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Abstract - Recent trends for vehicular localization in millimetre-wave (mmWave) channels include employing a combination of 
parameters such as angle of arrival (AOA), angle of departure (AOD), and time of arrival (TOA) of the transmitted/received 
signals. These parameters are challenging to estimate, which along with the scattering and random nature of mmWave channels, 
and vehicle mobility lead to errors in localization. To circumvent these challenges, this paper proposes mmWave vehicular 
localization employing difference of arrival for time and frequency, with multiuser (MU) multiple-input-multiple-output (MIMO) 
hybrid beamforming; rather than relying on AOD/AOA/TOA estimates. The vehicular localization can exploit the number of 
vehicles present, as an increase in the number of vehicles reduces the Cramér-Rao bound (CRB) of error estimation. At 10 dB 
signal-to-noise ratio (SNR) both spatial multiplexing and beamforming result in comparable localization errors.  At lower SNR 
values, spatial multiplexing leads to larger errors compared to beamforming due to formation of spurious peaks in the cross 
ambiguity function. Accuracy of the estimated parameters is improved by employing an extended Kalman filter leading to a root 
mean square (RMS) localization error of approximately 6.3 meters. 
 
Index Terms— Hybrid beamforming, localization, mmWave, MU-MIMO, V2V.  
 

I. INTRODUCTION1 
ext generation vehicles are required to be fully 
connected and communicate with each other and the 

transport infrastructure. These connections will increase 
safety and deliver intelligent services, with a vision of fully 
autonomous vehicles in the future. Vehicles will require 
cellular networks with high throughput speeds to share their 
location, speed, and other sensor information with low 
latency. The Third Generation Partnership Project (3GPP) 
release 16 shows the fifth-generation (5G) network operating 
between 0.5 GHz-100 GHz would facilitate such data 
transfer for transportation from vehicle-to-vehicle (V2V) [1], 
[2]. Millimetre-wave (mmWave) frequencies can support 
high peak data rates of several gigabits per second required 
for various automated functions such as localization [3]. 

Current mmWave localization techniques are applicable 
to static channels, and  the transmitter (Tx)-receiver  (Rx) 
mobility is not quantified. Most techniques require robust 
beam switching/control strategies for accurate estimation of 
the angle of departure (AOD)/angle of arrival (AOA). Beam-
tracking becomes challenging due to more vehicles requiring 
robust, fast beam switching techniques. Joint time difference 
of arrival (TDOA)/frequency difference of arrival (FDOA) 
estimation under these conditions are potential candidates for  
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localization estimates. 
This paper aims to apply the joint TDOA/FDOA approach 

with multiuser (MU) multiple-input multiple output (MIMO) 
hybrid beamforming (HB) for vehicle localization at 
mmWave frequencies. The Fisher information matrix (FIM) 
is used to access the data quality among multiple vehicles to 
manage the mmWave channel and optimize the emitter 
vehicle location subject to communication constraints. 
Channel sounding is assumed for HB to determine the 
channel state information (CSI), and joint spatial division 
multiplexing is employed to determine the precoding and 
coding weights for the selected system configuration.  

The main contributions in this paper are enumerated: 
• We derive a closed-form expression of Cramér-Rao  

Bound (CRB) of the parameter estimation and 
analyze the accuracy of cross ambiguity function 
(CAF) for TDOA/FDOA localization in 
beamforming (BF) and spatial multiplexing (SM) 
modes. CRB estimation indicates that increasing 
the number of vehicles reduces the estimation error. 
Therefore, localization with TDOA/FDOA 
estimation can accordingly exploit the number of 
vehicles present in V2V channels. Results show that 
higher accuracy is achieved in BF than in SM.  

• We propose a TDOA/FDOA estimation approach 
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with MU-MIMO HB considering dual mobility of 
the Tx and Rx and achieving a root mean square  
(RMS) localization error of 6.30 m.  

The rest of the paper is organized as follows. Section II 
undertakes a literature review to detail the existing mmWave 
and TDOA/FDOA localization techniques and their 
limitations. Section III details the localization with MU-
MIMO HB and investigates the performances for BF and 
SM. In Section IV, CRB and CAF are estimated, following 
which emitter localization is undertaken; accuracy is 
improved by employing extended Kalman filtering. 
Concluding remarks are drawn in Section V. 

II. LITERATURE REVIEW FOR LOCALIZATION 

A. Current mmWave Localization Techniques 
The early work to obtain position and orientation in the 

context of mmWave technologies involves estimation and 
tracking of the AOA through beam-switching, user 
localization through hypothesis testing, and measurement of 
the received signal strength [4]-[7]. Various techniques 
employed for massive MIMO mmWave localization include 
estimating various parameters such as joint delay, AOA, and 
AOD, including hybrid techniques based on linearization and 
nonparametric kernel-based probabilistic models [8]-[12]. 

The large bandwidths in mmWave lead to much better 
temporal resolution, thus potentially improving the position 
estimates. More antenna elements in antenna arrays lead to 
smaller beamwidth with higher accuracy and resolution for 
the angular estimation. To leverage these characteristics, 
recent trends have focused on estimating position and 
orientation with a combination of AOA, AOD, and time of 
arrival (TOA). The CRB bounds of position and orientation 
for uniform linear arrays are derived in [13] by employing 
signals from a single transmitter (Tx), in line-of-sight (LOS), 
non-line-of-sight (NLOS), and obstructed-line-of-sight 
conditions for downlink localization. The closed-form of 
FIM is derived by employing geometric relationships for the 
channel, position, and orientation. For the non-uniform 
arrays, CRBs of position and orientation are given in [14]. 
For an indoor channel employing BF and SM, CRBs for 
TOA and AOA are derived in [15] using the CAF. The CRBs 
are compared for BF and SM for the single-user (SU)-MIMO 
case. In [13]-[15], it is further shown that the position and 
orientation estimates can benefit from NLOS components. 
However, the effects of Tx location, mobile terminal, and 
points of incidence of NLOS components are not analyzed 
for the presented results. The effects of NLOS components 
on position and orientation are given in [16]. It is shown that 
for sufficiently high temporal and spatial resolution, NLOS 
components provide position and orientation information 
which can increase the estimation accuracy. However, the 
accuracy depends on the number of NLOS paths that are not 
guaranteed in outdoor mmWave channels. 

