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Abstract

Wireless communication systems and their underlying technologies have undergone

unprecedented advances over the last two decades to assuage the ever-increasing

demands for various applications and new emerging technologies. However, the

traditional signal processing schemes and algorithms for wireless communications

cannot handle the upsurging complexity associated with fifth generation (5G) and

beyond communication systems due to network expansion, emerging technologies,

high data-rate, and the ever-increasing demands for low latency.

This thesis extends the traditional downlink transmission schemes to deep-

learning based precoding and detection techniques that are hardware-efficient and

of lower complexity than the current state-of-the-art. The thesis focuses on: pre-

coding/beamforming in massive multiple-inputs-multiple-outputs (MIMO), signal

detection and lightweight neural network (NN) architectures for precoder and de-

coder designs. We introduce a learning-based precoder design via constructive in-

terference (CI) that performs the precoding on a symbol-by-symbol basis. Instead

of conventionally training a NN without considering the specifics of the optimi-

sation objective, we unfold a power minimisation symbol level precoding (SLP)

formulation based on the interior-point-method (IPM) proximal ‘log’ barrier func-

tion. Furthermore, we propose a concept of NN compression, where the weights are

quantised to lower numerical precision formats based on binary and ternary quan-

tisations. We further introduce a stochastic quantisation technique, where parts of

the NN weight matrix are quantised while the remaining is not. Finally, we pro-

pose a systematic complexity scaling of deep neural network (DNN) based MIMO

detectors. The model uses a fraction of the DNN inputs by scaling their values



Abstract 4

through weights that follow monotonically non-increasing functions. Furthermore,

we investigate performance complexity tradeoffs via regularisation constraints on

the layer weights such that, at inference, parts of network layers can be removed

with minimal impact on the detection accuracy.

Simulation results show that our proposed learning based techniques offer

better complexity-vs-BER (bit-error rate) and complexity-vs-transmit power per-

formances compared to the state-of-the-art MIMO detection and precoding tech-

niques.



Impact Statement

One of the essential enabling technologies for the fifth generation (5G) and beyond

wireless communications is massive multiple-inputs-multiple-outputs (m-MIMO),

where the base station (BS) is endowed with hundreds or thousands of antennas.

While 5G technology has many benefits, such as high data rate, ultra-low latency,

improved spectral efficiency, and increased connectivity, the hardware requirements

and circuit power consumption grow proportionally with the number of BS antennas

due to infrastructural costs. The learning-based techniques proposed in this thesis

present new methods for the cost-efficient deployment of m-MIMO compared to the

current systems with traditional excessive power-demanding BS antenna circuits.

Furthermore, as the 5G network is being rolled out in different parts of the

world, it is expected to accommodate over 50 billion connected devices generat-

ing massive data and is envisaged to grow by 12% annually. Similarly, with the

advent of 5G, mobile users alone are envisioned to reach 7 billion by 2023. This

exponential growth of connected terminals at the wireless network edge results in

the surging complexity of the network, which is challenging for the current sig-

nal processing schemes, such as precoding and equalisation, to handle due to the

computational costs involved in their implementation on practical wireless commu-

nication systems. Moreover, CO2 is the primary source of greenhouse gas respon-

sible for the greenhouse effect, and the new capabilities brought by the 5G network

potentially pose an environmental threat that increases CO2 emissions. An opti-

mal precoding design is needed to reduce the power required for efficient downlink

transmission in a multiuser multiple-inputs-single-output (MISO) system in order

to ameliorate the CO2 emissions from the BS. The proposed machine learning (ML)
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solutions presented in this research will provide a new paradigm shift for making

advanced precoding practical, reducing complexity, 5G infrastructure, bridging the

digital divide, reducing transmit power, helping with climate change and busting the

revenue generation of the mobile providers. Beyond providing learning-based sig-

nal processing capabilities for physical layer communications, this research opens

up a new approach for scalable learning framework designs that will facilitate fast

learning on the embedded systems that are resource constrained, thus easing the

deployment of trained models on the device edge. Overall, the findings presented

in this research work provide intuition behind learning-based solutions that can be

potentially explored to aid the actualisation of more robust 5G networks and even

beyond.
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Chapter 1

Introduction

1.1 Background

Recent studies have shown that there has been an exponential growth in wireless

devices and data traffic over the last few decades, which is envisaged to increase by

more than 50% annually in the next couple of years [1]. Consequently, the increas-

ing need for higher data rates has spurred both academia and industry to come up

with new techniques. Among the techniques, MIMO has been widely recognised

as the most promising for future wireless communication systems [2]. Most ex-

isting research work on the MIMO systems has been carried out assuming perfect

hardware settings while neglecting imperfections in the hardware elements. The

large-scale antenna system known as massive MIMO (m-MIMO) proposed in [3–5]

has been proven to be one of the most promising techniques for 5G wireless com-

munications. Theoretically, m-MIMO is similar to the traditional multiple-antenna

system, having many antennas extended to the order of hundreds or thousands [5].

Unlike traditional MIMO, m-MIMO systems offer unparalleled benefits, such as

momentous high throughput and ultra-low bit error rates [4]. While the benefits

from m-MIMO systems are intriguing, they are power-inefficient and have exces-

sive hardware demands [6]. Equivalently, this requirement dramatically raises the

hardware budget and, more notably, the resulting power consumption for m-MIMO

at the base station (BS). To address this pressing issue, signal processing strategies

that are both cost-effective and power-inefficient are needed for reliable downlink
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signal transmission to balance performance and hardware complexity.

Correspondingly, 5G and beyond wireless network technologies are expected

to support enhanced broadband, massive machine-type communications, low la-

tency and ultra-reliable communications [7]. This means that future wireless com-

munication technologies must deal with a large amount of wireless data and adapt

to challenging radio environments while satisfying the user’s high data rate and

speed requirements. The implementation of 5G and beyond is based on the evolu-

tion of the existing wireless technologies orchestrated by other new radio schemes

to mollify the challenges and the requirements that the current radio network cannot

support [8]. These new radio schemes include m-MIMO systems, device-to-device,

ultra-reliable, Internet of Things (IoT), and massive machine-enabled communica-

tions [9]. Together, they provide a framework for 5G to accommodate an increase in

mobile data volume while extending to other application domains that mobile com-

munications can support beyond 2030 [10]. This requires that some intelligence

be integrated into the future wireless communication systems to actively adapt to

changes in the environmental settings while satisfying the requirements for high

speed, quality of service (QoS), spectrum efficiency and low latency [11, 12]. The

machine learning (ML) is a popular class of artificial intelligence (AI) that has the

potential to deal with high-volume of data and challenges of emerging technologies

for future wireless communications.

Thus far, there is hardly any field where ML algorithms, and more specifically

deep-learning (DL) has not been tried for various tasks. The breakthroughs are

evident in many fields, such as computer vision, natural language processing, ma-

chine translation, human-computer interaction, etc [1]. The successful application

of DL in these fields is due to the availability of massive labelled data and sufficient

computational resources, which may not be applicable in some areas. However,

finding the required network learning architecture is still a bottleneck, mainly due

to the lack of a solid theoretical basis between the network topology and perfor-

mance [10, 13]. To this day, the network topology is still an engineering practice

rather than scientific research, acknowledging the fact that most existing DL ap-



1.1. Background 26

proaches lack theoretical foundations. The typical limitations of the DL approach

are the difficulties in network design, interpretability and a lack of understanding of

its generalisation ability. These factors may hinder the standardisation of DL and its

commercialisation across different domains, such as wireless communications. For

instance, there is already a solid theoretical foundation in wireless communications

that has led to capacity-achieving algorithms for models that have been shown to

work well in practice. In addition, the problems are typically signal-to-noise ratio

(SNR) based and may not require very advanced loss functions. In contrast, com-

puter vision and other domains do not have such theoretical foundations because,

for example, it is known that SNR does not correlate well with human vision or

language perception in the brain. The key factors that motivate the adoption of ML

in wireless communications are summarised below:

• Network Complexity: The increasing complexity of wireless networks due

to emerging applications, topologies, dynamic scenarios etc., renders apply-

ing classical signal processing techniques mathematically intractable. How-

ever, ML can intelligently leverage the available data associated with future

wireless communication to learn complex physical layer wireless communi-

cation systems. ML solutions can reduce network complexity while providing

effective and promising performance.

• Algorithm Inefficiency: Many algorithms designed for cellular networks

have proven to show either sub-optimal or optimal performance and they are

computationally expensive to implement in a practical sense. On many occa-

sions, engineers are left with no option but to use a heuristic approach based

on simple decision principles to design a communication system. For exam-

ple, the complexity of building a MIMO receiver with Nt spatial antennas

and M constellation using maximum likelihood is of the order of O(MNt ).

Similarly, linear and optimisation-based receivers are sub-optimal, some with

prohibitive polynomial complexities. On the other hand, an ML-based de-

coder can be designed to provide both low complexity and competitive per-

formance.
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Given the indispensability of multiuser interference (MUI) management via

various precoding techniques at the BS and signal detection at the receiver sides, this

thesis focuses on designing novel learning-based and memory-efficient frameworks

and transmission strategies for multiple-antenna systems.

1.2 Aim and Motivation

While signal processing methods at the transmitter and receiver sides (BS and mo-

bile end user), such as precoding and signal detection strategies, have been widely

researched for multiple-antenna systems, many unsolved areas still require fur-

ther investigation, particularly for large-scale MIMO systems. It is well-known

that traditional nonlinear optimisation-based precoding via constructive interference

[14–16] and signal detection [17–20] techniques have achieved considerable per-

formance gain over their linear counterparts. However, implementing such signal

processing techniques on practical m-MIMO systems is exceptionally challenging,

albeit their impressive performances due to the size of the problems and the nonlin-

earity of the physical components involved, resulting in prohibitive computational

complexity.

For multiuser downlink precoding, recently, closed-form low-complexity pre-

coding designs based on the concept of constructive interference have been pro-

posed in [21]. While the authors have shown that their proposed approaches can

achieve a more favourable performance-complexity tradeoff, it is unclear if such

techniques can handle the enormous amount of data associated with modern and

future wireless communication systems. The ability of ML algorithm to handle

massive data has recently sparked up research interests in using ML-based precod-

ing schemes. Following this development, several research papers using ML for

precoding [12, 22, 23] and signal detection [24–26] have been written over the last

few years.

Similar to the approach in computer vision, the existing ML schemes used

in wireless communication are mostly data dependant (data-driven model) without

necessarily relying on the mathematical model and expert knowledge [27]. The
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drawback of this approach is that training such models takes time and the enor-

mous labelled training dataset required, which is usually unavailable in the wireless

communication domain. Therefore, the lack of available standard dataset to train

a ML model for end-to-end MIMO communications has triggered some research

interest for model-driven DNN based on the expert domain knowledge [11, 23].

This approach paves the way for a new paradigm shift from data-driven learning in

problems that cannot be expressed by tractable mathematical models or are chal-

lenged by algorithmic complexity to a semi-model-driven approach (DL model-

driven) based on expert’s knowledge.

With relatively low inference complexity, DL-based precoding designs have

recently been proposed for multiuser MIMO (MU-MIMO) downlink transmission

[24, 28–30]. However, learning-based strategies for wireless physical layer de-

signs use data-driven DL model as a function approximator in a supervised learn-

ing mode, which requires labelled training data. This labelled training data is ob-

tained from the analytical solution of the optimisation problem, whose accuracy is

bounded by the optimisation algorithm. Alternatively, when possible to have an

analytic optimisation objective, the analytical expression is highly non-convex and

very high dimensional, such that conventional numerical optimisation is computa-

tionally unfeasible. Commensurate with the above, this motivates the development

of novel scalable learning-based frameworks for advanced precoding and detection

techniques to achieve a more promising performance-complexity tradeoff.

1.3 Main Contributions
The main objective of this thesis is to exploit the potential applications of ML meth-

ods in wireless communications. Specifically, to develop efficient and low com-

plexity DL frameworks for wireless physical layer communications. We mainly

focus on hardware efficient learning-based solutions for MIMO signal equalisa-

tion/detector and precoding designs. Our contributions are summarised below:

• Design an unsupervised DNN-based SLP framework termed SLP-DNet

(Chapter 4) for multiuser downlink transmission. To the best of our knowl-
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edge, this is the first work that tries to derive an unsupervised deep learning

framework by unfolding a constrained power minimisation problem based

on SLP. The unique feature of SLP-DNet is that it is built by exploiting the

domain knowledge and translating it into a learning-based model via a prox-

imal interior point method (IPM) approach. The SLP-DNet uses the original

objective function as a loss function by learning the associated Lagrange mul-

tipliers with additional an l2-norm regularisation term to aid training conver-

gence.

• Introduce the concept of NN compression via weight quantisation to reduce

the size of the DNN-based SLP network (Chapter 5). The proposed architec-

tures focus on a DNN with realistic finite precision weights and adopt an un-

supervised DL based SLP model (SLP-DNet). We than introduce a stochastic

quantisation (SQ) technique to obtain corresponding quantised versions of the

full-precision SLP-DNet called SLP-SQDNet, where parts or all the entries

of the weight matrix are quantised.

• Propose an NN based MIMO detector where we introduce the concept of

monotonic non-increasing profile function to scale each layer of the NN in

order to allow the network to dynamically learn the best attenuation strategy

for its own weights during training for low complexity MIMO detector design

in Chapter 6.

1.4 Thesis Organisation
After this introductory chapter, the thesis is structured as described below:

Chapter 2 reviews the fundamental concepts relevant to 5G and beyond com-

munication systems. Specifically, this chapter presents a synopsis of different pre-

coding and MIMO detection techniques for efficient transmitter and receiver de-

signs. On the transmitter side or BS, emphasis on the precoding designs through

interference exploitation on a symbol-by-symbol-level basis. On the other hand,

several MIMO detection techniques are reviewed for efficient signal recovery at the

receiver.
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Chapter 3 gives the general theoretical background of ML and its applications

in different domains, focusing only on those used in this thesis. The chapter in-

troduces the conceptual framework of ML, particularly DL, for designing signal

processing strategies for physical layer communications. The benefit of using DL

for end-to-end wireless communication systems design is underlined. The chap-

ter also describes how data-driven and model-driven DL methods can be joined

together to improve the performance of the learning-based signal processing meth-

ods. Similarly, an overview of the most popular learning-based MIMO detectors

and learning-based precoders are also presented.

Chapter 4 proposes unsupervised learning-based precoding schemes for a mul-

tiuser downlink multiple-inputs-single-output (MISO) system. The proposed learn-

ing system exploits the CI for the power minimisation problem subject to given QoS

constraints. A domain knowledge is used to design unsupervised learning architec-

tures by unfolding the IPM barrier ‘log’ function based on the power minimisation

formulation. The proposal is extended to robust precoding designs with imperfect

channel state information (CSI) bounded by CSI errors.

Chapter 5 extends the concept introduced in Chapter 4 with the aim of re-

ducing the complexity and memory footprint of SLP-DNet. The chapter explicitly

investigates the impact of NN weight quantisation, where binary and ternary weight

quantisation techniques are introduced to reduce the size of the SLP-DNet model

and improve training and inference efficiencies. A stochastic quantisation scheme is

presented in which the weight matrix is partitioned, part is quantised, and the other

is retained in its full floating-point presentation.

Chapter 6 proposes an efficient and scalable deep neural network-based MIMO

detector, where complexity is adjusted at inference with an scalable degradation

in the detection accuracy. The chapter describes a weight scaling framework that

employs monotonically non-increasing profile functions to prioritise a fraction of

the layer weights during training. It also explains how an NN architecture is made

to self-adjust to the detection complexity, and the profile functions themselves are

made trainable parameters.
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Chapter 7 concludes this thesis with a summary of the previous chapters’ con-

tributions and discusses potential future extensions of the research within the con-

text of this thesis.
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Chapter 2

MIMO Fundamentals and Related

Theoretical Concepts

This chapter presents a theoretical overview of the multi-antenna wireless com-

munication system pertinent to this work. It discusses optimal and sub-optimal

multi-user precoding and signal detection or equalisation schemes for transmitter

and receiver designs in MIMO settings. Most importantly, the chapter explains rel-

evant literature leading to the evolution of precoding/beamforming algorithms from

classical approaches based on a block of symbols to the precoding performed on a

symbol level basis based on convex optimisation techniques. In addition, MIMO

signal detection techniques are briefly reviewed.

2.1 MIMO Communication Systems-Principles
Digital transmission using multiple antenna systems, known as MIMO, is one of the

most notable breakthroughs of modern communication systems. MIMO system has

been proven to be one of the critical technologies that can resolve the impediment

of the traffic capacity in 5G and beyond wireless communications [31–33]. The

fundamental concept of the MIMO system is that signals at both transmitting and

receiving antennas are fused so that the quality or data rate of the communication

links of each user is improved. Through this, QoS and the operator’s revenues will

significantly increase [31].

In MIMO systems, the main idea is that signal processing is augmented with
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spatial dimensions integrated using spatially distributed multiple antennas. In par-

ticular, with the deployment of multiple antennas at the BS, parallel data streams can

be transmitted concurrently to accommodate spatial multiplexing [34]. Th space-

time coding techniques are used to send multiple copies of data across the antenna

arrays to improve transmission diversity. The successes recorded by the MIMO sys-

tem as the critical element in implementing new technologies for 5G are due to its

ability to improve the performance of communication in order of magnitude with-

out the additional cost of spectrum, but with hardware and algorithm complexities

[2].
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Figure 2.1: A general block diagram of MIMO communication system [34]

A typical MIMO wireless communication system, as depicted in Figure 2.1.

The data symbol streams are encoded with a vector encoder denoted by s and trans-

mitted simultaneously from Nt BS transmit antennas to a single receiver having

Nr receive antennas. The MIMO processing unit at the receiver side estimates the

data symbol streams from the received sample based-band signals y to produce the

estimated data symbols ŝ. Generally, a MIMO system having Nt transmit and Nr

receive antennas has Nt Nr sub-channels between the transmitter and receiver [2].

Therefore, the each sub-channel is modelled as a linear discrete-time finite impulse

response (FIR) with complex coefficients. In a flat fading scenario, the signal in

each sub-channel is attenuated and phase-shifted due to propagation delay between

the transmit and receive antennas. The sub-channel is thus reduced to a one-tap FIR

filter (one complex coefficient). However, the channel becomes quasi-static if it re-

mains constant over the whole transmission time slot [34]. Throughout this thesis,

we have assumed a quasi-static flat fading wireless channel.
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Mathematically, at each j-th receive antenna, there is n j additive white Gaus-

sian noise (AWGN) a with zero mean and variance σ2, the received signal vector in

MIMO system can be expressed as

y = Hs+n, (2.1)

where y ∈ CNr×1 and s ∈ CNt×1 represent the receive and transmit signal vectors,

respectively. H ∈ CNr×Nt is the Rayleigh fading channel matrix and n ∈ CNr×1 is

the noise vector obtain from random Gaussian distribution n ∼N (0, σ2
n 1). From

(2.1), the received symbol is a linear combination of the transmitted symbol. Each

transmitter sends different linear combinations of symbols over the j-th channels.

However, the transmitter has no control over the channel but can decide the specific

linear combinations of symbols to send by suppressing some signals or aligning

them to a particular direction using a pre-processing technique known as precod-

ing [35]. The symbol ready for transmission is s = Wd, where W is the transmit

precoding matrix. A signal detector is used at the receiver to decode the received

signal vector to obtain the estimated output symbols.

2.1.1 Benefits of MIMO Systems

The inherent benefits of multi-antenna systems are array gain, diversity gain and

spatial multiplexing gain. These are briefly explained below.

Array gain: Array gain is the increase in receive SNR through a coherent

combination of the transmitted signal at the receiver [32]. Array gain is achieved

when knowledge of the CSI is known by either the transmitter or receiver. With

Array gain, the noise resistance is improved, thus enhancing the coverage and range

of a wireless network.

Diversity gain: The received signal level at a receiver fluctuates or fades. Mul-

tiple antennas at the transmitter or receiver offer spatial diversity gain that allows

signal transmission through several independent fading paths, providing the receiver

with multiple copies of the transmitted signal in time, frequency, or space [33]. In

this way, the probability that at least one or more copies of the signal does not expe-
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rience deep fade, thereby enhancing the quality and reliability of signal reception.

For the MIMO channel with Nt transmit antennas and Nr receive antenna, there are

NtNr independent fading links or sub-channels, and is equal to the spatial diversity

order [36].

Spatial Multiplexing: Spatial multiplexing refers to using multiple antennas

at both the transmitter and receiver to transmit multiple data streams simultaneously

within the same frequency band to increase information capacity [33].

One of the principal metrics used to evaluate wireless communication systems’

performance is bit-error rate (BER). BER is the ratio of the number of received bits

that have been changed while passing through the communication channel to the

number of bits sent, defined as

BER =
ne

nb
, (2.2)

where ne and nb are the number of erroneous bits and total number of transmitted

bits. In this thesis, we use BER as the performance metric as we shall see in Chapter

4. The approximate BER for a MIMO system with Nr receive antennas is expressed

as [34]

BER =

(
2Nr−1

Nr

)(
1

2ρ

)Nr

, (2.3)

where
(2Nr−1

Nr

)
denotes the number of combinations of selecting Nr antennas from

the set of 2Nr−1 antennas. An equaliser is needed to decode the transmitted symbol

vector s and manage inter symbol interference (ISI) at the receiver. We exclusively

assume perfect channel CSI at the receiver in the subsequent subsections and discuss

different MIMO equalisation schemes relevant to this work.

2.2 Channel Modelling

As we shall see later, the channel’s knowledge is required for signal preprocess-

ing at the transmitter. Similarly, the receiver needs to also know the CSI for signal

post-processing to design signal detectors that can efficiently decode the received

symbols. Therefore, channel modelling is essential in analysing and designing pre-

coders and signal detectors or equalisers. Various statistical distributions have been
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used to model the random change in multipath. The most typical of these are the

Rayleigh and Rician models [37]. The Rician distribution is used to model a wire-

less channel when a direct line-of-sight (LoS) between the transmitter and receiver

exists [38]. In this work, we adopt the Rayleigh channel because it describes the

form of fading due to multipath propagation when there is no dominant signal (i.e.

LoS). It is also a typical channel model widely adopted to the model radio environ-

ment [39].

