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Abstract 12 

A higher order finite element method with 8-node element is adopted to analyse the 13 

nonlinear wave resonance generated by oscillations of twin cylinders in a uniform current. 14 

The velocity potential in the fluid domain at each time step is obtained based on the finite 15 

element method through an iteration procedure. Numerical results are provided for twin 16 

rectangular cylinders undergoing specified oscillations in a uniform current at resonant 17 

frequencies. The effects of current on the wave and hydrodynamic force at the resonant 18 

frequencies are studied in detail and it is found that the resonance happens at all first-order 19 

resonant frequencies for both symmetric and antisymmetric motions of the cylinders. In 20 

particular, in addition to the first-order resonant frequency, the maximum wave elevation and 21 

horizontal force at resonance always regularly increase or decrease as the increase of the 22 

absolute value of Froude number or the spacing between two cylinders within the range of 23 

larger spacings. A similar trend can be also observed in the oscillational frequency of 24 

cylinders at resonance. Some results are also compared with those by linear solution and its 25 

superposition with the second-order, their difference at different Froude numbers are also 26 

discussed.  27 

 28 
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1. INTRODUCTION 30 

Wave resonance is an interesting phenomenon in the field of hydrodynamics and it has 31 

important application in ocean engineering. The resonance happens when the wave frequency 32 

is equal to or even near the natural frequency of an ocean structure such as oil platforms. 33 

Correspondingly, large wave elevation and hydrodynamic forces are expected at resonance. A 34 

traditional approach to study wave resonance is through the perturbation method and quite a 35 

lot of works can be found in literature. For examples, Second-order resonances of sloshing 36 

waves in two-dimensional (2-D) and three dimensional (3-D) containers were analytically 37 

studied by Wu [1] and Zhang et al. [2], respectively. The linear and second-order resonances 38 

at nearly trapped modes were investigated by Maniar and Newman [3], Evans and Porter [4], 39 

Chen and Lee [5], Malenica et al. [6], Wang and Wu [7] and Kagemoto et al. [8]. Furthermore, 40 

recent attempts on two structures of side-by-side configuration can be found in Sun et al. [9], 41 

Watai et al. [10] and Zhao et al. [11]. 42 

Another approach to analyse wave-structure interaction is through the velocity potential 43 

theory with fully nonlinear boundary conditions. Wang and Wu [12] did research on wave 44 

resonance induced by two 2-D cylinders through the finite element method and it was found 45 

that wave elevations and hydrodynamic forces trend to be infinity when the perturbation 46 

method is applied, which is not in line with the actual situation. Inspired by this, the similar 47 

problem was further considered by Wang et al. [13] through the fully nonlinear numerical 48 

model. They found that both the wave elevation and hydrodynamic forces on the structures 49 

are much smaller than those obtained through the second-order theory. The amplitude of wave 50 

and force finally reach a constant value rather than become infinity when the time is 51 

sufficiently long. Later, Wang et al. [14] extended the work to the situation of multiple 2-D 52 

cylinders in vertical motions, while Li and Zhang [15] employed the boundary element method 53 

to study a similar problem that wave resonance generated by two 2-D barges in vertical 54 

motions. In addition to 2-D structures, typical study on wave resonance generated by 3-D 55 

floating bodies can be found in Sen [16] by a mixed Eulerian–Lagrangian panel method. The 56 

works mentioned above are all about wave resonance induced by the motion of floating 57 

structures. Besides, the resonance phenomena can be also observed in the problem of wave 58 
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diffraction. For example, Bai et al. [17] simulated multiple cylinders diffracted by waves at 59 

nearly trapped frequencies. Ning et al. [18] and Feng and Bai [19] considered diffracted wave 60 

resonated by 2-D and 3-D multiple bodies in narrow gap respectively. In real engineering, the 61 

effects of viscosity may also be important to the wave resonance phenomenon. The main 62 

shortcoming of the viscous model is that it requires many computer resources. Wang et al. [20] 63 

studied wave resonance between two elongated parallel boxes with a narrow gap through 64 

experiment and viscous flow theory. Zhao et al. [21] also did experimental work on wave 65 

resonance within a narrow gap. Lu and Chen [22] added a dissipation coefficient to free 66 

surface boundary condition based on the potential theory and good results were achieved 67 

when compared with the experimental data. However, how to choose the dissipation 68 

coefficient depends on the experiment result and the numerical solution based on the viscous 69 

flow theory. Other typical works with considering vicious effects can be found in Lu et al. [23], 70 

Chua et al. [24] and Jiang et al. [25].  71 

 The aforementioned studies don’t involve the current effect. It is well known that the 72 

wave frequency and amplitude will be affected by the presence of current. The effect is more 73 

obvious when the current speed is larger. Correspondingly, the waves and loads on ocean 74 

structures will be some or even significantly different from those without current, which will 75 

have important influence on the design of the ocean structures. Extensive works on 76 

wave-current-body interactions may be found in [26-31]. However, to the best of our 77 

knowledge, very little work is done for wave resonance with considering current effect. 78 

Fredriksen et al. [32] studied piston type resonance in a moonpool of two rectangular cylinders 79 

in vertical motions with a small gap at a low forward speed. In their work, both the 80 

experimental tests and numerical simulations are made to investigate resonant behaviour. 81 