The aforementioned techniques are applied to static 
channels or when the Tx-Rx mobility is not quantified or 
depends on robust beam switching/control strategies for 

accurate AOD/AOA estimation. Most of the techniques 
apply to SU-MIMO, which does not leverage multiple 
vehicles present in a given area of interest. On the contrary, 
beam-tracking becomes onerous because more vehicles 
require robust, fast beam switching techniques. As a result, 
accurate AOD/AOA estimation becomes challenging and is 
prone to errors as Tx/Rx is mobile. 

For the dynamic scenarios present in V2V channels,  the 
Doppler shift measurements can provide additional Fisher 
information for localization [17]. One such technique is 
localization of the Tx with TDOA and FDOA estimation, 
which is employed in a wide range of applications for 
military, security and civilian use [18]. 

B. Comparison of Existing TDOA/FDOA Techniques  
This section examines some of the main localization 

techniques based on TDOA/FDOA estimation. Localization 
based on TDOA estimation is suitable for high-bandwidth 
applications such as radars and mmWave V2V 
communication, while FDOA estimation can exploit the 
Doppler shifts in V2V communication [19], [20]. 
Localization with joint TDOA/FDOA estimation is a two-
stage process. The first stage employs CAF to 
simultaneously estimate TDOA/FDOA from an emitter 
using maximum-likelihood methods [21]-[24]. Multiple 
TDOA/FDOA measurements are employed in the second 
stage to estimate the emitter location [25]. In [20], the 
approach aims to improve localization accuracy by nearing 
the CRB limits targeted at UAV applications by fusion of 
measurements when the likelihood of only one TDOA 
measurement is present; a likely scenario in a highly 
dynamic 3D UAV channel environment. Further, the 
Gaussian mixture presentation of measurements-integrated 
track splitting [26] filter is extended to adapt to the UAV 
channel for adequate tracking of the mobile emitter. Other 
techniques include reducing the computational requirements 
with algebraic [27], [28], and numerical solutions [29]. 
Techniques in the second stage include localization using 
satellites [30] and fixed sensor networks [31]. The two-stage 
localization accuracy depends on the signal-to-noise ratio 
(SNR), resulting in higher localization errors at low SNRs. 
On the other hand, single-stage techniques may be employed 
to reduce such errors in localization. Single-stage techniques 
known as direct position determination enable emitter 
localization directly from the CAF [32], [33].  

The mentioned TDOA/FDOA based techniques either 
improve localization accuracy or reduce the computational 
requirements. However, the techniques are applied in 
simplistic or other scenarios not applicable to mmWave  
V2V channels. 
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III. LOCALIZATION WITH MU-MIMO HB 

A. MU-MIMO HB Localization 
A 2-D geometrical scenario is given in Fig 1. The aim is to 

determine the location of the emitter vehicle E, using signals 
received by multiple user vehicles addressed as users. 
Henceforth each user is given as 𝑈𝑈𝑎𝑎, 𝑎𝑎 ∈ [1,𝑉𝑉], where 𝑉𝑉 is 
the total number of users. Since the CAF operates only on 
two received signals simultaneously, the users need to be 
paired. The assumption is made that the two users are time 
and frequency synchronized with each other, although not 
synchronized in any way with E. 

Consider the 𝑚𝑚𝑡𝑡ℎ  pair of users 𝑈𝑈𝑎𝑎  and 𝑈𝑈𝑏𝑏  where 𝑎𝑎, 𝑏𝑏 ∈
[1,𝑉𝑉], 𝑎𝑎 ≠ 𝑏𝑏 and 𝑚𝑚 ∈ [1,𝑀𝑀]. The TDOA 𝜏𝜏𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚 and FDOA 
𝑓𝑓𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚  between the signals received by these users can be 
jointly estimated by the CAF. If the down-converted 
complex baseband signals received by 𝑈𝑈𝑎𝑎 and 𝑈𝑈𝑏𝑏 are 𝑟𝑟𝑎𝑎𝑚𝑚(𝑡𝑡) 
and 𝑟𝑟𝑏𝑏𝑚𝑚(𝑡𝑡) respectively, then CAF for the mth pair is [21]: 

 
CAF�𝜏𝜏𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚 , 𝑓𝑓𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚� =  

�𝑟𝑟𝑎𝑎𝑚𝑚(𝑡𝑡)𝑟𝑟𝑏𝑏𝑚𝑚
∗ �𝑡𝑡 + 𝜏𝜏𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚�𝑒𝑒

−𝑗𝑗2𝜋𝜋𝑓𝑓𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚𝑡𝑡𝑑𝑑𝑑𝑑
𝑇𝑇

0

      (1) 

 

 
 
