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Abstract

This paper presents an implementation process model for designing and implement-
ing tasks that provide formative feedback in the online learning environment of math-
ematics classrooms. Specifically, the model operationalises components of Vergnaud’s 
notion of scheme. The implementation process model features a task sequence guided 
by controlled variation and a ‘dual scheme idea’. Using such a sequence of tasks, this 
work illustrates how Vergnaud’s notion of scheme can be used to aid teachers in 
hypothesising about their learners’ understanding of problems involving linear equa-
tions, ultimately providing improved feedback for teachers and improved opportuni-
ties for student learning in online environments. In Denmark, the online environment 
matematikfessor.dk is used by approximately 80% of Danish K-9 students.
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1	 Introduction

This paper presents the process of developing a framework for implementing 
formative feedback for teachers engaging in online learning environments. 
Online learning environments can play a significant role in the implementa-
tion of research-based knowledge in the classroom, as online learning envi-
ronments are capable of providing feedback directly to end users, teachers 
and students (Dyssegaard et al., 2017). In addition, these environments can 
produce substantial assessment data with relatively little effort from teachers. 
However, little research has investigated how online learning environments 
can best provide feedback to enable teachers to provide effective feedback to 
their students. There is an extensive research base on how diagnostic tasks per-
formed and why the tasks are believed to be sensible choices for exploring cer-
tain areas of difficulty in learning mathematics (Rhine et al., 2018). However, 
few papers have systematically addressed the considerations or design prin-
ciples underlying the construction of diagnostic tasks to provide relevant feed-
back to teachers.

1.1	 The Promise of Online Learning Environments for Mathematics 
Education

Online learning environments allow teachers, students themselves or ‘intelli-
gent systems’ to tailor the content in the environment to the learning needs of 
students, and these environments can dynamically assign tasks based on stu-
dents’ previous responses (Steenbergen-Hu & Cooper, 2013). Moreover, these 
environments can ‘mark’ students’ responses almost immediately, thus provid-
ing automatic feedback to both students (Cavalcanti et al., 2021) and teachers 
regarding students’ individual and group performance.

However, the process of providing high-quality feedback is not straightfor-
ward. Typically, the user is allowed only certain input types: multiple-choice 
items or numbers. As a result, most of the tasks in online learning environ-
ments are closed. Inferring students’ mathematical understanding from such 
tasks can be difficult because a correct answer may be the result of incorrect, or 
only partially correct, reasoning. This becomes a significant constraint in task 
design, particularly when working with algebraic expressions, as it is not pos-
sible to prompt students for an algebraic expression without presenting them 
with a multiple-choice option. One possible solution is for the task designer to 
create distractors that can be set as viable multiple-choice options. Preferably, 
such distractors would be chosen based on scientific or experimental find-
ings that qualify the option as a good distractor if it indicates a particular dif-
ficulty or well-known misunderstanding. However, even good distractors have 
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limitations since it is usually not possible to probe student thinking to infer a 
student’s reasoning behind a particular response.

As online learning environments become more ubiquitous, it is crucial to 
develop an explicit understanding of the process of designing tasks for imple-
mentation in online environments to enable and support teachers’ applica-
tion of the ‘big idea’ in formative assessment to better their teaching practices 
(Black & Wiliam, 2009).

1.2	 Matematikfessor.dk: The Context for This Paper
Matematikfessor.dk, the environment discussed in this paper, has been running 
in Denmark for over 10 years, and approximately 80% of Danish schools are 
subscribers to their services. In Denmark, there are approximately 700,000 stu-
dents in primary school and lower secondary school combined. On an average 
day, Danish students provide answers to around 1.5 million tasks on matema-
tikfessor.dk. This means that in a Danish school year, on average, 250 million 
tasks are provided with answers on matematikfessor.dk. Online learning envi-
ronments, such as matematikfessor, therefore have access to a large amount of 
data and can potentially provide valuable feedback to teachers regarding the 
difficulties that students encounter in learning mathematics. Matematikfessor.
dk provides students with feedback and suggestions on how a task could have 
been completed if a wrong answer was given. However, like many other online 
learning environments, student responses are limited to multiple-choice or 
numeric inputs.

2	 Formative Assessment and Related Issues

There is a great deal of evidence that formative assessment can have a posi-
tive impact on learning (Black & Wiliam, 1998). Indeed, formative assessment 
is one of the most widely adopted teaching and feedback provision strategies 
worldwide. However, attempts to promote formative assessment have often 
resulted in teachers facing substantial difficulties implementing these ideas 
(Smith & Gorard, 2005). To help address this implementation problem, Black 
and Wiliam (2009) proposed five key strategies to support teachers in enact-
ing the ‘big idea’ of formative assessment: ‘evidence about student learning is 
used to adjust instruction to better meet student needs — in other words, that 
teaching is adaptive to the student’s learning needs’ (Wiliam & Thompson, 
2007: p. 15). The relationships between these strategies and different aspects of 
formative assessment are illustrated in Figure 1.
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Figure 1	 Aspects of formative assessment
adapted from Black & Wiliam, 2009: p. 8

In this paper, we mainly focus on Strategies 2 and 3, which spotlight feedback 
for teachers with the purpose of improving future learning situations for stu-
dents. These strategies engineer items that elicit evidence of student under-
standing for teachers and thus support teachers in providing feedback that 
helps students advance forward.