Recently, Huang and Wang [33] studied two rectangular cylinders undergoing vertical and 82 

horizontal motions at resonant frequencies based on the second-order theory in the time 83 

domain. They found that the maximum wave elevation and hydrodynamic force generally 84 

decrease as the increases of Froude number and the nonlinearities become weaker. In addition, 85 

the resonant frequencies in both vertical and horizontal motions generally and slowly increase 86 

as the spacing between cylinders increases. Yang and Wang [34] also investigated the 87 

second-order wave diffraction by four vertical cylinders at near-trapping frequencies and 88 
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found that the current effect on the wave and force is very clear, especially for the 89 

second-order components. 90 

 In this paper, we consider the problem of wave resonance by vertical and horizontal 91 

motions of two rectangular cylinders in a steady current. Compared with the investigation 92 

through the perturbation procedure in Huang and Wang [33], a fully nonlinear potential flow 93 

model is employed and more detailed analyses in physics are made for the current effect. 94 

Although the fully nonlinear potential theory usually overpredicts results about wave and 95 

hydrodynamic force when compared with the experiment data or the simulation based on the 96 

viscous flow theory. However, it can still provide meaningful results in describing the behaviour 97 

of wave and hydrodynamic force to show the relation between the wave or force peak and the 98 

current speed, the oscillational frequency, the oscillational amplitude and the gap between 99 

structures. The influence of current on the magnitude of the oscillational frequency at 100 

resonance, as well as on the value and nonlinearities of wave & hydrodynamic force are 101 

further discussed. Besides, a comparison is made for the similarities and differences between 102 

parts of the present nonlinear results and the second-order solutions. The present study may 103 

provide useful results about wave-current loads on multi-hulled ships and two approaching 104 

offshore structures in wave-current environment. 105 

 The paper is organized as follows. The mathematical model of the problem is presented in 106 

Section 2. The finite element method applied to discretize the governing equation is introduced in 107 

Section. 3. The numerical results are given in Section 4. In particular, the wave resonances 108 

induced by vertical oscillations are discussed in Section 4.1, while those by horizontal oscillations 109 

are analysed in Section 4.2. 110 

 111 

112 
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2. MATHMATICAL FORMULATION 113 

 114 

Fig. 1.  Coordinate system. 115 

Wave radiation by twin cylinders in forced motions is considered here. A right-handed 116 

Cartesian coordinate system o-xy is defined in Fig. 1, in which x is on the still water level and 117 

y points upward and is perpendicular to the x-axis. The surface of each cylinder is denoted as 118 

Sb, on which the unit normal vector of any point is ),( yx nnn 


and it directs inward to the 119 

cylinder. Both cylinders are located at )0,( ,kcx  (k=1, 2), respectively, when they are at rest in 120 

the calm water. The left and right cylinders are called as cylinders 1 and 2 respectively. The 121 

water bottom Sbot is a plane at y=-h. As convenience for simulations, the fluid domain is 122 

truncated at an artificial boundary Sc, which is usually three- or four-times linear wavelength 123 

distance from the nearest cylinder. We denote t as time and   as wave elevation on free 124 

surface fS . In the fluid domain  , the fluid is perfect, and its motion is irrotational. A 125 

velocity potential   which satisfies the Laplace equation is introduced to describe the fluid 126 

motion  127 

   in                                  02 .          (1) 128 

   For flow problems with a uniform current with speed U0 along the x-axis, the total 129 

velocity potential in the fluid domain is expressed as 130 

 xU0 ,              (2) 131 

where   is also governed by the Laplace equation. The boundary conditions should be 132 

imposed on all boundaries for solving the boundary value problem to obtain the potential. The 133 
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potential   is used in the simulation and its kinematic and dynamic conditions on the free 134 

surface Sf  can be written as 135 
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respectively, where g denotes the gravity acceleration and 



 

tDt

D
is the material 138 

derivative.   139 

To satisfy the radiation condition, an artificial damping zone is placed near the truncated 140 

boundary Sc to absorb the incoming wave and minimize the reflection. This is achieved 141 

through adding a damping term in Eqs. (3) and (4), or  142 
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where )(x denotes the artificially viscous coefficient and its expression in detail may be 145 

found in Wang et al. [13]. 146 

 147 

The impermeable condition on the cylinder surface can be expressed as 148 

bx SrnnU
n

on                )v(0







,       (7) 149 

where v


 is the translational velocity of cylinder 1 or 2 at )2,1(,  kxx kc  and 0y , 150 




 is the angular velocity around the axis zk which passes through )0,( ,kcx  and is 151 

perpendicular to the xoy plane. ),( , yxxr kc


 is the location vector. 152 

On the bottom of the water, the velocity potential   satisfies 153 

botS
n
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.       (8) 154 
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The initial conditions including the position of the free surface and the potential on it are 155 

given as   156 
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 158 

The velocity potential in the fluid domain is obtained through solving Eqs. (1), (5) ~ (9). The 159 

pressure on the cylinder surface is calculated by using the Bernoulli equation 160 
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where   denotes the fluid density. The hydrodynamic force and moment acting on the 162 

cylinder can be obtained by a direct integration of the pressure over the instantaneous wetted 163 

cylinder surface 164 


bS

jj dsnpF
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.                       (11) 165 

In above equation, ),,,(),,( 321 xyyxzyxj nrnrnnnnnnn 


 is the normal vector of any 166 

point on the surface of cylinder, where (rx, ry) is the location vector. In Eq. (11), a problem is 167 

how to calculate the integral of t or t  over the wetted body surface. Here, we choose 168 

to follow the procedure proposed in Wu [35] and Wu and Eatock Taylor [36]. Through 169 

introducing a term related to the uniform current in Eq. (2), this approach is now extended to 170 

forward speed problems or problems with current effects. In particular, the term t  satisfies 171 

the Laplace equation in the fluid domain as 172 

02  t .                      (12) 173 

On the free surface, t  is obtained through  174 
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On the stationary boundary, t satisfies 176 
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and on the nonstationary boundary, it is  178 