 
 

where T is the integration time and ‘*’ is the complex 
conjugate. The parameters  𝜏𝜏𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚 and 𝑓𝑓𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚 are required to 
be searched that cause simultaneously �CAF�𝜏𝜏𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚, 𝑓𝑓𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚�� 
to peak. Due to different geometry between E and the various 
users, and the users having different quality of data, selecting 
a pair of users can be crucial in determining the location 
accuracy. Various strategies exist for user pairing. This could 
be based on whether the pairs share information or not; or 
given a set of users how to optimally choose pairing [34]. 
Ideally a complete set of users could be employed which 
although results in excessive data volume, can be alleviated 
as mmWave enables high-data rates. The emitter vehicle E 
employs a HB Tx where precoding is applied to both digital 
baseband and analog RF domains as in Fig. 2 [35]-[41]. The 
subscript a indicates for the 𝑈𝑈𝑎𝑎  user where: 
𝑁𝑁𝑈𝑈𝑎𝑎  is the number of signal streams 
𝐹𝐹𝐵𝐵𝐵𝐵𝑎𝑎  is the digital precoder  
𝑁𝑁𝑇𝑇 number of antenna elements in the Tx array 
𝑁𝑁𝑅𝑅𝑅𝑅𝑎𝑎
𝑇𝑇 : number of Tx RF chains/transceivers  

𝐹𝐹𝑅𝑅𝑅𝑅𝑎𝑎: analog precoder of size  𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑅𝑅𝑅𝑅𝑎𝑎
𝑇𝑇  

𝑁𝑁𝑑𝑑𝑑𝑑 : number of data streams  
𝑁𝑁𝑅𝑅𝑎𝑎  number of antenna elements Rx array  

𝑁𝑁𝑅𝑅𝑅𝑅𝑎𝑎
𝑅𝑅 : number of Rx RF chains/transceivers  

𝑊𝑊𝑅𝑅𝑅𝑅𝑎𝑎 : analog coder of size  𝑁𝑁𝑅𝑅𝑎𝑎 × 𝑁𝑁𝑅𝑅𝑅𝑅𝑎𝑎
𝑅𝑅  

𝑊𝑊𝐵𝐵𝐵𝐵𝑎𝑎: digital coder of size  𝑁𝑁𝑅𝑅𝑅𝑅𝑎𝑎
𝑅𝑅 × 𝑁𝑁𝑈𝑈𝑎𝑎  

The HB architecture can be partitioned into virtual sectors 
where each 𝑈𝑈𝑎𝑎  has multiple signal streams 𝑁𝑁𝑈𝑈𝑎𝑎 , one 𝐹𝐹𝐵𝐵𝐵𝐵𝑎𝑎 , 
and a number of RF chains/transceivers 𝑁𝑁𝑅𝑅𝑅𝑅𝑎𝑎

𝑇𝑇 . This can be a 
fully connected or a partially connected architecture. A fully 
connected architecture is given in Fig. 2, where each RF 
chain is connected to all antenna elements in the Tx array. 
This full-connected scheme provides full beamforming gain 
per RF chain but with a high complexity of 𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑅𝑅𝑅𝑅𝑎𝑎

𝑇𝑇  RF 
paths. For the partially-connected architecture, each of the 
RF chains is connected to 𝑁𝑁𝑇𝑇 /𝑁𝑁𝑅𝑅𝑅𝑅𝑎𝑎

𝑇𝑇  antenna elements in the 
Tx array. This partially-connected architecture leads to lower 
hardware complexity of  RF paths at the cost of 1/ 𝑁𝑁𝑅𝑅𝑅𝑅𝑎𝑎

𝑇𝑇  BF 
gain. In both cases, the number of data streams 𝑁𝑁𝑑𝑑𝑑𝑑 that is 
transmitted for a user are given by 𝑁𝑁𝑅𝑅𝑅𝑅𝑎𝑎

𝑇𝑇 . Joint spatial division 
multiplexing can be employed to determine 𝐹𝐹𝐵𝐵𝐵𝐵𝑎𝑎  and 𝐹𝐹𝑅𝑅𝑅𝑅𝑎𝑎  
precoding weights for the selected system configuration 
[41]-[43]. Each user Rx array is composed of 𝑁𝑁𝑅𝑅𝑎𝑎  number of 
antenna elements, an analog coder 𝑊𝑊𝑅𝑅𝑅𝑅𝑎𝑎 , 𝑁𝑁𝑅𝑅𝑅𝑅𝑎𝑎

𝑅𝑅  number of RF 
chains, and the digital coder 𝑊𝑊𝐵𝐵𝐵𝐵𝑎𝑎  resulting back in 𝑁𝑁𝑈𝑈𝑎𝑎  
signal streams.  

In high or sufficient SNR conditions, SM can be employed 
wherein multiple data streams are transmitted to each user. 
However, low SNR/cell edge conditions only allow a single 
data stream using the BF mode transmission. The down-
converted complex baseband signal as received by 𝑈𝑈𝑎𝑎  at 
time t, after propagating through the SM-MIMO channel is 
given by: 

 

𝑟𝑟𝑎𝑎(𝑡𝑡) = 𝛼𝛼𝑎𝑎 � 𝑥𝑥𝑑𝑑𝑑𝑑(𝑡𝑡 − 𝜏𝜏𝑎𝑎)𝑒𝑒𝑗𝑗�2𝜋𝜋𝑓𝑓𝑑𝑑𝑎𝑎𝑡𝑡+𝜃𝜃𝑎𝑎,𝑑𝑑𝑑𝑑�

𝑁𝑁𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑=1
+ 𝑤𝑤𝑎𝑎(𝑡𝑡)   

 

 
(2) 

where the symbols are: 

𝛼𝛼𝑎𝑎     :  �𝑃𝑃𝑎𝑎 𝑁𝑁𝑑𝑑𝑑𝑑�  where, 𝑃𝑃𝑎𝑎 is the signal power received, 

𝑥𝑥𝑑𝑑𝑑𝑑   :  signal envelope of a randomly modulated symbol      
transmitted in a single data stream, 

 

 
Fig. 2. MU-MIMO hybrid beamforming. 

