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ABSTRACT
By varying the concentration of molecules in the cytoplasm or on the membrane, cells can induce the formation of condensates and liquid
droplets, similar to phase separation. Their thermodynamics, much studied, depends on the mutual interactions between microscopic
constituents. Here, we focus on the kinetics and size control of 2D clusters, forming on membranes. Using molecular dynamics of patchy
colloids, we model a system of two species of proteins, giving origin to specific heterotypic bonds. We find that concentrations, together with
valence and bond strength, control both the size and the growth time rate of the clusters. In particular, if one species is in large excess, it
gradually saturates the binding sites of the other species; the system then becomes kinetically arrested and cluster coarsening slows down or
stops, thus yielding effective size selection. This phenomenology is observed both in solid and fluid clusters, which feature additional generic
homotypic interactions and are reminiscent of the ones observed on biological membranes.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0087769

I. INTRODUCTION

Phase separation phenomena are widely present in cells.1,2

When concentrations of certain biochemical species exceed a thresh-
old, condensates start to form, which bring together one or more
macromolecules present in the cytoplasm. The stability of these
condensates relies on the mutual interactions between the species
involved: interactions can be either generic, as for proteins’ intrinsi-
cally disordered tails coming together because of hydrophobicity, or
specific, as for amino acid groups that form physico-chemical bonds
only with given other groups.3–6 In addition, attractive interaction
or binding can occur between two specimens of the same species
(homotypic interaction) or between different species (heterotypic
interaction). Much progress has been made in understanding the
phase diagrams of many of these systems, which determine whether
the mixed or the demixed phases are stable at equilibrium, both from
the experimental and the theoretical point of view.7,8

Condensates, or clusters, of biomolecules not only form in
the cytoplasm, but also on two-dimensional membrane surfaces.9–13

This occurs when at least one of the species involved is embedded

in the membrane: for instance, the clustering of transmembrane
protein LAT (Linker for activation of T cells) activates signaling to
produce cytokines when T-cell receptors are exposed to an anti-
gen,10 while protein Whi3 in fungi condenses with RNA on the
endoplasmic reticulum.11

Increasing density is often assumed to promote the creation of
a dense phase, thus favoring phase separation. However, re-entrant
behavior of the dense phase with respect to the concentration has
been observed in several phase-separating systems, suggesting that
increasing the concentration of a given species does not necessar-
ily promote the formation of large assemblies. While, in some cases,
there appears to be an electrostatic-related change in the inter-
actions,14–16 in others, the effect seems to be fully stoichiometric17–20

and most likely functional.21

Computational work on biological condensates has built upon
various models, ranging from simple lattice models22,23 to off-
lattice coarse-grained polymers,24,25 stickers and spacers,26,27 or
patchy colloids.18–20,23,28,29 In many studies, though, self-assembly
is represented within the scaffold-client context, which assumes the
existence of a set of proteins (scaffold) that can alone phase-separate
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through homotypic interactions.2,20,29,30 Many systems correspond
to this description, but others - especially in 2D - do not and fea-
ture mainly specific heterotypic interactions,3,6,18 which are possibly
of considerable strength.5

While a large effort has been directed toward the understand-
ing of the thermodynamics of phase-separating systems, the kinetics
of aggregation, namely, the mechanisms of growth and coarsen-
ing of clusters, have been studied less. Predictions often rely on
classical kinetic theory,31–36 oblivious of biological systems’ speci-
ficity, and whose validity needs to be tested on a case-by-case basis.
In a dynamic environment such as that of a cell, where thermo-
dynamic equilibrium is rarely reached, a better understanding of
aggregation kinetics could provide new tools to extract information
on the microscopic components from macroscopic experimental
observations.11,19,37–40

In this paper, we study the kinetics of aggregation of a binary
mixture with heterotypic interactions. The two species, which we
name A and B, represent two kinds of proteins that can freely diffuse
in a 2D environment, such as a biological membrane. We describe
such proteins as patchy colloids, endowed with binding sites that can
form bonds with binding sites of the opposite species (Fig. 1): an
A and a B particle can form a bond, but two A or two B particles
cannot. By geometrical constraints, bonds are exclusive, meaning
that a bond cannot connect more than two binding sites and a bind-
ing site already participating in a bond cannot engage in a second
bond. The number of binding sites of either species is the valence,
which we denote by qA and qB. For simplicity, we restrict ourselves
to the equal-valences case, qA = qB = q. We study a range of inte-
ger valences q (between 3 and 5), a range of concentration ratios
between B and A particles, and a range of different bond energies.
For each system, at given values of valences, concentrations, and
bond energy, we perform Molecular Dynamics (MD) simulations
and observe the self-assembly of clusters of A and B particles of vari-
ous compositions and sizes. We find that the concentration, valence,
and bond strength influence the rate of coarsening of the cluster and,