 8 

]})v[({.v)v( 0 
















Ur

nn
nr

n

t
 ,   (15)      179 

where the dot over v


 and 


 means the derivative with respect to time. Thus, the time 180 

derivative t  can be obtained through solving Eqs. (12) ~ (15). 181 

 182 

3. FINITE ELEMENT DISCRITAZATION AND NUMERICAL PROCEDURES 183 

In the present simulations, we employed a finite element method with 8-node quadrilateral 184 

isoparametric element (see Fig. 2) to calculate the velocity potential at each time step. The 185 

shape functions defined in a local coordinate system ),(  


 corresponding to element e 186 

with eight nodes may be expressed as  187 
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The Evaluation of first and second order derivatives of potential with respect to coordinates 189 

such as x , y , 
22 x  , yx 2  and 

22 y  , which are required in Eqs. 190 

(5), (6), (10) and (15) can be obtained through differentiating the shape functions or Eq. (16) 191 

directly. The Detailed finite element discretization and calculation of derivatives can be found 192 

in Wang et al. [13]. The element coefficient matrices can be calculated in every quadrilateral 193 

element, and they are then assembled into a global coefficient matrix M. Meanwhile, the 194 

right-hand side vector F with considering the normal velocity on the boundary can also be 195 

calculated. Thus, a system of linear equations by finite element method can be established as 196 

  FMΦ  ,               (17) 197 

where 
T

n],,,[ 21  Φ is the velocity potential vector containing potentials 198 

),,2,1( nii   and n is the total number of nodes in the discretized fluid domain. Eq. (17) 199 

can be solved through the conjugate gradient method with a symmetric successive 200 

overrelaxation (SSOR) preconditioner.  201 
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 202 

Fig. 2.  8-node quadrilateral isoparametric element. 203 

   On the free surface, nodes (xi, yi) (i=1,2,..,n) and their potential   at the next time step 204 

are calculated through Eqs. (5) ~ (6), which is numerically implemented based on the 205 

fourth-order Runge-Kutta method. It should be noticed that the intersection points between 206 

the free surface and the cylinder surface should be handled because very small gap exists 207 

between them in the simulation and the closest nodes to the cylinder surface should be taken back 208 

to stay on the cylinder surface at each time step. Furthermore, the nodes (xi, yi) (i=1,2,..,n) 209 

should be redistributed every several time steps to avoid clustering or stretching, and the 210 

redistribution will be performed more frequently due to the existence of the current speed than that 211 

without current. In addition, a remeshing method based on the B-spline function [37] is applied 212 

for smoothing the free surface during the simulation.  213 

 214 

4. NUMERICAL RESULTS  215 

We consider twin rectangular cylinders in vertical or horizontal oscillations. Wang et al. 216 

[13] made simulations of fully nonlinear wave motions between twin rectangular, 217 

wedged-shaped and elliptical cylinders in specified oscillations without current. They found 218 

that the resonance is much more serious in the rectangular cylinder than those for the 219 

wedge-shaped and elliptical cylinders. Thus, we investigate two rectangular cylinders in 220 

forced oscillations only in the present paper. Besides, the effect of a uniform current is further 221 

considered. The width of each cylinder is 2b and the initial draught is d=b/2 at still water 222 

plane. The still water depth h=10d. The spacing between the centre lines of the two 223 

cylinders is denoted by lc. Cylinders 1 and 2 are initially located at xc,1=-lc/2 and xc,2=lc/2, 224 
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respectively.  225 

The cylinders are subject to following oscillation in vertical or horizontal direction 226 

  tA  sin ,              (18) 227 

where A is the oscillational amplitude and ω is the oscillational frequency. A 228 

modulation function is applied in Eq. (7) [12] to ensure the wave developing gradually 229 

and smoothly. The current speed U0 is nondimensionalized as the Froude number and it is 230 

defined as gbUFn /0 . As discussed in Wang and Wu [12] based on the second-order 231 

theory, the real resonant frequency is  232 

),2,1(  iC iii               (19) 233 

for cases without current, where Ci is a constant and can be obtained by numerical tests. i  234 

is defined as 235 

,...)2,1(, 


 ig
bl

i

c

i


 ,            (20) 236 

and it is the resonant or natural frequency of a sloshing container with (lc-b) in width and 237 

great depth of water. It should be noted that the resonant frequency is equal to the oscillational 238 

frequency predicted by Eq. (19) of both cylinders when resonance happens at Fn=0. However, 239 

they are somewhat different from each other when a current exists. For convenience, the 240 

oscillational frequencies corresponding to the real resonant frequencies ,...)2,1(  ii  are 241 

denoted as ,...)2,1(  ii  here when Fn≠ 0.  242 

 243 

4.1. Wave resonance induced by vertical motions of the cylinder  244 

We first make some simulations at A/d=0.0125 for both cylinders in a completely same 245 

vertical motions at three Froude numbers Fn=0, 0.064 and 0.128. The spacing between two 246 

cylinders is chosen as lc=8b. The situation of a current propagating along the negative 247 

x-direction or Fn<0 is not considered here due to the symmetric properties of the problem. 248 