 
Fig. 1.  Emitter localization in V2V. 
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𝜏𝜏𝑎𝑎     :  signal delay,  
𝑓𝑓𝑑𝑑𝑎𝑎     :  Doppler shift, 
𝜃𝜃𝑎𝑎,𝑑𝑑𝑑𝑑 :  random phase offset in one data stream, assumed to 

be uniformly distributed over [0,2𝜋𝜋],  
𝑤𝑤𝑎𝑎    :  white, zero-mean complex Gaussian noise,  
𝑑𝑑𝑑𝑑    :  data stream number. 

B. CRB for Multiple User Pairs 
For a total of M pairs, the estimation parameter vector that 

is required to be estimated by the 𝑚𝑚𝑡𝑡ℎ pair of users is:  
  
                𝜙𝜙𝑚𝑚 = �𝜏𝜏𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚, 𝑓𝑓𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚   �⊺.                         (3) 

 
The maximum likelihood estimator 𝜙𝜙�𝑚𝑚 of the TDOA and 

FDOA are determined by solving the following optimization 
problem [21]: 

 
           𝜙𝜙�𝑚𝑚 = arg  max

𝜏𝜏𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚 ,𝑓𝑓𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚  
�CAF�𝜏𝜏𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚 , 𝑓𝑓𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚��.        (4) 

 
The FIM for 𝜙𝜙𝑚𝑚 is given by [21]: 

                   𝐽𝐽 (𝜙𝜙𝑚𝑚) = �
𝑇𝑇𝐵𝐵3

0.3025
𝛾𝛾𝑚𝑚 0

0 𝐵𝐵𝐵𝐵3

0.3025
𝛾𝛾𝑚𝑚
�                   (5) 

 
where  𝛾𝛾𝑚𝑚 is the effective SNR given by: 
 
                    𝛾𝛾𝑚𝑚 = 2 𝛾𝛾𝑎𝑎𝑚𝑚𝛾𝛾𝑏𝑏𝑚𝑚

1+𝛾𝛾𝑎𝑎𝑚𝑚+𝛾𝛾𝑏𝑏𝑚𝑚
.                                       (6) 

 
In (6) 𝛾𝛾𝑎𝑎𝑚𝑚and 𝛾𝛾𝑏𝑏𝑚𝑚 are the SNRs in the respective user Rxs 

with the noise bandwidth B. The TDOA accuracy improves 
for larger signal bandwidths and FDOA accuracy improves 
for larger integration periods. 

The FIM of 𝑱𝑱𝑴𝑴  (𝝓𝝓 ), for all the combined M user pairs 
where 𝝓𝝓 = [𝜙𝜙1⊺ ,𝜙𝜙2⊺ …𝜙𝜙𝑀𝑀⊺  ]⊺  has a block structure, and is 
given by [34]: 

 

       𝑱𝑱𝑴𝑴  (𝝓𝝓 ) = ��

𝐽𝐽 (𝜙𝜙1)   𝐼𝐼 (𝜙𝜙12)   ⋯    𝐼𝐼 (𝜙𝜙1𝑀𝑀)
𝐼𝐼 (𝜙𝜙21)  𝐽𝐽 (𝜙𝜙2)    ⋱     𝐼𝐼 (𝜙𝜙2𝑀𝑀)

⋮            ⋱         ⋱           ⋮ 
𝐼𝐼 (𝜙𝜙𝑀𝑀1)   𝐼𝐼 (𝜙𝜙𝑀𝑀2) ⋱     𝐽𝐽 (𝜙𝜙𝑀𝑀)

��                (7) 

 
where 𝐼𝐼 (𝜙𝜙𝑚𝑚𝑚𝑚) is the cross-term FIM between 𝑚𝑚𝑡𝑡ℎ and 𝑛𝑛𝑡𝑡ℎ 
user pair. The cross-terms increase the computational 
requirement in the network. Since some users may be paired 
with more than one pair, their communication needs careful 
consideration to avoid a collision. When no user information 
is shared among other pairs the cross-term FIMs 𝐼𝐼 (𝜙𝜙𝑚𝑚𝑚𝑚) are 
zero and the FIM reduces to: 

 

            𝑱𝑱𝑴𝑴  (𝝓𝝓 ) = ��

𝐽𝐽 (𝜙𝜙1)    0         ⋯        0
0          𝐽𝐽 (𝜙𝜙2)    ⋱        0
⋮            ⋱            ⋱        ⋮ 
0            0          𝐽𝐽 (𝜙𝜙𝑀𝑀)

��.                    (8) 

 

Although the FIM in (8) requires fewer computations than 
(7),  it may yield higher localization errors due to fewer 
entries in the FIM. The dividend for sharing information 
between pairs needs careful consideration due to the increase 
in computation, network capacity, and latency. In this paper, 
it is assumed that no information is shared between any user 
pairs. 