FIG. 1. Sketch of particles of type A (light blue) and type B (dark blue) for valence
q = 3, 4, and 5. The big disks, of radius σ, represent volume exclusion. Patches on
A particles interact only with patches on B particles: when two interacting patches,
of radius 0.1σ, superimpose, the energy gain is maximum and equals −ε. The
dashed lines delimit the interaction area, of radius 0.3σ: two patches attract each
other only if their interaction areas intersect. See Sec. II for details.

in particular, can drive the system to a kinetically arrested state,
effectively resulting in cluster size selection.

II. METHODS
In our model of patchy particles, volume exclusion between

particles is enforced through the Weeks–Chandler–Anderson
potential,

U0(R) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ε0[(
σ
R
)

12
− 2( σ

R
)

6
+ 1] if R < σ,

0 if R ≥ σ,
(1)

where R is the distance between the centers of the two particles,
σ is their diameter, and ε0 is chosen to be equal to 10kT. The
potential U0 is purely repulsive and a standard choice when mod-
eling volume exclusion. Patches are represented by ghost atoms that
move rigidly with the particle; they are positioned at a fixed angular
distance of 360○/q from each other (as in Fig. 1) and at a radial
distance of 0.475σ from the center of the particle. Patches on an
A molecule interact only with patches on a B molecule, with the
following attractive potential:

UABpatch(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−ε if r < rin,

−ε cos2 (π
2

r − rin

rout − rin
) if rin ≤ r < rout,

0 if r ≥ rout,

(2)

where r is the distance between the centers of the two patches, ε
is the bond strength and is a parameter that we vary, rin = 0.05σ
is the range within which the interaction energy is strongest, and
rout = 0.15σ is the range of attraction. We consider that two parti-
cles of type A and B form a bond when they have two patches at
a distance r < rout. The chosen geometry and parameter values for
ε0, σ, rin, and rout finely prevent an A molecule from forming more
than one bond with the same B molecule, and vice versa. To ensure
the rigid motion of the patches with the center of the particle, the
forces acting on the q + 1 atoms of the rigid body are summed to
obtain a force acting on their center of mass and a torque relative to
their center of mass, at each time step.

Simulations are run in the LAMMPS Molecular Dynamics
Simulator41,42 (input scripts are available43) and visualized with
OVITO.44 We simulate a number of A particles, nA, equal to 200
and vary the number of B particles, nB, to produce the desired
concentration ratio. At the beginning of each simulation, parti-
cles are positioned at random sites of a square lattice, defined
such that the density of A particles is always equal to 0.03σ−2.
This value of density is physiologically plausible for transmem-
brane proteins, which often bind to cytoplasmic proteins of variable
density, localized close to the membrane.18 The time step chosen
for the integration of the 2D equations of motion is τs = 0.01τ0,
where τ0 =

√
mσ2/(kT) is the simulation unit of time and m is

the mass of an atom (a whole patchy particle has mass (q + 1)m).
Periodic boundary conditions are applied along both Cartesian
directions. Every simulations is run for 5 × 107 time steps τs, a
time large enough to allow cluster growth and nucleation, when
present. To mimic an implicit solvent, the system is subjected to
a Langevin thermostat of friction coefficient γ = 1m/τ0. Note that
for times much larger than 1τ0 = 100τs, the mass is effectively
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merely rescaling time by a multiplicative factor; hence, comparing
simulations for particles at different q and, therefore, different mass
(q + 1)m is safe, as for the probed valences, the rescaling factor is
always close to 1. Finally, every point in the plots shown is an average
over at least 20 realizations of the simulation, run with different
random number generator seeds.