In a critical review of Black and Wiliam’s (1998, 2009) approach to forma-
tive assessment, Bennett (2011) identified six issues with the implementation 
of formative assessment in the classroom, of which four are relevant to our 
analysis: the definitional issue, the domain dependency issue, the measurement 
issue and the professional development issue.

Bennett’s definitional issue refers to two contrasting views of formative 
assessment as an instrument or a process. The instrumental view, common 
among test publishers and many online learning environments, posits that 
formative assessment is a test that produces a score or set of scores that has 
‘diagnostic value’. In contrast, the process view, the focus of this paper, sees 
formative assessment as producing insights into student understanding that 
can ‘actually [be] used to adapt the teaching to meet student needs’ (Black & 
Wiliam, 1998: p. 140).

In highlighting the domain dependency issue, Bennett (2011) argued that 
eliciting evidence and providing feedback requires an understanding of math-
ematical learning and development that goes far beyond the generic. To do 
this, teachers need a ‘reasonably deep cognitive-domain understanding  … 
includ[ing] the processes, strategies and knowledge important for proficiency 
in a domain, the habits of mind that characterise the community of practice 
in that domain, and the features of tasks that engage those elements’ (Bennett, 
2011: p. 15).
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In focusing on the measurement issue, Bennett argued that assessment is 
not simply a process of observing students’ responses and noting errors or 
difficulties. Rather, it is an inferential process that requires teachers to have 
substantial knowledge and expertise that enables them to make productive 
‘formative hypotheses’ and then to act on these. Bennett (2011) argued that this 
may involve engaging with the student to probe why the student gave a par-
ticular answer. Additionally, the teacher could provide more tasks that attempt 
to determine a pattern in the answers consistent with the hypothesis.

It is worth noting that the generation and testing of hypotheses about 
student understanding is made stronger to the extent that the teacher 
has a well developed, cognitive-domain model. Such a model can help 
direct an iterative cycle, in which the teacher observes behaviour, for-
mulates hypotheses about the causes of incorrect responding, probes 
further, and revises the initial hypotheses. In addition, if the underlying 
model is theoretically sound, it can help the teacher discount student 
responding that may be no more than potentially misleading noise (e.g., 
slips that have no deep formative meaning).

Bennett, 2011: p. 17

The final issue that Bennett raised was the professional development needed 
for teachers to develop the ‘substantial knowledge [required] to implement 
formative assessment effectively in classrooms’ (Bennett, 2011, p. 20). In this 
paper, our focus is the design of formative tasks within online learning envi-
ronments that operationalise the components of Vergnaud’s (2009) notion 
of the scheme to enable teachers to better interpret and respond to learners’ 
errors while overcoming some of the issues mentioned by Bennett (2011). In 
a later section, we return to the notion of scheme and the functionality of its 
components, as well as how these might serve as guidance in designing formu-
lations of tasks that address the mentioned issues.

3	 Research Question

This research was conducted to respond to the following question: How can 
the notion of scheme guide the design of diagnostic tasks for implementation 
in online learning environments, specifically regarding known difficulties with 
the concept of linear equations and the equals sign, to enable teachers to bet-
ter interpret or hypothesise about learners’ difficulties?
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The following sections propose a framework for establishing principles to 
answer the research question. The notion of scheme in the research question 
refers to the work of Gérard Vergnaud, who established the theory of con-
ceptual fields, including the notion of scheme as an important concept (e.g., 
Vergnaud, 2009). We expand on the role of this theory in a later section.

This framework is specifically intended to aid in designing diagnostic tasks 
that enable teachers to hypothesise about their learners’ difficulties. Of spe-
cific interest in this paper are the difficulties related to the properties of the 
equals sign in situations involving linear equations. We further elaborate on 
these properties and difficulties related to students’ comprehension of the 
properties of the equals sign in the following section.

4	 Task Design Principles

This section first introduces some key principles that go into the task design 
and implementation process to address the posed research question, and we 
further elaborate on the notion of scheme and its role in the task design. The 
overarching design principle idea stems from the work by Ahl and Helenius 
(2018) who presented a situation where a student was asked to calculate the 
average speed. The student invoked a scheme seemingly capable of handling 
average speed to some extent but ended up invoking and working with a 
scheme that incorrectly interpreted average speed using an alternative (and 
insufficient) scheme involving a different average, namely arithmetic mean. 
Although the student approached the task with knowledge and procedures 
(a scheme) connected to working with speed, the student ended up applying 
a scheme that handled the inappropriate arithmetic mean. Because the stu-
dent was not able to arrive at a satisfactory solution to the task, he ended up 
invoking another scheme due to the word ‘average’ (in Swedish, as in English, 
the word ‘average’ is used both when discussing average speed and arithmetic 
mean). We believe this observation made by Ahl and Helenius is a vital finding 
and opens up a discussion about how to teach students about situations such 
as this one.