2.2.1 Rayleigh Distribution

Rayleigh fading channel is a statistical distribution for non LoS communication

channels [40]. In terms of base-band representation, the channel h is defined as a

random variable in complex domain as follows

h = hR + jhI, (2.4)

where hR and hI are the real and imaginary components of the channel response,

respectively. When the signal arrives at the receiver from various paths of nearly

equal power, the resulting field is the sum of real and imaginary parts of sums of

identically distributed random variables. By using Central Limit Theorem [41],

the summation of the identically distributed random variables obeys a Gaussian

distribution with zero mean and variance σ2
s (i.e. channel’s average power).

Uncorrelated Rayleigh channel: Rayleigh distribution considers the presence

of large-scale statistically independent reflectors and scatters in the wireless radio

space; then, each path of the channel tap can be modelled as a complex random

quantity [40]. Consequently, an uncorrelated MIMO channel coefficient can be

modelled as

H∼N (0, 1) ∈ CNr×Nt . (2.5)

Correlated Rayleigh channel: The channels between neighbouring antennas

are correlated in a practical antenna array, mainly when the antenna separation is

less than the carrier wavelength [39]. This is contrary to the uncorrelated channel

model that ignores the spatial correlation effect between the antenna elements.
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2.3 MIMO Downlink Transmission
Throughout this thesis, the channel model we use is based on the general MIMO

channel model and the descriptions for MU-MIMO systems.

An extra signal processing at both transmitter and receiver is required in a

multi-antenna system, contrary to the traditional single-antenna systems. In this

context, depending on which side the processing is applied, the signal processing

can be precoding schemes at the transmitter side and detection methods at the re-

ceiver side [42]. The signal processing can be classified into precoding schemes at

the transmitter and detection techniques at the receiver, depending on which side

the processing is applied. In a MU-MIMO system, combined signal processing of

data streams is usually challenging for several users in the downlink due to the gap

in physical areas. While precoding is favoured in the downlink transmission, re-

ceive combining techniques are usually employed at the receiver side or user end

[43]. With the knowledge of the channel at the BS, precoding can relieve the com-

putational load of the users by transferring the signal processing process from the

user side to the BS [43]. And this is what makes the precoding techniques uniquely

popular and most widely investigated.

2.3.1 MU-MIMO Channel Model

A multi-user MIMO system is illustrated in Figure 2.2 with Nt transmit antennas

at the BS serving Nr receive antennas at k-th user, where Nr = ∑
K
k=1 Nk and Wk

denotes the precoding matrix. Here, we imagine the BS is separated from its rich

Wireless Channel

HBS

User1

User2

UserK

2

1
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WK

W1
Input Symbol

Vector

Base Station

Figure 2.2: MU-MIMO Channel Model

scattering environment. From the transmitter’s perspective, the channel’s spatial
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configuration is now influenced by remote scattering objects resulting in a highly

spatially correlated situation with a small number M of dominant far off scattering

objects. Hence, the channel is expressed as [44, 45]

H =

√
Nr

tr(AAH)
GAH , (2.6)

where A ∈ CNr×M is the antenna steering matrix containing M vectors of the trans-

mit antenna response having M directions of departure (DoD) and G∼N (0, 1) ∈

CNt×M. In this situation, the channel is viewed as semi-correlated, where the spa-

tial correlation solely exists at the transmit side [45]. For a uniform linear arrays

(ULAs), each vector in A is modelled as

Ak =
1√
M
·
[
aH(φk,1), · · · ,aH(φk,M)

]H
, ∀k; k = 1, . . . ,Nr, (2.7)

where a(φk,i)=
[
1,e j2πrsinφk,i, · · · ,e j2π(Nr−1)rsinφk,i

]
∈CM×1, ∀k; k = 1, . . . ,Nr. The

r here represents the normalised antenna spacing (normalised by the carrier wave-

length), and φk,i is the steering angle and is assumed to obey a Laplacian distribution

[45]. Following the above, the resultant channel matrix of the system model is

H = [H1, · · · ,HK] ∈ CNr×Nt , ∀k; k = 1, . . . ,Nr, (2.8)

where Hk ∈ CNt×Nk is the k-th user’ channel matrix. However, in multi-user

multiple-inputs-single-output (MU-MISO) systems, the combined channel matrix

is composed of the channel vectors of each user, and is given by

H = [h1, · · · ,hK] ∈ CNr×Nt , ∀i; i = 1, . . . ,K, (2.9)

where hi ∈ CNt×1 is the i-th user’ channel matrix.

2.3.2 Imperfect CSI Modelling

The knowledge of the channel is required at the BS for downlink precoding designs,

as earlier explained. Generally, acquiring a perfect knowledge of the channel is dif-
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ficult in practical wireless communication systems. Because of this, it is imperative

to analyse the performance of downlink transmission techniques under imperfect

CSI. This subsection presents the imperfect channel model used in the subsequent

chapters.

2.3.2.1 Model of Statistical CSI Error

The uplink and downlink channels operate in the same frequency bands in the time

division duplex (TDD) mode. This allows the downlink channel to be directly mea-

sured at the BS by the uplink-downlink channel reciprocity as a function of an

estimation error [46]. As described in [47], the imperfect channel model is given by

H = κ ·
(
H̃+ Ẽ

)
+R, (2.10)

where H is the actual channel matrix, H̃ denotes the estimated channel at the BS and

Ẽ is the estimation error and κ is the correlation factor associated with the channel

estimation time delay. R designates the delay error matrix, whose entries are i.i.d.

N (0, 1−κ2). A simplified imperfect CSI model for TDD transmission is obtained

when κ = 1, and is expressed as

H = H̃+ Ẽ. (2.11)

2.3.2.2 Norm-Bounded CSI Error Model

In frequency division duplex (FDD) mode, the downlink uplink channel transmis-

sions are performed simultaneously using different frequency bands. Because of

this, the uplink-downlink reciprocity does not exist. Practically, the estimation of

the channel knowledge is first performed at the receivers and then feedback to the

BS [46]. Therefore, for FDD systems, the CSI errors are dominated by the quan-

tisation errors in the limited feedback. In this context, the imperfect channel is

modelled as [46, 48]

hi = h̃i + ẽi, ∀i ∈ {1, · · · ,K}. (2.12)
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It is important to note that the channel uncertainty is bounded bounded by a spheri-

cal region for each user, and is expressed as [49]

ξ =
{

h̃i + ẽi|‖ẽi≤1‖
}
, ∀i ∈ {1, · · · ,K}. (2.13)

2.4 Precoding

Despite the MIMO systems’ performance benefits and increased spectral efficiency,

high power consumption and computational complexity of the MIMO decoding

techniques have rendered receive processing practically implausible at the user

equipment (UE) [42, 50]. The UE, such as mobile handsets, are typically limited

to simple low computational complexity algorithms. Therefore, to sustain a sim-

ple and cost-effective UE, the complex and power-consuming signal processing is

shifted to the BS for downlink transmission, via a technique called precoding [50].

Precoding is a signal processing technique that exploits CSI at the BS or transmitter

applied on a data symbol before transmission [42].Various precoding methods for

downlink transmission have been reported in the literature, from complex but high-

performance non-linear precoding techniques [43, 51–60] to low complexity linear

precoding methods [5, 50, 61, 62]. Similarly, many optimisation-based precoding

techniques that exploit CI [49, 58, 60, 63–65] based on convex optimisation theory

have also been put forward and will be discussed in the subsequent subsections.

2.4.1 Linear Precoding

Linear precoding is a set of simple transmission strategies, where the data symbols

to be transmitted are combined linearly with the precoding matrix P to produce the

precoded signal vector s before the transmission. Linear precoding approaches are

most appealing due to their simplicity and low computational complexity with poor

performance compared to their nonlinear counterparts. The generic expression for

a precoded signal is given by

s = Pd =
1
f
·Wd (2.14)
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from (2.14), f =
√

tr(WWH) represents a scaling factor, P ∈ CNt×K and W ∈

CNt×K are normalised and non-normalised precoding matrices, respectively. Due

to uplink-downlink reciprocity [5], the downlink channel in the TDD mode is typi-

cally assumed to be the conjugate transpose or ‘Hermitian’ of the channel matrix H

of the uplink. Therefore, the received signal vector at K UEs is

y = HHs+n =
1
f
·HHWd+n, (2.15)

where n ∈ CK×1 represent noise interference. In the subsequent sub-subsections,

we present typical linear precoding schemes with their closed-form expressions.

2.4.1.1 Match Filter Precoding (MF-P)

MF precoder also known as maximum ratio transmission (MRT) is the most rudi-

mentary precoding technique, which disregards the MUI while maximising the re-

ceived SNR. Mathematically, the match filter precoder is modelled as the ‘Hermi-

tian’ of the channel matrix H [62]

PMFP =
1

f MFP ·H =
H√

tr(HHH)
. (2.16)

The received signal vector is given by

yMFP =
HHH√
tr(HHH)

·d+n. (2.17)

For massive MU-MIMO scenarios, MF-P can provide potential complexity gains,

while its performance suffers in interference-limited scenarios.

2.4.1.2 Zero-Forcing Precoder (ZF-P)

The ZF-P technique has been widely investigated because of its simple structure

[62, 66]. The precoding matrix is obtained as

PZFP =
1

f ZFP ·H
(
HHH

)−1
=

H
(
HHH

)−1√
tr
[
(HHH)−1

] , for Nt ≥ K, (2.18)
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Thus, the equivalent received signal vector is

yZFP =
HHH

(
HHH

)−1√
tr
[
(HHH)−1

] ·d+n. (2.19)

Contrary to MF-P, which has low performance at high SNR, ZF-P offers an im-

proved performance gain over the MF-P at a high SNR regime.

2.4.1.3 Regularised Zero-Forcing Precoder (RZF-P)

The direct channel inversion, as in ZF-P, generally leads to poor performance due to

the singular value spread of the channel matrix [53]. Channel regularisation factor

is employed to deal with the problem of the ill-conditioned channel. The RZF

precoding matrix is given by

PRZFP =
1

f RZFP ·H
(
HHH+β I

)−1
=

H
(
HHH+β I

)−1√
tr
[
(HHH+β I)−1 HHH(HHH+β I)−1

] ,
(2.20)

where β = Kσ2
n is the regularisation factor and σ2

n is the noise power at the re-

ceiver. When σ2
n = 0, (2.20) reduces to (2.18). The amount of interference can be

controlled by by setting β > 0. The received signal vector is obtained as

yRZFP = HHPRZFP ·d+n. (2.21)

It is important to note that RZF-P has almost equal computational cost as the ZF-P

scheme [66]. The RZF-P scheme is usually referred to as Minimum Mean Square-

Error (MMSE) precoding.

2.4.2 Non-Linear Precoding

As earlier mentioned, linear precoding techniques generally have simple closed-

form structures making them relatively computationally efficient. However, their

performance is far from the optimal theoretical capacity. Several non-linear pre-

coding techniques have been proposed in the literature to decrease this performance

gap. The first theoretical precoding scheme known to achieve the sum-rate capac-
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ity is dirty paper coding (DPC) [51]. Furthermore, many other remarkable contri-

butions have also been reported within the scope of multi-antenna DPC, includ-

ing Vertical-Bell Laboratories Layered Space-Time (V-BLAST) precoding [67],

Tomlinson-Harashima Precoding (THP) [43] , nested lattice [68], trellis precoding

[68] and vector perturbation (VP) [54]. As our focus in this Thesis is on optimi-

sation based precoding, in the following we focus on this category of precoding

techniques.

2.5 Optimisation-Based Methods
In recent years, convex optimisation has been successfully and widely applied to

various problems in signal processing and other science and non-science related

problems. Specifically, many optimisation-based algorithms have been designed

to deliver optimum solutions in physical layer wireless communications, such as

full-duplex MIMO, energy harvesting, precoding, signal detection, and multicell

coordinated beamforming, etc. Consequently, many optimisation-based beamform-

ing techniques have been introduced in the literature and can be classified into two:

block level precoding (BLP) and symbol level precoding (SLP) schemes.

2.5.1 Optimisation-based Precoding

This type of optimisation-based precoding is based on the traditional approach that

treats interference as harmful. Several precoding schemes that fall into this category

for perfect CSI [69–73] and imperfect CSI cases [74–77] have been reported in the

literature based on the desired system performance metrics:
1. Power Minimisation Problem: Conventionally, the power minimisation

problem seeks to minimise the average transmit power by treating all inter-

ference as detrimental subject to the users’ QoS signal-to-interference-noise

ratio (SINR) constraints is expressed as [73]

min
{wi}

K

∑
i=1
‖wi‖2

s.t.
|hH

k wk|2

∑
K
i=1,k 6=i |hH

k wi|2 +σ2
n
≥ Γk (minimum required QoS), ∀k ∈ {1, · · · ,K},

(2.22)
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where Γk is the minimum required QoS of the k-th user that produces the pre-

coding vectors that yield the minimum transmit power. It has been proven that

problem (2.22) is sub-optimal from an instantaneous point of view, as it does

not take into account the fact that interference can constructively enhance the

received signal power [61]. This problem is a typical block level precoding

based on power minimisation formulation.

2. SINR-balancing problem: This involves maximising the minimum SINR

subject to the total power constraints.This problem is mathematically formu-

lated as

max min
wi, γk

γk

s.t. γk =
|hH

k wk|2

∑
K
i=1,k 6=i |hH

k wi|2 +σ2
n
, ∀k ∈ {1, · · · ,K},

K

∑
i=1
‖wi‖2 ≤ Ptotal,

(2.23)

where Ptotal denotes the total transmit power available at the BS.

3. Sum-Rate Maximisation: This optimisation problem indirectly seeks to

maximise the communication system’s spectral efficiency subject to total

power constraints, and mathematically formulated as [78]

maximise
wi

K

∑
k=1

log

[
1+

hH
k wk

∑
K
i6=k hH

k wi +σ2
nk

]

s.t.
K

∑
i=1
‖wi‖2 ≤ Ptotal, ∀k ∈ {1, · · · ,K}.

(2.24)

Another variant of this formulation is the weighted sum rate (WSR), which

can be solved as a weighted minimum-mean squared error (WMMSE) prob-

lem with an optimised mean-squared error (MSE)-weights [79].

Other optimisation problems in this category are leakage based precoding, er-

ror rate minimisation, etc. Among the three optimisation problems discussed in

Subsection 2.5.1, transmit power minimisation is particularly important because it
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Figure 2.3: Generic structure of symbol level precoder

directly addresses the bottleneck associated with the power efficiency of wireless

transmission links. Optimal power transmission strategies provide communications

by reducing CO2 emission and the operator’s operational expenditures. Therefore,

in this thesis, we focus on designing learning-based solutions for optimal power

minimisation problems.

2.5.2 Constructive Interference Optimisation-based Precoding

The precoding methods discussed in the previous sections apply the precoding co-

efficients across the block of symbols or codewords, and hence they are classified

as block-level precoding (BLP) schemes. This means that the precoding matrices

do not depend on the data symbols. We will, in this subsection, discuss the precod-

ing techniques that exploit multiuser interference, where the precoding coefficients

are applied on a symbol basis. These types of precoding schemes are termed sym-

bol level precoding (SLP). Figure 2.3 shows a typical SLP setting for MU-MISO

downlink transmission with Nt BS antennas serving K users. The BS is assumed to

know the channel through CSI feedback acquired from the user end. The solid lines

from each transmitter represent the non-interfering signal towards the desired users,

while the dotted lines are the co-channel interference from unintended users. In-

stead of suppressing the multiuser interference as in BLP, we introduce the concept

of constructive interference (CI), which enables the precoding schemes to exploit
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the instantaneous interference and transform it useful signal to enhance signal de-

tection at the receiver.

Suppose the desired user is user1, then through CI, the interfering signals from

other users can be added constructively to enhance the received signal power of the

user1. Therefore, precoding matrix is expressed as

W = [w1, · · · ,wK] ∈ CNt×K, ∀k; k = 1, . . . ,K (2.25)

where wk ∈ CNt×1 is the k-th user vector. In this type of precoding, the precoding

coefficients are applied on a symbol basis. CI is defined as the interference that

forces the received signals beyond the modulation constellations’ detection bound-

aries or thresholds [63].

With the aim of utilising the instantaneous interference in a multi-user down-

link channel scenario, the interference can be categorised into constructive and de-

structive based on the known standards described in [80, 81]. An initial closed-form

symbol-level-assisted linear precoding optimisation that harnesses the CI while an-

nulling the destructive part was proposed in [63]. In this case, the instantaneous

interference can contribute constructively to the detection of the desired signal.

Knowing both the data symbols and the CSI at the BS, we can transform the SINR

constraints in (2.22) and (2.23) to include CI for generic M-array phase-shift key-

ing (M-PSK) modulated signals. This proposition is depicted in Figure 2.4, show-

ing the constructive interference and destructive interference regions for quadrature

phase-shift keying (QPSK) and 8PSK constellation points, where the green areas

represent the constructive region. As observed from Figure 2.4, τ is the distance

between the nominal constellation point and the decision variable of the constel-

lation, xre = ℜ{ỹ} and xim = ℑ{ỹ} are the real and imaginary parts of the phase

rotated received signal ỹ , hH
k ∑

K
k=1 wke j(ϕi−ϕk) and ϕi is the phase of the desired

symbol, respectively. The angle that determines the signal’s maximum phase rota-

tion in the constructive region for M modulation index is given by

φ =± π

M
. (2.26)
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Figure 2.4: Constructive interference regions for QPSK and 8PSK constellation points [49]

It is also important to note that the instantaneous interference is said to be harnessed

constructively if the received signal falls within the green area based on the mini-

mum distance (τ) from the decision boundaries. This allows the interfering signals

to align with the symbol of interest constructively, contributing to the desired sig-

nal’s strength. The xIm and xRe are the imaginary parts of the noiseless received

signal ỹ. Therefore, by using the geometry, the following vectors can be expressed

as

~AC = [xRe− ~OA], ~BC = j ·xIm, (2.27)

~OA is the detection threshold (τ) and is determined from the relation

~OA =
√

Γiσ2
n . (2.28)

For a point B to be located in the constructive region, the following condition must

hold

tanϕi ≤ tanφ ⇒ | j ·xIm|∣∣∣[xRe− ~OA]
∣∣∣ ≤ tanφ , (2.29)

xIm ≤ (xRe− τ)tanφ . (2.30)
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The CI for each user is guaranteed by adopting (2.30) as the SINR constraint. Con-

sequently, the optimisation problems in (2.22) and (2.23) can be transformed into

their equivalent CI-based optimisation formulations as follows [49]

• Power minimisation CI-based optimisation:

min
{wk}

K

∑
k=1
‖wkdk‖2

s.t.

∣∣∣∣∣ℑ
(

hH
i

K

∑
k=1

wke j(ϕk−ϕi)

)∣∣∣∣∣≤(
ℜ

(
hH

i

K

∑
k=1

wke j(ϕk−ϕi)

)
−
√

Γin0

)
tanφ , ∀k ∈ {1, · · · ,K},

(2.31)

where xIm = ℑ

(
hH

i ∑
K
k=1 wke j(ϕk−ϕi)

)
and xRe = ℜ

(
hH

i ∑
K
k=1 wke j(ϕk−ϕi)

)
. It can

be observed that (2.31) is data-dependent; therefore, the optimisation is done on

a symbol-by-symbol basis, and such precoding is termed symbol level precoding

(SLP).

2.5.3 Robust Power Minimisation Bounded with CSI Errors

The exact CSI is often unobtainable in practice. To model the user’s actual channel

in the uncertainty region, we consider an ellipsoid ξ such that the channel error

is within the uncertainty region of the ellipsoid (i.e ĥi ∈ ξ ). The model of the

uncertainty ellipsoid with the centre ĥi is expressed as [49]

ξ =
{

ĥi + êi|‖êi≤1‖
}
, (2.32)

As shown in [49], the channel error is given by
{

êi : ‖êi‖2
2 ≤ ς2

i
}

. It is important to

note that the BS is assumed to have the knowledge about the channel error, exclud-

ing its corresponding error bound ς2
i . Given this, the conventional robust precoding
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for the downlink MU-MISO power minimisation optimisation is [77]

min
{wi}

K

∑
i=1
‖wi‖2

s.t.
|hH

i wi|2

∑
K
k=1,k 6=i |hH

i wk|2 +n0
≥ Γi ∀ei, ∈ UI, ∀k,

(2.33)

The robust beamforming problem (2.33) is nonconvex and can therefore be relaxed

to its equivalent semi-definite programming (SDP) problem below

min
{W̄i�0, di≥0}

K

∑
i=1

trace(W̄i)

s.t.

ĥ∗i T iĥT
i − γin0−diς

2
i ĥ∗i T i

T iĥT
i T i + ς2

i I

� 0 ∀k
(2.34)

where T i
∆
= W̄i−Γi ∑

K
k=1,k 6=i W̄k ∀k and W̄i = wiw†

i .

Over the last decade, there have been tremendous performance gains through

interference exploitation based on symbol level optimisation for PSK and QAM

(quadrature amplitude modulation) modulated signals [14–16, 21, 82–85]. How-

ever, the optimisation solutions are often based on traditional mathematical formu-

lation, which may sometimes not be tractable or too complex to solve due to the

problem’s dimension. Albeit providing significant performance benefits compared

to linear precoding techniques, non-linear precoding methods involve sophisticated

signal processing at the transmitter, making their implementation practically im-

possible for massive MU-MIMO systems. Therefore, in this thesis, we propose low

complexity learning-based precoding solutions in chapters 4-5.

2.5.4 DL-based MIMO Precoding Schemes

Several learning-based precoding/beamforming schemes have been proposed to

address the problem of computational complexity. This subsection presents the

overview of some learning-based precoding methods, which is the main focus of

this thesis, as we shall see in Chapter 4 and Chapter 5.

More relevant to this work are the learning-based precoding schemes for MU-
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MISO downlink transmission [24, 26, 27, 30, 86]. The benefit of using DNN is

that the computational burden of the learning algorithm can be controlled via online

training, and a variety of loss functions can be used for each optimisation objective.

One of the earliest attempts of using DNN models for beamforming design was

the work of Alkhateeb et al. [28], where a learning-based coordinated beamform-

ing technique was proposed for link reliability and frequent poor hand-off between

BSs in millimetre-wave (mm-Wave) communications. Kerret and Gesbert [29] in-

troduced DNN precoding scheme to address the “Team Decision problems” for a

decentralised decision making in MIMO settings. Huang et al. [86] proposed a

fast beamforming design based on unsupervised learning that yielded performance

close to that of the weighted minimum mean-square error (WMMSE) algorithm.

A DNN-based precoding strategy that utilised a heuristic solution structure of the

downlink beamforming was proposed by Huang et al. [30]. Furthermore, Xia et al.

