we have

u(T) 1 —B(T)cos 200:| ‘ 35)

Hiyr + Hyr = sin 6
17 Hor = 70 O[w) 1 — (B) cos 260

Averaging over the fast time scale 7, equivalent to applying the Fredholm solvability
condition, we immediately see that the term in square brackets vanishes, so that Hy; = 0
and Hy = Hy(?) is also independent of 7, as expected.

Finally, we consider the O(1) terms in (3.4), which may be stated as

Hor + Hi: + Hoe = (T, 7, 1), (3.6)

where

hT, 7, t) (2001 + 21 sin 6o) w(T) 1 —B(T)cos26)
, T, 1) 1= sin _
y{zobr 21 0 ) T~ (B) cos 260

2y 20601 sin O sin 26,

(1 — (B) cos 26p)?

[B(T) — (B)], (3.7
and we note that the expressions in the square brackets each average to zero over a period
in T Inserting our expressions for z; and 6; from (2.9), we have

w(T) 1 —=B(T)cos 290:|
(u) 1 — (B) cos 26y

h(T,t,t) = y(sin2 0o 1,(T) — yz(z) cos 0y cos 200 Ig(T)) [

y223 sin 6 sin 26, cos 26,
(1 — (B) cos 26)?

Ig(T)(B(T) — (B)) + [ 1], (3.8)

with [ - ] encompassing terms that have zero fast-time-scale average, which here are those

involving z; and 0;. It is also helpful to note that 2I5(T)(B(T) — (B)) = (IBZ)T, so that
(Ig(B — (B))) = 0 by the periodicity of Ip. Hence, the entire second line of (3.8) will
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vanish when averaged over a period in 7. Averaging over 7" and noting the further relations
(IgB) = (I(B)), (l,u) = (I,(u)), and

(Lulp)T = L(T)(B(T) — (B)) + Ip(T)(u(T) — (u)), (3.9)

the fast-time-scale average of / is simply

sin? )

Y 2
hy =y cos 200 | 2= cosfp + — > 20
(h) =y cos O((u)ZOCOS 0t T (B) cos 260

) (I.(B — (B))), (3.10)
—_———

w

where W := (I,,(B — (B))) is constant.

Thus, averaging (3.6) over a period in 7" and then over a period in 7 (here, noting that
H)y is independent of T, we can naively average over a single oscillation in t, despite the ¢
dependence of P, which would otherwise require the method of Kuzmak (1959)) yields
the long-time evolution equation

dHy
S = v HOW, (3.11)
t
where
F(Ho) I/PI 260 (X2 cosp + S0 d (3.12)
= — cos ~_74cos — — | dr, )
° Pz Jo 0 (M)ZO 0 1 — (B) cos 26,

recalling that P, denotes the period of the oscillatory dynamics in T and Hy is independent
of 7 and 7. Notably, the integrand of (3.12) depends on the swimmer’s speed and
shape only via their fast-time averages (u) and (B). Therefore, all of the information
encoding the dynamic variation of u# and B about their mean is solely contained within
the swimmer-dependent constant W. Of particular note, if either u or B is constant, then
W = 0 and, hence, dHy/dt = 0, so that there is no long-time drift of Hp. This analytically
verifies the numerical observations of Omori et al. (2022), who concluded that oscillations
in both swimmer speed and shape were required to modify long-time behaviour.

Having reduced the dynamics to the one-dimensional autonomous dynamical system of
(3.11), notably independent of w, it remains to understand f (Hy), the average of a particular
function of zp and 6y over a period in t, which we illustrate in figure 3. In the Appendix,
we analytically demonstrate that f(Hp) < O for all Hy, in agreement with figure 3. Hence,
the sign of (3.11) is determined by W, which depends only on the dynamics of u and B
over a single oscillation. Strictly, there is a higher-order problem to be solved close to
Hy = g(0), evidenced by the cusp-like profile in figure 3, with P; — oo and f(Hp) — 0
as Hyp — g(0). However, noting that f(Hp) < O either side of Hyp = g(0), this point is
half-stable in the context of (3.11) (Strogatz 2018), so that it is unstable in practice and
does not materially impact on the evolving dynamics.

Thus, the fixed point at Hy = g(m), corresponding to the rheotactic configuration
(zo, o) = (0, ), is globally stable if W > 0 and unstable if W < 0. Hence, rheotaxis is
the globally emergent behaviour at leading order if W > 0, whilst endless tumbling arises
if W <O.