Inspired by Ahl and Helenius (2018), we formulated a sequence of tasks based 
on an initial task that invokes two potential paths to a solution, one expected 
and one preferred. Unlike the situation considered by Ahl and Helenius (2018), 
we aimed to formulate situations (a sequence of tasks) in which the two paths 
to the solution are both viable and should result in a correct answer. To cre-
ate this task sequence, we drew on descriptions of hypothetical (learner) 
responses guided by variation theory (Watson & Mason, 2006; Marton, 2015). 
Applying variation theory (Marton, 2015) when designing tasks for this context 
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makes it possible to meaningfully design a sequence of tasks that may be seen 
as a whole (Watson & Mason, 2006).

When designing such a sequence of tasks, Watson and Mason (2006) pro-
posed the controlled variation of tasks and presented the following elements 
as key factors:

	– Analys[e] of concepts in the conventional canon that one hopes learners 
will encounter.

	– Identif[y] of regularities in conventional examples of […] concept[s] […] 
that might help learners (re)construct generalities associated with the con-
cept. […]

	– Identif[y] of variation(s) that would exemplify these generalities;
	– Decide which dimensions to vary and how to vary them;
	– Construct exercises that offer micro-modelling opportunities, by presenting 

controlled variation, so that learners might observe regularities and differ-
ences, develop expectations, make comparisons, have surprises, test, adapt 
and confirm their conjectures within the exercise;

	– Provide sequences of micro-modelling opportunities, based on sequences 
of hypothetical responses to variation, that nurture shifts between focusing 
on changes, relationships, properties, and relationships between properties. 
(Watson & Mason, 2006: pp. 108–109)

With this task sequence, we created a series of situations through which a 
learner might experience the schematic shift from the expected path to the 
preferred path to the solution. The goal of variation theory in our context is 
to construct the sequence of tasks so that the expected path to the solution 
increases in difficulty while the preferred path to the solution remains equally 
efficient. In our case, the intended shift is an extension of the knowledge of the 
properties of the equals sign. We established variations in situations through 
a sequence of tasks where students would get to experience the substitution 
property of equivalence — that if a = b, then a can be substituted for b, and vice 
versa, in any, to the situation relevant equation. We set up the task sequence so 
that the expected path to the solution would revolve around a scheme guided 
by equation-solving strategies. However, the intention was that the students 
may end up observing the substitution property. Before proceeding with the 
design principles, we discuss some of the difficulties related to the equals sign.

We created this specific sequence of tasks for the contexts of linear equations 
and the equals sign and drew on research on learners’ errors and difficulties 
with these concepts (Kieran, 1981; Jones et al., 2012; Rhine et al., 2018). Several 
programmes have attempted to document specific difficulties in learning 
mathematics. These projects have contributed to the understanding of many 
misconceptions and other obstacles related to learning mathematics (Rhine 
et al., 2018). We adopted the view of Jankvist and Niss (2015) who identified 
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genuine difficulties in learning mathematics as ‘those seemingly unsurmount-
able obstacles and impediments — stumbling blocks — which some students 
encounter in their attempt to learn the subject’ (Jankvist & Niss, 2015: p. 260). 
One kind of stumbling block that many students experience at the beginning 
of lower secondary school or when attempting to learn to solve more ‘abstract’ 
(Vlassis, 2002) linear equations is the role and interpretation of the equals sign 
(Kieran, 1981). Jones et al. (2012) argued that to achieve a better understanding 
of the role of the equals sign, one must learn to substitute one representation 
for a different representation that is equal to the original one. Many strategies 
for solving equations exist and are all sensibly tied to different tasks and/or 
situations. However, at some point, even linear equations can become abstract 
or complicated to the extent where only one strategy is truly viable. Many 
of these strategies, such as ‘guess and check’ or ‘working backwards’, do not 
necessarily require a deep understanding of the role or interpretation of the 
equals sign (Linsell, 2009). However, to apply more advanced equation-solving 
strategies, students must become more flexible in their understanding of the 
equals sign (Matthews et al., 2012; Kieran, 1981; Rhine et al., 2018).

We utilised controlled variation in the construction of each task in the 
sequence. By doing this, we attempted to address the importance of learning 
about the properties of the equals sign mentioned in the previous section. 
This made it possible to develop a meaningful sequence of tasks that could be 
evaluated as a whole. When discussing this sequence of nearly similar tasks, 
Bokhove (2014) suggested that the element of crisis is an important factor. Such 
a crisis occurs when the student completing a range of tasks — or parts of the 
task range — encounters a task that is impossible or nearly impossible to solve. 
This element of crisis resembles a cognitive conflict (e.g., Tall, 1977) or an inad-
equate conceptual field (Vergnaud, 2009). Bokhove and Drijvers (2012) used 
the element of crisis in their variations when designing a sequence of nearly 
similar tasks to show that students attempting to solve a crisis-provoking task 
using strategies appropriate for pre-crisis tasks may result in incompleteness 
because the earlier strategy is inadequate. In a later section, we return to what 
we refer to as the ‘dual scheme idea’, which works implicitly with the element 
of crisis (Bokhove, 2014).

5	 The Notion of Scheme and Its Role in Activity

Vergnaud’s (2009) work demonstrates how the scheme as a concept works 
as an organiser of action or activity when faced with a situation or a class  
of situations:
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[Schemes] describe ordinary ways of doing, for situations already mas-
tered, and give hints on how to tackle new situations. Schemes are adapt-
able resources: they assimilate new situations by accommodating to 
them. Therefore, the definition of schemes must contain ready-made 
rules, tricks and procedures that have been shaped by already mastered 
situations.