Besides, the waves between two cylinders are generally much larger than those outside the 249 

cylinders at resonant frequencies [12, 13]. Thus, we may pay more attention to the regions 250 

between two cylinders. For convenient comparison, we may denote the positions of the left 251 
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and right sides of cylinder 1 by pl1 and pr1, while using pl2 and pr2 for cylinder 2. Fig. 3 gives 252 

the nondimensionalized values of maximum wave elevations max  at prl & pl2 versus the 253 

nondimensionalized oscillational frequency 2/ , where 2 is defined in Eq. (20). At Fn=0 254 

(see Fig. 3a), the two curves coincide with each other because of symmetry, and their three 255 

peaks at 2/ =0.505, 1.001 & 1.413 approximately can be observed. Among them, the 256 

maximum wave is at 2/ =1.001, while that at 2/ =0.505 is the smallest and an 257 

enlarged view is given to show. As discussed by Wu [1], Wang and Wu [12] and Wang et al. 258 

[13], for symmetric motions such as vertical oscillations in an identical direction or horizontal 259 

oscillations in opposite directions. The first- and second-order resonances happen at the even 260 

order resonant frequencies ,...)2,1(2 ii  and half of the even order resonant 261 

frequencies ,...)2,1(2/2 ii , respectively. By contrast, when the system undergoes 262 

asymmetric motions such as the horizontal oscillations toward an identical direction, the 263 

first-order resonance happens at ,...)2,1(12  ii , while the second-order resonance is at 264 

,...)2,1(2/2 ii . For the case without the current or Fn=0, only little differences between 265 

the fully nonlinear results and second-order solution are observed. In particular, the 266 

second-order resonance actually happens at 222 /5.0/   ≈0.505, which is very close 267 

to the prediction value 2/ =0.5, while the first-order resonance happens at 268 

222 //   =1.001 and 242 //   =1.413, which is very close to and ω2/ω2=1 269 

and 414.1/ 24   predicted by Eq. (20).  270 

Figs. 3b gives the maximum waves at Fn=0.064. Compared with Fn=0 in Fig. 3a, a distinct 271 

difference is that two peaks appear at 21 / =0.753 and 23 /  =1.217, which are close to 272 

the anti-symmetrical resonance frequencies 21 / =0.707 and 225.1/ 23   predicted 273 

by Eq. (20). The reason why two peaks appear at 21 / =0.753 and 23 /  =1.217 is 274 

probably that the fluid motion becomes asymmetric due to the presence of the current and 275 
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hence the resonances around the odd-order frequencies )2,1(12 
 ii can be observed. 276 

Besides, the nondimensionalized oscillational frequencies 22 /5.0   and 277 

)4,2(  / 2  ii  become slightly smaller and change from 0.505, 1.001 & 1.413 at Fn=0 to 278 

0.502, 0.998 & 1.403 at Fn=0.064, respectively. Another interesting phenomenon can be 279 

noticed is that both the peaks at 22 / =0.998 and 24 / =1.403 in Fig. 3b become 280 

smaller when comparing with the corresponding ones in Fig. 3a, respectively. When the 281 

Froude number continue to increase to 0.128 (see Fig. 3c). It can be seen that the peak at 282 

around 5.0/5.0 22    almost disappears, and even that at 24 /  cannot be graphically 283 

seen. The oscillational frequencies 21 / , 22 /  and 23 /  become more smaller and 284 

they are 0.747, 0.988 & 1.194, respectively. Furthermore, it can be seen that peak at 285 

21 / =0.747 and 23 / =1.193 clearly become larger than those at Fn=0.064. In summary, 286 

all oscillational frequencies )4,3,2,1(  ii  slightly decrease as the increases of Fn. The 287 

peak at )4,2( /  ii   decline and that at )3,1( /1  i  increase as the increase of Fn, 288 

respectively.  289 

Fig. 4 gives a clearer comparison of maximum wave elevation at pr1. The main peaks at 290 

2   are around 39.45, 37.97 and 34.65 at Fn=0, 0.064 and 0.128, respectively, which means 291 

the wave peak at resonance generally decreases as the Froude number increases. Similar 292 

declination is also observed at 4  . However, the situation here is a little different. The peak 293 

at Fn=0.128 is the least obvious but its magnitude is larger than that at Fn=0.064. This is 294 

because the resonance effect at 4   is not as strong as that at 2  . When a current with 295 

larger speed exists, the current effect may dominate the wave-current-structure interactions 296 

and weaken the resonance. In such a case, the waves at the intersection points between the 297 

free surface and the cylinder surface will be mainly evaluated by the current. By contrast, the 298 

peaks around 1   and 3   clearly increases as the increases of the Froude number, which 299 

indicates the current can reduce the resonant effect at 2   and 4   but enhance that at 1   300 
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and 3  . Besides, the phenomenon at 2/2   is similar to that at 4  . Fig. 5 shows the 301 

corresponding maximum horizontal forces Fx,max on both cylinders versus the 302 

nondimensionalized frequency, which is generally similar to the wave depicted in Fig. 4.   303 

 304 

Fig. 3.  Maximum values of waves versus 2/ ; (a) Fn=0; (b) Fn=0.064; (c) Fn=0.128. 305 

 306 

Fig. 4.  Maximum values of waves at pr1 versus 2/ . 307 
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 308 

Fig. 5.  Maximum horizontal forces on (a) cylinder 1 and (b) cylinder 2 versus 2/ . 309 