We analyze selected time steps with a clustering method based
on the computation of an adjacency matrix. The average cluster size
(Figs. 3, 6 and 8) is defined as the number of A molecules present
per cluster, averaged over clusters containing at least 2 A and 2 B
molecules, from several realizations of the simulation. The fraction
of clustered particles involved in one bond only (Fig. 4) is defined
as the proportion of single-bound particles vs the total number of
particles in a given cluster, averaged over all clusters bigger than
30 particles, from different realizations. For all these variables, error
bars represent the standard deviation of the averages.

Clusters are made fluid (this refers only to Fig. 8) by adding to
the repulsive potential (1) an isotropic attraction between A–A, A–B,
and B–B particles, with the following shape:

Ua(R) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−εa if R < σ,

−εa cos2(π
2

R − σ
Ra − σ

) if σ ≤ R < Ra,

0 if R ≥ Ra,

(3)

where R is again the distance between the centers of the two particles,
εa is the isotropic attraction strength, and Ra is the isotropic attrac-
tion range. As described in Sec. III D, the presence of such attraction
allows for cluster formation at lower bond strengths ε. Particles can
then move around and change neighbors, by breaking bonds and
forming new ones, without having to leave their cluster.

III. RESULTS
A. Valence, bond energy, and molar ratio
control cluster size

During the simulations, we observe the formation of clusters of
A and B particles, some of which are represented at the bottom of
Fig. 3. Clusters look roughly crystalline for q = 3 (triangular lattice)

and q = 4 (square lattice), while they have an amorphous structure
for q = 5, in which case volume exclusion forbids that all five bonds
be satisfied. This gives us the opportunity to study the effect of
valence both in crystalline condensates, which are of simpler under-
standing and are akin to bidimensional pathological aggregates,45

and in amorphous condensates, more likely relevant for functional
phase-separation phenomena occurring on the membrane.

We are interested in the effect of stoichiometry on phase
separation; therefore, we fix the number of A particles nA in our sim-
ulation box (whose surface is constant) and vary the number of B
particles nB from 0.25nA to 4nA.

The average connectivity of an A particle, defined as the
number of bonds formed on average by an A particle and ranging
from 0 to q, is represented in Fig. 2 for the last time frame of our
simulations. For all valences, connectivity increases as we increase
the relative concentration of B particles, nB/nA. Indeed, A molecules
cannot condensate alone and need B molecules to act as cross-linkers
between them.

The extent of clustering is completely described by the clus-
ter size distribution, a quantity that has recently received increasing
attraction40,46,47 and that we report in the supplementary material.
For practical reasons, we use here as a probe the mean of such
distribution, computed at the last time frame of our simulations
(see Sec. II). The effect of the concentration of B linkers on the aver-
age cluster size is represented in Fig. 3, for different values of valence
q and bond energy ε. First, the plots show that clusters do not form
within the simulation time (or do not grow) if the binding energy
is below a certain threshold, depending on q. Such a threshold is ∼8
and 6kT for q = 3 and 4, respectively. This is because, in the dense
phase, the bonds have to provide a certain energy to win the entropy
of the dilute phase: in the bulk, q bonds contribute to such energy,
so the necessary energy per bond is inversely proportional to q. For
q = 5, the threshold bond strength increases back to 8kT, because the
amorphous dense phase is frustrated and exhibits, on average, less
than 4 bonds per molecule. As in 3D, phase separation is, therefore,
naturally enhanced by valence (provided that full valence is physi-
cally achievable) or at least by the effective valence exhibited in the
dense phase.29

Most interestingly, Fig. 3 shows that clustering is non-
monotonic in the concentration of cross-linkers B. This is true at
any q and at any ε above the clustering threshold. Indeed, if there are

FIG. 2. Average connectivity of A molecules, at different binding energy values ε (in units of kT), for q = 3, 4, and 5, at the end of the simulation.