Vergnaud, 2009: p. 88

Such a situation or class of situations could be equated to working with alge-
braic expressions or engaging in solving linear equations. If we accept that 
schemes are organisers of an individual’s activity, we can create assumptions 
about students’ schemes by observing their actions in desired situations. Ahl 
and Helenius (2018) claimed that this is why schemes are both didactically and 
analytically more interesting than the idea of conceptual understanding.

Vergnaud (2009) defined a scheme as having four aspects:

The intentional aspect involves a goal or several goals that can be devel-
oped in subgoals and anticipations. The generative aspect involves rules 
to generate activity, namely the sequences of actions, information gath-
ering, and controls. The epistemic aspect involves operational invariants, 
namely concepts-in-action and theorems-in-action. Their main function 
is to pick up and select the relevant information and infer from it goals 
and rules. The computational aspect involves possibilities of inference. 
They are essential to understand that thinking is made up of an intense 
activity of computation, even in apparently simple situations; even more 
in new situations. We need to generate goals, subgoals and rules, also 
properties and relationships that are not observable.

The main points I needed to stress in this definition are the generative 
property of schemes, and the fact that they contain conceptual compo-
nents, without which they would be unable to adapt activity to the vari-
ety of cases a subject usually meets.

Vergnaud, 2009: p. 88, our emphasis on the aspects

Essential to schemes from Vergnaud’s perspective are the operational invari-
ants (the epistemic aspect of schemes) consisting of concepts-in-action and 
theorems-in-action. A concept-in-action is ‘an object, a predicate, or a category 
that is held to be relevant’ (Vergnaud, 1988: p. 168). In every mathematical 
action, we choose certain objects, predicates or categories that are believed to 
be relevant to the current situation or setting. A theorem-in-action is a propo-
sition held to be true. When we engage in a mathematical situation, we believe 
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certain ‘theorems’ to be true or false regarding the objects relevant to the situ-
ation. Vergnaud stated that there is a dialectic connection between theorems 
and concepts, and this emerges from the fact that more advanced mathemati-
cal concepts originate from theorems, and vice versa. Nonetheless, it is impor-
tant to distinguish the cognitive functions of the operational invariants in this 
precise manner. Concepts-in-action are individually available concepts in a, 
for the enactor, relevant representation to the situation. We emphasise that 
Vergnaud’s (1988) interpretation of representation is similar to what others call 
a conception, a concept image or an invoked concept image (Tall & Vinner, 
1981). Concepts-in-action bear no value in terms of logical truth, just relevance 
to the situation. Theorems-in-action are by nature true or false. These enti-
ties are sentences (or propositions) that provide the concepts with the pos-
sibility of inferences taking place. The rules of action are not to be confused 
with theorems-in-action. The function of the rules of action (the generative 
aspect of the scheme) is to be appropriate and efficient, but they rely implic-
itly on theorems-in-action (Vergnaud, 1997). Vergnaud (2009) emphasised that 
schemes are efficient organisers of activity by nature, and should they also 
become effective, the scheme can be considered an algorithm. He further clari-
fied that schemes do not have all the characteristics of algorithms. The effec-
tiveness of algorithms allows them to find a solution to a task using a finite 
number of steps (if a solution is possible).

6	 Implementation of the ‘Dual Scheme Idea’ in a Sequence of Tasks

This section presents the task design and the reasoning behind it. The sequence 
of tasks was generated using the principles of controlled variation (Watson & 
Mason, 2006) based on the ‘dual scheme idea’ with expected and preferred 
paths to a solution. We also present formulations of a task from the sequence 
guided by the four components of the scheme (Vergnaud, 2009). An added 
discussion of the considerations regarding implementation in an online envi-
ronment precedes each task formulation.

As mentioned, we set up a sequence of tasks (situations), of identical form, 
where two different schemes might be in play at the same time. The first line 
in each task can be interpreted as an equation that needs to be solved for the 
unknown value x. The second line in each task presents an expression for eval-
uation based on the knowledge acquired in the first line. However, the solu-
tion to a task from the sequence does not indicate what path (scheme) the 
students might use to obtain the solution. The alternate formulations guided 
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by the components of the scheme should reflect which scheme got the upper 
hand, providing teachers with feedback that can help them generate ‘forma-
tive hypotheses’ regarding their students’ schemes. In some cases, we proposed 
several formulations of the task in an attempt to address different aspects of 
the components of the scheme. We argue that this ‘dual scheme idea’, together 
with the principle of controlled variation, can help task designers better focus 
the intention and purpose of tasks in online learning environments. These prin-
ciples lead to a clearer distinction between the expected and preferred paths 
to a solution and thereby a more explicit articulation of the learning objective. 
We focused the variations on the value of the unknown. This choice stemmed 
from the desire to create a sequence of increasingly more ‘difficult’ tasks based 
on the expected path to the solution where the preferred path remains at the 
original level of difficulty. We remind the reader of the role of the epistemic 
aspect of the scheme. Focused on the operational invariants, this aspect is such 
an essential part of the scheme that it and its elements (concepts-in-action 
and theorems-in-action) inform or are present in the other three components. 
For example, one would simply not be able to establish goals without having 
at least partial access to a concept relevant to the situation — in other words, 
a concept-in-action. The focus of the formulations guided by the components 
of the scheme is on evaluating whether students invoke schemes capable of 
handling substitutions based on equality, or rather, a scheme suitable for solv-
ing equations to solve the task and thus provide teachers with information on 
students’ schemes.