[24] developed deep convolutional neural networks (CNNs) framework for down-

link beamforming optimisation. The framework exploits expert knowledge based

on the known structure of optimal iterative solutions for sum-rate maximisation,

power minimisation, and SINR balancing problems.

DNN methods are typically used for unconstrained optimisation problems.

Therefore, most of the DNN-based strategies for wireless physical layer designs

are based on supervised learning to approximate the optimal solutions. Using such

approaches, the constraints are implicitly contained in the training dataset obtained

from conventional optimisation solutions. However, if obtaining optimal solutions

via traditional optimisation methods is very computationally expensive (or infea-

sible), using DNN for model approximation may not be practical. Furthermore,

the common approach for solving constrained optimisation with DNN for wire-

less physical layer design is via function approximation. It involves solving the

problem, first using iterative algorithms or convex optimisation techniques, and fi-

nally approximating the optimal solution with a DNN architecture [24, 27, 30].

Table 2.1 summarises the recent milestones in the development of ML-based pre-

coding/beamforming methods. As we can see, significant works have been done on
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Table 2.1: Evolution of learning-based precoding/beamforming MIMO schemes

Learning method Hybrid Precoding BLP SLP Reference

Proposed supervised learning for sum-rate maximisation using DNN as a function approximator X [87]
Proposed supervised learning for sum-rate maximisation by approximating WMMSE solution using DNN X [27]
Proposed an unsupervised learning scheme for sum-rate maximisation X [86]
Proposed an unsupervised learning beamforming technique for sum-rate maximisation X [30]
Proposed supervised learning for physical layer security using a support vector machine (SVM) X [88]
Proposed supervised learning method for sum-rate maximisation and user scheduling using DNN architecture X [89]
Proposed a supervised learning approach to solve power minimisation, SINR balancing and sum-rate maximisation problems X [24]
Proposed a supervised learning technique for Finite-alphabet precoding X X [12]
Proposed supervised learning method using deep CNN for sum-rate maximisation X [90]
Proposed deep reinforcement learning approach for sum-rate maximisation in an mm-wave MIMO system X [91]
Proposed a deep auto-encoder (DNN) for End-to-End communications X [92]
Proposed a unique received signal strength indicators (RSSI)-based unsupervised learning technique for hybrid beamforming X [93]
Proposed a supervised learning scheme using a CNN for sum-rate maximisation X [94]
Proposed an unsupervised learning and supervised learning DNN frameworks for sum-rate maximisation in a multi-cell scenario X [95]
Proposed deep unfolding-based WMMSE algorithm integrating expert knowledge for sum-rate maximisation X [96]

learning-based BLP methods, with few literature on SLP learning approach. While

many optimisation problems can be addressed in learning-based precoding designs,

most research works in this context focus on sum-rate maximisation via supervised

learning [24, 27]. The reason is due to the relative simplicity of the optimisation ob-

jective function that can be easily unfolded into learning layers or by simply model

approximation using DNN architectures. Therefore, there is a gap in designing DL

strategies for SLP to solve more challenging optimisation problems, such as power

minimisation problem, SINR balancing problem, secrecy problem, etc. Accord-

ingly, the major drawback of these proposals is that the efficacy of the supervised

learning is bounded by the assumptions and accuracy of the optimal solutions ob-

tained from the structural optimisation algorithms.

2.6 MIMO Detection Techniques
In section 2.4, we have discussed the signal processing techniques that are per-

formed at the transmitter prior to the transmission.This section will focus on the

post signal processing methods for receiver design (detection or signal equalisation

techniques).

According to Claude Shannon, the main objective of communication systems

is the efficient recovery of the transmitted symbols at the receiver exactly or as

closely as possible as it was originally sent by the transmitter [97]. However, due to

channel and physical impairments, it is difficult to decode the transmitted symbols

precisely. In MIMO systems, multiple interfering symbols are transmitted concur-
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Figure 2.5: Conceptual framework for MIMO Detection problem

rently. These symbols are supposed to be detected/decoded at the receiver contin-

gent on the level of random noise or interfering signals, as shown in Figure 2.5.

The task of a MIMO detector is to determine the estimates of the transmitted vector

(s) from the received vector (y) with the lowest minimum error probability. It is

possible to detect the transmitted multiple symbols separately or jointly. Contrary

to separate detection, each symbol is decoded considering the other symbols’ char-

acteristics in joint detection [2]. Moreover, joint detection of multiple symbols in

MIMO systems is central to actualising the substantial benefits of different MIMO

techniques; and it performs better than separate detection but with additional com-

putational complexity [2, 98]. In the following subsections, we will review some

MIMO detection techniques that are relevant to this thesis.

2.6.1 Optimum Detectors

The maximum likelihood detector (ML-D) and maximum ’a posteriori’ detector

(MAP-D) are optimal algorithms for solving MIMO detection problems [2]. MAP

uses Bayesian inference optimum decision criterion to minimise error probability

based only on the observed signals (received symbols). MAP based MIMO detector

is formulated as

DMAP : ŝ = arg max
s ∈ S

Pr(s|y), (2.35)

where Pr(s|y) is the ’a posteriori’ probability that s is transmitted given that y is

received. The ML-D boils down to selecting the signal among all candidate trans-
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mitted signals that minimises the below metric [99]

ŝMLD = min
s ∈ S

‖y−Hs‖2, (2.36)

where S is the set of possible transmit symbol vectors defined by the type of mod-

ulation scheme and the number of transmit antennas. The optimisation problem of

(2.36) can be solved by a “brute-force” search over S = |M|Nt , resulting in a pro-

hibitive computational complexity that grows exponential with the number of de-

cision variables (where M is the constellation set). This renders optimal detectors

impractical in real MIMO systems.

2.6.2 Sub-Optimum Detectors

Several suboptimal detectors have been proposed to deal with the high computa-

tional complexity of the optimal detectors [2, 3, 100–102]. The suboptimal detec-

tors are categorised into linear and non-linear, and they are briefly discussed below

2.6.2.1 Linear Detectors

In a linear signal detection scheme, all transmitted signals are considered interfer-

ence except the desired data streams from the intended transmit antenna. Hence,

interfering signals from other transmit antennas are suppressed when detecting the

intended signal from the source transmit antenna. Typically, the design of linear

detection schemes involves a linear linear transformation of the received symbol

vector with the filtering matrix at the receiver to recover the transmitted symbol [2].

Mathematically, any linear detector can be expressed as

ŝ =DLin ·y, (2.37)

where D is the linear filtering or transformation matrix, which is the design criterion

using various criteria.

1. Match Filter Detector (MFD): This is the simplest of all the linear detec-

tors is a match filter detector, and it is also called maximum raio combining

(MRC) because it maximizes the SNR of individual streams while ignoring
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the mulitiuser interference. The estimated symbol from the received signal is

given by [101]

ŝMFD = HHHs+HHn, (2.38)

here, the linear transformation matrix DMFD = HH . An MFD is essentially

based on the single-user detection philosophy; hence it does not belong to the

category of joint MIMO detection schemes [2]. This explains why it has the

least performance in MIMO systems compared to other linear detectors.

2. Zero-Forcing Detector (ZF-D): This belongs to the class of joint detection

based MIMO detectors derived by inverting the channel matrix. Assuming

zero noise power and a system with symmetrical channel (Nt = K), such a

system can be solved because there is an equal number of equations as there

are unknowns and H is a square matrix of full rank. The equalisation/detector

matrix is given by [100]

DZFD =
(
HHH

)−1 HH , (2.39)

H† =
(
HHH

)−1 HH is the Moore-Penrose pseudoinverse of H, and is particu-

larly important for an asymmetrical channel, where K >Nt with a full column

rank. The estimated symbol vector is obtained as

ŝ =DZFDy = s+nH†. (2.40)

We can observe from (2.40) that the co-channel interference is completely

cancelled, but the noise power is amplified.

3. Minimum-Mean-Square-Error Detector (MMSE-D): This detector is de-

signed based on the MMSE criterion, which minimises the mean-square error

between the original symbol vector and the channel’s output symbol vector

after applying the linear transformation matrix DMMSED, which is obtained
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by solving the following optimisation problem [2]

DMMSED = arg min
DMMSED

E
{
‖s−Hy‖2

}
. (2.41)

From (2.41), we have

DMMSED =
(
HHH+αI

)−1 HH , (2.42)

where I ∈ RK×K identity matrix, α is the SNR for MMSE and when α = 0,

the problem reduces to ZF. The transmitted symbol in ZF is affected by the

presence of coloured noise and leads to performance degradation. On the

other hand, MMSE suppresses the noise enhancement as shown, but assumes

knowledge of the noise variance. The estimated symbols from the output of

the MMSE detector is thus

ŝ =DMMSEDy. (2.43)

2.6.2.2 Nonlinear Detectors

Nonlinear detectors are the ones that are defined by the nonlinear relationship be-

tween the equalisation or transformation matrix and the received output symbol

vector at the receiver. We shall briefly explain the once relevant to this work below

Sphere Decoding (SD): The main idea behind the SD algorithm is to search

only through the constellation points enclosed within a sphere with a specific, pre-

determined radius d̄ [103], from the transmitted symbols. The maximum likelihood

solution is obtained by searching and successfully marking all the constellation

points or nodes within this radius. It is important to note that the SD’s complexity

is reduced by restricting the search within the sphere with a predetermined radius

[2]. The estimated symbol from the received symbol at the receiver using SD is

expressed as

ŝ = arg min
s∈CNt

{
‖s−Hy‖2

}
≤ d̄2. (2.44)
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SD was derived from the ML formulation to circumvent the exponential com-

plexity of the ML detection [104]. However, its average complexity still grows

exponentially with the number of decision variables (transmit antennas), and it is

therefore not very hardware-friendly for m-MIMO applications [104].

2.6.3 Optimisation-based Detectors

Contrary to other MIMO detectors, these detectors are based on the semidefinite

programming (SDP). Once the problem is convex, powerful numerical algorithms

such as interior-point methods can efficiently solve it. Typical optimisation-based

detectors are based on quadratically constrained quadratic programming (QCQP) to

produce symbol detection at a lower computational cost than an ML-D. We express

the ML-D optimisation problem of (2.36) as

min
s̄i∈R2NT×1

(
H̄T H̄s̄−2s̄T H̄T ȳ+‖ȳ‖2

)
s.t. ∀si ∈ {1, ...,2Nt}

(2.45)

where, the symbol vector, channel matrix and the received symbol vector are defined

in their equivalent real domains as follows

ȳ≡

ℜ{y}

ℑ{y}

 ∈ R2K×1, s̄≡

ℜ{s}

ℑ{s}

 ∈ R2Nt×1 (2.46)

H̄≡

ℜ{H} −ℑ{H}

ℑ{H} ℜ{H}

 ∈ R2K×2Nt (2.47)
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By defining new variables, we can write (2.45) as

min
X

trace(LX)

s.t. diag(X) = I

X(2Nt +1,2Nt +1) = 1

X� 0

rank(X) = 1

(2.48)

where: L =

 H̄T H̄ −H̄T ȳ

−ȳT H̄ ‖ȳ‖2

; X = s̄T s̄.

The difficulty of solving (2.48) lies with the rank-1 constraint (nonconvex con-

straint). This can be can be made convex via semidefinite relaxation (SDR), by

removing the above rank constraints [105].

min
X

trace(LX)

s.t. diag(X) = I

X(2Nt +1,2Nt +1) = 1

X� 0

(2.49)

The SDP based MIMO detectors have recently gained ample research attention

[105–108]. The most attractive feature of the SDP-aided detectors is that they offer

high performance in certain circumstances with worst-case computational complex-

ity in polynomial-time.

2.6.4 Iteration-Based Detector

The most popular detector in this category is the one based on Approximate Mes-

sage Passing (AMP) algorithm. An AMP is an iterative algorithm originally de-

signed for signal regeneration in compressed sensing (CS) [109]. If we assume the

MIMO model as a signal recovery problem, the compressed noisy measurement of

the received vector is similar to (2.1). The iteration involved in an AMP algorithm
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is in two phase: the linear estimation (LE) based on (2.1) and symbol-by-symbol

non-linear estimation (NLE), the problem is expressed as [109]

LE: xt = st +HH(y−Hst)+xt
Onsager (2.50a)

NLE: ŝt+1 = ηt(xt) (2.50b)

where ηt denotes Lipschitz continuous function of xt and xt
Onsager is called the “On-

sager term”(iterative thresholding), which regulates the correlation problem during

t-th iterative process. The final estimate from the received signal vector is given by

(2.50b).

In the context of signal detection, AMP uses an iterative thresholding to es-

timate the received signal by minimising the residual error in each successive t-th

iteration, as expressed below [110]

xt+1 = y−Hŝt +
K
Nt
· σ2

s
σ2

s +α t xt ; ∀t = {0, · · · ,n}, (2.51)

α
t+1 = σ

2
n +

K
Nt
· α tσ2

s
σ2

s +α t , (2.52)

where σ2
s and σ2

n are transmit symbol and noise variances, respectively, and α t is

initialised with the initial signal estimate. Therefore, the final symbol estimate is

ŝt+1 =
σ2

s
σ2

s +α t

(
HHxt+1 + ŝt) . (2.53)

An APM algorithm has a unique ability to handle high-dimensional problems, hence

it is a good candidate for massive MIMO detection [20]. Several variants of AMP-

based detectors for MIMO detection have been reported in the literature [20, 110–

112]. However, convergence is always the problem of an AMP algorithm, and

therefore it requires a mechanism to facilitate its convergence. To deal with this

problem, a damping mechanism was introduced to expedite the convergence of the

AMP algorithm [113].

Furthermore, a modified AMP algorithm involving uncorrelated LE and a
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divergence-free NLE named orthogonal AMP (OAMP) was proposed in [114]. In

this structure, the “Onsager term” is removed, causing the errors to be statistically

orthogonal. Because of this, OAMP achieves a lower BER and faster convergence

speed in many scenarios compared with AMP, especially for ill-conditioned channel

matrices. Finally, due to low-cost iterative nature of an AMP algorithm, it can be

easily unfolded and translated into sequence of DL layers used in MIMO receiver

designs [23, 115, 116].

2.6.5 DL-based MIMO Detectors

These are MIMO detection schemes that use a DNN architecture. An example of

such detectors that are most relevant to our proposed DL-based detector are DetNet

[117] and OAMP-Net [23] because of their promising performances compared to

others.

DetNet: This network is inspired by iterative gradient descent optimisation

and performs well in, i.i.d complex Gaussian channel, achieving near-optimal per-

formance with lower modulation schemes such as binary phase-shift keying (BPSK)

and quadrature phase-shift keying (QPSK). However, DetNet architecture is very

complex, with many layers and sub-layers. It also does not perform well with higher

modulation schemes, such as 16-QAM, as we shall see in Chapter 6, subsection

6.8.4. The architecture is based on the formulations derived from the maximum

likelihood expression as follows:

xr+1 = ŝr−Ψ
[1]
r+1HHy+Ψ

[2]
r+1HHHŝr (2.54a)

ur+1 =
[
Θ̃
[3]
r+1xr+1 + Θ̃

[4]
r+1ar−1 +θ

[5]
r+1

]
+

(2.54b)

ar+1 = Θ̃
[6]
r+1ur+1 +θ

[7]
r+1 (2.54c)

ŝr+1 = Θ̃
[8]
r+1ur+1 +θ

[9]
r+1, (2.54d)

here, Ψ, θ and Θ̃ represent the set of training parameters, [z]+ = max(z,0), a and ŝ

are the auxiliary and recovered transmitted symbols of the r-th layer iterations.

The unique property of such detectors is their ability to sustain their perfor-

mance under higher-dimensional signals [117]. More recent works have involved
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MIMO detection through DL. One of the earliest attempts is the work of O’Shea

et al. [118], who implemented unsupervised learning using an auto-encoder as an

extension of end-to-end learning of previous attempts [119]. Channel equalisation

for the nonlinear channel using a DNN was proposed by Xu et al. [120], where two

neural networks are jointly trained. The first is a CNN, which is trained to recover

the transmitted symbols from nonlinear distortions and channel impairments. The

second is an MLP, also known as the fully connected neural network, and is used to

perform the detection.

The growing popularity of unfolding iterative optimisation algorithms through

projected gradient descent (deep-unfolding) to design DNN to solve a spectrum of

applications has led to a paradigm shift for efficient learning-based solutions for the

physical layer design [121]. One of the successful applications of deep-unfolding

for MIMO detection is the “DetNet” proposed by Samuel et al. [22]. The approach

is significant as it derives a learnable signal detection architecture for multiple chan-

nels on a single training shot with near-optimal performance and also works well

under both constant and Rayleigh fading channels. Multilevel MIMO detection us-

ing coupled-neural networks structure is investigated by Corlay et al. [122]. The

network uses a multi-stage sigmoid activation function and a random forest ap-

proach to reduce the detection complexity with relatively fewer parameters. A simi-

lar approach by unfolding belief propagation (BP) based on modified BP algorithms

(damped BP and maximum BP) is later introduced by Tan et al. [123] and Liu and

Li [124]. The work proposed in [22] has been further extended to handle higher

digital constellations [117], where the authors investigate the complexity-accuracy

trade-off as more layers are added.

OAMP-Net: Beyond using projected gradient descent approaches with DNN

architectures, other lower-cost learning-based detectors based on iterative AMP al-

gorithms are: “trainable iterative detector (TI-detector)” proposed by Imanishi et

al. [125], “orthogonal approximate massage passing deep network (OAMP-Net)”

introduced by He et al. [23] and “trainable projected gradient detector (TPG-Net)”
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proposed by Takabe et al. [126]. The OAMP-Net architecture is expressed as

xr+1 = ŝr +Ψ
[1]
r+1HH (

ϑHHH+σ
2
n I
)−1

(y−Hŝr) (2.55a)

ŝr+1 = ηr
(
xr; σ

2
r
)
, (2.55b)

where Ψ, ϑ are the trainable parameters and η is the denoiser or the same “Onsager

term” used by AMP and σ2
r is the prior variance that influences the accuracy of ŝr+1

and is described in [23].

Contrary to previous learning-based detectors that heavily depend on a huge

amount of parameters, these models exploit full domain knowledge to achieve ac-

ceptable performance with fewer parameters. However, these algorithms require

channel inversion at every training and inference steps to compute the nonlinear

estimator for symbol detection.

2.7 Summary
The chapter presents the general overview of MIMO system and its applications

in physical layer communications. We have concisely reviewed the existing tra-

ditional precoding and detection schemes. Transmission preprocessing techniques

are generally divided into closed-form precoding and optimisation-based precoding

approaches. The closed-form precoding can be categorised into linear and non-

linear schemes. The linear precoding schemes are designed based on the channel’s

knowledge to cancel the MUI with a relatively low computational cost. The non-

linear precoding schemes can achieve added performance gains over linear methods

at the expense of increased computational complexities. In the precoding designs,

we specifically focus on the conventional precoding schemes, optimisation-based,

and CI-based downlink precoding methods for power minimisation problems. The

post-processing downlink transmission at the receiver or user-end requires decod-

ing the transmitted data symbols from the received symbols with minimum error

probability. As in precoding designs, we have briefly presented the review of linear,

non-linear, iteration and optimisation based detection methods that are relevant to

this work.



Chapter 3

Machine Learning for 5G

Communications and Beyond

This chapter introduces the basic concepts of machine learning and its applications

in wireless physical layer communications. In particular, we present an overview of

DL techniques and their potential benefits in designing end-to-end learning-based

communication systems. The ML literature is vast, and we only review the rele-

vant ML techniques for conciseness. Furthermore, we present a brief review of the

required theoretical concepts leading to the generic, scalable deep neural network

designs for MIMO detection and multi-user precoding schemes.

3.1 Types of Machine Learning
Depending on the specific applications, ML can be divided into four broad learning

schemes as summarised in Table 3.1. Unlike in computer vision and other domains,

where labelled training data is readily available, such is challenging to obtain in

Table 3.1: Taxonomy of Machine Learning

Machine Learning Types

Supervised Learning Unsupervised Learning Semi-Supervised Learning Reinforcement Learning

Classification Regression Clustering Regression Classification Regressions Classification Control

Support Vector Machine Linear Regression K-Means Algorithm Linear Regression Support Vector Machine K-Means Algorithm Support Vector Machine Deep Q-Learning

Naive Bayes Ensemble Schemes K-Medoids Ensemble Schemes Naive Bayes K-Medoids Naive Bayes Model-Based

Reinforcement Learning

Discriminant Analysis Decision Trees C-Means, Fuzzy Decision Trees Discriminant Analysis C-Means, Fuzzy Discriminant Analysis Markov Decision Model

Nearest Neighbour (K-Nearest) Scalable Vector Graphics Hidden Markov Model Deep Auto-encoder Nearest Neighbour (K-Nearest) Hidden Markov Model Deep Neural Networks Q-Learning

Deep Neural Networks Deep Neural Networks Hierarchical Deep Unfolding Deep Neural Network Deep Auto-encoder

Gaussian Mixture

Principal Component Analysis

Deep Neural Networks
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wireless communication. Therefore, Chapter 4 and Chapter 5 of this thesis focus on

an unsupervised learning scheme.

3.1.1 Unsupervised Learning

Unsupervised learning is the type of learning that is independent of the pre-defined

examples. The index or category associated with each input data is not given. In

other words, the input examples are not labelled (unstructured dataset) [127]. In

Figure 3.1, the input data is unstructured (unlabelled). The main task of the algo-

Interpretation

Processing

Learning
AlgorithmUnstructured Input Data

Structured Outputs

No Training Labels

Figure 3.1: Unsupervised Learning Work-flow [128]

rithm is to find out the structure in the data by organising and grouping the data

points with similar characteristics into the same cluster or group. This algorithm

is much more sophisticated than supervised learning and mimics how the human

brain processes data. Most often than not, in classification problems, the data is

labelled. However, in reality, we do not have the luxury of having labelled data be-

cause it is challenging to annotate. This unique property of unsupervised learning

could potentially be suitable for end-to-end learning over the air, wireless channel

estimation, and determining users’ nature, behaviours, and mobility in a cognitive

radio environment [129]. Contrary to supervised learning, where a Cross-Entropy

or Minimum-Mean-Squared-Error is a loss function to compare the output of the

prediction with the ground truth, we use the original objective function as a loss

function in this thesis.
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3.2 Deep Learning
Without loss of generality, simple ML algorithms used with a relatively small

amount of training dataset do not generally perform well when a large amount of

data is used [130]. For this reason, therefore, more robust ML technique is nec-

essary. Classical ML techniques, such as: support vector machine (SVM), nearest

neighbour, decision trees, principal component analysis (PCA), k-means clustering,

etc cannot process large amount of data [130]. Their accuracy declines with the

increase in the dimension of the datasets, albeit proven very ineffective in solving

many problems [131]. This leads to developing DL techniques that use a set of al-

gorithms to exploit high-level abstraction in the data. The evolution of DL ensued

concurrently with the study of AI, particularly the study of artificial neural networks

(ANN) in the 1980s [131].