 310 

Fig. 6 shows convergence tests for mesh and time interval. In the figure,   expresses the 311 

wave elevation. Wang et al. [13] have tested the cases at Fn=0 and hence we give convergence 312 

tests at Fn=0.128 only. The test of waves at pr1 & pl2 is at 22 / =0.988, which is the 313 

position of the main peak. The control surfaces Sc at both ends are located at distance about 314 

four times wavelength away the nearest cylinder. Two meshes and time intervals are used to 315 

test the numerical convergence. The details are given in Table 1, where NF1 is the segment 316 

number along the free surface on the left of cylinder 1 or the right of cylinder 2, NF2 denotes 317 

the segments on the free surface between the two cylinders, ND and NB denote the segments 318 

along the vertical and horizontal faces of each cylinder respectively, NH represents the 319 

segment on the both control surfaces cS  at the far ends, NE and NN are the total numbers of 320 

elements and nodes in the whole fluid domain respectively.  The results for Case 1 and Case 321 

2 are given in Fig. 6. It can be seen that they are in very good agreement over the entire 322 

simulations of two hundred cycles. These tests show that Case 1 with 3904 elements & 323 

12201 nodes and 250/Tt   can provide convergent results in this case.  324 

Table 1. Parameters of mesh schemes 325 

 NF1 NF2 ND NB NH NE NN t  

Case 1 70 42 9 12 20 3904 12201 T/250 

Case 2 100 60 14 18 26 7192 22277 T/500 
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 326 

 327 

Fig. 6.  Comparisons of waves with different meshes and time intervals at Fn=0.128. (a) at pr1; (b) 328 

at pl2. 329 

 330 

Fig. 7 gives wave histories at pr1 and pl2 at the nondimensionalized oscillational 331 

frequencies 22 / . Similar variation trends can be observed in these three waves at both pr1 332 

and pl2. In particular, the amplitude generally increases as the development of most time and 333 

then a gradual decline may appear at the end of simulation time. It has already been shown in 334 

Fig. 4 that the maximum wave within the simulation time of two hundred cycles clearly 335 

decreases as the increase of Fn  at 22 / . The wave histories in this figure show how the 336 

waves develop as the increase of time at the resonant frequencies and the three Froude 337 

numbers, and this is distinctly different from the situation of a single cylinder shown in Fig. 8, 338 

in which the wave runup rises to a bigger value as the increase of Fn at both the left and right 339 

sides. Moreover, the wave runup in Fig. 7 are much larger than those in Fig. 8, in which the 340 

waves runups at Fn=0, 0.064 and 0.128 are about 0.6, 0.88 & 1.83 at the right side and 0.6, 341 

0.97 & 1.89 at the left side, respectively.  342 

A comparison of wave between the fully nonlinear results and the linear plus second order 343 

solutions at 001.1/ 22   and Fn=0 is given in Fig. 9. Detailed simulations of wave 344 

resonance due to oscillations of two rectangular cylinders in a current based on the second 345 

order theory can be found in Huang and Wang [33]. It can be seen from the figure that the 346 
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nonlinear wave is in good agreement with the linear plus second order solution within the first 347 

forty cycles and then they become distinctly discrepant. It should be mentioned that the above 348 

three resonant frequencies are a little different from those obtained by Huang and Wang [33] 349 

and it is because the former is based on the fully nonlinear model and the latter is on the 350 

second order theory. In particular, according to the second order theory [33], the 351 

nondimensionalized oscillational frequencies 22 /  at Fn=0, 0.064 & 0.128 are about 1.01, 352 

1.005 & 0.99, respectively. In the case of Fn=0, the wave histories at pr1 are given in Fig. 10 353 

with 01.1/ 22    and it is shown that the linear and linear plus second-order waves 354 

always increase as the time, but the fully nonlinear wave has a clear envelope oscillating at a 355 

lower frequency and it maximum peak is much smaller than those of linear and linear plus 356 

solution solutions. Thus, the waves exhibit a completely different change at the two 357 

frequencies 001.1/ 22    and 1.01, which are calculated based on the fully nonlinear 358 

model and the second order theory, respectively. Similarity can be found for the waves at 359 

Fn=0.064, which is not given here. Further comparison of wave at pr1 at resonant frequency 360 

988.0/ 22    and at Fn=0.128 is given in Fig. 11. The waves are in good agreement 361 

between the fully nonlinear result and the linear plus second order solution before t/T=25.  362 

Fig. 12 shows the corresponding hydrodynamic forces on cylinder 1 at 
22 / 1.001, 363 

0.998 & 0.988 at Fn=0, 0.064 & 0.128, respectively. The variation of the horizontal force Fx 364 

with the Froude number is similar to that of the wave. It is also noted that all vertical 365 

components Fy at smaller Froude number have more evident double peaks, which corresponds 366 

to stronger nonlinear feature.      367 

Fig. 13 shows histories of waves at pr1 with A/d=0.0125, 0.025 and 0.05. It can be seen 368 

that the difference between the three nondimensionalized waves at each Fn is very clear. 369 

Generally, the wave nonlinearity becomes stronger as the amplitude increases at each Fn. 370 

However, as pointed out by Wang et al. [13] that the waves in smaller oscillational amplitudes 371 

can exhibit clearer resonant behaviour because their nondimensionalized amplitudes are larger. 372 

In other words, the wave resonances in larger oscillational amplitudes are weaker.  373 

Fig.14 depicts the wave profiles from t=196T to 200T with a time interval Δt =0.1T at 374 
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1  and 2   with the aforementioned three Froude numbers. It is known that no resonance 375 

happens at 1   when Fn=0 (see Fig. 14a). We then replace 1   with 1 obtained by Eq. (20) 376 

for comparisons with those at 1   when Fn=0.064 & 0.128. It is seen that the wave between 377 

the two cylinders is much larger than those outside the two cylinders except that in Fig. 14a. 378 