1.	 What number should go into the empty space?
	 3x	 = 9

	 3x + 4 = ___
2.	 What number should go into the empty space?

	 4x	 = 10
	 4x + 3 = ___

3.	 What number should go into the empty space?
	 3x	 = 2

	 3x + 4 = ___
4.	 What number should go into the empty space?

	 3x	 = 11
	 3x + 4 = ___

5.	 What number should go into the empty space?
	 3x	 = −6

	 3x + 4 = ___
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Applying a scheme for handling and substituting equal terms will, in most 
cases, be the ‘easier’ path to the goal of solving the above tasks. The term 3x 
can be treated as an object. An expert equation solver would choose the most 
efficient scheme to solve the task: ‘I know x has a specific value and I could 
easily calculate it, but I do not need to for this task because the object 3x is 
present in both equations’. However, many students believe that such tasks 
need to be solved using the method that they have been taught, and then they 
encounter difficulties implementing it. The sequence of tasks is designed to 
target and isolate these difficulties. The expected path to the solution among 
students involves solving the first equations for x and then substituting the 
value of x into the second equation, allowing them to do calculations to fill in 
the empty space.

In Task 1, a lower secondary school student might look at it and just ‘know’ 
the value of x (Linsell, 2009) or simply ignore the letter (Küchemann, 1981). In 
our experience, many students in lower secondary school become able to read 
an equation, such as the top equation in Task 1, and imagine it as a command 
that sorts out the value of a spot in a multiplication table. Traditionally, stu-
dents around the world would be familiar with tasks such as 4 + 3 = ___, where 
the goal is simply to fill in the empty space, and they would do so by adding 
the numbers on the left side of the equals sign. Similarly, students would have 
experienced tasks such as 3 ⋅___ = 12, having worked with all four basic oper-
ations. The difference in this task sequence, and a difference one should be 
aware of, is the missing multiplication symbol between the coefficient and the 
unknown. From previous work, we know that expressions such as 3x are easily 
misinterpreted by students (Rhine et al., 2018).

In Task 2, a lower secondary school student might still be able to guess/
know the value of x. However, if the student is not comfortable or familiar with 
the idea that non-integer numbers could be solutions to an equation, such as 
the ones presented in this context, the student would have to alter their strat-
egy based on this crisis or cognitive conflict. The coefficient to x is not a true 
divisor of the number to the right of the equals sign. This does not necessarily 
mean that a student in lower secondary school does not know or is able to 
guess the value of the unknown.

In Task 3, we go a step further. To determine the value of x, the student 
should be comfortable with numbers between 0 and 1. If the student is also 
uncomfortable with fractions, they would end up with an infinite decimal 
number. We expect that most students will experience difficulties knowing or 
guessing the value of the unknown at this stage.

Task 4 is in many ways like Task 3. However, in this task, the students solving 
the equations deal with an improper fraction or an infinite decimal number.
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Task 5 changes the situation a little bit. As a final task in the sequence, we 
let the unknown be a negative number. Vlassis (2002) demonstrated that lin-
ear equations become significantly more difficult when they involve nega-
tives. In this task, we chose not to have the coefficient take a negative value 
because this might make the task more difficult than having the multiplication 
result in a negative number and because we wanted to simply vary the value 
of the unknown.

The common idea among all these tasks is that if students can take the pre-
ferred path by substituting the right side of the top expression for the term 
with the unknown in the bottom expression (in the first tasks, substitute 3x for 
9), our assumption is that most secondary school students can then straight-
forwardly solve the task sequence. As mentioned, the tasks were designed so 
that a ‘correct’ answer might obscure some difficulties related to linear equa-
tions and substitution and therefore are items that generate answers that may 
be misinterpreted by teachers. If students are more inclined to determine the 
value of x, because that is what is ‘expected’ when faced with linear equa-
tions, then they might face, as the difficulty of solving the equations increases 
through the sequence due to the way the numbers were chosen. Each task 
becomes gradually more difficult if a student attempts to calculate the value 
of the unknown number x. We realised that the students could reach a frac-
tion as the solution in every task. To solve the task (finding the number that 
should go in the empty space), students would first have to do the division and 
end up with increasingly more complex fractions. The same number that just 
served as the divisor should then be multiplied onto these fractions, resulting 
in the same number that served as a dividend. However, if students pursue 
this path and do not preserve the fraction, multiplication could lead to tricky 
situations dealing with infinite decimal numbers. In addition, a student able to 
solve the sequence of equations for x (accepting fractions as solutions) should 
eventually realise that, when inserting the value of x in the second line, they 
will arrive at the same number that was just on the right side of the first equa-
tion and begin to make inferences about substitutional properties.

In matematikfessor.dk, tasks must meet certain criteria regarding structure 
and user input types. The input types are restricted to inputting either a num-
ber or multiple-choice selection. Each task must have a unique ‘right answer’ 
and must be presented in such a way as to make immediate feedback possible. 
The tasks presented in this paper are suited for formative and educational 
purposes rather than training exercises, a categorisation that pertains to many 
other short-in-formulation equation-solving tasks.