C. Spatial Multiplexing and Beamforming   
SM is likely to be employed in high SNR conditions to 

improve the network capacity wherein the channel can 
support multiple data streams to each user. SM increases the 
number of 𝑥𝑥𝑑𝑑𝑑𝑑(𝑡𝑡) that are demodulated for each user since 
𝑑𝑑𝑑𝑑 ∈ {1,𝑁𝑁𝑑𝑑𝑑𝑑} where 𝑑𝑑𝑑𝑑 > 1 for SM. Accordingly, for SM 
the resulting CAF in (1) is dependent on more than one 
𝑥𝑥𝑑𝑑𝑑𝑑(𝑡𝑡) in (2) for each user. Accurate estimation of 𝜙𝜙�𝑚𝑚  for 
𝑑𝑑𝑑𝑑 > 1  is therefore dependent on the random nature of 𝜃𝜃𝑖𝑖,𝑑𝑑𝑑𝑑 
in (2) and how coherent is the summation of all 𝑥𝑥𝑑𝑑𝑑𝑑(𝑡𝑡) 
present in the data stream. This can result in spurious peaks 
rather than a single peak for a given CAF, thereby reducing 
the accuracy of 𝜙𝜙�𝑚𝑚. Therefore, even in the absence of noise 
and high SNR conditions, the peak of the CAF may not 
correspond to the true TDOA/FDOA, thereby reducing the 
accuracy of localization. If 𝑥𝑥𝑑𝑑𝑑𝑑(𝑡𝑡)  are assumed as unit 
vectors, then amplitude (A) of the squared envelope of a sum 
of these unit vectors, with random phases has a probability 
density function given by [44]: 

 
 

𝑝𝑝 (𝐴𝐴) = �
1

𝑁𝑁𝑑𝑑𝑑𝑑−1
𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝐴𝐴+1

𝑁𝑁𝑑𝑑𝑑𝑑−1
� 𝐼𝐼0 �

2√𝐴𝐴
𝑁𝑁𝑑𝑑𝑑𝑑−1

� ;  𝐴𝐴 ≥ 0

0;                otherwise.
       (9)  

 
where 𝐼𝐼0(. ) is the first-order modified Bessel function, and 
𝑁𝑁𝑑𝑑𝑑𝑑 > 2. For 𝑁𝑁𝑑𝑑𝑑𝑑 = 2 𝑝𝑝(𝐴𝐴) is very high → ∞ [44]. Fig. 3 
indicates the probability of all 𝑥𝑥𝑑𝑑𝑑𝑑(𝑡𝑡)  in the data stream 
being summed up coherently. The probability of three 𝑥𝑥𝑑𝑑𝑑𝑑(𝑡𝑡) 
being coherently summed up is given by  𝑁𝑁𝑑𝑑𝑑𝑑 = 3 and 𝐴𝐴 = 9 
which is 𝑝𝑝(𝐴𝐴) = 0.0164. This reduces to 0.004  for four  
𝑥𝑥𝑑𝑑𝑑𝑑(𝑡𝑡) i.e. at 𝑁𝑁𝑑𝑑𝑑𝑑 = 4 and 𝐴𝐴 = 16.   Likewise the probability 
of more than four 𝑥𝑥𝑑𝑑𝑑𝑑(𝑡𝑡)  coherently summing up is even 
lower. Therefore, the likelihood of CAF having spurious 
peaks increases for SM which has more than one 𝑥𝑥𝑑𝑑𝑑𝑑(𝑡𝑡) in 
one data stream. In comparison, in BF the CAF output 
estimates are based on a single 𝑥𝑥𝑑𝑑(𝑡𝑡)  for each user. 
Therefore, even in the presence of noise and low SNR 
conditions the peak of the CAF is more likely to correspond 
to the true TDOA/FDOA. 

 
Fig. 3. Probability density function values for squared envelop of a 
sum of random phase vectors for  different data streams. 
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IV. EMITTER LOCALIZATION  

A. MmWave 3D Statistical Spatial Channel Model 
The mmWave channel simulator employed in this paper is 

based on a 3D statistical spatial channel model for urban 
LOS and NLOS channels developed from extensive 28 GHz, 
60 GHz, 73 GHz, and 140 GHz ultra-wideband propagation 
measurements in the cities of New York City and Austin, 
USA [45], [46]. The model generates channel impulse 
responses that match measured field data at a wide range of 
distances from 10-10,000 m and over local areas based on 
the time cluster-spatial lobe modeling framework. The 
approach extends the 3GPP model through the directional 
RMS lobe angular spreads and is consistent with the 3GPP 
modeling framework. Based on the 3D statistical channel 
model in [45], [46], a MATLAB-based statistical simulator, 
NYUSIM, has been developed by New York University [47] 
that can generate 3D AOD and AOA power spectra along 
with omnidirectional and directional power delay profiles 
that match measured field results [48]. 3GPP assumes an 
unrealistically large number of strong eigenvalues of the 
channel matrix, which are not found in mmWave channels 
[49]. Accordingly, NYUSIM is employed in this paper to 
simulate the MIMO channel for more realistic results [50].  
  NYUSIM employs spatial consistency to simulate the 
time-variant channel along the user trajectory. Due to the 
high correlation of a wireless channel over a distance of 10-
15 m, incorporating spatial consistency is required to 
accurately represent the consecutive and spatially correlated 
channel evolution along the user movement in a local area. 
The channel update has two parts viz., large-scale parameters 
such as shadow fading, LOS/NLOS condition, and small-
scale parameters such as the power, delay, phase and angles 
of each multipath component. The large-scale parameters are 
updated by using a spatially-correlated map, and the small-
scale parameters are updated by a geometry-based reflection 
surface [48]. 

B. Estimating CRB 
From (8), for a constant bandwidth B and integration time 

T, the effective SNRs 𝛾𝛾𝑚𝑚  were obtained for 100 repetitive 
runs with NYUSIM to simulate the CRB of 𝜙𝜙𝑚𝑚 for BF and 
SM. The simulation specifications are given in Table I. BF 
corresponds to one data stream and SM corresponds to two 
or four data streams. The user positions were obtained from 
NYUSIM randomly in the distance interval [10, 500] m from 
E for each simulation run as given in Fig. 4 for 10 user pairs. 