The wave development with time can be also clearly seen and differences between different 379 

Fn can also be observed.  380 

 381 

Fig. 7.  Histories of waves at oscillational frequencies 2  ; (a) at pr1; (b) at pl2. 382 

 383 

Fig. 8.  Histories of waves at (a) the right side and (b) the left side of a single cylinder at 2  .  384 
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 385 

Fig. 9.  A comparison of waves with linear and linear plus second order solutions 386 

at 001.1/ 22    &  Fn=0.  387 

 388 

Fig. 10.  Comparisons of waves with linear and linear plus second order solutions 389 

at 01.1/ 22    & Fn=0.  390 
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 391 

Fig. 11.  Comparisons of waves with linear and linear plus second order solutions 392 

at 988.0/ 22    & Fn=0.128.  393 

 394 

Fig. 12.  Histories of forces on cylinder 1 at 2  .  395 
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 396 

Fig. 13.  Histories of waves at pr1 at 2  ; (a) Fn=0; (b) Fn =0.064; (c) Fn =0.128. 397 

 398 

Fig. 14.  Snapshots of wave profiles at (a), (b) & (c) 1  and (d), (e) & (f) 2   from 399 

t=196T to 200T with time interval Δt =0.1T. 400 

 401 

The work mentioned above is for the spacing between two cylinders lc=8b. In fact, the 402 

resonance behaviour is also affected by the ratio lc/b. We also made simulations at different 403 

lc/b from 5 to 9 besides lc/b=8. We first give the results of maximum waves and forces versus 404 

lc/b at 2   in Fig. 15. It can be seen that both the wave peaks and force peaks at three 405 

different Fn increase as lc/b. Besides, for a given lc/b, the maximum waves and forces also 406 

increase with Fn. Similar analyses are also conducted for the results at 1   and 3  , which 407 
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are depicted in Fig. 16. It should be noted that only the situations at Fn=0.064 & 0.128 are 408 

provided due to no resonance or no peak at Fn=0. It is clearly shown that both maximum 409 

waves and forces at every lc/b become larger when Fn increase from 0.064 to 0.128. However, 410 

for a given Fn, the maximum waves and forces at 1   and 3   do not just show a increase 411 

trends as those at 2  .  412 

The nondimensionalized frequencies  /1
 ,  /2

 ,  /3
 and  /h2

  versus the 413 

spacing lc/b is given in Fig. 17, in which h2  is the oscillational frequency at the second order 414 

resonance and it is approximately half of 2   in the case of lc/b=8. It can be seen that all 415 

resonant frequencies generally become smaller as Fn increases at every lc/b. 21 /  almost 416 

linearly increases as Fn increases. However, both 2h2 /  and 23 /   rise quickly in the 417 

beginning and then have a slight change as the increase of lc/b. The situation at 22 /  is 418 

similar to the linear solutions presented in Huang and Wang [33]. It is also noticed that 419 

2/2h2    at larger lc/b. However, the discrepancy between h2   and 2/2   is more 420 

evident at smaller lc/b. For example, as shown in Fig. 18, h2   at all three Fn are around 0.41 421 

at lc/b=5, which is quite different from the corresponding value of 2/2  . This is probably due 422 

to the evident effects of narrower spacings on the lower frequency waves when resonance 423 

happens. 424 

 425 
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Fig. 15.  Maximum waves and horizontal forces versus Lcy/b at 2  ;  (a) waves at the right side 426 

of cylinder 1; (b) horizontal forces on cylinder 1. 427 

 428 

Fig. 16.  Maximum waves and horizontal forces versus lc/b; (a) waves at pr1 at 1  ; (b) 429 

horizontal forces on cylinder 1 at 1  ; (c) waves at pr1 at 3  ; (d) horizontal forces on cylinder 1 430 

at 3  . 431 

 432 

Fig. 17.  Resonant frequencies versus lc/b. 433 
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 434 

Fig. 18.  Maximum values of waves at pr1 versus 2/  at lc/b=5. 435 

Fig. 19 gives the waves versus 2/  at A/d=0.0125 and 0.05 to show the nonlinearity at 436 

different resonant frequencies. The maximum wave elevations clearly decline as the increase of Fn 437 

at 21 / , 23 /   and 22 / , which is in agreement with the results given in Fig. 13. 438 

Furthermore, it is seen that each value of 21 / , 22 / or 23 /   generally becomes a little 439 

smaller with the increase of Fn, and a comparison of values of oscillational frequencies 440 

)3,2,1( / 2  ii   at A/d=0.0125 and 0.05 in detail is given in Table 2. All these indicate that 441 

stronger nonlinearity and weaker resonant characteristic for waves in larger amplitudes. Similar 442 

phenomenon can be also observed in the hydrodynamic forces on cylinder 1 given in Fig. 20. 443 

It is known that the fully nonlinear results obtained by the velocity potential theory may 444 

overpredict the results than those by experiments or simulation based on viscous flow theory. Thus, 445 

it may cause dispute that whether the velocity potential theory is suitable for simulations of wave 446 

resonance or not. As mentioned in Isaacson and Cheung [38], if the Keulegan-Carpenter number K 447 

is less than 3, the flow separation effect is relatively localized and need not be considered, the 448 

potential theory is still valid. The Keulegan-Carpenter number K is defined as  449 