3.2.1 Artificial Neural Network (ANN)

An ANN is a processing unit inspired and designed based on the natural architecture

and function of the human or animal brain [127]. Typically, ANN is represented by

a single unit (layer) and a firing node called activation function through which some

nonlinearity is applied to make it able to learn. As seen in Figure 3.2, the learning

is accomplished by adjusting the connection between the inputs x = [x1, · · · ,xn] and

weights w = [w1, · · · ,wn] to produce prediction at the output nodes.

Output

W
eig
ht
s

Activation
Function

Inputs

Bias

Figure 3.2: Simple Artificial Neural Network [127]

Deep neural network (DNN): This is a more sophisticated form of ANN with

many processing units (neurons/nodes) and layers. A DNN is a nonlinear ML model

that provides a fair, accurate universal approximation of any function. It requires no
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prior assumption of the model to build the process [131]. Figure 3.3 shows a typical

DNN architecture composed of three basic components: an input layer, a hidden

layer, and output layer. The number of nodes (analogous to connecting neurons in

the human brain) depends on the number of input and output variables (parameters).

In between the first and the last layers are hidden layers, whose number is arbitrarily

chosen depending on the size of the input data available and the task at hand. Infor-

mation is transmitted between layers through the connecting nodes (neurons) with

the aid of the connecting weights. Each layer is associated with weights and biases

parameterised by θ̄ . The network acquires intelligence by adjusting the values of

these weights and biases through a repetitive training (learning algorithm). A fully

feed-forward DNN as the one shown in Figure 3.3 is sometimes called a multilayer

perceptron (MLP).

Predicted output

Input layer

Hidden layers

1st hidden layer  2nd hidden layer 

Output layer 

Neuron (Node)

Input vector

Figure 3.3: A typical three layer fully connected feed-forward DNN

Suppose the network is fed with an x0 m-th size input vector and produces an

n-th size output vector ȳ ∈ Rn. By changing the parameter vector θ̄ ∈ Rk of k-th

dimension, we can model different input-output relations that share the same basic

structure determined by the original choice of the function f (·). The output from

each layer is deterministically determined by the function f (·) as follows

x[l] = f [l](x[l−1]; θ̄
[l]
), ∀l = {1, · · · ,L} (3.1)
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where L is the number of layers, including the input layer that determine how deep

the DNN is. Accordingly, the feed-forward is defined by the composite function as

[127]

f [l](x[l−1]; θ̄
[l]
) = σ

(
W[l]x[l−1]+b[l]

)
(3.2)

where σ is the nonlinear activation function, W[l] and b[l] represent the weights and

biases, respectively. Finally, the overall input-output relation is thus expressed as

ȳ = f [L−1]
(

f [l−2]
(

x[L−3]; θ̄
[L−2]

)
· · · f [1]

(
x[0]; θ̄

[1]
)

; θ̄
[L−1]

)
(3.3)

Convolutional neural network (CNN): The CNN is very similar to typical

MLP because they both have learnable weights and biases based on the same the-

oretical foundation [132]. As earlier explained, in a typical MLP, a neuron in the

input layer is connected to the neuron in the output layer. However, only a small area

of the input layer neuron is connected to the hidden layer’s neuron in CNN. These

areas or regions are called local receptive fields [127]. Unlike MLP, where neurons

in a single layer function are entirely independent and do not share any connections,

the weights and biases are the same for all hidden neurons in a given layer in CNN.

Furthermore, additional transformation known as pooling is applied after the acti-

vation to reduce the feature map’s dimension into a single output. These unique

properties, such as weight sharing and pooling, make the CNN network more ef-

ficient, significantly reducing the number of parameters than in a fully connected

DNN (i.e. MLP).

Generally, convolution layer consists of K̄ filters of size fw× fh that perform

convolution operations as it scans through an input Il
(Win×Hin×Cin)

tensor1, a stride S,

which denotes the number of pixels by which the window moves after each oper-

ation [128]. The resulting operations produce an output Yl called a feature map or

1Il is usually an image in computer vision; Win, Hin and Cin are the width, height and the number
of channels, respectively
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activation map according to the following.

Yl
p,q =

fw−1

∑
a=0

fh−1

∑
b=0

W(a, b)I
l−1
(p+a, q+b), (3.4)

where W(a, b) is the filter weight matrix.

3.3 Learning to Communicate
Intuitively, a communication system from transmitter to receiver is divided into sev-

eral signal processing blocks, such as modulation, source coding, channel coding,

channel estimation, and signal detection, in order to achieve a near theoretically op-

timal solution. The advantage of this configuration is that each component can be

optimised separately, resulting in efficient and stable communication systems that

are currently available, albeit being sub-optimal [133]. However, the concept of DL

traces back to the original problem and tries to jointly optimise the transmitter and

receiver without introducing the block configuration [118]. As an illustration, we

consider a simple communications system, as depicted in Figure 3.4. The trans-

mitter sends message s = {1, · · · ,M} over the channel to the receiver. The receiver

generates the estimate ŝ of the original message.

Transmitter

Receiver

Channel

Original message

Recovered message

Modulated message

Received message

Figure 3.4: A simple communications system

DL has been applied in wireless physical layer communications because of its

propensity to create an ingenious framework that can intelligently make decisions

with some high-level degree of accuracy and a reasonably low online computational

complexity. [24, 25, 118, 129, 134–138]. Therefore, the communications system

in Figure 3.4 can be represented by an auto-encoder2, replacing the transmitter and
2An auto-encoder is a DNN trained to reconstruct input data at the output.
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receiver [139]. Generally, there are two primary paradigms for solving problems in

ML: the data-driven and model-driven approaches.

3.3.1 Data-Driven DL

The data-driven DL method is the most commonly popular method applied in sev-

eral computer vision problems, naturally due to the nonavailability of well defined

tractable mathematical models [140, 141]. The data-driven approach relies on train-

ing labelled data to build a system that can identify the correct answer based on

what the system has seen before. In this context, the models learn by parameter up-

dates and hyperparameter tuning during training. There are several ways of doing

this, but the most popular is using NN algorithms in different forms. The essential

ingredients for this method is the availability of suitable labelled dataset. It is im-

portant to note that this approach does not require humans to describe a set of rules

accurately. With data-driven DL, the system learns on its own to make accurate

predictions when presented with the new dataset based on the training data it had

initially seen. Depending on the application, the larger the training data, the better

the system can be.

While data-driven DL has been widely and successfully applied in different

domains, it may not be suitable in some fields that do not have the luxury of la-

belled training dataset, especially wireless communications. Moreover, the relation-

ship between the NN and the network topology has limited theoretical foundations,

making the structure vague and unpredictable [142]. These two reasons limit the

widespread adoption of data-driven DL for physical layer communications applica-

tions. To deal with this issue, model-driven DL that exploits the expert’s knowledge

based on the physical mechanism of the system has been proposed [11, 142].

3.3.2 Model-Driven DL

The model-driven DL approach is based on a deep understanding of the system and

the relationships between its constituent components or variables from the physical

system. This approach uses physical mechanism and domain knowledge to build

the learning architecture and therefore does not require a large amount of training
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data, making it is easier to train [142]. The model-driven DL has three main compo-

nents: model, algorithm and network. Unlike the traditional analytic model-driven

approach, model-driven DL method provides only a rough and broad description

of the solution, reducing the demand for an accurate modelling strategy. The al-

gorithm is then unfolded into learning layers to form the network, which is trained

via backpropagation. Model-driven DL methods are appealing for solving physical

layer communication problems because of the availability of mathematical models

and less demand for a large amount of training data [11].

The physical layer communications system is a well-researched field based

on established theoretical foundation with well-defined problems. However, most

existing algorithms for solving such problems are computationally intractable for

implementation on practical systems [11]. A model-driven DL can compensate

for the imperfection and inaccuracies arising from modelling by learning a set of

parameters of the unfolded learning network. Because the model-driven DL model

can be efficiently trained with small training data, it has a relatively short training

time and is less prone to overfitting [142]. A logical question one may ask is whether

we can design learning architecture based on theoretical foundations and make the

network explicable and predictable. We answer this question by using a model-

driven DL derived from the analytical model and associated algorithm.

The model-driven DL is based on the physical mechanism and domain knowl-

edge for a specific problem. This is contrary to the data-driven DL approach that

uses a standard NN architecture as a black box and massive data to train the NN. It

is important to note that the pure model-driven approach can provide an optimal so-

lution when the model is sufficiently accurate with the optimisation algorithm being

deterministic. A fatal defect of the pure model-driven method rests in the inability

to model a specific task in real applications accurately. On many occasions, obtain-

ing an accurate model is often challenging. The integration of learning architecture

with model-driven methods has recently received much attention and is becoming

a potential strategy for designing intelligent communication systems with several

promising results [11, 12, 23, 143].
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3.4 Scalable DNN for Inference Acceleration
The accomplishments of DNN can be mainly attributed to the ever-increasing com-

puting power and availability of data. As the parallel powerful, fast computing

nodes, such graphical user unit (GPU) and field-programmable gate array (FPGA)

become available at a lower cost, we can use massive data to train DNN with more

layers and neurons, resulting in higher inference accuracy. For many applications,

the sizes of the network have grown drastically overtime beyond the petascale. The

number of popular deep neural networks’ parameters has considerably increased

for many application domains, particularly in computer vision, autonomous driv-

ing, to mention a few over the last twenty years [144]. Such large models may not

offer significant hurdles for applications where powerful computing resources are

easily accessible through network connections. However, running trained networks

on embedded hardware platforms, where security, privacy and latency are of signif-

icant considerations, the inference must be done locally or at the network’s edge.

Such computation is subject to severe constraints (memory and power) due to the

limited available resources. For this reason, there has been a recent drive to reduce

the DNN model size, driven from the image processing research [145].

Traditionally, DNN is designed with full-precision weights and activations.

This can result in significant memory consumption and computational complexity.

The DNN complexity reduction and acceleration techniques can be broadly classi-

fied into three categories:

i. Structured simplification: This involves a systematic approach of network

factorisation (factorises a convolutional layer into many efficient ones), chan-

nel pruning, sparse connections to reduce the size of the DNN model [146].

ii. Quantization: In this technique, the computations involving weights, activa-

tions, and sometimes input tensors are performed at lower bit-widths than

floating-point precision [145].

iii. Optimised Implementation: This approach uses Fast Fourier Transform (FFT)

based on NVIDIA’s cuFFT library to provide significant speedups [147].
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Among the above three model simplification techniques, the first two are most ap-

pealing because:

• They provide good insight to understanding the internal dynamics of the hid-

den layer operations, which is usually impossible with the conventional DNN.

• They both lead to model size reduction, improve training and inference effi-

ciencies and reduces hardware requirements during model deployment on the

edged-devices.

• Specifically, for a quantised network, most multiply accumulates (MACs) op-

erations required to compute the neurons’ weighted sums are replaced by

simple binary operations (bit-wise or XNOR operations).

For these reasons mentioned above, we propose stochastic quantisation based on

standard binary and ternary quantisation in Chapter 4 and a novel structural DNN

simplification we shall describe in Chapter 5.

3.4.1 NN Weight Pruning

Neural networks pruning is an old concept as far back as 1990 and before. Some

trainable parameters of NN are redundant and do not contribute much to the learn-

ing process [148]. Not all neurons contribute to the output (learning process); some

are redundant. In simple term, pruning is a technique that involves removing pa-

rameters, usually layer neurons, from the neural network so that the network’s ac-

curacy is maintained while improving its efficiency. Typically, pruning is divided

into structured and unstructured depending on the designer’s preference between

speed and memory efficiency [148]. Structured pruning entails carefully removing

a substantial part of the network, such as a layer or a channel. Technically speaking,

structured pruning prunes weights in groups. On the other hand, unstructured prun-

ing requires finding and eliminating the less significant connection wherever they

are in the network. The unstructured pruning does not consider any relationship

between the pruned weights.
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3.5 Summary
This chapter presents a detailed overview of ML algorithms that are pertinent to

the thesis. Beyond the traditional applications of ML, particularly DL in computer

vision, the chapter explains the conceptual DL frameworks for designing signal

processing techniques for physical layer communications. The advantage of adopt-

ing DL for physical layer communications designs is highlighted. The chapter also

explains how data-driven and model-driven DL methods are combined to enhance

the performance of the learning-based signal processing sachems. We have demon-

strated how conventional iterative algorithms are converted into learning iteration

learning layers. Finally, this chapter presents a synopsis of classical NN model

compression, leading to more flexible learning frameworks.



Chapter 4

Unsupervised Deep Unfolding for

Symbol Level Precoding Design

The chapter extends the traditional precoding design concept explained in Chapter

2, to a learning-based approach. Specifically, we focus on building an unsuper-

vised learning framework via model-driven DL methods. Accordingly, we design

learning-based precoding schemes that exploit known interference in MU-MISO

systems for the power minimisation problem under SINR constraints. The learn-

ing framework is designed by unfolding an IPM iterative algorithm via ‘log’ bar-

rier function derived from SLP power minimisation formulation. The proposed

learning-based precoding scheme does not require generating the training dataset

from the conventional optimisation solutions, thereby saving considerable compu-

tational effort and time.

4.1 Introduction
Traditionally, interference is regarded as the limiting factor against the ever-

increasing needs for transmission rates and QoS in 5G wireless communication

systems and beyond [49, 149, 150]. However, recent studies on interference ex-

ploitation have transformed the traditional paradigm in which known inferences

are effectively managed [49, 149–152]. Consequently, transmit beamforming tech-

niques for the downlink channels for power minimisation problems under specific

QoS become imperative for high-throughput systems under interference.
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The idea of exploiting interference was first introduced by Masouros and Al-

susa [153], where instantaneous interference was classified into constructive and

destructive. Initial sub-optimal approaches to exploit CI were first introduced by

Masouros et al. [61, 154]. The first form of optimisation-based CI precoding was

introduced in the context of vector perturbation precoding through a quadratic op-

timisation approach [60]. A convex optimisation-based CI scheme termed symbol-

level-precoding technique was proposed first with strict phase constraints on the

received constellation point [65], and with a robust relaxed-angle formulation [49].

As a result of the performance gains over conventional BLP schemes, the idea of

CI has been applied in many domains, such as vector perturbation [155], wireless

information and power transfer [156], mutual coupling exploitation [82], multi-user

MISO downlink channel [83], directional modulation [157], relay and cognitive ra-

dio [149, 158]. Despite the superior performance offered by CI-based precoding

methods, their increased computational complexity can hinder their practical ap-

plication when performed on a symbol-by-symbol basis. To address this, Li and

Masouros [21] proposed an iterative closed-form precoding design with optimal

performance for CI exploitation in the MISO downlink by driving the optimal pre-

coder’s mathematical Lagrangian expression and Karush–Kuhn–Tucker conditions

for optimisation with both strict and relaxed phase rotations.

Contrary to the conventional way of training DNN in a supervised learning

fashion without the specifics of the objective functions as explained in the Chapter 2,

in this chapter, we adopt an unsupervised learning approach. Specifically, we focus

on the power minimisation problem via SLP and show the low computational cost

of our proposal over the traditional optimisation SLP schemes. The contributions

of this chapter are summarised below:

• We introduce an unsupervised DNN-based power minimisation SLP scheme

for MU-MISO downlink transmission. The proposed framework is designed

by unfolding an IPM algorithm via a ‘log’ barrier function that exploits the

convexity associated with the SLP inequality constraints. The learning frame-

work utilises the domain knowledge to derive the Lagrange function of the
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original SLP optimisation as a loss function. This is used to train the network

in an unsupervised mode to learn a set of Lagrangian multipliers that directly

minimise the objective function to satisfy the constraints. A regularisation

parameter is added to the Lagrange function to aid the training convergence,

and we provide detailed formulations leading to the unfolded unsupervised

learning architecture for constrained optimisation problems.

• We extend the formulation to design a robust learning-based precoder where

the uncertainty in channel estimation is considered.

• We derive analytic expressions for the computational complexity of various

SLP and the proposed unsupervised learning precoding schemes. Our anal-

ysis demonstrates that the proposed deep unfolding (DU) framework offers

a theoretical, computational complexity reduction from O(n7.5) to O(n3) for

the symmetrical system case where n = number of transmit antennas = num-

ber of users. This is reflected in a commensurate decrease in the execution

time as compared to the SLP optimisation-based method.

4.2 System Formulation
Consider a single-cell downlink channel with Nt transmit antennas at the BS trans-

mitting to K single-antenna users. Assume a quasi-static flat-fading channel be-

tween the BS and the users, denoted by hi ∈ CNt×1. The received signal at user i is

given by

yi = hH
i

K

∑
k=1

wksk +ni

= hH
i

K

∑
k=1

wke j(ϕk−ϕi)si +ni

(4.1)

where ∑
K
k=1 wksk = ∑

K
k=1 wke j(ϕk−ϕi)si is the transmit signal and si = se jϕi is as-

sumed to be a referenced PSK modulated symbol with constant amplitude s. Also,

hi, wi, si, ni and ϕi represent the channel vector, precoding vector, data symbol,

received noise and phase rotation for the i-th user.
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4.3 Proposed Learning-Based SLP for Power Min-

imisation

This section presents the formulation of a learning-based CI power minimisation

problem for SLP. Throughout this section, we assume a perfect CSI known at the

BS. Motivated by the recent adoption of an IPM for image restoration [159], we

propose an unsupervised learning framework that unfolds a constrained optimisa-

tion problem into a sequence of learning layers/iterations for a multi-user MISO

beamforming. We first convert CI-based optimisation problem of (2.31) defined in

subsection 2.5.2 of Chapter 2 into a standard IPM formulation containing a slack

variable, where necessary. The measure of the fidelity of the solution to (2.31) is

determined by learning a set of penalty parameters in the form of Lagrange multi-

pliers associated with the constraints. From the original SLP power minimisation

problem (2.31), we define the following

ĥi = hie j(ϕ1−ϕi), (4.2)

w =
K

∑
k=1

wke j(ϕk−ϕ1). (4.3)

Accordingly, to ease the analysis, we partition the complex rotations into the real

and imaginary parts as follows

ĥi = ĥRi + jĥIi (4.4a)

w = wR + jwI (4.4b)

where ĥRi = ℜ(ĥi), ĥIi = ℑ(ĥi), wR = ℜ(w) and wI = ℑ(w). The product of com-

plex rotations of (4.4a) and (4.4b) can be written as

ĥiw = (ĥRi + jĥIi)(wR + jwI). (4.5)
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The real and imaginary parts of (4.5) can be written in vector forms as follows

ℜ(ĥiw) =
[
ĥRi ĥIi

] wR

−wI

 (4.6a)

ℑ(ĥiw) =
[
ĥRi ĥIi

]wI

wR

 (4.6b)

Let Λi = [ĥRi ĥIi]
T , w1 = [wR −wI]

T and w2 = [wI wR]
T

ℜ(ĥT
i w) = Λ

T
i w1 and ℑ(ĥT

i w) = Λ
T
i Πw1 (4.7)

where

w2 = Πw1 and Π =

ONt −INt

INt ONt

 ; ∈ R2Nt×2Nt (4.8)

Note that INt is the identity matrix and ONt the matrix of zeros, respectively. Using

the above definitions, problem (2.31) can be recast into its mutlicast formulation

[49]

min
{w1}

‖w1‖2
2

s.t.
∣∣ΛT

i Πw1
∣∣≤ (Λ

T
i w1−

√
Γin0

)
tanφ , ∀i

(4.9)

4.3.1 Interior Point Method

Consider a general form of a nonlinear constrained optimisation of the form [160]

min
x∈RN

f (x)

s.t. g(x)≥ 0

C(x) = 0 .

(4.10)

The rationale of adopting IPM is to substitute the initial constrained optimisation

problem by a chain of unconstrained sub-problems of the form

min
x∈RN

f (x)+λC(x)+µB(x). (4.11)
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where B(·),−∑ ln(·) is the logarithmic barrier function associated with inequality

constraint with unbounded derivative at the boundary of the feasible domain, C(·)

is a function associated with equality constraint, µ and λ are the Lagrangian multi-

pliers for inequality and equality constraints, respectively. For K users, we define a

vector µ , [µ1, · · · ,µK].

Following the above line of argument, the unconstrained sequence of (4.9) per

user can be written as

min
w∈R2Nt×1

f (w1)+µB(w1), (4.12)

To facilitate the solution of (4.9) , we introduce additional notations. For every in-

equality constraint, γ ∈ {0,+∞} and w1 ∈R2Nt×1, we define the proximity function

as in [160] with respect to (4.12), which we shall later use to compute the projected

gradient descent as

proxγµB(w0) = argmin
w1∈R2Nt×1

1
2
‖w0−w1‖2

2 + γµB(w1), (4.13)

where γ is the step-size for computing the gradients and w0 is the initial value of

the precoding vector. To convert (3) into its equivalent barrier function problem, we

integrate the inequality constraint into the objective by translating it into a barrier

term as follows [161]

min
w1

f (w1)−µ

p

∑
i=1

ln(gi(w1))

s.t. C(w1) = 0

(4.14)

where g(w1) =
(
Λ

T
i w1−

√
Γin0

)
tanφ−

∣∣ΛT
i Πw1

∣∣ and p is the number of inequality

constraints.

Going back to our initial SPL optimisation to apply this framework, first we

rewrite the constraint of (4.9) as

a≤ Λ
T
i Πw1 ≤ b, (4.15)
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where

a =−
(

Λ
T
i Πw1−

√
Γin0

)
tanφ , (4.16a)

b =
(

Λ
T
i Πw1−

√
Γin0

)
tanφ . (4.16b)

Therefore, the original problem (4.9) becomes

min
{w1}

‖w1‖2
2

s.t. a≤ Λ
T
i Πw1 ≤ b , ∀i.

(4.17)

To obtain each user’s precoder from (4.9), suppose the optimal solution to (4.9) is

w∗. The precoding vector for each user can be expressed by the following relations

w∗11 =
w∗

K
, (4.18)

wk = w∗11e j(ϕk−ϕ1) =
w∗e j(ϕk−ϕ1)

K
;∀ k = 2, · · · ,K. (4.19)

From (4.18), we treat the composite precoding term ∑
K
k=1 = wke j(ϕk−ϕ1) in (2.31)

as single vector w, which results in (4.9). If we assume w∗1 is the optimal solution

of the user1‘s precoding vector in (4.9), then without compromising the optimality,

the other user‘s precoding vectors are simply the rotated versions of w∗1 given by

wi = w∗11e j(ϕ1−ϕi); i = 2, · · · ,K. (4.20)

It is apparent that the constraint of (4.17) is contained within a hyperslab [162].