A vehicle-mounted base station (VMB) was assumed for 
𝐸𝐸. VMBs offer advantages such as real-time communication, 
employing massive MIMO technology and dynamic 
caching; and therefore, proposed as a suitable option  for 
mmWave V2V communication [51]. The extremely high 
frequencies (mmWave/THz) in these bands on interest 
motivate design of VMBs as compact size arrays with very 
fine pencil beams. At E, 𝑁𝑁𝑇𝑇 = 256 and for users 𝑁𝑁𝑅𝑅𝑎𝑎 = 4, 
meaning that at most 64 users can be simultaneously 
supported by E which can form at most 32 user pairs. In 
addition, the user can receive at most four different data  

streams from E. Thus, 10, 20, and 30 user pairs and 1, 2, 4 
data streams in the channel simulations were chosen.  

The normalized CRBs of 𝜙𝜙𝑚𝑚  for various number of user 
pairs and data streams are plotted in Fig. 5, indicating that 
BF has a lower CRB than SM. This agrees with the earlier 
analysis for BF and SM provided by (9) and Fig. 3. SM with 
four data streams with 10 pair of users produce the worst 
performance. The yellow bar for SM, 𝑁𝑁𝑑𝑑𝑑𝑑 = 4 with 10 user 
pairs is 0 dB and therefore not visible. Furthermore, Fig.5 
shows that increasing the number of user pairs lowers the 
CRB for both BF and SM. Therefore, the high number of 
users likely to be present in V2V communication with MU-
MIMO HB can be leveraged.  

 

 
Fig. 4. Random user positions in the interval [10, 500] m from E  

 
 

Fig. 5. The normalized CRBs of  𝜙𝜙𝑚𝑚. 
 
 

TABLE I 
MMWAVE CHANNEL SPECIFICATIONS 
Parameters Values 

Carrier frequency  73 GHz 

RF bandwidth (B) 800 MHz 
Scenario UMi LOS 
Tx-Rx separation distance  Uniform [50, 100] m 
User moving direction  Uniform [0, 360]⁰ 
User Velocity  [5, 10, 15, 20] m/s 
Transmit power 10 W 
Emitter (E) height  1.5 m 
User height 1.5 m 
Emitter (E) antenna  16 x 16 URA 
User antenna 2 x 2 URA 
Integration time (T) 1 ms 
Number of user pairs (M) [10, 20, 30] 

Number of data streams (𝑁𝑁𝑑𝑑𝑑𝑑) [1, 2, 4] 

 
 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJVT.2022.3170522, IEEE Open
Journal of Vehicular Technology

C. Estimating 𝜙𝜙�𝑚𝑚 
TDOA and FDOA i.e. 𝜏𝜏𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚 and 𝑓𝑓𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚 are estimated by 

integrating the received signals of a pair of users from the 
same E and calculating CAF given in (1). The estimated 
𝜏𝜏𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚 and 𝑓𝑓𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚 give the largest absolute value of CAF in 
(4). The channel specifications are listed in Table I. The 
parameters of the transmitted signals are given in Table II. 
The normalized absolute CAF values with 𝑁𝑁𝑑𝑑𝑑𝑑 = 1, 2 and 4 
at 10 dB and -20 dB SNR are shown in Fig. 6 and Fig. 7, 
respectively. It can be observed that the estimated 𝜏𝜏𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚 and 
𝑓𝑓𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚 for BF and SM are almost identical at 10 dB SNR. As 
SNR decreases, the estimation performance degrades, 
especially for the SM case. At -20 dB SNR the twin peaks 
for the CAF are visible for 𝑁𝑁𝑑𝑑𝑑𝑑 ≥ 2, indicating the formation 
of spurious peaks, which reduces the accuracy of 
TDOA/FDOA estimation. 

D. Localization Performance 
 

For the two-stage localization  on estimating 𝜏𝜏𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚  and 
𝑓𝑓𝑖𝑖𝑚𝑚𝑗𝑗𝑚𝑚  from the CAF matrix, the location of E can be 
calculated by solving a system of non-linear equations which 
[52]:  
 

𝜏𝜏𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚(𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒) =
1
𝑐𝑐
���𝑥𝑥𝑚𝑚,1 − 𝑥𝑥𝑒𝑒�

2 + �𝑦𝑦𝑚𝑚,1 − 𝑦𝑦𝑒𝑒�
2

 
 

−��𝑥𝑥𝑚𝑚,2 − 𝑥𝑥𝑒𝑒�
2 + �𝑦𝑦𝑚𝑚,2 − 𝑦𝑦𝑒𝑒�

2�
 

                  (10) 

  

𝑓𝑓𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚(𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒) =
𝑓𝑓𝑐𝑐
𝑐𝑐
⎝

⎛𝑣𝑣𝑥𝑥,1�𝑥𝑥𝑚𝑚,1 − 𝑥𝑥𝑒𝑒� + 𝑣𝑣𝑦𝑦,1(𝑦𝑦𝑚𝑚,1 − 𝑦𝑦𝑒𝑒)

��𝑥𝑥𝑚𝑚,1 − 𝑥𝑥𝑒𝑒�
2

+ (𝑦𝑦𝑚𝑚.1 − 𝑦𝑦𝑒𝑒)2
 

 

−
𝑣𝑣𝑥𝑥,2�𝑥𝑥𝑚𝑚,2 − 𝑥𝑥𝑒𝑒� + 𝑣𝑣𝑦𝑦,2(𝑦𝑦𝑚𝑚,2 − 𝑦𝑦𝑒𝑒)

��𝑥𝑥𝑚𝑚,2 − 𝑥𝑥𝑒𝑒�
2

+ �𝑦𝑦𝑚𝑚,2 − 𝑦𝑦𝑒𝑒�
2
⎠

⎞            (11) 

 

TABLE II 
MMWAVE SIGNAL PARAMETERS 

Parameters Values 

Modulation OFDM 256 QAM 
Bit rate  10 Mbps 
Samples per symbol 16 
Transmitter filter sinc pulse shaping 
SNR [0, -10, -20] dB 

 
 

 

 
 

Fig. 6 CAF with 1, 2, 4 data streams with 10 dB SNR. 
 