4. Summary and conclusions

Our analysis allows us to characterise the long-time behaviour of a swimmer in Poiseuille
flow via the computation of a simple quantity, W, defined in (3.10) and dependent only
on the dynamics of the speed u and the shape parameter B of the swimmer over a
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g(m) 0 g(0)

Figure 3. Exemplifying f(Hp). We plot an example f(Hp), as defined in (3.12) and computed numerically, for
a range of Hy. The non-positivity of f(Hp) is immediately evident, with f — 0 from below as Hy — g(m) or
Hp — g(0). As noted in the main text, f is undefined at Hy = g(0), which we indicate with a hollow circle, but
this point is readily seen to be half-stable in the context of the dynamical system of (3.11), so has negligible
impact on the dynamics in practice. Here, we have fixed y = 1, (4) = 1 and (B) = 0.5. The shaded region
corresponds to tumbling dynamics.

single oscillation. In particular, we find that the long-time behaviours take one of three
possible forms, given in terms of the leading-order Hamiltonian-like quantity Hp of (3.1):
(1) endless tumbling at increasing distance from the midline of the flow (Hy — 00);
(2) preserved initial behaviour of the swimmer (Hy = Hy(0)); or (3) convergence to
upstream rheotaxis, where the swimmer is situated at the midline of the flow (Hy — g(m)).
We find that the drift towards these long-time regimes is caused by the delicate
higher-order interactions in the system. Specifically, the nonlinear interaction between
the small O(w~!/?) variations from the leading-order system over the fast time scale
t=0h gives rise to the significant O(1) effect over the slow time scale t = O(1).

In the context of Omori et al. (2022), where u(T) =o + Bsin(2nT) and
B(T) = 6§ + pusin(2nT + 1), we note that in-phase oscillations with A € {nm | n € Z}
immediately lead to W = 0, corresponding to case (2) above. Any other values of A lead
to W # 0 (with maximal magnitude for A € {rt/2 4+ n7 | n € Z}) and long-term evolution
of the swimmer behaviour. Notably, shifting A4 by w results in a precise reversal of the
sign of W and a corresponding reversal of the sign of dH(/dr. Hence, this shift in phase
will precisely flip the fate of the swimmer, with rheotaxis being replaced by tumbling, or
vice versa. Concretely, if fu > 0, then 4 € (0, ) results in tumbling, whilst 4 € (7, 27)
gives rise to rheotaxis. Further, our analysis predicts that swimmers having either u or
B constant will not undergo a similar drift over + = O(1) at leading order. In particular,
this highlights that rigid externally driven swimmers and Janus particles, associated with
constant B, would differ fundamentally in their long-time behaviour from shape-changing
swimmers with dynamically varying B.

In support of our asymptotic analysis, we present three numerical examples in figure 4,
approximating f(Hp) with quadrature using the easily obtained numerical solution of the
simple ODE system of (2.7) in t for fixed Hy(?). In figure 4(a), we compare the asymptotic
and full numerical solutions through the evolution of H, adopting the sinusoidal model of
Omori et al. (2022) and demonstrating excellent agreement between the solutions. This
numerical validation spans the distinct dynamical regimes of tumbling and swinging, with
different values of the phase shift A giving rise to distinct behaviours from otherwise
identical initial conditions. Figure 4(b) captures a transition between behaviours, as
observed by Omori et al. (2022) for A = 67/5, where we have predicted the bounds of
z oscillations by combining the solution of (3.11) with (3.1) evaluated at 6y = 6,,;, and
6o = 1. We anticipate that similar calculations may be used to predict collisions between
swimmers and channel boundaries in related experimental set-ups, though theoretical
consideration of boundary effects in future work is warranted and may complicate analysis.
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05l [Ty a=6w/s 1
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t t

Figure 4. Numerical validation. (a¢) The value of H, as computed from the full numerical solution of
(2.1) and the approximation of (3.11), shown as blue and black curves, respectively, for three phase shifts
A € {4n/5, m, 67/5}. Small, rapid oscillations in the full numerical solution are visible in the inset. (b) The
asymptotically predicted bounds of z oscillations for A = 67/5 are shown as black curves, with the rapidly
oscillating full solution shown in blue, highlighting excellent agreement even when the full solution transitions
from tumbling dynamics towards rheotactic behaviour. Here, we have taken («, 8, 8, u) = (1, 0.5, 0.32, 0.3)
and A € {47w/5, , 67t/5} in the sinusoidal model of Omori et al. (2022), fixing ¥y = 1, o = 50 and (z,0) =
(1, m/4) initially. The shaded regions correspond to tumbling dynamics.