J. Chem. Phys. 156, 194902 (2022); doi: 10.1063/5.0087769 156, 194902-3

© Author(s) 2022

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0087769


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 3. Average cluster size, at different binding energy values ε (in units of kT), for q = 3, 4, and 5, at the end of the simulation. Only clusters bigger than 4 molecules are
counted (see Sec. II). Below, for each valence, snapshots of typical clusters are shown for concentration ratios of 1/4, 1, and 4 (pointed at by vertical lines), and for chosen
ε (indicated by the symbols).

too few cross-linkers, it is impossible to link all A molecules, some
of which will remain free. Increasing the molar ratio nB/nA, up to 1,
thus promotes both A connectivity (Fig. 2) and cluster size (Fig. 3).
However, if cross-linkers are overabundant, they compete for bind-
ing sites on A molecules and end up filling all of them. It becomes
then impossible for an already bound B molecule to find an empty
binding site from another A molecule so that A molecules become
coated by B molecules and cross-links do not form (see the clus-
ter snapshots in Fig. 3). The average cluster size decreases, while A
connectivity tends to saturate to q. A signature of this phenomenon
is the average fraction of capping particles within a cluster, i.e., the
proportion of clustered particles that are involved only in a single
bond: this number is minimum at nB/nA = 1 and increases as the
molar ratio deviates from 1 (Fig. 4).

In Figs. 3 and 4, the non-monotonic behavior is more pro-
nounced at strong than at weak binding ε. This is because at strong
binding, bonds are irreversible and as soon as a full B cap forms
around two given A molecules, no link will ever form between them.
Instead, when binding is weak, caps have a finite lifetime and B
molecules can detach, thus allowing, to some extent, for bond reor-
ganization and formation of new links; this favors the formation
of larger clusters and of a proper dense phase. In other words, the
cluster size is non-monotonic not only in the molar ratio nB/nA, but
also in the bond energy ε (at least far from the equal molar ratio):
if ε is too low, clusters do not form because the energy gain is not
sufficient to overcome the higher entropy of the dilute phase, but if
ε is too large, the system gets stuck in a state where capping prevents
coarsening.

Particular attention needs to be devoted to the equal concen-
tration case, where we observe a non-monotonicity in the cluster
size with ε as well. Such a phenomenon is analogous to magic-
number effects reported in previous studies of many 3D systems or
models,22–25 where fine tuning of valence and/or concentration can
cause major variations in the condensate properties. This is shown
in Fig. 2, particularly in the q = 4 and 5 cases, where connectivity is
enhanced at nB/nA = 1 for intermediate bond strengths ε, but ham-
pered for low or strong ε. This is again because lower ε allows for

FIG. 4. Fraction of clustered particles involved in one bond only, at the end of the
simulation, for q = 4, at different binding energy values ε (in units of kT). Valences
q = 3 and 5 exhibit similar behavior.
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more bond reorganization; indeed, clusters at intermediate ε appear
more compact and with fewer defects (see the clusters snapshots in
Fig. 2 at different bond strengths). This is particularly important at
equal molar ratios, when, due to the limited amount of B, full A con-
nectivity can only be reached if no defects are present in the dense
phase and the cluster is as compact as possible. At nB/nA ≫ 1, this
phenomenon is not relevant anymore, because the linker B is over-
abundant and A sites can be saturated anyway, by forming small
B-coated clusters as described above; in such a case, lower ε just
means a lower bond lifetime and, thus, lower A connectivity (as
shown by the right-hand-side parts of the panels in Fig. 2).

B. Arrested state or thermodynamic equilibrium?
One might wonder whether the fully saturated state we observe

at large concentration ratios is due to kinetic arrest or is a ther-
modynamic minimum. To gain physical intuition, we compare the
free energy of two limit states, sketched in Fig. 5. For simplicity,
we discretize space: while making predictions more qualitative than
quantitative, this largely simplifies free energy estimates. We imag-
ine V sites, filled by a number nA of A particles and a number nB >
nA of B particles; the remaining sites are left empty. We restrict to
the case q = 3 or 4, corresponding to a regular lattice: this avoids the
geometrical complications related to amorphous clusters (q = 5).

A limit state (state I) is the one featuring one maximally
connected, giant, round cluster with nA A particles and ∼ nA B par-
ticles, while ∼ nB − nA B particles are free (i.e., they form the dilute
phase). Its free energy, for low densities and strong bonds, can be
approximated as

FI = −qεnA − kT [ln V + (nB − nA) − (nB − nA) ln(nB − nA

V
)]. (4)

The first term in square brackets refers to the translational entropy
of the cluster, while the last two terms represent the translational
entropy of the free B particles.