 

 

 
 

Fig. 7. CAF with 1, 2, 4 data streams with -20 dB SNR. 
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where 𝑥𝑥𝑚𝑚,1,𝑦𝑦𝑚𝑚,1 and 𝑥𝑥𝑚𝑚,2,𝑦𝑦𝑚𝑚,2 are the location of the user 
pairs. 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒  is the location of E to be estimated; 𝑓𝑓𝑐𝑐, 𝑣𝑣 are the 
carrier frequency and user velocity, respectively. 

Ten user pairs with 𝑁𝑁𝑑𝑑𝑑𝑑 = 1, 2 and 4 data streams were 
used to estimate the location of the E. By setting the received 
SNR as 10 dB, the estimated  𝜏𝜏𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚 and 𝑓𝑓𝑎𝑎𝑚𝑚𝑏𝑏𝑚𝑚 are almost 
identical for three different number of data streams, thus 
outputting an identical estimated location of E. The 
mmWave channel simulator NYUSIM provides time-variant 
channel conditions in spatial consistency mode to update the 
user location and channel condition. The spatial consistency 
parameters and user velocity settings for NYUSIM are given 
in Table III. 

Channel snapshots were generated every one meter, and a 
15 m moving trajectory of the emitter was simulated for 16 
users (corresponding to 8 user pairs). The median value of 
the estimated location obtained from 8 user pairs were used 
as the final estimated location of E at each time instance. The 
15 estimated locations along the 15 m trajectory are plotted 
in Fig. 8, where most localization errors are within 15 m. In 
addition, there is no spatial correlation between two 
consecutive estimations. To further improve the localization 
performance and take spatial correlation into account, an 
extended Kalman filter was applied in the following section.  

E. Reducing Localization Errors With  Kalman Filtering  
In addition to 𝜃𝜃𝑎𝑎,𝑑𝑑𝑑𝑑  and the number of 𝑥𝑥𝑑𝑑𝑑𝑑(𝑡𝑡) , another 

factor on which CAF depends is the received signal power 
𝛼𝛼𝑎𝑎  in (2). This can vary significantly due to scattering 
behavior of the mmWave channel leading to an increase in 
localization errors. The effect can be observed by the signal 
power received even for a slow-moving Tx. The power 
received for a Tx with a velocity of 5 m/s is shown in Fig. 9, 

wherein the power received varies about 4.6 dB between 2 m 
and 3 m.  

Kalman filters employ a series of measurements observed 
over time, containing statistical noise and other inaccuracies, 
and produce estimates of unknown variables that tend to be 
more accurate than those based on a single measurement 
alone [53]. The extended Kalman filter [54] can be employed 
for non-linear state-space models. In addition, the extended 
Kalman filter is highly accurate in estimation performance 
and has low computational complexity compared to, for 
example, particle filters and the unscented Kalman filter. 
Additionally, the performance of the EKF and the particle 
filter was found to be similar in [55]. The accuracy of 
localization in mmWave channels can be improved by 
employing extended Kalman filter to the estimated channel 
parameters, such as signal strength, DOA, and TOA [7], [56]. 
The state of the system is the position of E(x, y) (ideally, it is 
(0, 0)), and the measurements are the TDOA and FDOA of 
each user pair. The state dynamics can be written as [57]:  
 

                        𝑥𝑥𝑘𝑘 = 𝐴𝐴𝑥𝑥𝑘𝑘−1 + 𝑤𝑤𝑘𝑘 ,                               (12) 
 

where 𝑥𝑥𝑘𝑘 is the state vector of the position and velocity of 
the emitter (i.e., (𝑥𝑥𝑒𝑒,𝑦𝑦𝑒𝑒 , 𝑣𝑣𝑥𝑥,𝑒𝑒 , 𝑣𝑣𝑦𝑦,𝑒𝑒)). To model the change in 
the emitter state vector caused by the constant velocity of the 
emitter, the transition matrix A is given by [57]: 

 

�

1 0 𝑑𝑑𝑑𝑑 0
0 1 0 𝑑𝑑𝑑𝑑
0 0 1 0
0 0 0 1

� 

 
𝑤𝑤𝑘𝑘 is the process noise and is given by: 

TABLE III 
SPATIAL CONSISTENCY SETTINGS 

Spatial Consistency Parameters Values 

Shadow fading correlation distance 10 m 
LOS/NLOS correlation distance  15 m 
User track type Linear 
Update distance  1 m 
RX moving distance 30 m 
Rx velocity  10 m/s 
Rx moving direction Uniform (0, 360) degree 

Emitter moving distance 15 m 

Emitter velocity 5 m/s 

Emitter moving direction  0 degree (east) 

 
 

 

 
Fig. 8. Estimated locations of E (without Kalman filtering). 

 
 

 

 
 

Fig. 9. Signal power received.  
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where wa,x and wa,y are the random Gaussian accelerations in 
the x and y directions, respectively. In this study, it is 
assumed that the random accelerations in the x and y 
directions have a mean of 0 and a standard deviation of 𝜎𝜎𝑤𝑤  
= 9 m/s2 . 