4.3.2 Hyperslab Constraints

Given the constraint in (4.17), the precoding vector w1 is contained within a set of

hyperslab C and also bounded by {a, b}. Therefore, C is defined as follows

C = {w1 ∈ R2Nt×1}|a≤Λ
T

Πw1≤b. (4.21)
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For all γ > 0 and µ > 0, a proximity barrier function related to (4.21) is given by

B(w1) =

− ln(b− ŵ1)− ln(a+ ŵ1), if a≤ ŵ1 ≤ b

+∞, otherwise
(4.22)

where for convenience, we let ŵ1 = Λ
T
i Πw1.

4.3.3 Proximity Operator for the SLP Formulation

To unfold (4.17) into learning framework using IPM, we use its equivalent proxim-

ity ‘log’ barrier function (4.22) and the proximal operator of γµB(w1) for every w1

defined as

Φ(w1,γ,µ) = proxγµB(w1) = w1 +
X(w1,γ,µ)− Λ̂iw1

‖Λ̂i‖2
2

Λ̂i (4.23)

where Λ̂i = Λ
T
i Π and X is a typical solution of the following cubic equation of the

form

x3−
(
b+a+ Λ̂w1

)
x2+(

ba+ Λ̂w1(b+a)−2γµ‖Λ̂‖2
2
)

x

+
(
−baΛ̂w1 + γµ (b+a)‖Λ̂‖2

2
)
= 0. (4.24)

It is important to note that the solution to (4.24) is obtained using the analytic solu-

tion of the cubic equation. To build the structure of the learning framework, we need

to obtain the Jacobian matrix of Φ(w1,γ,µ) with respect to w1 and the derivatives

with respect to γ and µ as follows

JΦ |(w1)= I2Nt +
1
‖Λ̂i‖2

2
·
(
(b−X(w1,γ,µ))(a−X(w1,γ,µ))

ϒ(w1,γ,µ)
−1
)

Λ̂iΛ̂
T
i , (4.25)

∆Φ |(µ)=
−γ (b+a−2X(w1,γ,µ))

ϒ(w1,γ,µ)
Λ̂i, (4.26)

∆Φ |(γ)=
−µ (b+a−2X(w1,γ,µ))

ϒ(w1,γ,µ)
Λ̂i, (4.27)
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where I2Nt ∈ R2Nt×2Nt . For hyperslab constraints, ϒ(·) is the derivative of (4.24)

with respect to x. Finally, using similar abstraction as in subsection 4.3.1, the SLP

formulation can be expressed as a succession of sub-problems with respect to the

inequality constraint

min
w1∈R2Nt×1

‖w1‖2
2 +λw1 +µB(w1). (4.28)

It is important to note that the original problem (4.9) does not have an equality

constraint. However, the term λw1 introduced in (4.28) is to provide additional

stability to the network. Using the proximity operator of the barrier, the update rule

for every iteration is given by

w[r+1]
1 = prox

γ [r]µ [r]B

(
w[r]

1 − γ
[r]

∆D(w[r]
1 ,λ [r])

)
(4.29)

where

D(w[r]
1 ,λ [r]) = ‖w1‖2

2 +λw1, (4.30)

and ∆

(
D(w[r]

1 ,λ [r])
)
=

∂D(w[r]
1 ,λ [r])

∂w[r]
1

.

4.3.4 SLP Deep Network (SLP-DNet)

To build the proposed learning-based SLP architecture, we combine an IPM with a

proximal forward-backward procedure [163] and transform it into an NN structure

represented by the proximity barrier term (see Figure. 4.1). The learning architec-

ture strictly follows the formulation (4.29). We show a striking similarity between

our proposal and the feed-forward NN. Intuitively, we form cascade layers of NN

from (4.29) as follows

w[r+1]
1 = prox

γ [r]µ [r]B

[(
I2Nt −2γ

[r]
)

w[r]
1 + γ

[r]
λ
[r]1T

]
(4.31)

where 1 ∈ R1×2Nt is a vector of ones. By letting Wr = I2Nt −2γ [r], br = γ [r]λ [r]1T

and Θr = prox
γ [r]µ [r]B, the r-layer network L[r−1] · · ·L[0] will correspond to the fol-
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Auxiliary Processing 
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Figure 4.1: Complete SLP-DNet Architecture, showing the parameter update module, the
auxiliary processing block

lowing

Θ0 (W0 +b0) , · · · ,Θr (Wr +br) (4.32)

where Wr and br are described as weight and bias parameters respectively. The

nonlinear activation functions are defined by Θr. In the SLP-DNet design, the La-

grange multiplier associated with the equality constraint is wired across the network

to provide additional flexibility. It is important to note that the architectures are the

same for both non-robust and robust power minimisation problems described in

subsections 4.3 and 4.4 but differ in proximity barrier functions (PBFs). Therefore,

to simplify our exposition, we build the structure of the learning framework based

on (4.29) and the feed-forward-backward proximal IPM algorithm [159, 163].

As shown in Figure. 4.1, SLP-DNet has two main units; the parameter update

module (PUM) and the auxiliary processing block (APB). The PUM has three core

components associated with Lagrangian multipliers (equality and inequality con-

straints) and the training step-size, which are updated according to the following

H(w1,µ,γ,λ ) = prox
γ [r]µ [r]B

(
w[r]

1 − γ
[r]

∆D(w[r]
1 ,λ [r])

)
. (4.33)

Furthermore, the component that forms the barrier term is constructed with one
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Algorithm 1 Proximity Barrier Operator of a Nonrobust SLP-DNet

Input: hRi, hIi, Γi and n0 (noise)
Output: w1, γ , µ and λ

Initialisation :
1: Randomly initialise µ [0] > 0, λ [0] > 0, γ [0] > 0 ∀ i = 1, · · · , K and w0 ∈R2Nt×1

using (4.36)
2: Find the solution to (4.24) using Cardano formula.
3: For every solution in step 2, compute its corresponding Barrier function using

(4.22).
4: Compute the Proximity Operator of the Barrier at w0 using (4.13), where

Φ(w1,γ,µ) = proxγµB(w1).
5: Compute the derivatives of the Proximity Operator w.r.t w1, µ and γ using

(4.25), (4.26) and (4.27).
6: for r = 0 to L do
7: Update the training variables as follows:

(a) µ [r+1] = µ [r]−η
∂Φ(w[r]

1 , γ [r], µ [r])

∂ µ [r]

(b) γ [r+1] = γ [r]−η
∂Φ(w[r]

1 , γ [r], µ [r])

∂γ [r]

(c) λ [r+1] = λ [r]−η
∂D(w[r]

1 , λ [r])

∂λ [r] using (4.30)

where η is the learning rate.
Feed-forward-Backward Proximal IPM

8: w[r+1]
1 = prox

γ [r]µ [r]B

(
w[r]

1 − γ [r]∆D(w[r]
1 , λ [r])

)
9: end for

10: return w∗1 (Optimal precoding tensor).
11: To obtain the original optimal complex precoding vector w∗, we use the relation

w∗1 = [w∗R −w∗I ] to separate it into real and imaginary parts.

convolutional layer, an average pooling layer, a fully connected layer, and a Softplus

layer to curb the output to a positive real value to satisfy the inequality constraint.

The APB unit is connected to the last r-th block of the PUM in the form of a deep

CNN to convert the output of the last parameter update block into a target transmit

precoding vector. The APB architecture is made up of 3 convolution layers and 2

activation layers. In addition, a Batch Normalisation layer is added between each

convolutional layer and the activation layer to stabilise the mismatch in the distri-

bution of the inputs caused by the internal covariate shift [164]. For every r block

(r-th layer), there are three core components; L[r]
µ , L[r]

γ and L[r]
λ

associated with the
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learnable parameters (µ , γ and λ ), respectively as shown in Figure 4.1. These com-

ponents form a learning block for computing the barrier parameter (µ) associated

with the inequality constraint, the step-size (γ) and the equality constraint (λ ), if

exists.

To ensure that the constraints remain positive, a Softplus-sign function [165],

Softplus(z) = ln(1+ exp(z)) is used. The Softplus-sign function is a smooth ap-

proximation of the rectified linear unit (ReLu) activation function; and unlike the

ReLu its gradient is never exactly equal to zero [165], which imposes an update on

γ , µ and λ during the backward propagation. The nonrobust SLP-DNet formula-

tion and its training steps are summarised in Algorithm 1. The training variables

are updated iteratively in each unfolding layer simultaneously using gradient de-

scent (GDS). For every training step, a corresponding value of the precoding vector

is updated using (4.29). The output precoding vector from the last PUM is then

fed into the APB to obtain the final optimal precoding vector. The same algorithm

is also adopted for a robust SLP-DNet but with a different PBF based on a robust

power minimisation problem.

Finally, the output from the APB is the precoding vector in the real domain.

The relation: w1 = [wR −wI]
T is used to convert it to its equivalent complex domain

for every SINR value of the i-th user. Finally, the NN structures of the PBF term

and the APB are summarised in Tables 4.1 and 4.2.

Table 4.1: Proximity Barrier Function NN Layout

Layer Parameter, kernel size = 3×3

Input Layer Input size (B, 1, 2Nt , K)

Layer 1: Convolutional Size (B,1,K,20); zero padding
Layer 2: Average Pooling Size ((1, 1), stride = (1, 1))
Layer 3: Activation Soft-Plus
Layer 4: Flat Size (B×20×K2)

Layer : Fully-connected Size(B×20×K2, 1)
Layer 5: Activation Soft-Plus function

4.3.5 Duality and Loss Function of the SLP Formulation

In order to ease the formulation of the dual-problem of the original problem (4.9),

the left-hand-side of the inequality constraint is split into its equivalent positive and
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Table 4.2: Auxiliary Processing Block (APB) NN Structure

Layer Parameter, kernel size = 3×3

Input Layer Input size (B, 1, 2Nt , K)

Layer 1: Convolutional Size (B, 1, K, 64),
dilation = 1 and unit padding

Layer 2: Batch Normalisation eps = 10−6, momentum = 0.1
Layer 3: Activation PReLu
Layer 4: Convolutional Size (B, 1, 64, 2NtK),

dilation = 1 and unit padding
Layer 5: Batch Normalisation eps = 10−6, momentum = 0.1
Layer 6: Activation PReLu
Layer 7: Convolutional Size (B, 1, 2NtK, 1),

dilation = 1 and unit padding

negative parts as follows

min
{w1}

‖w1‖2
2

s.t. Λ
T
i Πw1 ≤

(
Λ

T
i Πw1−

√
Γin0

)
tanφ , ∀i

−Λ
T
i Πw1 ≤

(
Λ

T
i Πw1−

√
Γin0

)
tanφ , ∀i.

(4.34)

The Lagrangian of (4.34) is defined as

Lrl(w1, µ1, µ2) = ‖w1‖2
2 +µ1

(
Λ

T
i Πw1−Λ

T
i w1tanφ +

√
Γin0

)
−µ2

(
Λ

T
i Πw1 +Λ

T
i w1tanφ −

√
Γin0

)
, (4.35)

where µ1 and µ2 are the Lagrangian multipliers associated with the constraints

and are related to the proximity barrier. The subscript ‘rl’ stands for relaxed

phase rotation. It can be easily proven that the lower bound (LB) of (4.35) is

Lrl(w1,µ1,µ2) ≥ µ1Λi (Π− tanφ)− µ2Λi (Π+ tanφ). From (4.35), the optimal

precoder is obtained by differentiating Lrl(·) w.r.t w1 and equating to zero. By

doing so, the optimal precoder can be found as

w1 =

(
µ1

T +µ2
T) ·Λitanφ −

(
µ1

T −µ2
T) ·ΠT Λitanφ

2
. (4.36)
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In the sequel, we show that (4.36) is used to generate the training input (precoding

vector) by randomly initialising the Lagrangian multipliers (µ1 and µ2) and then

train the network to learn their values that minimise the loss function (Lagrangian

function). The loss function is modified by adding l2-norm regularisation over the

weights to calibrate the learning coefficients in order to adjust the learning process.

It should be noted that the regularisation here is not aimed at addressing the prob-

lem of overfitting as in the case of supervised learning. However, regularisation in

an unsupervised learning is used to normalise and moderate weights attached to a

neuron to help stabilise the learning algorithm [166]. The loss function (4.35) over

N training samples is thus expressed as

Lrl(w1, µ1, µ2) =
1
N

N

∑
i=1
‖w1‖2

2 +
1
N

N

∑
i=1

(
µ1

(
Λ

T
i Πw1−Λ

T
i w1tanφ +

√
Γin0

))
− 1

N

N

∑
i=1

(
µ2

(
Λ

T
i Πw1 +Λ

T
i w1tanφ −

√
Γin0

))
+

ϑ

NL

N

∑
i=1

L

∑
i=1
‖θ i‖2

2, (4.37)

where θ i are the trainable parameters of the i-th layers associated with the weights

and biases, and ϑ > 0 is the penalty parameter that controls the bias and variance

of the trainable coefficients, N, L is the number of training samples (batch size or

the number of channel realisation) and the number of layers, respectively.

4.3.6 Learning-Based SLP for Strict Angle Rotation

In the previous subsection, we have presented SLP-DNet based on relaxed angle

formulation. In this subsection, we provide a formulation for strict phase angle

rotation where all the interfering signals align exactly to the phase of the signal of

interest (i.e. φ = 0 in Figure 2.4), the optimisation problem is [49]

min
{w1}

‖w1‖2

s.t. Λ
T
i Πw1 = 0 , ∀i

Λ
T
i w1 ≥

√
Γin0 , ∀i.

(4.38)
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We observe that the inequality constraint in (4.38) is affine. Based on this, the

proximal barrier function for the strict phase rotation is

Bst(w1) =


− ln

(
Λ

T
i w1−

√
Γin0

)
, if Λ

T
i w1 ≥

√
Γin0

+∞, otherwise.
(4.39)

The subscript ‘st’ represents strict phase rotation. Therefore, for every precoding

vector w1 ∈ R2Nt×1, the proximity operator of µγBst at w1 is given by

Φst(w1,µ,γ) = w1 +
Λi

T w1−
√

Γin0−
√

(ΛT
i w1−

√
Γin0)2 +4γµ‖ΛT

i ‖2
2

2‖Λi‖2
2

Λi.

(4.40)

Similar to the steps in subsection 4.3.3, the learning-based framework for SLP strict

phase rotation is designed by finding the Jacobian matrix of Φ(w1,µ,γ) with respect

to w1, and the derivatives of Φ(w1,µ,γ) with respect to γ and µ can be easily

obtained from (4.40). The loss function over N training batches is given by

Lst(w1,λ , µ) =
1
N

N

∑
i=1

(
‖w1‖2

2 +λΛ
T
i Πw1

)
+

1
N

N

∑
i=1

(
µ

(√
Γin0−Λ

T
i w1

))
+

ϑ

NL

N

∑
i=1

L

∑
i=1
‖θ i‖2

2, (4.41)

where µ and λ are the Lagrangian multipliers for inequality and equality con-

straints, respectively. Finally, minimising (4.41) with respect to w1 (differentiating

Lst(·) w.r.t w1), gives the initial training optimal precoder as

w1 =
µT ·Λi−λ

T ·ΠΛi

2
. (4.42)

4.4 Learning Robust Power Minimisation SLP with

Channel Uncertainty

So far, we have derived the unsupervised learning scheme in which the uncertainty

in estimating the channel coefficients is not considered.



4.4. Learning Robust Power Minimisation SLP with Channel Uncertainty 89

4.4.1 Robust Optimisation-Based SLP Formulation

The multi-cast CI formulation of the power minimisation problem for the worst-

case CSI error based on (4.9) is given by [77]

min
{w}

‖w2‖2

s.t.
∣∣∣Im(ĥT

i w
)∣∣∣−(Re

(
ĥT

i w
)
−
√

Γin0

)
tanφ ≤ 0,

∀‖ê‖i
2 ≤ ς

2
i , ∀i.

(4.43)

The intractability of the constraint in (4.43) can be effectively handled using convex

optimisation methods. Therefore, to guarantee that the robust constraint in (4.43) is

satisfied, it is modified as follows

max
‖ēi‖2≤ς2

i

(∣∣∣Im(ĥT w
)∣∣∣−(Re

(
ĥT w

)
−
√

Γn0

)
tanφ

)
≤ 0. (4.44)

It is worth noting that the subscripts in (4.44) are ignored in order to simplify

the problem formulation. By defining the equivalent real-valued channel and chan-

nel error vectors, the real and imaginary parts in the constraint can be decomposed

into two separate constraints as explained in Section 4.3 (see (4.6a) and (4.6b)).

Thus the robust formulation of the constraint is equivalent to two separate real-

valued constraints as follows

Λ
T w1−Λ

T w2tanφ + ς‖w1−w2tanφ‖2 +
√

Γn0tanφ ≤ 0, (4.45)

−Λ
T w1−Λ

T w2tanφ + ς‖w1 +w2tanφ‖2 +
√

Γn0tanφ ≤ 0, (4.46)

where Λ =
[
h̄R h̄I

]T
, e ∆

=
[
ēR ēI

]T
and ĥ = h̄R + jh̄I + ēR + jēI . Finally, the

robust CI formulation for power minimization problem becomes

min
{w1,w2}

‖w1‖2
2

s.t. Constraints (4.45) and (4.46), ∀i

where w1 = Πw2.

(4.47)
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4.4.2 Unsupervised Learning-Based Robust SLP Formulation

In this subsection, we extend our proposed unsupervised learning formulation to a

worst-case CSI-error to design a robust precoding scheme for the power minimi-

sation problem. As an extension of the previous formulations in subsection 4.3.3,

the focus here is to derive a PBF for the robust learning-based precoding scheme.

Substituting for w1 in (4.47), we have

(
Λ

T
Π−Λ

T tanφ
)

w2 + ς‖(Π− tanφ)w2‖2 +
√

Γn0tanφ ≤ 0, (4.48)

−
(
Λ

T
Π+Λ

T tanφ
)

w2 + ς‖(Π+ tanφ)w2‖2 +
√

Γn0tanφ ≤ 0. (4.49)

Apparently, the constraints (4.48) and (4.49) are bounded by the l2-norm. Therefore,

problem (4.47) becomes

min
{w2}

‖w2|22

s.t. Constraints (4.48) and (4.49), ∀i.
(4.50)

The resulting barrier function of the corresponding constraints of (4.50) is the sum

of the individual barrier functions associated with the two inequality constraints.

We begin by introducing the feasible set of solutions bounded by the Euclidean

ball.

4.4.3 Bounded Euclidean ball Constraint

Suppose a problem whose set of feasible solutions is bounded by the Euclidean ball

[167]

C = {z ∈ Rn∣∣‖z−x‖2 ≤ β}, (4.51)

where β > 0 and x ∈ Rn. Let γ > 0 and µ > 0 be the step-size and the Lagrange

multiplier associated with the inequality constraint, respectively. Then the barrier

function is expressed as [167]

B(z) =

− ln(β −‖z−x‖2), if ‖z−x‖2 < β ,

+∞, otherwise
(4.52)
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For simplicity, we let Q1 = (Π− I2Nt tanφ) and Q2 = (Π+ I2Nt tanφ). Based

on (4.52), the barrier function corresponding to the constraint (4.48) is

B1(w2) =


− ln

(
−
√

Γn0tanφ −
(
Λ

T Q1w2 + ς‖Q1w2‖2
))

, if Λ
T Q1w2 + ς‖Q1w2‖2 <−

√
Γn0tanφ

+∞ otherwise

(4.53)

In the case of constraint (4.49), similar expression is also written for B2(w2) using

Q2 as in (4.54)

B2(w2) =


− ln

(
−
√

Γn0tanφ −
(
Λ

T Q2w2 + ς‖Q2w2‖2
))

, if Λ
T Q2w2 + ς‖Q2w2‖2 <−

√
Γn0tanφ

+∞, otherwise,

(4.54)

. The resulting barrier function is thus expressed in (4.55)

Brobust(w2) = B1(w2)+B2(w2). (4.55)

Without loss of generality, the constraints (4.48) and (4.49) can be further written

as

Λ
T Q1w2 + ς‖Q1w2‖2 +

√
Γn0tanφ ≤ 0, (4.56)

Λ
T Q2w2 + ς‖Q2w2‖2 +

√
Γn0tanφ ≤ 0. (4.57)

It can be seen that the upper bound of the two constraints (4.56) and (4.57) is zero,

Therefore, the effective proximity operator of (4.55) is obtained the by squaring

(4.56) and (4.57) and adding the results. Following similar steps presented in sub-

section 4.3.3, we obtain the proximity operator of the barrier for the robust SLP-

DNet (see Appendix A for details).

4.4.4 Loss Function of the Robust Power Minimisation Problem

The training loss function is the Lagrangian of (4.50), and can be written as

min
{w2}

‖w2‖2
2

s.t. Λ
T Q1w2 + ς‖Q1w2‖2 +

√
Γn0tanφ ≤ 0 ∀i

Λ
T Q2w2 + ς‖Q2w2‖2 +

√
Γn0tanφ ≤ 0 ∀i.

(4.58)
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Therefore, the loss function of (4.58) is the regularised Lagrangian parameterised

by θ i over the entire layers

Lrobust(w2, µ1, µ2) =
1
N

N

∑
i=1
‖w2‖2

2

+
µ1
N

N

∑
i=1

(
ς

2‖Q1w2‖2
2−
(√

Γn0tanφ −Λ
T Q1w2

)2
)

+
µ2
N

N

∑
i=1

(
ς

2‖Q2w2‖2
2−
(√

Γn0tanφ −Λ
T Q2w2

)2
)
+

ϑ

NL

N

∑
i=1

L

∑
i=1
‖θ i‖2

2. (4.59)

The minimum of (4.59) with respect to w2 is obtained by equating its derivative to

zero

(
1+
(
µ1‖Q1‖2

2 +µ2‖Q2‖2
2
)(

ς
2−Λ

T
Λ
))

w2 =−(µ1Q1 +µ2Q2)Λ
√

Γn0tanφ .