The second limit state (state II) is the one where all A particles
are fully capped by otherwise unbound B particles, so that the system

FIG. 5. Entropy S of the lattice model, at q = 4, for the two limit cases: I, where all A
particles form a single cluster, and II, where each A particle forms an independent
cluster with 4 B particles.

has nA tiny clusters, each made of 1 A and q B particles, and nB − qnA
free B particles. Clearly, this scenario is only possible if nB > qnA. The
related free energy is approximately

FII = −qεnA − kT [nA − nA ln(nA

V
)

+ (nB − qnA) − (nB − qnA) ln(nB − qnA

V
)]. (5)

The first two terms in square brackets represent the entropy of the
tiny clusters, while the last two represent the entropy of the free B
particles.

Between states I and II, the one with the lower free energy is the
thermodynamically stable one. Note that both states have the same
energy (the first term in both equations) as all A particles have their
binding sites filled, so that entropy tips the scale. Entropy for states
I and II is represented in Fig. 5. The single cluster (solid line) is still
substantially favored at nB/nA = q. At larger nB, the entropic advan-
tage decreases and then reverses. However, the free energies of the
two states remain comparable on the scale of a kT per molecule.

In our definition of state I, we considered the giant cluster to
have a defined (circular) shape. While making the calculation eas-
ier, this eliminates from the count many configurations of equal
energy −qεnA and featuring one single cluster. If we redefine state
I to account for all possible shapes, we can, instead, interpret FI
as a constrained free energy limited to minimal-energy configura-
tions with one single cluster (just like FII is a constrained free energy
limited to configurations with nA clusters). This leads to a new
expression for FI, worked out in Appendix. In short, non-circular
shapes require more B particles to coat the perimeter of the clus-
ter: while enlarging the configuration space for the giant cluster, this
reduces the number of free B particles and, therefore, the associated
entropy. Using results from the statistics of lattice animals,48–51 we
can group configurations by cluster perimeter and find that the clus-
ter of minimal perimeter is the most favorable one, so that Eq. (4) is
still approximately valid for our redefined state I.

Altogether, this suggests that the fully capped state (II), while
prevalent in our simulations, is not necessarily thermodynamically
stable. A kinetic lock likely helps making such a state the observed
one at large concentration ratios.

C. Kinetics of clustering
Prompted by the above considerations, we analyze the kinetics

of clustering, which are likely relevant precisely for the size-control
mechanism described in Sec. III A.

The time evolution of the average cluster size is represented for
q = 4 in Fig. 6, for three different molar ratios. At equal concentra-
tion (middle panel), the number of particles in the clusters (i.e., their
surface) steadily grows with time for all interaction energies ε, pro-
vided that enough time is allowed for nucleation at intermediate ε.
A nucleation process is particularly evident for ε = 7kT, where the
curve stays flat for the first 106 time steps. Nucleation indicates that
the system is initialized in a metastable state, namely, at a point of
the phase diagram between the spinodal and the binodal; the absence
of nucleation indicates, instead, that the system is unstable and the
relaxation process is a standard spinodal decomposition.32,52 In the
latter case (ε > 7kT), the average number of particles in a cluster
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FIG. 6. Time evolution of the average cluster size, as plotted in Fig. 3 and as defined in the text and in Sec. II, for q = 4. From left to right, the molar ratio nB/nA is 1/4, 1,
and 4. Bond energies ε are in units of kT . Thick lines show the intervals of linear behavior from which we extract growth exponents for Fig. 7. Bond energies not shown do
not give clusters.

scales approximately as ∼ t0.6, corresponding to a cluster diameter
growing with exponent α ≃ 0.6/2 = 0.3. Provided that nB/nA stays
close to unity, this is true also for q = 3 and 5, as shown in Fig. 7,
where values of the cluster diameter growth exponent α obtained
from fitting cluster size curves at late times are reported. A power
law behavior is a sign of self-similarity, which typically characterizes
relaxation to equilibrium of a quenched interacting system
(here quenching means initializing the system in the vapor state, but
running the simulation at temperatures lower than critical, where
the equilibrium state exhibits phase separation).