Before we present the formulations guided by the components of the 
scheme, we emphasise our methodological intention for future teachers 
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working with the task sequence and the formulations based on it. With the 
overall aim being the implementation of new possibilities for formative feed-
back for teachers using online learning environments, the intention of this 
framework is not to leave the teachers without any instructions associated 
with the task sequence. When working with a task sequence designed using 
hypothetical responses to variations that nurture shifts between focuses, lead-
ing to potential new learning (adaptations in schemes), teachers are provided 
with a clear common learning goal. Therefore, working with task sequences, 
such as the above, can lead to possibilities for classroom discussion of the dif-
ferences in paths to solutions the students might have taken. Alternatively, 
the task formulations guided by the components can help teachers hypoth-
esise about learners’ schemes and formulate a basis for classroom discussion. 
In our opinion, the latter provides teachers with an opportunity to work with 
schemes and their components as a more practical tool for teaching problem-
solving or engaging in mathematical situations in general.

6.1	 Using the Components of the Scheme as a Guide for Asking 
Formative Questions

With the sequence of tasks established, we now present alternate formulations 
guided by the components of the scheme. In the following sections, we go 
through the four components (intentional, generative, epistemic and compu-
tational) to make alternative formulations of the tasks from the sequence that 
enable teachers to hypothesise about their students’ schemes and difficulties.

6.2	 Setting ‘Goals and Anticipations’ (the Intentional Part  
of the Scheme)

Under this category, we present formulations where setting a goal for or antici-
pation of the task forms the solution. Before choosing a strategy to arrive at a 
solution, one must set a goal for what solves the task and what is expected to 
arrive at a solution. In this intentional aspect of the scheme, one also estab-
lishes what the task (the situation) anticipates and what one anticipates from 
the situation. In many cases, one could expect that, when confronted with a 
task containing a linear equation, finding the unknown value would be cru-
cial. We propose that when focusing on the goals and anticipation part of the 
scheme, the task could be formulated as follows (we demonstrate this by using 
the values from initial Task 4):

Is it necessary to know the value of x to fill in the empty space?
	 3x	 = 11

	 3x + 4 = ___

Downloaded from Brill.com05/24/2022 04:18:35PM
via University College London



35Operationalising Vergnaud’s Notion of Scheme

Implementation and Replication Studies in Mathematics Education 2 (2022) 21–44

Alternative wording could be as follows:

Is it beneficial to know the value of x to fill in the empty space?
Would the task be much easier if you knew the value of the unknown x?

Goals and rules are set and established based on the concepts-in-action and 
the theorems-in-action (the epistemic aspect of the scheme). Whether a stu-
dent takes note of the equality between 3x and 11 and the fact that the term 
3x is present in both equations as relevant information (concepts-in-action) 
could indicate whether they are capable of substituting the term 3x for 11 in 
the two equations. Should students not choose the substitutional link between 
the two equations to be relevant, we expect that they would argue that they 
would like to know the value of x to fill in the empty space. One might argue 
that the goal of the task is blurred by the new formulations, since there is an 
empty line ‘begging’ for a number to be put on it, but the task is answered by a 
simple yes or no. However, for the purpose of providing feedback to teachers, 
following our intention to focus on learning according to Strategies 2 and 3  
(Black & Wiliam, 2009), teachers might learn about their students’ schemes 
with this formulation as opposed to just receiving a correct or incorrect answer 
from students filling in the empty space.

The students might expect that if the unknown value were provided, the 
value would ‘make sense’ to the situation and therefore be a small natural 
number because the numbers present are such. Even if a student were to 
choose to answer yes to one of the formulations, the student would most likely 
not expect to be provided an improper fraction as the value of the unknown.

6.3	 Applying ‘Rules of Action’ (the Generative Part of the Scheme)
Working with this component of the scheme, we attempted to uncover the 
rule, or strategy, that students would apply to solve the tasks considering the 
two schemes. As mentioned in the above category, operational invariants 
help set the goal or apply rules. After the student has established a goal and/
or anticipations, the student can choose appropriate rules to generate action. 
When forming a rule or a strategy to solve a task, theorems-in-action might 
be more in focus. Therefore, we formulated the task not in terms of concept 
relevance but rather in theorems-in-action that lead to rules of action. To con-
firm that the first equation presented in each of the initial tasks (e.g., 4x = 10) 
is in fact important in filling in the empty space, we propose a formulation of 
the tasks that hints at what ‘path to the goal’ a student would rather choose: an 
equation-solving strategy or a substitution of equal terms strategy.
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How is 3x = 11 important in filling in the empty space?
	 3x	 = 11

	 3x + 4 = ___

1)	 Because 3x and 11 can be substituted in both lines.
2)	 Because it lets me calculate the value of x.
3)	 Another reason.
4)	 It is not important.
In this formulation, the teacher will get a slightly different view of what path a 
student wants to choose. A further formulation of the task focused on rules to 
generate action could appear as follows:

How would you attempt to find the number that goes in the empty space?
1)	 I would find the value of x.
2)	 I would substitute 3x for 11.
3)	 I would do something else.
4)	 I don’t know.
If the scheme(s) upon which the student is drawing are only able to apply the 
rule of action to determine the value of the unknown, the teacher can be pro-
vided with valuable information. In this way, a teacher gets a different per-
spective on essentially the same task but in a different formulation and with a 
different focus or aim. The rules of action might differ when students engage 
with the formulations of the different tasks from the sequence due to the 
increased difficulty when applying an equations-solving scheme.