(4.60)

For convenience, we redefine the real matrices and vectors as
[
‖Q1‖2

2 ‖Q2‖2
2

]
=

q̄norm;
[
Q1 Q2

]
= Q̄ and

[
µ1 µ2

]
= µ̄ . With these new notations, (4.60) is

simplified to

(
I2Nt + q̄normµ̄

T (
ς

2−Λ
T

Λ
))

w2 =−ΛQ̄µ̄
T
√

Γn0tanφ . (4.61)

From (4.61), the initial training optimal transmit precoder is thus

w2 =−ΛQ̄µ̄
T A−1

√
Γn0tanφ , (4.62)

where A =
(
I2Nt + q̄normµ̄T (ς2−ΛT Λ

))
. Note that the Lagrange multipliers µ1

and µ2 are associated with the barrier term and are randomly initialised from a

uniform distribution.

4.5 Data Generation
The channel coefficients are used to form a dataset and are generated randomly

from a normal distribution with zero mean and unit variance. The data input tensor

is obtained using (4.2). We summarise the entire dataset preprocessing procedure
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 Tensor

Real Data ModuleComplex Data Module
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Input Data

Figure 4.2: Dataset Generating Block

in Figure. 4.2. It can be observed that the input dataset is normalised by the trans-

mit data symbol so that data entries are within the nominal range, and this could

potentially aid the training.

4.5.1 SLP-DNet Training and Inference

The training of DNN generally involves three steps: forward propagation, backward

propagation, and parameter update [130]. Except where necessary, the training

SINR is drawn from a random uniform distribution to enable learning over a wide

range of SINR values. The PUM contains r blocks, which form a learning layer.

Therefore, each block contains three core components and is trained block-wise for

l number of iterations.

Similarly, the APB is trained for k iterations. It is important to note that the

number of training iterations of the parameter update module may not necessarily

be equal to that of the APB. We train the PUM for 15 iterations and the APB for 10

iterations. To improve the training efficiency, we modify the learning rate by a factor

α ∈ R+ for every training step. All the training is done with a stochastic gradient

descent algorithm using Adam optimiser [130]. Since the learning is done in an

unsupervised fashion, the loss function is the Lagrangian function’s statistical mean

over the entire training batch samples. During the inference, a feed-forward pass

is performed over the entire architecture using the learned Lagrangian multipliers

to calculate the precoding vector using (4.36) and (4.62) for both SLP and robust
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SLP formulations, respectively. Finally, at inference, the trained model is run with

different SINR values to obtain the required optimal precoding matrix.

4.6 Computational Complexity Evaluation
In this subsection, we analyse and compare the computational costs of the conven-

tional BLP, optimisation-based SLP, and the proposed SLP-DNet schemes. The

complexities are evaluated in terms of the number of real arithmetic operations in-

volved. For ease of analysis, we convert the SOCP (4.9) into a standard linear

programming (LP)

min
{z}

cT z

s.t. cT
k z≤−tanφ

√
Γin0 , ∀i

(4.63)

where c =
[
0 wT

1

]T
∈ R(2Nt+1)×1, z =

[
1 w1

]T
∈ R(2Nt+1)×1,

ck =
[∣∣ΛT

i Πw1
∣∣ Λ

T
i tanφ

]T ∈ R(2Nt+1)×1 and W = [w11, · · · ,w1K]; ∀i = 1, · · · ,K.

The complexity per iteration for solving convex optimisation via IPM is dominated

by the formation (Cform) and factorisation (Cfact) of the matrix coefficients of m linear

equations in m unknowns [168]. For generic IPMs, the complexity is expressed as

[168]

Ctotal = Citer · (Cform +Cfact) (4.64)

where Citer is the iteration complexity required to attain an optimal solution. For a

given optimal target accuracy, ε > 0, Citer is given by

Citer =

√√√√ Nlc

∑
j=1

d j +2Nsc× ln
(

1
ε

)
(4.65)

where d is the dimension of the constraints, Nlc and Nsc are the numbers of linear

inequality matrix and second order cone (SOC) constraints, respectively. The costs

of formation and factorisation of matrix are respectively given by [168]

Cform = m
Nlc

∑
j=1

d3
j +m2

Nlc

∑
j=1

d2
j︸ ︷︷ ︸

due to Nlc

+m
Nsc

∑
j=1

d2
j=1︸ ︷︷ ︸

due to Nsc

; Cfact = m3. (4.66)
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Specifically, we observe that problem (4.63) has K constraints with dimension 2Nt +

1. Therefore, using (4.65) and (4.66), the total computational complexity is thus

Ctotal =
√

2Nt +1
[
m(2Nt +1)+m(2Nt +1)2 +m3] ln

(1
ε

)
. (4.67)

The complexity of BLP can be derived in a similar way and is shown directly in

Table 4.3. Conversely, the complexity of the proposed SLP-DNet schemes is the

sum of PUM and the APB complexities. Moreover, the complexity of the PUM is

dominated by the costs of computing the ‘log barrier’ and the feed-forward pass

of the shallow CNN (see Table 4.1) that makes up the barrier term associated with

the inequality constraint. Similarly, the complexity of the APB is also obtained by

computing the arithmetic operations involved during the forward pass of the deep

CNN (see Table 4.2). To derive the analytical complexity of SLP-DNet, we assume

a sliding window is used to perform the dominant computation of the convolution

operation in the CNN and ignore the nonlinear computational overhead due to acti-

vations. Therefore, the total computational complexity is expressed as

CSLP−DNet =Clog-br+

2
Lconv

∑
l=1

n[l−1]
h n[l−1]

w

[
C[l−1]

in f [l]2 +1
]

C[l]
out +

Lfc

∑
j=1

(
2M[ j−1]

in +1
)

M[i]
out (4.68)

where nh, nw, f , Cin and Cout are the height, width of the input tensor, kernel size,

number of input and output channels, respectively. Similarly, Lconv, Lfc, Min and

Mout are the number of convolution and fully connected (FC) layers, number of in-

put and output neurons in the FC layer, respectively. Clog-br denotes the complexity

of the ‘log-barrier’ function. Table 4.3 shows the summary of the computational

complexities of our proposals and the benchmark precoding schemes. As an il-

lustration, we consider the case of a symmetrical system (Nt = K = n), and show

that the proposed approach has substantially reduced computational complexity of

O(n3), while the optimisation-based SLP approach of O(n6.5) and the conventional

BLP is O(n7.5).
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Table 4.3: Complexity analysis of proposed SLP-DNet and benchmark SLP schemes.

Problem Arithmetic Operations (term; m = O(2NtK)) Complexity Order (n = Nt = K)
Conventional BLP

√
(4Nt +K +2)

[
m(2Nt +1)+m(2Nt +1)2 +m(K +1)2 +m3] ln

(1
ε

)
O(n6.5)

SLP Optimisation-based
√

2Nt +1
[
m(2Nt +1)+m(2Nt +1)2 +m3] ln

(1
ε

)
O(n6.5)

SLP-DNet 4K2Nt +42K2 +48KNt +512K +2 O(n3)

SLP-DNet Strict 4K2Nt +39K2 +46KNt +512K +2 O(n3)

Robust Conventional BLP
√

2K(2Nt +1)
[
mK(2Nt +1)3 +m2K(2Nt +1)2 +m3] ln

(1
ε

)
O(n7.5)

Robust SLP Optimisation-based
√

2(2Nt +1)
[
2mK(2Nt +1)2 +m3] ln

(1
ε

)
O(n6.5)

Robust SLP-DNet 16KN2
t +42K2 +48KNt +512K O(n3)

Table 4.4: Simulation parameters

Parameters Values

Training Samples 50000
Batch Size (B) 200
Test Samples 2000
Training SINR range 0.0dB - 45.0dB
Test SINR range (i-th user SINR) 0.0dB - 35.0dB
Optimiser SGD with Adam
Initial Learning Rate η 0.001
Learning Rate decay factor α 0.65
Weight Initialiser Xavier Initialiser
Number of blocks in the parameter
update unit Br = 3
Training Iterations for each block
of the parameter update unit 15
Training iterations for the auxiliary unit 10

4.7 Simulation Results

In this section, we study the performance of our proposed learning-based precod-

ing schemes against the benchmark precoding techniques. We consider a single-

cell MISO downlink in which the BS is equipped with four antennas (Nt = 4) that

serve K = 4 single users. We generate 50,000 training and 2000 test samples of

Rayleigh fading channel coefficients, respectively drawn from the same statistical

distribution. The transmit data symbols are modulated using QPSK and 8PSK mod-

ulation schemes. The training SINR is randomly drawn from uniform distribution

Γtrain ∼ U(Γlow, Γhigh). Adam optimiser [130] is used for stochastic gradient de-

scent algorithm with Lagrangian function as a loss metric.

Furthermore, a parametric rectified linear unit (PReLu) activation function is

used for both convolutional and fully connected layers instead of the traditional

ReLu function. The reason for this is to address the problem of dying gradient
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Figure 4.3: Transmit Power vs SINR averaged over 2000 test samples vs number of un-
folding layers.

[130]. The learning rate is reduced by a factor α = 0.65 after every iteration to

aid the learning algorithm to converge faster. The learning models are implemented

in Pytorch 1.7.1 and Python 3.7.8 on a computer with the following specifications:

Intel(R) Core (TM) i7-6700 CPU Core, 32.0GB of RAM. Table 4.4 summarises the

simulation parameters settings of the SLP-DNet. Generally, there has not been any

standard rule for selecting the number of layers of deep neural network or deep un-

folded network in theory and typical deep unfolding approaches select the numbers

of layers in a heuristic manner [169]. Intuitively, to choose the appropriate number

of layers in unfolding, we have run the experiments with the different number of

unfolded blocks (layers) and plotted the average transmit power against the num-

ber of layers. Specifically, in our case, we find that the transmit power decreases

with the number of layers until the power gains saturate beyond a certain number of

layer, as shown in Fig. 4.3.

4.7.1 Performance of Non-Robust SLP-DNet

In this subsection, we evaluate the performance of our proposed unsupervised learn-

ing framework for nonrobust scenario against the benchmark algorithms [49, 73, 77]

for both strict and relaxed angle rotations. Firstly, we compare the average trans-
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Figure 4.4: Transmit Power vs SINR averaged over 2000 test samples for conventional
BLP, SLP optimisation-based and nonrobust SLP-DNet schemes for M-PSK
modulation with Nt = 4, K = 4 under strict angle rotation.

mit power of the conventional BLP (2.22) described in subsection 2.5.1, the SLP

optimisation-based problems (2.31), (4.9) and the SLP-DNet precoding scheme

based on (4.29) and Algorithm 1. The performances of SLP-DNet and the bench-

mark schemes (conventional BLP and SLP optimisation-based) for strict angle ro-

tation are shown in Figure 4.4. It can be observed that the transmit power of the

proposed SLP-DNet closely matches the optimisation based SLP, both with signifi-

cant gains against BLP.

Similarly, we discern the same trend in Figure 4.5 for the relaxed angle sce-

nario as observed in Figure 4.4. Accordingly, we find from Figure 4.5 that the

relaxed angle formulation offers significant power savings over the strict angle for-

mulation and is therefore adopted in the subsequent experiments. Furthermore, at

30dB, the performance of SLP-DNet is within 5% of the SLP optimisation-based

solution. Thus, while the SLP optimisation-based offers a slightly lower transmit

power at SINR above 30dB, the proposed learning-based model’s performance is

within 96%−98% of the optimisation-based solution.
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Figure 4.5: Transmit Power vs SINR averaged over 2000 test samples for conventional
BLP, SLP optimisation-based and nonrobust SLP-DNet schemes for M-PSK
modulation with Nt = 4, K = 4 under relaxed angle rotation.

4.7.2 Performance of Robust SLP-DNet

In this subsection, we evaluate the performance of the robust SLP-DNet against

the robust SLP optimisation-based and conventional precoding algorithms. We

generate the results for the worst-case CSI error bounds between the range of

10−6−10−2.

Figures 4.6 and 4.7 compare the performance of the proposed robust SLP-DNet

with the traditional robust block-level precoder [77] and robust SLP precoder [49]

for the 4× 4 MISO system evaluated at ς2 = 10−4. For simplicity, we use QPSK

modulation scheme. Figure 4.6 depicts how the average transmit power increases

with the SINR thresholds, for CSI error bounds ς2 = 10−4. The SLP optimisation-

based precoding scheme is observed to show a significant power savings of more

than 60% compared to the conventional BLP solution. Similarly, the proposed unsu-

pervised learning-based precoder portrays a similar transmit power reduction trend.

They show considerable power savings of 40%−58% against the conventional BLP.

Furthermore, we investigate the effect of the CSI error bounds on the transmit
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Figure 4.6: Transmit Power vs SINR averaged over 2000 test samples for robust conven-
tional, SLP optimisation-based and SLP-DNet solutions with Nt = 4, K = 4 and
ς2 = 0.0002.
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Figure 4.7: Transmit Power vs Error-bound for robust conventional BLP, SLP optimisation-
based and SLP-DNet solutions with Nt = 4, K = 4.

power at 30dB SINR. Figure 4.7 depicts the transmit power variation with increas-

ing CSI error bounds. Moreover, a significant increase in transmit power can be

observed where the channel uncertainty lies within the region of CSI error bounds

of ς2 = 10−3. Interestingly, like the SLP optimisation-based algorithm, the pro-
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Figure 4.8: SER performance comparison of the conventional BLP, optimisation-based and
SLP-DNet solutions with Nt = 4 and K = 4.

posed SLP-DNet also shows a descent or moderate increase in transmit power by

exploiting the constructive interference.

4.7.3 Symbol-Error-Rate Evaluation

In this subsection, we evaluate the performance of the proposed SLP-DNet in

terms of the received symbol error rate (SER) against the state-of-the-art precod-

ing schemes. For a given SINR; Γi = 12dB, we first obtain the transmit powers

for BLP and SLP optimisation-based schemes using (2.22) and (2.31), respectively.

We repeat the same procedure for SLP-DNet using Algorithm 1. Given that the

received SNR = [0, · · · ,14] in dB and the transmit power (PT ) obtained above, the

noise spectral density (noise power) is calculated as flows: N0 =
PT

SNR . Finally, the

received symbol is: y = hHws+
√

N0 ·n.

Figure 4.8 (a) and Figure 4.8 (b) show the SER performances of the con-

ventional BLP, the SLP optimisation-based schemes and the proposed SLP-DNet

method for nonrobust and robust formulations. As expected, the SLP optimisation-

based and the SLP-DNet outperforms BLP. We observe that SLP-DNet matches the

SLP optimisation-based solution at lower SNR. As an illustration, we find that the
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Figure 4.9: Comparison of average execution time per sample averaged over 200 test sam-
ples for conventional BLP, optimisation-based and SLP-DNet solutions with
Nt = 4 and K users (2, · · · ,8).

performance gap between the SLP optimisation-based solution and the SLP-DNet

at 10−2 SER is 0.0012dB. This proves that with SLP via CI, interference from un-

intended users can be aligned constructively with symbols of interest at the receiver

to improve received signal detection.

Figures 4.9(a) and 4.9(b) depict the execution times for nonrobust and robust

formulations. It can be seen that both SLP optimisation-based algorithm and the

proposed learning schemes produce solutions for Nt <K, while BLP fails.

Figure 4.9(a) shows the average execution time of the proposed unsupervised

learning solutions per symbol averaged over 2000 test samples for nonrobust for-

mulations. The SLP-DNet is observed to be significantly faster than the SLP

optimisation-based. For example, the theoretical complexity is polynomial order-

3 and polynomial order-6.5 or order-7.5 for SLP-DNet and conventional methods,

respectively. This is shown in the execution times, where there is a significantly

steeper increase in run-time as the number of users increases. The decrease in com-

putational cost is because the dominant operations involved in SLP-DNet at the
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inference are simple matrix-matrix or vector-matrix convolution. The same trend is

also observed in the case of a robust channel scenario, as shown in Figure 4.9(b).

Therefore, the results in Figures 4.9(a) and 4.9(b) demonstrate that the proposed

unsupervised learning-based precoding solutions offer a good trade-off between

the performance and computational complexity. Moreover, as per the results ob-

tained, SLP-DNet’s performance is within the range of 89%− 99% of the opti-

mal SLP optimisation-based precoding solution. Thus, our proposals demonstrate

a favourable tradeoff between the performance and the computational complexity

involved.

4.8 Summary
In this chapter, an unsupervised learning-based precoding schemes for a multi-user

downlink MISO system have been proposed. The proposed learning technique ex-

ploits the CI for the power minimisation problem so that for given QoS constraints,

the transmit power available for transmission is minimised. We use domain knowl-

edge to design unsupervised learning architectures by unfolding the proximal IPM

barrier ‘log’ function derived from SLP power minimisation problem. The pro-

posed learning scheme is then extended to robust precoding designs with imperfect

CSI bounded by CSI errors. We demonstrate that our proposal is computationally

efficient and allows for feasible solutions to be obtained for problems where tradi-

tional numerical optimisation like IPM and brute-force maximum likelihood solvers

would not converge or would be prohibitively costly.



Chapter 5

Quantised DNN Frameworks for

Symbol Level Precoding

5.1 Introduction

The previous chapter focuses on designing an unsupervised model-driven DL

scheme for SLP (SLP-DNet), where the NN weights are computed using standard

full precision floating point presentation (i.e., 32-bits). As seen in Chapter 4, the

proposed learning strategy has a reduced complexity compared to the traditional

optimisation solutions. This chapter will introduce a quantisation technique to fur-

ther reduce the network’s inference complexity at the device edge.

While CI-based precoding methods offer superior performance, comput-

ing them online on a symbol-by-symbol basis can be computationally demand-

ing. To overcome this impediment, DL-based precoding designs that use do-

main knowledge have been recently proposed for MU-MISO downlink transmis-

sion [24, 28, 29]. However, the drawback of such methods is that the optimisa-

tion constraints are not directly integrated with the loss function. Moreover, their

performance is bounded by the assumptions and accuracy of the optimal solutions

obtained from the optimisation algorithm. To address these drawbacks, an un-

supervised deep unfolding precoding design termed “SLP-DNet” that utilises the

specifics of the optimisation objectives of the precoding problem described in Chap-

ter 4 is adopted. We will use this model in this chapter as a benchmark to design its
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corresponding compressed versions, where the NN weights are quantised to lower

numerical representations.

As explained in Chpater 3, subsection 3.4 that DL model contains thousands

or even millions of learnable parameters, usually stored in a 32-bit floating-point

(FP32) numerical presentation, making the model computationally and memory de-

manding during inference and deployment. To facilitate the online training and de-

ployment of a trained DL model at the device edge, light-weight DNN designs with

lower-precision numerical formats have gained significant attention within the deep

learning community, typically applied to image processing applications [145, 170–

172]. However, this concept has not been fully explored in wireless communica-

tions. In this chapter, we propose a DL model’s structural simplification method

through weights quantisation for learning-based SLP design. We adopt the SLP-

DNet model. This chapter’s contributions are summarised below:

• We propose a memory and complexity efficient DNN approach, applied to

the learning-based precoding framework (SLP-DNet) described in Chapter 4.

Specifically, we propose an efficient model simplification via weights com-

pression to accelerate both training and inference to facilitate deployment on

resource-constrained embedded hardware platforms.

• We devise a scalable tradeoff between performance and inference complexity,

by allowing a percentage of the DNN weights to be quantised, while retaining

important weights in full-precision. By tuning the percentage of quantised

weights, a scalable tradeoff between performance and complexity / memory

efficiency is achieved.

• We further introduce a stochastic quantisation (SQ) technique that uses the

quantisation error to alleviate the loss in performance caused by the nonho-

mogenous quantisation errors of the conventional extreme quantisation (bi-

nary and ternary). In the SQ technique, a fraction of the NN weight matrix

is quantised to lower resolution while the remaining is retained in its full-

precision, resulting in a hybrid quantised weight matrix. The technique yields
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a memory-efficient DL-based SLP model with a good balance between the

performance and the computational complexity.

5.2 System Model

In this section, we begin the system formulation by considering an MU-MISO

downlink transmission in a single cell scenario where an Nt-antenna BS serves K

single-antenna users.

By exploiting the multiuser interference through CI, we can design a precod-

ing scheme that enhances the symbol detection by pushing the received signals away

from the constellation detection boundaries without consuming extra transmission

power [49]. We have seen in Chapter 4.2 that if the maximum angle shift in the

CI region is zero, the interfering signals overlap entirely on the signal of interest

(ϕ = 0), then the problem reduces to a strict phase angle optimisation (see Figure

2.4). It is important to note that the strict phase formulation is not appealing be-

cause it yields an increase in the transmission power compared to the correspond-

ing relaxed version [85]. For this reason, we will concentrate on the relaxed angle

formulation in this chapter. With reference to Figure 2.4 and the variables defined

in Chapter 4.2 according to the description in [49], we further define the precod-

ing and the channel matrices respectively for simplicity as Ĥ = [ĥ1, · · · , ĥK] and

W = [w1, · · · ,wK]. Therefore, the optimisation-based SLP for a nonrobust multi-

cast power minimisation is given by

min
{w1}

‖w1‖2
2

s.t. ā≤Φ
T
i ϒw1 ≤ b̄ , ∀i.

(5.1)

where Φi =
[
ĥRi ĥIi

]T
, w1 =

[
wR −wI

]T
, ϒ =

ONt −INt

INt ONt

 ∈ R2Nt×2Nt .