For low or high concentration ratios (left and right panels in
Fig. 6), the aggregation kinetics is slower. At small ε, this might be
due to larger nucleation times, but linear behavior at large times
rather points at a slowdown in the power-law growth rate. This is
consistent with the fact that at large ε, coarsening halts completely
after a given time, as confirmed by the time evolution of the cluster
size distribution (see the supplementary material). This observation
reflects the more pronounced non-monotonicity observed at final
time for large bond strengths in Fig. 3. Figure 7 captures the decay of

FIG. 7. Growth exponent α measured from a linear fit of cluster growth curves in
time (Fig. 6). At concentration ratios close to 1, α ≃ 0.3 for most curves. Away
from this regime, the growth is hindered: coarsening is slowed down for ε = 10kT
(dashed lines) and completely halted for ε = 20kT (continuous lines).

exponent α for different valences, as the concentration ratio deviates
from unity.

We highlight that the process we see is mostly due to merging
of existing clusters and not due to clusters growing by monomer
addition31 (i.e., condensation of free particles): the latter process
occurs very rapidly, usually in the very first steps of the simulation.
This is confirmed by the observation that the fraction of clustered A
reaches a steady state on a time scale smaller than those represented
in Fig. 6 (<105τs).

A value of the exponent α ≃ 0.3 calls for a comparison with
values reported in the literature. For 2D solid binary mixtures,
an exponent α = 1/5 was proposed when growth is dominated by
cluster diffusion and coalescence, at temperatures well below the
critical one.33,34 The so-called Lifshitz–Slyozov mechanism, akin
to Ostwald ripening and due to evaporation and recondensation
of single particles, should, instead, give α = 1/3, irrespective of
dimensionality.32,35,52 A richer phenomenology has been reported
for fluid systems, for which (still in 2D) a crossover from α = 1/3, to
1/2, to 2/3 is expected,32,36,53,54 although values of α between 1/4 and
1/3 have also been observed when hydrodynamics is suppressed.55,56

Our system is neither fully solid, because clusters can diffuse and
coalesce, nor fully fluid, as hydrodynamic drag effects are negligible
at our low densities. In addition, the morphology of the clusters and
the stoichiometry can affect growth.32,53

We provide a simple theoretical argument, analogous to the one
proposed in Ref. 57, showing why α in our case should be close to
1/4. We assume that the system exhibits dynamic scaling (i.e., self-
similarity), that the probability of coalescence upon collision does
not depend on time (which is plausible when growth is not arrested),
that all clusters have equal size M at a given time, for simplicity,
and that the cluster density ρM (the number of clusters per unit
surface at a given time) is small compared to the density of molecules
within clusters. Now, since the total number of molecules is
conserved, ρM = ρ1/M, where ρ1 is the total number of molecules per
unit surface. The average distance between two clusters at a given
time is then rM ≃ ρ−1/2

M = (M/ρ1)1/2. Given that the diffusion coef-
ficient scales linearly with the mass, i.e., DM = D1/M, the typical
time tM it takes for two clusters of size M to collide under the only
effect of diffusion can be estimated as tM ≃ r2

M/DM ∼M2. Neglecting
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fractal effects, the mass of the clusters scales as the square of its linear
dimension ℓM (its diameter, for instance): M ∼ ℓ2

M , hence tM ∼ ℓ4
M .

Since the system is self-similar, this relation must hold for any length
in the system and at any time, giving α = 1/4.

D. Size control is retained in fluid clusters
The clusters of the simple model we analyzed so far are essen-

tially solid-like: especially for q = 3 and 4, they are crystalline and
their internal conformation can only change by evaporation of the
material and condensation of the new material at a different place.
This means defects can be eliminated only if they occur at the cluster
boundaries. We show that the size-controlling mechanism we pro-
pose can be physiologically relevant, by making our clusters fluid.
Biological condensates are, indeed, liquid-like even in 2D—although
the availability of cross-linking molecules has been shown to reduce
their internal diffusivity.18

To obtain fluidity, we add a generic isotropic attraction between
any two particles (homo- and heterotypic), parameterized by its
strength εa and range Ra [see Sec. II, Eq. (3)]. Such attraction allows
for local rearrangement once A–B bonds break; in this case, parti-
cles can move around without having to leave the cluster, as some

FIG. 8. Top panel: the estimated internal diffusivity Dint, for q = 5 and Ra = 2.0σ,
measured at nB/nA = 1, as a function of bond strength (ε) and isotropic attraction
strength (εa). Black crosses indicate that clusters do not form or are too volatile.
Dint is computed by fitting the mean square displacement of particle pairs belong-
ing to the same cluster in the time range of 4–4.1 × 107τs; pairs with one or both
particles evaporating from the cluster within this time are discarded from the cal-
culation. Bottom panel: an example of the non-monotonic cluster size, measured
at the end of the simulation, for a set of parameters where clusters are very fluid.