6.4	 Handling Information with ‘Operational Invariants’ (the Epistemic 
Aspect of the Scheme)

With this category, we enter the more complex part of the scheme. 
Concepts-in-action are concepts relevant to the student engaging in the task, 
while theorems-in-action are propositions held to be true in a given situation. 
Therefore, we were careful not to change the situation when we created formu-
lations that attempt to engage with either theorems or concepts related to the 
task sequence. We remind the reader that in the epistemic part of the scheme, 
these operational invariants are in play as an underlying aspect of the other 
parts of the scheme. However, we find it fit to ask questions regarding the rel-
evance of objects or questions regarding the truth value of statements in an 
attempt to uncover the structure of students’ schemes. We begin by address-
ing the theorem that applies when solving Task 4 to observe whether students 
might agree to it.
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Is it true that the number that goes on the empty line is 4 more than 11?

Another way to address this matter could be via a multiple-choice question:

Can ‘3x’ simply be thought of as another way to write ‘11’?
1)	 Yes, because that’s what the equals sign means.
2)	 No, because it says that 3 multiplied by some number makes 11.
3)	 I think both 1 and 2 sounds correct.
4)	 I do not agree with either 1 or 2.
Or,

Is it okay to substitute 3x with 11 in the two lines/equations in the task?

When working with concepts-in-action, we attempted to address the relevance 
of the objects present in the task. It can be very tricky to ask questions about 
the relevance of a concept in a given situation. We remind the reader that, 
in this context, the aim is to assess what students consider relevant objects/
concepts.

Is it okay not to care what the value of the unknown is when filling in the 
empty line?

If the scheme(s) upon which the student is drawing are only able to determine 
what number that go into the empty space by performing calculations with the 
value of the unknown number, we expect students not to instinctively agree 
with such statement.

6.5	 Generating Space for ‘Possible Inferences’ (the Computational Aspect 
of the Scheme)

In this last example, we attempt to address the computational part of the 
scheme with another formulation of the initial task. Specifically, this formula-
tion aims to determine whether a student makes inferences about the element 
3x when they compare it to a similar-looking task, but where the scheme for 
solving equations should be rendered useless because 3x has been replaced by 
a blue box.

Does the same number go into the empty space in both tasks?
	 3x	 = 11

	 3x + 4 = ___
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	 	 = 11
	  + 4 = ___

If a student does not see the similarities between the two tasks and uses a 
scheme to solve equations by working with the leftmost task and substitut-
ing the blue box and the number 11 in the rightmost task, the student might 
become suspicious. One might expect the student to wonder why this is the 
case or why the tasks perform differently, yet so similarly. A different formula-
tion could therefore be as follows:

Is it surprising that the same number goes into the empty space in both 
tasks?

The reason for wording the task this way is to establish a cognitive conflict (an 
element of crisis) in students who are surprised that 15 is the correct number 
for both empty spaces. This formulation attempts to create a link to a scheme 
we consider to be like the scheme capable of substituting mathematical equal 
terms by introducing the task with the blue box.

Another idea is to flip the situation to observe whether the student is willing 
to infer.

Is it equally difficult to fill in the empty space in both tasks?
	 3x	 = 11

	 3x + 4 = ___
	 3k + 4 = 15

	 3k	 = ___

The task on the right-hand side resembles a more ordinary equation-solving 
situation since the second line presents fewer terms than the first.

7	 Discussion

This paper explored the considerations and reasoning behind an implementa-
tion process model that can guide diagnostic task design for an online learn-
ing environment using an illustrative exemplar set of tasks. This exercise 
operationalised Vergnaud’s idea of the scheme to enable or improve teachers’ 
opportunities to interpret or hypothesise about learners’ difficulties within the 
constraints of the online learning environment.
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This section presents a more generalised overview of the proposed frame-
work as an implementation process model (Nilsen, 2015). The motivation for 
establishing such model was the desire to explore the potential of asking for-
mative questions guided by components suitable for online environments. 
Another part of the motivation stemmed from Bennett’s (2011) critical review 
of formative assessment, which identified six major issues with managing or 
implementing formative assessment in schools. We set out to address three 
of the major issues, namely the measurement issue, the domain dependency 
issue and the definitional issue. In the following, we present our condensed 
implementation model before going into a discussion of how this model 
addresses the three mentioned issues with formative assessment.

7.1	 Implementation Process Model
The first step in our model is to establish the task sequence based on an impor-
tant property or difficulty in mathematics. In this paper, we looked at the prop-
erty of the equals sign. The second part of the implementation process model 
involves transforming the task sequence into questions guided by the compo-
nents of the scheme. This adds a different layer of variation.

To create a sequence of tasks for use in online learning environments that 
can improve feedback for teachers and students, we propose the following 
steps as part of the implementation process model:

1.	 Identify regularities in examples of a concept that might help learners 
(re)construct the generalities associated with that concept. This identifi-
cation could be guided by research findings on the difficulties students 
experience in the different subject areas of mathematics education.
2.	 Establish the dual scheme idea with the preferred and expected paths 
to the solution. This step is extremely important as a guide when design-
ing the variations within the task sequence and within the formulations 
guided by the components of the scheme.
3.	 Design a sequence of tasks using controlled variation.