A promising direction for such an exploration is the augmentation of the model of Zottl
& Stark (2012) with the effects of an oscillatory swimming speed and swimmer shape,
equivalent to extending the studied model of Omori ef al. (2022) to a confined geometry.

More generally, the study of long-time swimmer dynamics in other scenarios, such
as extensional flows, merits further investigation via multiple-scale analysis, with the
behaviours of microswimmers in flow having been the subject of extensive research
interest since the early twentieth century, as summarised by Bretherton & Rothschild
(1961). Recent examples of this include, but are not limited to, the works of Marcos et al.
(2012), Miki & Clapham (2013) and Uspal et al. (2015), which consider the rheotaxis of
bacteria, spermatozoa and active particles, respectively. The study of microswimmers in
flow has also recently been considered in the context of theoretical control and guidance
(Walker et al. 2018; Moreau & Ishimoto 2021; Moreau ef al. 2021), further motivating the
development of our understanding of the potentially subtle interactions between swimmer
shape, swimming speed and background flows.

In summary, an asymptotic (three-time-scale) multiple-scale analysis of the swimming
model of Omori ef al. (2022) has revealed a trichotomy of startlingly simple long-time
behaviours, determined only by a single swimmer-specific constant of motion that may be
readily computed a priori. This analysis, which complements the earlier works of Zottl &
Stark (2012, 2014) and Junot et al. (2019), confirms the numerical predictions of Omori
et al. (2022), in agreement with their experimental observations of Chlamydomonas,
and formally identifies the interacting oscillatory effects needed to elicit the eventual
behaviours of endless tumbling and upstream rheotaxis in this model of swimming.
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Appendix. Deducing the sign of f(Ho)

Consider the integrand of (3.12). Recalling the evolution equations of zy and 6y on the
intermediate time scale, given in (2.7), this can be written as

cos 26y
(u)(1 — (B) cos 26p)

(zosinBp). (A1)

Integrating by parts then yields

2z0 sin 6 sin 26y B0, dt — / < 270 sin O sin 26, by,  (A2)
u

Pr
P‘L’f(HO) = '/(; <l/l>(] . (B) cos 290)2 )(] - (B) COS 29())2

with boundary terms vanishing due to periodicity. With reference to the phase diagram of
figure 2, we note that we need only integrate in 6y from its minimum attained value up
to m, with both the integrand and the phase-space trajectory being symmetric about both
0o = m and z9 = 0. This corresponds to integrating over the branch of the trajectory in
the upper-left quadrant of figure 2, with the true value of P f(Hp) then being recovered
by appropriate multiplication by 2 or 4, depending on whether the trajectory is one of
tumbling or swinging. Hence, we consider the integral only over the range 6y € [6in, 71,
where 6,,;, € [0, 1] is the minimum value attained by 6y over an orbit, as specified solely
by Hy(?).

In the upper-left quadrant of the phase plane, zg is a non-negative increasing function of
6o, evident from (2.7a) and (3.1). In particular, zo(6p + 1 /2) > zo(7t/2) for 6y € [0, 7t/2].
Further, the remaining combination of trigonometric terms in the integrand, denoted by
1(0) for brevity, satisfies 1(6g) > 0 and 1(6g + 7t/2) = —I1(0y) for Oy € [0, t/2]. Hence,
the integral is trivially negative for 6,,;, € [7/2, =], whilst for 8,,;, € [0, /2] we have

T

i /2
/ 20(60)1(60) dbp = / 20(60)1(6p) dbp + / 2(60)1(6p) dby

Omin gmin T[/2

/2 /2
< / 20(7/2)I(6) d + f 2000 + 1/2)1(6 + 1/2) by
0 0

/2
= /0 [z0(7t/2) — z0(6p + 1/2)11(6p) dbp < 0. (A3)

Hence, P.f(Hp) < 0, so that f(Hy) < 0 for all Hy. In particular, this equality is strict
unless Hy = g(m) or Hy = g(0), which correspond to the degenerate rheotactic trajectory
(zo, 6p) = (0, ) and the separating trajectory that lies between tumbling and swinging
behaviours in figure 2. As discussed in the main text, the case with Hy = g(0) requires the
consideration of a higher-order problem, though has negligible impact on the dynamics in
practice.
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