cohesion energy is still provided by isotropic interactions. The dif-
fusivity of particles within clusters (internal diffusivity Dint) is a
measure of cluster fluidity. This is estimated, at late times, in the top
plot of Fig. 8, as a function of bond strength ε and isotropic attrac-
tion εa, for a chosen range Ra. While in the large ε regime particles
are locked by unbreakable bonds, there is a window where diffu-
sivity is large. This occurs at small enough ε, so that bonds can be
broken, yet large enough εa so as to guarantee cluster formation and
stability.

If the fraction of cluster energy provided by bonds stays com-
parable to the one provided by isotropic attraction, meaning that
clusters would fall apart without specific interactions, unbound
particles are more likely to leave the cluster than bound ones. We
then expect to retain a signature of the size selection mechanism we
discussed above. This is shown in the bottom plot of Fig. 8, featuring
non-monotonic behavior of the average cluster size with concentra-
tion ratio, in the case with fluid clusters. When the proportion of
energy coming from isotropic attraction is too high (large εa), this
behavior is lost.

IV. DISCUSSION
Using a model based on patchy colloids with simple geome-

tries, we studied a 2D binary mixture where specific heterotypic
interactions are dominant. When the concentrations of the two
species are comparable, clusters form and can, in principle, grow
indefinitely. On the contrary, when one species is overabundant,
cluster growth is hindered, resulting in smaller clusters (Fig. 3). This
happens because particles from the minority species tend to have
all their binding sites saturated by particles of the majority species.
Such a capping phenomenon results in cluster surfaces being coated
by same-kind particles, which cannot bind, thus preventing cluster
coarsening. This phenomenon has been experimentally observed in
biological condensates17,18 that do not belong to the client-scaffold
category.

Such a size-control process, although it can lead to station-
ary states within the observation time (Fig. 6), is not of obvious
thermodynamic origin. Analogous processes have been recently
identified, for different systems,20,40,46 where the origin of the non-
monotonicity was attributed to equilibrium physics.20,46 We show
that it can, in fact, be driven by a kinetic trap, whose depth increases
with bond strength and unevenness in concentrations. This is
reflected by a reduction in growth exponents, from ≃ 0.3 to 0,
upon an increase in the latter two quantities (Fig. 7). While
large concentration unevenness decreases the probability for two
clusters to coalesce, through the coating mechanism discussed
above, strong bonds prevent bond rearrangement, necessary to reach
equilibrium and eliminate defects. Nonetheless, we still observe
significant concentration-dependent size control for any value of
bond strength. Our analysis confirms the importance of kinetics in
phase-transitions, consistent with recent observations.19

Yet another way to control the cluster size is by modulating
valence. This strategy allows cells to tune properties of physiolog-
ical condensates,2,58 particularly on membranes,59 but is also the
functioning mechanism of artificial optogenetic tools used to study
phase-separation.8,60 We see that increasing valence broadens the
range of concentration ratios at which clusters form. Full capping
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can, indeed, only occur when nB/nA ≥ q (or ≤1/q), as confirmed
by our analysis of the cluster size and growth exponent (Figs. 3
and 7).

Similarly to cluster sizes, concentration ratios and bond
strengths also affect the internal connectivity of the cluster: the
connectivity of one species is obviously promoted by increasing
the concentration of the cross-linking species, until it saturates
(Fig. 2). The connectivity of the majority species decays with its
concentration though. Optimal cluster connectivity is reached at
equal concentration ratios. No matter the obvious limitations of the
model, where spurious geometric effects are present, these consider-
ations are mirrored by diffusivity measurements in the presence of
heterotypic interactions only.18

In conclusion, we highlight how clustering curves as a func-
tion of the concentration ratio might be a way to infer proper-
ties on the molecular scale. Our results suggest that if clustering
is non-monotonic, specific heterotypic interactions are possibly
responsible. The more pronounced the non-monotonicity, the
stronger are specific bonds with respect to generic (isotropic) inter-
actions. The latter, however, might be present if the cluster appears
macroscopically fluid. Finally, the kinetics of cluster growth carries
likewise relevant information: a decrease in growth exponent with
the concentration ratio might as well be a signature of dominantly
heterotypic interactions.