An extended Kalman filter includes two processing steps:  
prediction and update. The prediction step predicts the next 
state and covariance matrix based on the current state and 
current covariance matrix. It uses the defined transition 
matrix and process noise covariance matrix, given by [57]: 

 
                                𝑥𝑥�𝑘𝑘 = 𝐴𝐴𝑥𝑥�𝑘𝑘−1                                       (13) 
 
                                𝑃𝑃�𝑘𝑘 = 𝐴𝐴𝑃𝑃�𝑘𝑘−1𝐴𝐴𝑇𝑇 + 𝑄𝑄                                  (14) 
 
where 𝑄𝑄 is the noise covariance matrix, i.e. 𝐸𝐸[𝑤𝑤𝑘𝑘𝑤𝑤𝑘𝑘𝑇𝑇]. The Q 
matrix is given by [57]: 

 

                 𝑄𝑄 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑇𝑇4

4
0 𝑇𝑇3

2
0

0 𝑇𝑇4

4
0 𝑇𝑇3

2
𝑇𝑇3

2
0 𝑇𝑇2

2
0

0 𝑇𝑇3

2
0 𝑇𝑇2

2 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

  𝜎𝜎𝑤𝑤2                            (15) 

 
assuming the random acceleration in the x and y direction 
(wa,x and wa,y) are uncorrelated. The P matrix was initialized 
as the identity matrix since no prior knowledge of the 
accuracy of the initial estimate of the emitter position and 
velocity was assumed. The second step updates (or refines) 
the predicted state based on the measurements conducted at 
each time instance. The EKF observation model describes 
how the measured TDOA and FDOA are related to the 
position and velocity of the user. The relationship is provided 
in (18), (19). The user state is refined using the observation 
model (and the measured TDOA and FDOA). The Kalman 
gain is expressed as: 
 
                         𝐾𝐾 = 𝑃𝑃𝐻𝐻𝑇𝑇(𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇 + 𝑅𝑅)−1                       (16) 

 
where 𝑅𝑅 is the uncertainty matrix of the TDOA and FDOA 
measurements. 𝑅𝑅  is calculated from the variance of the 
measurement error between the ideal TDOA, FDOA and the 
measured TDOA, FDOA. 𝐻𝐻  is the Jacobian matrix of the 
measurements with respect to the predicted state 𝑥𝑥�𝑘𝑘, given 
by: 

                               𝐻𝐻      =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕 ⎦

⎥
⎥
⎥
⎤
.                        (17) 

 
The updated 𝑥𝑥�𝑘𝑘 can be estimated by: 

 
                                𝑥𝑥�𝑘𝑘 = 𝑥𝑥�𝑘𝑘 + 𝐾𝐾𝑣𝑣𝑘𝑘                                   (18) 
 
where 𝑣𝑣𝑘𝑘 is the difference between the measured TDOA and 
FDOA and the values of TDOA and FDOA predicted using 
the updated 𝑥𝑥�𝑘𝑘 in (13), (14). 

 
                        𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝐾𝐾)𝑃𝑃𝑘𝑘−1.                                     (19) 
 
For Tx mobility, a geometry-based channel evolution for 

the LOS path was employed. The emitter moved towards the 
east at 5 m/s from [0, 0]. Each Rx was located from 10 to 50 
m away from E at 10 m/s in an arbitrary direction. 16 Rxs 
were simulated, forming eight user pairs. The updated 
Kalman filter with emitter mobility was applied, resulting in 
a RMS error of 6.5 m as shown in Fig. 10. The corresponding 
close up plot is depicted in Fig. 11. Note that the channel 
measurements used to characterize the localization 
performance with the Kalman filter and obtain Fig. 10 and 
11 are identical to the channel measurements used for emitter 
localization without the Kalman filter, used to create Fig. 8. 

F. Discussion 
Joint TDOA/FDOA estimation under the challenging 

conditions in V2V channels are potential candidates for  
localization estimates. The effects on  various precoders or 
other non-ideal conditions such as imperfect CSI on accurate 
TDOA/FDOA estimation and localization could be an area 
for future work, along with  strategies that could enable 
integration of the AOA/AOD estimates. Since all users have 
to transmit their received signals to a site which could be one 

 

 
Fig. 10. Estimated locations of E after applying  EKF. 

 
Fig. 11. Close up simulation plot. . 
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of the users or a dedicated base station in the network, this 
site handles a large amount of computations. Strategies need 
to be in place for reducing and balancing the computational 
load on the network. In case of data loss, the system 
localization processing will result in poor stability and 
increase in latency. To circumvent these issues distributed 
data compression could be employed to reduce the amount 
of data transmission, and distributed computations to reduce 
the computational load on site [58].  

The existing MIMO localization methods together with 
this  work are listed in Table IV. The localization errors are 
indicated as mean, RMS, position error bound (PEB) and 
probability of sub-meter accuracy. 

V. CONCLUSION 
This paper has proposed a joint TDOA/FDOA estimation 

approach with MU-MIMO HB for mmWave V2V 
localization. At 10 dB SNR both SM and BF result in 
comparable localization errors.  At lower SNR values, SM 
leads to larger errors compared to BF due to spurious peaks 
in the CAF. Due to the non-linear nature of the involved 
state-space models, the accuracy of estimation and tracking 
can be improved by employing an extended Kalman filter, 
resulting in a localization RMS error of ~6.3 m. The 
proposed technique resulted in a smaller user range error 
than the broadcasting GPS signal standard of ≤7.8 m with a 
95% probability given by the US government [59].  

Further efforts to improve the localization accuracy could 
look into the optimal user pairing strategy. Due to different 
propagating conditions, users will have different data quality 
as the geometry between users and the emitter plays a key 
role in determining the location accuracy. Pairing strategies 
and the trade-off in terms of accuracy and timeline 
requirements could be quantified. Strategies for optimal 
pairing and network load balancing could be employed with 
machine learning/AI and integrated to improve localization 
accuracy further.  
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