DAK e /               (21) 450 

whre D is the characteristic diameter of body and Ae the excursion amplitude of fluid particle. In 451 

our simulation, D=2b=2m is the width of each cylinder, Ae should be less than the maximum peaks. 452 
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Two maximum nondimensional peaks A/max  in Fig.19 are at Fn=0 and 2   and they are 453 

around 39.5 at A/d=0.0125 and 17.9 at A/d=0.05 (see Fig. 19a), and we replace Ae with max  and 454 

substitute them into Eq. (21) and obtain their Keulegan-Carpenter number K are 0.77 and 1.41, 455 

respectively, which are both less than 3. Hence, the aforementioned simulations are valid. 456 

 457 

Fig. 19.  Comparisons of maximum values of waves at pr1 versus 2/ at A/d=0.0125 & 458 

0.05; (a) Fn=0; (b) Fn=0.064; (c) Fn=0.128.  459 

Table 2  The best approximations for )3,2,1( / 2  iC ii   460 

 A/d 
21 /  22 /  23 /   

Fn=0 0.0125 – 1.001 – 

0.05 – 0.990 – 

Fn=0.064 0.0125 0.7530 0.998 1.217 

0.05 0.753 0.990 1.212 

Fn=0.128 0.0125 0.747  0.988 1.193 

0.05 0.743 0.984 1.193 

 461 
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 462 

Fig. 20.  Maximum horizontal forces on (a) cylinder 1 versus 2/ at A/d=0.0125 & 0.05; (a) 463 

Fn=0; (b) Fn=0.064; (c) Fn=0.128. 464 

 465 

4.2. Wave resonance induced by horizontal motions of the cylinder  466 

In addition to wave resonance induced by vertical motions of the cylinder, the resonances 467 

by horizontal motion of two cylinders in an identical direction given in Eq. (18) are also 468 

analysed here. The case at lc/b=8 is first considered. Fig. 21 gives the maximum wave at pr1 469 

and the horizontal force on cylinder 1 versus 1/  at A/d=0.0125 & Fn=0. It is shown that 470 

three peaks for waves or forces can be clearly seen at  )5,3,1( // 11 ii  1.060, 471 

1.705 and 2.230, respectively, which are quite close to )5,3,1( / 1 ii   predicted by Eq. 472 

(20) and they are 1.0, 1.732 and 2.236, respectively. As discussed by Wang and Wu [12], the 473 

first- and second-order resonances should have occur at )2,1(12   ii , and 474 

),2,1(2/2  ii , respectively, for antisymmetric or horizontal motions in an identical 475 

direction. However, for the current fully nonlinear analysis, it is seen that no peak graphically 476 

appears at ),2,1( 2/2  ii .  477 

Fig. 22 made further comparisons of maximum waves at pr1 and forces in the x-direction 478 

at five Froude numbers Fn=-0.128, -0.64, 0, 0.064 and 0.128. It can be seen from Fig. 22a that 479 
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the magnitudes of five main peaks of waves at the oscillational frequencies 1   do not 480 

change too much when the Froude number increases or decreases，However, the peaks at 3   481 

and 5   clearly decrease as the absolute value of Fn increases. As pointed out by Wang and 482 

Wu [12], Wang et al. [14], Huang and Wang [33]，no resonance happen at ),2,1(2  ii  483 

for horizontal motions in an identical direction when Fn=0. However, it is interesting to see 484 

that four bigger peaks at 2   and four smaller peaks at 4   appear when Fn≠0 and 22 /  485 

& 24 /  are approximately 1.396, 1.415, 1.415 & 1.398, as well as 1.94, 1.98, 1.98 & 1.93 486 

for Fn=-0.128, -0.064, 0.064 & 0.128, respectively. It can be seen that the peak at 2   also 487 

increases as the increase of the absolute value of Fn and that at 4   increases as the increase 488 

of Fn. Similarity can be also for the forces in Fig. 22b. 489 

Fig. 23 gives the waves versus 1/  at A/d=0.0125 and 0.05 to exhibit the 490 

nonlinearities of waves and forces at different resonant frequencies. Just like the situations of 491 

vertical oscillations, the maximum nondimensionalized waves decreases as the increase of Fn 492 

at )5,,2,1(/ 1  ii  and each 1/i
  at A/d=0.05 are generally smaller than those at 493 

A/d=0.0125. The corresponding hydrodynamic forces on cylinder 1 are given in Fig. 24 and 494 

similarity can be found. 495 

Similar to the analyses about Keulegan-Carpenter number in Fig. 19, the maximum wave 496 

peak 
max is about 37.7A at 1  , A/d=0.05 and Fn=-0.128 in Fig. 23, and its corresponding 497 

Keulegan-Carpenter number is 2.96, which is also less than 3. Hence, the simulations of the 498 

horizontal motions are also valid. 499 
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 500 

Fig. 21.  Maximum values of waves at pr1 and maximum horizontal forces on cylinder 1 501 

versus 1/  at Fn=0.  502 

 503 

Fig. 22.  Maximum values of waves at pr1 and maximum horizontal forces on cylinder 1 504 

versus 1/ .  505 
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 506 

Fig. 23.  Comparisons of maximum values of waves at pr1 versus 1/ at A/d=0.0125 & 0.05; 507 

(a) Fn=-0.128; (b) Fn=0; (c) Fn=0.064; (d) Fn=0.128. 508 

 509 

Fig. 24.  Maximum horizontal forces on (a) cylinder 1 versus 1/ at A/d=0.0125 & 0.05; (a) 510 

Fn=-0.128; (b) Fn=0; (c) Fn=0.064; (d) Fn=0.128. 511 

 512 

Simulations at lc/b =5, 6, 7 and 9 are also made in addition to lc/b =8 for horizontal motions. 513 

The oscillational frequencies 11 /  , 12 /   and 13 /   versus lc/b are given in Fig. 25. 514 