Similarly, we also define the following: ā = −
(
Φ

T
i ϒw1−

√
Γin0

)
tanφ and b̄ =(

Φ
T
i ϒw1−

√
Γin0

)
tanφ .
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5.2.1 Learning-Based SLP Model (SLP-DNet)

In this subsection, we consider an unsupervised deep unfolding framework (SLP-

DNet) that unfolds the IPM ‘log’ barrier function based on the problem (5.1) by

reformulating it as unconstrained subproblems per user as described in Chapter 4

min
w∈R2Nt×1

f (w1)+υB(w1), (5.2)

where B(w1) is the logarithmic barrier function and υ is the Lagrangian multiplier

related to the inequality constraints. The learning architecture is based on an prox-

imal ‘log’ barrier IPM approach as described in Chapter 4, where the precoding

vector for every l-th iteration is obtained from the following learning update rule

w[l+1]
1 = prox

γ [l]υ [l]B

(
w[l]

1 − γ
[l]

∆K(w[l]
1 ,λ [l])

)
, (5.3)

where K(w[l]
1 ,λ [l]) = ‖w1‖2

2 +λw1, and ∆

(
K(w[l]

1 ,λ [l]
)
=

∂K(w[l]
1 ,λ l)

∂w[l]
1

. The param-

eter, λ is introduced as an additional constraint to provide more stability to the

learning architecture. Intuitively, NN cascade layers can be formed from (5.3) as

follows

w[l+1]
1 = prox

γ [l]υ [l]B

[(
I2Nt −2γ

[l]
)

w[r]
1 + γ

[l]
λ
[l]1T

]
, (5.4)

where 1 ∈ R1×2Nt is a vector of ones. By letting Wl = I2Nt − 2γ [l], bl = γ [l]λ [l]1T

and Θl = prox
γ [l]υ [l]B, the l-layer network L[l−1] · · ·L[0] will correspond to the l-th

layers NN as described by (4.32) in Chapter 4. The nonlinear activation functions

are defined by Θl . Based on the above formulations, it can be recalled that the SLP-

DNet architecture has two main units; the parameter update module (PUM) and the

auxiliary processing module (APM). The PUM has three core components associ-

ated with Lagrangian multiplier (υ), the auxiliary parameter (λ ), and the training

step-size (γ), which are updated based on the following

D(w1,υ ,γ,λ ) = prox
γ [l]υ [l]B

(
w[l]

1 − γ
[l]

∆K(w[l]
1 ,λ [l])

)
. (5.5)

The structure that is related to the inequality constraint in (5.1) is the proximity
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barrier term. It is constructed with one convolutional layer, an average pooling layer,

a fully connected layer, and a softPlus layer to constrain the output to a positive real

value to satisfy the inequality constraint. The loss function over N batch training

samples (batch size or the number of channel realisation) is Lagrangian function

expressed as

L(w1,υ1, υ2) =
1
N

N

∑
i=1
‖w1‖2

2 +
1
N

N

∑
i=1

(
υ1

(
Φ

T
i ϒw1−Φ

T
i w1tanφ +

√
Γin0

))
− 1

N

N

∑
i=1

(
υ2

(
Φ

T
i ϒw1 +Φ

T
i w1tanφ −

√
Γin0

))
+

µ

NL

N

∑
i=1

L

∑
l=1
‖Ωi‖2

2, (5.6)

where Ωi are the trainable parameters of the l-th layers associated with the weights

and biases, and µ > 0 is the penalty parameter that controls the bias and variance of

the trainable coefficients.

The optimal precoder is obtained from the Lagrangian function (5.6) as

w1 =

(
υT

1 +υT
2
)
·Φitanφ −

(
υT

1 −υT
2
)
·ϒT Φi tanφ

2
. (5.7)

5.2.2 Robust SLP-DNet

In a similar fashion to the above, we can derive a CSI-robust SLP-DNet from the

robust SLP formulation under worst-case CSI-error. The robust SLP is given by

[173]
min
{w2}

‖w2‖2
2

s.t. Φ
T Q1w2 + ς‖Q1w2‖2 +

√
Γn0tanφ ≤ 0 ∀i

Φ
T Q2w2 + ς‖Q2w2‖2 +

√
Γn0tanφ ≤ 0 ∀i.

(5.8)

For convenience, we introduce new notations as follows: Q1 = (ϒ− I2Nt tanφ) and

Q2 = (ϒ+ I2Nt tanφ) and ς2 is the CSI error bound. (5.8) is a second order cone

programming (SOCP) and can be solved using convex optimisation software pack-

age.

It is important to note that the structure of the robust SLP-DNet is obtained

by following similar steps from (5.2)-(5.5) by transforming (5.8) to its equivalent
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unfolded IPM ‘log’ barrier form. The loss function is obtained from the Lagrangian

of (5.8) as

Lrobust(w2, υ1, υ2) =
1
N

N

∑
i=1
‖w2‖2

2

+
υ1

N

N

∑
i=1

(
ς

2‖Q1w2‖2
2−
(√

Γn0tanφ −Φ
T Q1w2

)2
)

+
υ2

N

N

∑
i=1

(
ς

2‖Q2w2‖2
2−
(√

Γn0tanφ −Φ
T Q2w2

)2
)
+

µ

NL

N

∑
i=1

L

∑
i=1
‖Ωi‖2

2. (5.9)

where
[
‖Q1‖2

2 ‖Q2‖2
2

]
= Q̃norm,

[
Q1 Q2

]
= Q̃ and

[
υ1 υ2

]
= υ̃ .

The optimal precoder can be easily obtained from (5.9)

w2 =−ΦQ̃υ̃
T X−1

√
Γn0tanφ , (5.10)

where X =
(
I2Nt + Q̃normυ̃

T (
ς2−ΦT Φ

))
. Note that the Lagrange multipliers υ1

and υ2 are associated with the barrier term and are randomly initialised from a

uniform distribution.

The architecture of SLP-DNet is contingent upon the above formulations, as

depicted in Figure 4.1 of hapter 4. This is also similar to the structure of the robust

SLP-DNet (RSLP-DNet). However, contrary to SLP-DNet, the input optimal pre-

coding tensor for the robust SLP-DNet is initialised using (5.10), which forms the

Lagrangian module as shown in Figure 5.1. For clarity, we summarise the architec-

tures of the APM and the barrier term we use our proposed designs in Tables while

Tables 5.1 and 5.2.

5.3 NN Weight Quantisation
Several DNNs compression techniques have been proposed for efficient edge in-

ference to tackle the ever-increasing model size problem. The ultimate criterion of

such methods is that lower inference computation and memory efficiency overheads

can be achieved with minimal accuracy loss. Typically, the weights of l-th layer

DNN architecture are represented by [170] W l = {Wi, · · · , Wm} for ∀ i= 1, · · · ,m,
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Figure 5.1: Learning-based robust symbol level precoding (RSLP-DNet) Architecture

Table 5.1: An APM NN Architecture

Layer Parameter, kernel size = 3×3

Input Layer Input size (B, 1, 2Nt , K)

Layer 1: Convolutional Size (B, 16, 2Nt , K),
dilation = 1 and unit padding

Layer 2: Batch Normalisation eps = 10−6, momentum = 0.1
Layer 3: Activation PReLu/k-bit function
Layer 4: Convolutional Size (B, 8, K, 2KNt),

dilation = 1 and unit padding
Layer 5: Batch Normalisation eps = 10−6, momentum = 0.1
Layer 6: Activation PReLu (k-bit function)
Layer 7: Convolutional Size (B, 1, 2KNt , 1),

dilation = 1 and unit padding

Table 5.2: Proximity Barrier Term NN Architecture

Layer Parameter, kernel size = 3×3

Input Layer Input size (B, 1, 2Nt , K)

Layer 1: Convolutional Size (B,20,2Nt ,K2); zero padding
Layer 2: Average Pooling Size ((1, 1), stride = (1, 1))
Layer 3: Activation Soft-Plus
Layer 4: Flat Size (B×40×K2)

Layer : Fully-connected Size(B×40×K2, 1)
Layer 5: Activation Soft-Plus function

where m is the number of kernels/filters (output channels). The n-dimensional

weight tensor Wi ∈ Rn, n = c×w× h in l-th convolutional layer, where c×w× h

represents the input channels, filter width and filter height respectively, and for a
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fully connected layer, n = m× c (number of the output and input neurons, respec-

tively). For convenience, in what follows, we drop the kernel subscript.

5.3.1 Binary Weights

The real-valued weights are converted to (Bw ∈ {+1,−1}n). A full-precision 32-bit

weight matrix is binarised as follows[174]

Bw = sign(W) =

+1 if W≥ 0

−1 otherwise,
(5.11)

A more robust binarised weight “BWN” is proposed as an extension of a straightfor-

ward binary network (Binary Connect) by introducing a real scaling factor β ∈ R+

such that W≈ βBw by solving an optimisation problem [170]

J(Bw,β ) =argmin
(Bw,β )

‖W−βBw‖2
2, (5.12)

and this yields

B∗w = sign(W)

β
∗ =

1
n
‖W‖1

(5.13)

5.3.2 Ternary Weights

A ternary weighted network (TWN) is the one in which an extra 0 state is introduced

into BWN to solve the following optimisation problem [175]
β ∗,B∗W = argmin

β , Bw

J(β , Bw ) = ‖W−βBw‖2
2

s.t. β ≥ 0, Bw ∈ {−1, 0, +1}n,

(5.14)
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Figure 5.2: Binary and Ternary DNN weights

and solving (5.14) gives

B∗w =


+1 , if W > ρ̄

0 , if |W| ≤ ρ̄

−1 , if W <−ρ̄,

(5.15)

where ρ̄ = 0.7
n

n
∑

i=1
|W| and β ∗ = 1

Iρ̄
∑

i∈Iρ̄

|W|,

Iρ̄ = {|W| > ρ̄} is the cardinality of set Iρ̄ . As an illustration, Figure 5.2 depicts

how the weight matrices are quantised predicated on (5.13) and (5.15), respectively.

5.4 Proposed Quantised SLP-DNet Design
This section introduces the DNN model compression technique via NN weight

stochastic quantisation, where numerical values are reduced to lower precision in

parts based on the quantisation errors due to extreme quantisations (binary and

ternary).

5.4.1 NN Weights Quantisation and Stochastic Division

The existing works on low-bit DNN design focus only on reducing the bit-widths

of the weights and activations to speed up the training and inference times and
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also improve memory efficiency. However, in low-bit DNN designs, the impact

of quantisation on the performance of the learning algorithm has not been fully

explored and understood. In this subsection, the quantisation introduced termed

stochastic quantisation (SQ) is done using a linear probability function for selecting

the filter weights to be quantised for designing a low-bit scalable learning-based

precoder.

The weight matrix of each layer of the DNN can be expressed as: W =

{W1, · · · ,Wn}. Here, the rows of the weight matrix are partitioned into two parts

according to the following

W = {Wq, W f }, (5.16)

where Wq = {Wq1, · · · , WqM} and W f = {W f 1, · · · , W f N} represent the quan-

tised and full-precision parts of the weight respectively, and should satisfy the con-

dition below

W =Wq∪W f and Wq∩W f = /0. (5.17)

As seen from (5.16), one subset of the weight Wq is quantised to a low bit-width

while the remaining W f is kept in its full-precision form, so that the entire weights

matrix is composed of both binary and floating-point values. Note that a fully quan-

tised DNN can be obtained by setting W f to a null set.

Suppose rsq is the quantisation ratio (QR) (i.e., the percentage of weights quan-

tised as a fraction of the total weights in the DNN), and n is the length of the weight

matrix (number of elements), the number of elements in the quantisation group is

Mq = rsqn while that of a full-precision parts is M f = (1− rsq)n. The QR can be

gradually increased to 100% until the entire network is finally quantised. To select

the channel to be quantised, we use the lottery disc algorithm shown in Figure 5.3.

It can be observed in Figure 5.3 that each sector of the disc represents a probability

of selecting a channel (row of weight matrix). The disc is rotated by choosing a

value from the uniform distribution whose magnitude is slightly above the proba-

bility value. After every selection, the probability is reset (i.e., pr j = 0) to ensure

that a channel is selected without replacement as summarised in Algorithm 2.
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Figure 5.3: Stochastic Quantisation Weight Matrix Partitioning Procedure

Algorithm 2 Circular Lottery Algorithm for Weight matrix Division

Input: rsq Stochastic Quantisation ratio and Weight matrix (W)
Output: Wq and W f

1: Initialisation:
Wq =Wr = /0

2: Compute QP function pr ∈ Rn∀i {i = 1, · · · , n} based on (5.18)
3: Mq = rsqn
4: for j = 1 to Mq do
5: p̂r = pr

‖pr‖1
(normalised probability)

6: Select a random value ϑ j ∈ {0,1} from a random uniform distribution
7: Set s j = 0 and i = 0
8: while s j < ϑ j do
9: i = i+1

10: s j = s j + p̂r j
11: end while
12: Compute: Wq =Wq∪W
13: Reset pri = 0 {This is to avoid i-th channel weight from being selected again}
14: end forWr =W \Wq

5.4.2 Quantisation Error and Quantisation Probability

Recall that classical binarized DNNs suffer a significant performance loss due het-

erogeneous nature of the quantisation error (QE) over the entire network. The per-

formance can, however, be improved by stochastically selecting the filter or channel

weight matrix to be quantised using a random probability distribution based on the

QE between the real-valued and quantised weights as follows

e j =
‖W j−Q∗j‖2

‖W j‖2
; (5.18)

where Q∗j could be binary or ternary based on (5.13) or (5.15).

We define the vector of the n-th row weight matrix of a given layer as
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e = [e1, · · · , en]. The quantisation probability is formulated such that a higher prob-

ability is assigned to filter/weights if the quantisation error is small because quantis-

ing these weights does not yield a significant loss of accuracy or performance. For a

given weight matrix, QR, and quantisation probability (QP), a channel is randomly

sampled without replacement using a circular lottery Algorithm 2. From this, we

can observe that the QP function is inversely proportional to QE and is defined as

fp =
1

e+δ
, where δ = 10−6 to avoid possible numerical overflow. The QP function

is monotonically non-decreasing to prioritise the selection of the channels/weights

to be quantised. Different monotonically non-decreasing functions are:

• Uniform function: pr j =
1
n , n is the number of the neurons or length of the

rows of each layer weight matrix.

• Linear function: pr j =
fp j

∑ j fp j

• Half-Gaussian function: pr j =
√

2
σ
√

π
exp
(
− f 2

p j
2σ2

)

• Softmax function: pr j =
exp( fp j )

∑ j exp( fp j )

The simplest of these QP functions is uniform or constant function but is not appeal-

ing because it is independent of the QE and therefore ignores the random quantisa-

tion proposition. The most intriguing of all is the half-Gaussian function because of

the extra parameter (σ ), which can be learned but is more complicated. The linear

and softmax functions have been found to yield nearly the same performance, but

the former is simpler to implement. Accordingly, in this work, we use the linear

function because it balances between performance and simplicity.

5.4.3 Low-bit Activation Function

The inputs to convolutional and fully connected layers are the outputs of the previ-

ous layers’ activations. In many low-bit DNN designs, the activation layer is often

left in its full-precision. However, quantising the activation layer is crucial in replac-

ing the floating-point operations with more efficient binarisation. The conventional

activation functions such as “Relu” may not be suitable for low-bit DNN [176].
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Therefore, the activations are quantised from 32-bit (W32) to k− bit according to

the function

Wb =
round

(
(W32− x) ·

(
2k−1

)
/(y− x)

)(
2k−1

) (5.19)

where W32 is the floating-point activation bounded by the input dimension (x,y) and

k = 2. The activations are not stochastically quantised because, unlike in weights,

the activations do not have learning parameters.

5.5 Model training and Inference
The fully quantised versions of SLP-DNet based on binary and ternary bits (SLP-

DBNet and SLP-DTNet) are trained the same way as plane SLP-DNet. However,

back-propagation through the quantisation function results in zero gradients due to

the thresholding that summarises the activations or outputs into binary values. This

lack of gradient results in the network not learning anything. A straight-through es-

timator (STE) [177] is used in the backward pass to solve this problem. Specifically,

STE bypasses the derivative of the threshold function and passes on the incoming

gradient as if the function was an identity function expressed as [177]

clip(x,−1,1) = max(−1,min(1,x)). (5.20)

In the PUM, each block contains three main components and is trained block-

wise for k-th number of iterations as explained in Chapter 4. Similarly, APM is

trained for r-th iterations, and the number of training iterations of the PUM and

APM may not necessarily be equal. The PUM is trained for 20 iterations and the

APM for 10 iterations. We modify the learning rate by a factor α ∈ R+ for every

training step to improve the training efficiency using a stochastic gradient descent

algorithm with Adam optimiser [130].

5.5.1 Stochastically quantised SLP-DNet (SLP-DSQNet)

The SLP-DSQNet training is slightly different from that of SLP-DNet. The training

is summarised in four stages: stochastic weight matrix division, forward propaga-

tion, backward propagation, and parameter update. Given QR, the weight matrix
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is partitioned into a quantisation group and a full-precision group using Algorithm

2. A hybrid weight is then formed containing the quantised and the real-valued

weights, and it provides a better gradient direction than pure quantised weights. If

W̃q f is the composite weight matrix, the weight update with respect to the compos-

ite gradients is given by Wr+1 =Wr−η
∂L

∂W̃r
q f

. We train the network with different

QRs, which are fixed for all the training iterations and inference.

The learning is performed in an unsupervised fashion in which the loss function

is the Lagrangian function’s statistical mean over the training batch. During the

inference, a feed-forward pass is performed over the whole layers using the learned

Lagrangian multipliers to compute the precoding vector using (5.7) and (5.10) for

nonrobust and robust SLP formulations. Note that except where necessary stated,

the training SINR is drawn from a random uniform distribution to enable learning

across a wide range of SINR values.

5.6 Computational Complexity Analysis

This section presents the analytical evaluations of the computational costs of the

proposed SLP-DSQNet precoding schemes and compares them with SLP-DNet,

the conventional BLP, and the SLP optimisation-based methods. The complexities

are computed in terms of the number of real arithmetic operations involved. To

derive the analytical complexity of the optimisation-based SLP, we first convert the

second-order cone programming (SOCP) (5.1) into standard linear programming

(LP) as follows

min
{w1}

‖w1‖2
2

s.t. |ΦT
i ϒw1| ≤ b̄ , ∀i.

(5.21)

where b̄ =
(
Φ

T
i ϒw1−

√
Γin0

)
tanφ . To convert (5.21) to its equivalent LP, we in-

troduce new optimisation variable

min
{x}

dT x

s.t. dT
k x≤−tanφ

√
Γin0 , ∀i

(5.22)
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where d = [0 wT
1 ]

T ∈ R(2Nt+1)×1, x = [1 w1]
T ∈ R(2Nt+1)×1, and dk =[∣∣ΦT

i ϒw1
∣∣−Φ

T
i tanφ

]T ∈ R(2Nt+1)×1.

Given the optimal target accuracy, ε > 0, the complexity of solving convex

optimisation via IPM is characterised by the formation (Cform) and factorisation

(Cfact) of the matrix coefficients with n̄ linear equations having n̄ unknowns and is

given by [168]

Ctotal = (Cform +Cfact)× ln
(

1
ε

)√√√√Mlc

∑
j=1

Q j +2Msc (5.23)

where Q represents the constraint’s dimension, Mlc and Msc denote the numbers

of linear inequality matrix and second order cone (SOC) constraints, respectively.

Therefore, the overall complexity is

Ctotal =

n̄
Mlc

∑
j=1

Q3
j + n̄2

Mlc

∑
j=1

Q2
j︸ ︷︷ ︸

due to Mlc

+ n̄
Msc

∑
j=1

Q2
j=1︸ ︷︷ ︸

due to Msc

+n̄3


︸ ︷︷ ︸

Cform+Cfact

×ln
(

1
ε

)√√√√Mlc

∑
j=1

Q j +2Msc.

(5.24)

It can be observed that (5.22) has K constraints with dimension 2Nt +1. Therefore,

using (5.24), the total computational cost is obtained as

Ctotal =
√

2Nt +1
[
n̄(2Nt +1)+ n̄(2Nt +1)2 + n̄3] ln

(1
ε

)
. (5.25)

By following similar principles and steps above, we can obtain the complexities of

the robust SLP and the conventional BLP schemes.

On the other hand, to determine the complexities of our proposed precoders, we

first evaluate the complexities of the learning modules (PUM and APM) in terms

of arithmetic operations involved. For APM, there are three convolution blocks.

The feature map determines the arithmetic operations for a convolution layer and

is given by the number of multiplications and additions involved in the convolution
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operation. The number of operations in a given convolutional layer is

Cconv =
(
cink2

f +(cink2
f −1)+1

)
coutNwNh (5.26)

where Nh, Nw, kf, Cin and Cout denote the height, width of the input layer ten-

sor, filter size, number of input and output channels, respectively. It is important

to note that only the first and second convolutions are quantised, while the last

convolution is not to avoid losing essential features of the output precoder. Since

in our proposed approach, the layer weight matrix contains both floating points

and quantised entries, then the quantisation approximation of the convolution has
1
32

(
cink2

f NwNhcout
)
×QR binary operations and

(
cink2

f NwNhcout
)
× (1−QR) non

binary operations based on (5.26). Using these expressions, we obtain the generic

complexity of the APM as

CAPM =
1

32

L

∑
l=1

N[l−1]
h N[l−1]

w

[
C[l−1]

in f [l]2
]

C[l]
out(QR)︸ ︷︷ ︸

binary operations

+

L

∑
l=1

N[l−1]
h N[l−1]

w

[
C[l−1]

in f [l]2
]

C[l]
out(1−QR)︸ ︷︷ ︸

floating point operations

. (5.27)

Similarly, the PUM’s complexity is determined by the cost of the feed-forward pass

of the shallow CNN, as shown in Table 5.2 and the ‘log’ barrier that form the barrier

term.

CPUM =
Lcv

∑
l=1

N[l−1]
h N[l−1]

w

[
C[l−1]

in f [l]2
]

C[l]
out +

Lfc

∑
j=1

(
2N[ j−1]

in +1
)

N[i]
out +Clog-barrier

(5.28)

where Lcv and Lfc are the number of convolution and fully connected layers, re-

spectively. Based on the matrix/vector multiplications, the square absolute and l2

norm values, the number of arithmetic operations involved in computing the terms

in the ‘log’ barrier functions for SLP-DNet and robust SLP-DNet are obtained as

4N2
t K +2NtK +K and 8N2

t K +4NtK +6K, respectively.
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Table 5.3: Complexity analysis of proposed SLP-DSQNet and benchmark SLP schemes

Method Arithmetic Operations (term; n̄ = O(2KNt)) Complexity Order (n̄ = Nt = K)

Conventional BLP
√
(4Nt +K +2)

[
n̄(2Nt +1)+ n̄(2Nt +1)2 + n̄(K +1)2 + n̄3] ln

(1
ε

)
O(n̄6.5)

SLP Optimisation-based
√

2Nt +1
[
n̄(2Nt +1)+ n̄(2Nt +1)2 + n̄3] ln

(1
ε

)
O(n̄6.5)

SLP-DNet 2704K2Nt +4N2
t K +430KNt−K O(n̄3)

SLP-DBNet 127K2Nt +4N2
t K +7KNt−K− 7

8 O(n̄3)

SLP-DTNet 271K2Nt +4N2
t K + 77

2 KNt−K− 7
8 O(n̄3)

SLP-DSQBNet 2704K2Nt +430KNt +4N2
t K−K−

[
2577K2Nt +423KNt +

7
8

]
×QR O(n̄3)

SLP-DSQTNet 2704K2Nt +430KNt +4N2
t K−K−

[
2433K2Nt +

783
2 KNt +

7
8

]
×QR O(n̄3)

Robust Conventional BLP
√

2K(2Nt +1)
[
n̄K(2Nt +1)3 + n̄2K(2Nt +1)2 + n̄3] ln

(1
ε

)
O(n̄7.5)

Robust SLP Optimisation-based
√

2(2Nt +1)
[
2n̄K(2Nt +1)2 + n̄3] ln

(1
ε

)
O(n̄6.5)

Robust SLP-DNet 2704K2Nt +8N2
t K +432KNt +8N2

t K +6K−2 O(n̄3)

Robust SLP-DBNet 127K2NtK +8N2
t K +9KNt +6K− 9

8 O(n̄3)

Robust SLP-DTNet 271K2Nt +8N2
t K + 81

2 KNt +6K− 9
8 O(n̄3)

Robust SLP-DSQBNet 2704K2Nt +8N2
t K +432KM+6K−2−

[
2577K2Nt +423KNt +

7
8

]
×QR O(n̄3)

Robust SLP-DSQTNet 2704K2Nt +8N2
t K +432KNt +6K−2−

[
2433K2Nt +

783
2 KNt +

7
8

]
×QR O(n̄3)

Finally, we use the information in Tables 5.2 and 5.1 along with (5.27) and

(5.28) to obtain the complexity of SLP-DSQBNet as follows

CSQB = 2704K2Nt +430KNt +4N2
t K−K−

[
2577K2Nt +423KNt +

7
8

]
×QR.