SUPPLEMENTARY MATERIAL

See the supplementary material for a discussion of the cluster
size distribution.
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APPENDIX: CALCULATION OF CONSTRAINED
FREE ENERGY

The partition function of a macroscopic state where the maxi-
mum number of bonds are formed (qnA) and there is only one giant
cluster of whatever shape is the following:

Z = 1
nA! nB!

eβqεnA 𝒞 , (A1)

where β = (kT)−1 and 𝒞 is the number of different microscopic
configurations corresponding to the same macroscopic state we are
constraining on.

We group configurations based on the number nBc of B par-
ticles belonging to the cluster; the free B particles are then nBf
= nB − nBc. We have

𝒞 =∑
nBc

V nA! nBc! (V − nA − nBc

nBf
) nBf! (

nB

nBf
)𝒩 nBc. (A2)

The seven factors of this sum represent, respectively, the positions
of the cluster in a lattice with V sites, the permutations of the nA A
particles in the cluster, the permutations of the nBc B particles in the
cluster, the positions of the nBf free B particles (to be chosen among
the sites not occupied by the cluster), the permutations of the nBf
free B particles, the ways to choose which B particles are free and
which belong to the cluster, and finally (𝒩 nBc ) the number of differ-
ent cluster shapes (including rotations) that embed nBc particles in
the cluster.

The B particles in the cluster can have either more than one
bond (we say that they belong to the bulk) or only one bond (they
form the boundary). The bulk contains always one B particle per A
particle (see the top-right sketch in Fig. 5), so there are nA B parti-
cles in it. The number of boundary particles, instead, is proportional
to the perimeter of the cluster bulk. In summary, the number of B
particles in the cluster is nBc = nA + p, where p is the semiperimeter
of the shape formed by the 2nA particles in the bulk. Equation (A2)
is then interpretable as a sum over all possible perimeters, and 𝒩 nBc

is the number of different shapes of semiperimeter p = nBc − nA that
can be built by clustering 2nA particles.

The statistics of connected shapes on lattices, the so-called
lattice animals or polyominos, has been a long studied subject.51

𝒩 nBc can be written as the product of the total number as of shapes
of size s = 2nA (scaling as 4.0s/s)50,51 and the perimeter distribution
fp (i.e., the fraction of shapes of size s that have semiperimeter p).
To our knowledge, a rigorous estimate of the asymptotic behavior of
the latter quantity does not exist, so we extracted fp for s up to 48
from exact tabulated enumerations of lattice animals.48,49,61 Figure 9
shows that semiperimeters, rescaled by p ≃ 0.95 s0.90, seem to follow
approximately a normal distribution with mean μ = 1 and variance
σ = 0.06.

In summary, Eq. (A2) can be rewritten as

𝒞 = nA! nB! V a2nA ∑
p
(V − 2nA − p

nB − nA − p
) fp. (A3)
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FIG. 9. Distribution of semiperimeters, as a function of semiperimeter p. The
rescaling factor p is defined in the text. The curves for sizes s from 20 to 48
(obtained from Ref. 61) approximately collapse on a single curve that resembles a
Gaussian. Note that the vertical scale is logarithmic.

In the sum, notice the competition between the second term, rep-
resenting “shape” entropy (more shapes are available at a larger
perimeter), and the first term, representing the translational entropy
of free B particles (a larger cluster perimeter means fewer B parti-
cles in solution). Using Stirling’s approximation and passing to the
continuous limit for fp, we obtain

𝒞 ∼ nA! nB! V
a2nA

p
e−(V−nA−nB) ln(V−nA−nB)

×∑
p

exp [(V − 2nA − p) ln(V − 2nA − p)

− (nB − nA − p) ln(nB − nA − p) − (p/p − μ)2

2σ2 ]. (A4)

We verified numerically that the Gaussian term only plays a role at
very high densities, not relevant in our work. The dominant term of
the sum is then the smallest perimeter one. To leading order, this
amounts to setting a2nA fp = δp,0 (Kronecker delta) in Eq. (A3). By
doing so, one recovers Eq. (4), which refers to a circular cluster.
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