Four Froude numbers Fn=-0.128, 0, 0.064 and 0.128 are used. It can be seen that the 515 

nondimensionalized frequency at each Froude number is nearly linearly increases as lcy/b 516 
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increases for 11 /   within the whole range of lc/b and for 12 /   when lcy/b>6, and it 517 

becomes smaller as the absolute value of Fn increases at each lcy/b (see Figs. 25a, 25b). 518 

The maximum waves and horizontal forces on cylinder 1 as functions of lc/b at 1  , 3   519 

and 2   are shown in Figs. 26 and 27. The maximum waves at 1   in Fig. 26a decrease as 520 

the increase of lc/b at each Froude numbers and they are clearly different at smaller lc/b and 521 

then they almost coincide with each other when lc/b≥7. The horizontal forces given in Fig. 522 

26b, however, show more complicate change with the spacing and the Froude number. All 523 

maximum values are at lc/b=7 and they decline at other values of lc/b. The maximum waves 524 

and forces at 3   generally increase as the increase of lc/b and decrease as the absolute value 525 

of Fn at each lc/b. As to the situation at 2  , the cases at Fn=-0.128, 0.064 and 0.128 are given 526 

in Fig. 27, in which the results at Fn=0 are not provided because of no resonance happens and 527 

hence there is no peak. It can be seen that both maximum wave and force gradually grow up 528 

as the spacing lc/b becomes larger at every Fn, and they are generally enlarged with the 529 

increase of the absolute value of Fn at every lc/b.  530 

 531 

Fig. 25.  The oscillational frequency at resonance versus lc/b in horizontal motions; (a) 11 /  ; 532 

(b) 12 /  ; (c) 13 /  . 533 
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 534 

Fig. 26.  Maximum waves and horizontal forces versus Lcy/b at 1  and 3 ;  (a) waves at pr1 535 

at 1  ; (b) horizontal forces on cylinder 1 at 1  ; (c) waves at pr1 at 3  ; (d) horizontal forces on 536 

cylinder 1 at 3  . 537 

 538 

Fig. 27.  Maximum waves and horizontal forces versus Lcy/b at 2   in horizontal motions;  (a) 539 

waves at the right side of cylinder 1; (b) horizontal forces on cylinder 1. 540 

 541 
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5. Conclusions 542 

A fully nonlinear potential flow model based on a higher order finite element method with 543 

8-node curve element is used to analyse the wave resonance between twin cylinders in 544 

specified oscillations in a uniform current. The 4th order Runge-Kutta algorithm is employed 545 

to track the node positions and corresponding potentials on them at each time step. A damping 546 

zone method is used for satisfying the radiation condition.  547 

Numerical simulations have been made for twin rectangular cylinders in the free surface 548 

in vertical and horizontal motions in a uniform current at resonant frequencies. Waves and 549 

hydrodynamic forces are calculated, and comparisons are made at different Froude numbers. 550 

The current effect on the wave and force has been analysed at odd and even-order resonances. 551 

Besides, the nonlinearity of the wave and forces are also discussed. The simulation shows the 552 

current has a critical influence on the waves and forces at resonant frequencies in both vertical 553 

and horizontal oscillations. The conclusion of this study is summarized as below: 554 

As discussed in Section 4, the first and second order resonances happen at 555 

,...)2,1( 2  ii  and ,...)2,1( 2/2  ii , respectively, for vertical oscillations or the 556 

horizontal in opposite directions at Fn=0. Similarly, the first and second order resonances also 557 

occur at )2,1( 12   ii , and ),2,1( 2/2  ii , respectively, for horizontal 558 

oscillations in an identical direction at Fn=0. However, when a current exists or Fn≠0, it is 559 

found that the first order resonance happens at all frequencies ,...)2,1(  ii  for both 560 

vertical and horizontal motion, and the second-order resonant effect is generally weak. For the 561 

vertical motions, the maximum wave and horizontal force at )2,1( 2  ii  become smaller as 562 

Fn increases. However，they are clearly increases as the increase of Fn at )2,1( 1-2  ii ; For 563 

the horizontal motions, the maximum wave and horizontal force have only a little change as 564 

Fn changes at  1  , which is not regular. However, they generally decrease at 3   and 565 

increase at 2   as the increase of the absolute value of Fn.   566 

The oscillational frequencies )3,2,1(  ii  and h2  at resonance become somewhat 567 

smaller as the increase of Fn in vertical motions and )2,1(  ii  decrease as the increase of 568 
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the absolute value of Fn in horizontal motions within the whole range of lc/b. Besides, they 569 

generally increase as lc/b when lc/b≥6 for both vertical and horizontal motions. 570 

The wave and force at ...)2,1(  ii  versus the spacing lc/b are also studied. For vertical 571 

motions, the maximum values of wave and horizontal force at  2  always enhance as the 572 

increases of lc/b at every Fn, and they are generally decline or increase as the increases of lc/b 573 

within lc/b≥6 at 1   or 3  , respectively; For horizontal motions, as lc/b increases, the 574 

maximum value of wave at  1  decreases as the increases of lc/b at every Fn. By contrast, 575 

both the maximum wave and force increase as the increases of lc/b at )3,2(  ii . 576 

For oscillations of both cylinders in larger amplitudes, the oscillational frequencies 577 

,...)2,1(  ii  are clearly smaller than those under smaller amplitude oscillations, and the 578 

nondimensionalized maximum values of wave and horizontal force become smaller under 579 

larger amplitude oscillations, which weakens resonant characteristics.  580 
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