The second part of the implementation process model becomes the frame-
work for transforming the task sequence into questions related to the four 
components of the scheme. This step in the model enables improved feedback 
to teachers working with online learning environments.

4.	 Formulate questions that are related to the individual components 
of the scheme, with an emphasis on involving the dual scheme idea, as 
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the questions strengthen the opportunities for the intended learning 
objective to be successful. Furthermore, these alternate formulations 
enhances the possibilities for teachers to hypothesise about their learn-
ers’ schemes.

The implementation process model is illustrated in Figure 2. The steps on the 
left represent the four steps in the model. The difference in feedback is illus-
trated on the right.

We realise that the ‘dual scheme idea’ does not necessarily encapsulate all 
possible objectives of learning. However, from a teaching perspective, this helps 
control the situations and enables a clear path for instruction when discussing 
how the two different schemes handle the tasks, especially in relation to the 
four major formative assessment issues of measurement, domain dependency, 
definitional and professional development (Bennett, 2011). We believe that we 
are now in the business of providing teachers that use online learning environ-
ments with useful classroom materials that integrate pedagogical, domain and 
measurement knowledge regarding formative assessment.

Regarding the definitional issue, Bennett (2011) argued that seeing forma-
tive assessment as a process or a test/instrument is an oversimplification. If 
formative assessment were to be thought of as an instrument, Bennett argued 
that a carefully developed, research-based instrument is still unlikely to be 
effective in instruction if the process surrounding its use is flawed. When work-
ing with online learning environments that operationalise the components of 
the scheme as in our model, we get a step closer to creating an instrument with 
a functioning process supporting it.

In our implementation process model is a designed framework that accom-
modates for the measurement issue. This issue might also be the most tangible 
of the three issues discussed here. The task design, considerations and ideas 

Figure 2	 Diagram of the implementation process model
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behind the implementation process model have been discussed. The next step 
is to gather feedback from teachers and study teachers’ use of this model.

Finally, the use of the components of the scheme enabled us to address the 
domain dependency issue. Asking questions using the components can pro-
vide a deep cognitive-domain understanding that has the potential to reveal 
general principles, strategies, techniques and knowledge important for profi-
ciency in mathematics.

7.2	 The What, How and Why
In this paper, we considered just one sequence of tasks to demonstrate how the 
four components of Vergnaud’s idea of the scheme can be operationalised to 
support teachers in formatively assessing students’ understanding within the 
constraints of an online learning environment. The intentional aspect relates 
to what needs to be done to solve the task or what is expected of the student 
as they attempt to reach the anticipated goal. The generative aspect relates 
to how expectations are met or how progress is to be made in the situation. 
Finally, the computational aspect relates to why the desired goal is achieved 
or why new connections to other schemes or concepts make sense or might be 
established. We have intentionally left out the epistemic aspect of the scheme 
in this section since the epistemic is such an essential part of the scheme and 
will be present when working with the other components. We argue that this 
resembles how clarifying questions asked by teachers should always take form.

The what, how and why might potentially contribute to the shared or agreed 
upon theory of change, understood as such that all stakeholders involved with 
the chain of implementation, so to speak, agree on the framework (Jankvist 
et al., 2021). This understanding can thereby strengthen the implementability 
of the tasks, as the idea of respecting the what, how and why among teach-
ers using this framework with online learning environments will be shared 
(Jankvist et al., 2021).

8	 Concluding Remarks

The next steps for the implementation process model include implement-
ing the model in the design of further tasks in online learning environments, 
such as matematikfessor. It is also important to examine whether, and how, 
the resulting tasks actually enable teachers to hypothesise about their learners’ 
schemes. We used Vergnaud’s components of the scheme to demonstrate how 
an array of exemplar items can be designed to distinguish between the differ-
ent schemes that students use to tackle a task.
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We believe that Vergnaud’s components provide a productive approach 
to describing students’ math-related actions to teachers. We also believe that 
online environments, such as matematikfessor, could help implement this for 
many teachers. However, our paper highlights an urgent need for work on task 
design for online environments such as matematikfessor. One affordance of 
working with online environments is that teachers, as well as students, can get 
easy access to feedback. However, we do not claim that the task of creating a 
task sequence, such as the one presented in this paper, is necessarily easy. We 
do, however, believe that this could also be considered an advantage of online 
learning environments. With professional task designers and a framework for 
generating tasks with added formative feedback, task sequences might benefit 
teachers in planning future lessons.

Further steps include the design of additional task sequences in different 
areas of mathematics education. These sequences of tasks, alongside formula-
tions using the components of the scheme, should then be implemented in an 
online learning environment, such as matematikfessor. Then, a study exam-
ining teachers’ experiences with the formulations of the sequences using the 
components of the scheme should take place. Getting feedback on not only 
the interpretational potential and effect but also the way the teachers go about 
operationalising the feedback they receive from using the formulations is 
important. Knowledge sharing and feedback from teachers using the tasks will 
pave the way for the sensible implementation of a range of sequences of tasks.
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