(5.29)

We can obtain SLP-DSQTNet’s complexity from (5.29) by introducing additional

‘0’ state, and this additional bit yields

CSQT = 2704K2Nt +430KNt +4N2
t K−K−

[
2433K2Nt +

783
2

KNt +
7
8

]
×QR.

(5.30)

We observe that by substituting QR = 0 in (5.29) or (5.30), we can obtain the com-

plexity of SLP-DNet. Similarly, the complexities of SLP-DBNet and SLP-DTNet

are also found by substituting QR = 1 in (5.29) and (5.30), respectively. Table

5.3 shows the complexities of the proposed and benchmarks precoding schemes.

For illustration, we use the case of symmetry, where (Nt = K = n̄), and show that

our proposals have a considerably lower computational complexity of O(n̄3). In

contrast, the optimisation-based SLP and conventional BLP methods have O(n̄6.5)

and O(n̄7.5) computational complexities, respectively. While our proposed schemes

have the same order of complexity as SLP-DNet (see Table 5.3), the number of

arithmetic operations involved in their computations is lower than that of the SLP-

DNet due to the presence of binary operations.
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Table 5.4: Simulation settings

Parameters Values

training Samples 50000
Batch Size (B) 200
Test Samples 2000
training SINR range 0.0dB - 45.0dB
Test SINR range (i-th user SINR) 0.0dB - 35.0dB
Optimiser SGD with Adam
Initial Learning Rate, η 0.001
Learning Rate decay factor, α 0.65
Lower bit Activation bits-width, k = 2
Number of blocks in the PUM Bl = 3
training Iterations in the PUM per block 20
training iterations for the APM 10

5.7 Simulation Settings

We consider a downlink situation in which the BS is equipped with four antennas

(Nt = 4) that serve K single users; and assume a single cell. We obtain the dataset

from the channel realisations randomly generated from a normal distribution with

zero mean and unit variance. The dataset is reshaped and converted to real number

domain using the following expression Φ =
[
ĥR ĥI

]T
as summarised in Figure

5.4. The input dataset is normalised by the transmit data symbol so that data entries

are within the nominal range, potentially aiding the training. We generate 50,000

training samples and 2000 test samples, respectively. The transmit data symbols

are modulated using a QPSK modulation scheme. The training SINR is obtained

random from uniform distribution Γtrain ∼ U(Γlow,Γhigh). Stochastic gradient de-

scent is used with the Lagrangian function as a loss metric. A parametric rectified

linear unit (PReLu) activation function is used for both convolutional and fully

connected layers in a full-precision SLP-DNet and the low-bit activation function

(5.19) for SLP-SQDNet. After every iteration, the learning rate is reduced by a

factor α = 0.65 to help the learning algorithm converge faster. The models are

implemented in Pytorch 1.7.1 and Python 3.7.8 on a computer with the following

specifications: Intel(R) Core (TM) i7-6700 CPU Core, 32.0GB of RAM. Tables

5.4 summarises the simulation parameters depict the NN component settings of the
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Figure 5.4: Schematic diagram of dataset generation and preprocessing

SLP-DNet of the robust SLP-DNet.

5.8 Simulation Results and Discussion
In the following set of results we compare our proposed quantised DL-based SLP

scheme’s performance against its corresponding full-precision (SLP-DNet) coun-

terpart’s (see Chapter 4) and other benchmark schemes, such as conventional BLP

[73, 77] and the SLP optimisation-based [49]. Primarily, we design full low-bit

binary and ternary SLP-DNet models (SLP-DBNet and SLP-DTNet), where the

real-valued weights and activation are constrained to 1-bit. Similarly, the expres-

sive learning abilities of SLP-DBNet and SLP-DTNet are further enhanced by de-

signing their corresponding low-bit hybrid stochastically quantised versions (SLP-

DSQBNet and SLP-DSQTNet), where part of the weight matrix is quantised to a

lower bit, while the remaining is left in its 32-bit floating-point precision. The re-

sulting weight matrix is a hybrid containing both binary and real-valued entries with

the activations all reduced to 2-bit according to (5.19).

5.8.1 Performance Evaluation of QSLP-DNet and SLP-DNet

The performances of SLP-DBNet, SLP-DTNet, SLP-DSQBNet, SLP-DSQTNet

for QR = 0.5 against SLP-DNet and other benchmark precoding schemes (conven-

tional BLP, SLP optimisation-based) are shown in Figure 5.5. It can be observed

that both SLP-DBNet and SLP-DTNet have higher transmit power than the SLP

optimisation-based and SLP-DNet schemes. Therefore, SLP optimisation-based
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Figure 5.5: Transmit Power vs SINR averaged over 2000 test samples for Conventional
Block Level Precoding, SLP optimisation-based and nonrobust quantised
learning-based SLP solutions, Nt = 4, K = 4 and QR = 50%

and SLP-DNet solutions require less power to transmit the same amount of data

symbols than SLP-DBNet and SLP-DTNet. The loss in performance is expected

because some information is lost during feed-forward weight/input convolutions

due to quantisation and the inhomogeneous nature of the quantisation errors.

Furthermore, a closer examination of Figure 5.5 reveals that the SLP-

DSQBNet and SLP-DSQTNet offer less transmit power than their correspond-

ing full binary and ternary versions. Our simulation also shows that learning by

stochastic quantisation results in the performance close to the full-precision learn-

ing model (SLP-DNet) with a significant model size reduction (memory savings

at the inference), as we shall see later. We argue that the decrease in the available

transmit power at the BS in this scenario is because not all the weights matrix rows

are quantised at once. The quantisation error is used to direct the gradient descent

towards the best local minima during training. Accordingly, we find that at 30dB

SINR, the performance of SLP-DBNet and SLP-DTNet falls by 58% and 35% of

the SLP optimisation-based solution, respectively. On the other hand, the perfor-

mance gaps of SLP-DSQBNet, SLP-DSQTNet, and SLP-DNet are 22.2%, 9.62%,

and 5% of the SLP optimisation-based solution, respectively. Therefore, while
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the fully quantised model’s accuracy is significantly low, the stochastically hybrid

quantised counterparts and full-precision models’ accuracy is within 88%−96% of

the optimal solution.
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5.8.2 Performance of Robust SLP-SQDNet

Figures 5.6 and 5.7 compare the performances of SLP-SQDNet and the traditional

CSI-robust precoder for the 4×4 MISO system. Figure 5.6 depicts how the average

transmit power increases with the SNR thresholds, for CSI error bounds ς2 = 10−4

and QR = 50%. The robust SLP optimisation-based and SLP-DNet are observed

to show a significant power savings of about 60% and 58%, respectively compared

to the robust conventional BLP. Similarly, proposed fully quantised learning-based

precoders (SLP-DBNet and SLP-DTNet) portray similar transmit power reduction

trend. They show considerable power savings of 40%− 58% against the conven-

tional optimisation result. While the fully quantised models have demonstrated sub-

stantial performance loss compared to SLP-based optimal precoder, SLP-DSQBNet

and SLP-DSQTNet offer 90%−98% striking performance correlation with the SLP

optimisation-based optimal solutions, respectively.

Furthermore, we investigate the effect of the CSI error bounds on the transmit

power at 30dB SINR. Figure 5.7 depicts the variation of the transmit power with

increasing CSI error bounds. Moreover, a significant increase in transmit power

can be observed where the channel uncertainty lies within the region of CSI error

bounds of ς2 = 10−3. Interestingly, like the SLP optimisation-based algorithm, by

exploiting the CI, the proposed unsupervised learning methods also show a descent

or moderate increase in transmit power. To further understand the impact of the

QR on the transmit power, Figure 5.8 compares the performance of the proposed

stochastic quantisation learning-based CI-nonrobust precoders evaluated at 30dB.

In this scenario, we observe that the average transmit power available at the BS re-

quired to transmit data symbols increases as more weights and activations are quan-

tised. This is true because the network performance accuracy gradually improves

as more weights with full floating-point values are introduced.

5.8.3 Complexity and Memory Evaluation

The proposed learning schemes’ complexities are examined in two folds: firstly, we

compare the number of FLOPs operations involved in our proposed learning meth-

ods and those of the benchmark precoding schemes’. Secondly, we evaluate and
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robust SQ SLP-DNet models and full-precision SLP-DNet model under Nt = 4,
K = 4 and Γ = 30 dB

assess the inference memory requirements of our proposed learning-based precod-

ing techniques.

5.8.3.1 Number of FLOPs Operations

The computational costs of the SLP-DNet are obtained from the PUM and the feed-

forward convolutions of the CNN that makes up an APM. For the PUM, the domi-

nant computational cost comes from computing the proximal barrier term (Chapter

4). It can be seen that both SLP optimisation-based algorithm and the proposed

learning schemes are feasible for all sets of Nt BS antennas and K mobile users.

However, for conventional BLP, the solution is only feasible for Nt ≥ K.

Figure 5.9 (a) shows the number of FLOPs operations of the proposed un-

supervised learning solutions per symbol for nonrobust formulations. The domi-

nant operations involved in SLP-DNet at the inference are matrix-matrix or vector-

matrix convolution. The gap in the computational cost between SLP-DNet and SLP

optimisation-based methods increases with the growing number of mobile users.

For example, we find that the complexity of SLP-DNet is ∼ 10× lower than SLP

optimisation-based at K = 10, while that of SLP-DSQBNet and SLP-DSQTNet
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ing schemes, i.e, conventional BLP, SLP optimisation-based and SLP learning-
based models using four BS antennas (Nt = 4) and QR = 50%

are ∼ 20× much lower due to the presence of binary operations. Furthermore,

SLP-DBNet and SLP-DTNet offer an additional computational complexity reduc-

tion than SLP-DSQBNet and SLP-DSQTNet because binary bit-wise operations

replace the entire MACs calculations in the forward pass. It is important to recall

that SLP-DTNet outperforms SLP-DBNet in all scenarios. However, we observe

that SLP-DTNet is slightly slower than SLP-DBNet, and this is due to the addi-

tional ‘0’ binary state introduced in the former. We also note that the advantages

of the SLP-DBNet and SLP-DTNet are further enhanced via stochastic quantisation

but at the expense of small additional complexity overhead. The same trend is also

observed in the case of a robust channel scenario, as shown in Figure 5.9 (b).

Accordingly, we can deduce that while fully binarised DNN could offer sig-

nificant training and inference accelerations, it could otherwise lead to significant

performance degradation. However, quantising the weight matrix via a stochastic

channel selection based on the quantisation error leads to improved performance in

terms of reduction in transmission power. Therefore, we can conclude that the re-

sults in Figures 5.9(a) and 5.9 (b) demonstrate that the proposed quantised DL-based
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SLP solutions offer a good trade-off between the performance and computational

complexity.
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5.8.3.2 Model Size and Memory Utilisation

Generally, GPU can speedup the offline training of DNNs. However, most modern

GPUs are memory-constrained (e.g.GTX 980: 4GB, Tesla K40: 12GB, Tesla K20:

5GB and GTX Titan X: 12GB)[178]. Practically, the size of the DNN is often

bounded by the available memory. Therefore, it is beneficial to estimate the memory

requirements of the DNN at the inference. Likewise, the actual memory utilisation

also depends on the implementation. Here, we examine and analyse the memory

utilisation of full-precision SLP-DNet and its corresponding quantised versions at

inference. By memory utilisation, we refer to the model size at the testing phase.

For this analysis, we adopt the approach presented in [179] to calculate the inference

memory utilisation as the summation of 32-bit times the number of floating-point

parameters and 1-bit times the number of binary parameters. Mathematically, this

can be expressed as 1
32Wb +Wf , where Wb and Wf are the binary and floating-point

weights, respectively.

Figure 5.10a shows the average transmit power vs quantisation ratio (i.e. the

proportion of weights that are quantised) at 30dB SINR. The average power at

QR = 0 corresponds to SLP-DNet while QR = 1 represents the corresponding

fully quantised counterparts (SLP-DBNet and SLP-DTNet). Moreover, the trans-

mit power gradually increases as more weights are quantised. It is important to

note that for a unit quantisation ratio (QR = 1.0), all the weights are 100% quanti-

sation, where the model could be either a typical binary or ternary. On this note, it

is clear that the SLP-DSQTNet offers less transmit power than SLP-SQDBNet. We

find that quantising half of the weights (QR = 50%) could guarantee a good perfor-

mance within 80%−98% of the full-precision model for both SLP-SQDBNet and

SLP-DSQTNet, respectively. To investigate the amount of the memory required at

inference with the increase in the quantisation ratio, we plot the model size vs QR

as depicted in Figure 5.10b. We find that less memory is required as the quantisa-

tion moves towards extreme binarization to the right of the QR-axis. It can be seen

that the continuous line represents a full-precision SLP-DNet (i.e., QR = 0), while

QR = 1 represents a fully quantised model.
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Table 5.5: Inference memory utilisation

Models Weights Activations Memory Memory
usage (MB) saving

SLP-DNet (32−bit) ∈ R (32−bit) ∈ R 0.1898 −
SLP-DBNet {−1,+1} {−1,+1} 0.0089 21.33×
SLP-DTNet {−1,0,+1} {−1,+1} 0.0146 13×
SLP-DSQBNet {−βqf,βqf} {−β2−bit ,β2−bit} 0.0548 3.46×
SLP-DSQTNet {−βqf,0,βqf} {−β2−bit ,β2−bit} 0.0719 2.64×

Furthermore, Figure 5.11 shows that SLP-DBNet and SLP-DBNet provide

considerable memory savings up to ∼ 21× and ∼ 13× compared to the full-

precision SLP-DNet because the extreme quantisation reduces the available learn-

ing parameters significantly. This brings about a trade-off between performance

and model size, which is compensated by hybrid quantisation as in SLP-DSQBNet

and SLP-DSQTNet. Table 5.5 presents the summary of the inference memory re-

quirements, MACs, and binary operations of different proposed learning imple-

mentations. For SLP-DSQBNet and SLP-DSQTNet, the weights are constrained to

the following quantisation {−βqf,βqf} and {−βqf,0,βqf} while the activations are

clipped to {−β2−bit ,β2−bit} 2−bit quantised values, respectively. This shows that
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the hybrid quantisation enhances the representational capabilities of the convolu-

tional blocks.

5.9 Summary
In this chapter, we investigate binary and ternary weight quantisation techniques for

DNN model compression. For typical binary and ternary quantisations, the real-

valued NN weights are converted to binary and ternary values (i.e. -1, 0 and 1),

allowing the operations between the inputs and weights tensors to be performed in

binary format. We propose a hybrid quantisation DNN-based SLP scheme termed

(SLP-QSDNet) based on binary and ternary operations for power minimisation for a

multi-user downlink MISO system. The proposed quantised precoding schemes are

extensions of the model-driven unsupervised learning frameworks derived from the

proximal IPM barrier ‘log function for a relaxed phase rotation described in Chapter

4. We showed that the proposed approach resulted in fast online learning and a sig-

nificant model size reduction, which could help render the trained model memory-

efficient during deployment on the device’s edge. Overall, our proposed approaches

provide a scalable tradeoff between performance and complexity in learning-based

SLP schemes for a MU-MISO downlink transmission.



Chapter 6

Complexity-Scalable Neural Network

Based MIMO Detection With

Learnable Weight Scaling

6.1 Introduction
The chapter mainly focuses on signal processing at the receiver side. Signal sepa-

ration (detection) is one of the principal implementation difficulties of the MIMO

technology at the receiver side due to the co-channel interference. Several ingenious

techniques with a viable computational complexity, including ML-based methods,

have been proposed to subdue this difficulty. In this, we introduce a scalable, low

complexity DNN design MIMO detection scheme. MIMO detectors have been ex-

tensively studied over the last two decades with the view to improving their detec-

tion accuracy and decreasing their complexities [6, 17, 19, 180–182].

6.1.1 Related Works

The state-of-the-art learning based iterative detectors, such as OAMP-Net and TPG-

Net described in Chapter 2.6.5 channel inversion in every training iteration. To ad-

dress this drawback, we propose a generic weight-scaling NN (WeSNet) framework

for reducing the complexity of broader DNN-based receivers and therefore extends

to numerous relevant NN designs that do not embed NN architecture.

Generally, designing deeper NN architectures for signal detection problems
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comes with significantly increased training and inference complexity, while gains

in detection performance are not always significantly increased. This creates the

imperative for systematic approaches to design DNN architectures with scalable

complexity that can speed up offline training (learning),1 facilitate model deploy-

ment and inference on a range of devices such as mobile devices, and other embed-

ded hardware platforms with limited resources. Popular techniques of complexity

reduction that are similar to our proposal in style are Dropout [183], Drop-Connect

[184] and Pruning [171]. However, these schemes fundamentally differ from our

proposal because most of them are used to prevent overfitting, and they are not ex-

plicitly designed (of applicable) for complexity reduction. The simplest of them is

Dropout 2 where some units (neurons) are randomly shot during training. At in-

ference time however, Dropout uses the full network whereas our proposed frame-

work allows for the network to dynamically adjust its computational complexity

and detection accuracy characteristics at inference. While many proposals have

been put forward for accelerated DNN training and inference in computer vision

[170, 177, 184], to the best of our knowledge, no systematic DNN acceleration has

so far been designed for physical layer communications. In this work, we attempt

to fill this gap by proposing a complexity-scalable DNN model for efficient MIMO

detection.

In this thesis, we introduce the concept of monotonic non-increasing profile

function that scale each layer of the NN in order to allow the network to dynamically

learn the best attenuation strategy for its own weights during training. By doing so,

we introduce sparsity in the DNN, which results in a significant complexity saving

at inference. Our focus is on DNN designs that unfold iterative projected gradient

descent unconstrained optimisation for massive MIMO ML-based detection. While

1In practice, training a DNN is done offline and is computationally expensive in addition to
requiring large training data. Generally, the performance of a trained DNN model is determined by
its ability to generalise well on a new set of data (test data). Therefore, model testing is done online
using Monte Carlo simulation with new channel instantiations at different SNR conditions at the
edge of the device to evaluate the efficacy of the trained model.

2Dropout requires additional matrices for dropout masks, random selection of numbers for each
entry of these matrices and matrix multiplication of the masks with the corresponding weights. At
inference time, which is the focus of our work, Dropout uses the full network and does not allow for
scalable complexity-accuracy adjustments.
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methods of artificial “suppression” of neurons during training are known to create

sparsity and can be detrimental to inference accuracy [171, 185], we show that, by

tuning these profile function appropriately, we can provide a control mechanism

that trades off DNN complexity for detection accuracy in a scalable manner. Our

contributions are summarised below:

• We introduce a weight scaling framework for DNN-based MIMO detection.

Our approach is realised by adjusting layer weights through monotonic profile

functions. The original DNN design is based on DetNet, i.e., unfolding a

projected gradient descent scheme [22]. We term our proposal the weight-

scaling neural-network based MIMO detector (WeSNet).

• In order to allow for entire layers to be abrogated in a controllable manner

during inference, we introduce a regularisation approach that imposes con-

straints on the layer weights. This allows for scalable reduction in the model

size and the incurred computational complexity, with graceful degradation in

the detection accuracy.

• To improve the performance of WeSNet, we introduce a learnable accuracy-

complexity design, where the weight profile functions themselves are made

trainable in order to prevent vanishing gradients due to changes in the values

of activations. This improves the detection accuracy of the WeSNet at the

cost of increased memory due to increase in the model parameters.

• Finally, we present a comprehensive complexity analysis of WeSNet infer-

ence in relation to learning-based MIMO detector(DetNet) and traditional

detectors. Our study and results show that under the same experimental con-

ditions, WeSNet with 50% of the layer weights outperforms the detection

accuracy of DetNet while offering 51.43% reduction in complexity and close

to 50% reduction in model size. Furthermore, its detection accuracy is similar

to SDR with nearly 10-fold reduction of computational complexity.
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6.2 System Model

Consider a communications system with Nt transmit and Nr receive antennas. The

received signal is modelled using a standard MIMO channels equation (2.1) de-

scribed in Chapter 2. For convenience and ease of implementation, we will use the

equivalent MIMO model in real domain as defined in Chapter 2.6.3. The transmit-

ted symbols can be recovered by minimising the Euclidean distance between the

received and the transmitted symbols

ŝ = argmin
s∈S

‖y−Hs‖2
2 (6.1)

where S is the constellation set defined by the modulation scheme used (BPSK,

4-QAM and 16-QAM).

The premise of the operation of all learning-based detectors is that the estimate

of the received symbols is obtained from a trained network by an update rule using

an iterative projected gradient descent formulation [117]. For a function defined by

f (x,y), the estimate of x and y over the r-th iteration (i.e., layer) can be found from

gradient descent using the following update rule:

xr+1 = xr−η
∂ f (x,y)

∂x
(6.2a)

yr+1 = yr−η
∂ f (x,y)

∂y
(6.2b)

where η is the learning rate.

DetNet is designed by applying gradient descent optimisation in (6.1) ex-

pressed as

ŝr+1 = ŝr−ηr
∂‖y−Hs‖2

2
∂ s

∣∣∣∣
s=ŝr

(6.3)

Simplifying (6.3), we obtain:

ŝr+1 = ŝr−2ηrHT y+2ηrHT Hŝr (6.4)

By using HT y, HT H and s as inputs, and via the application of non-linear functions
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prior to the outputs, the formulation of (6.4) is converted to three sublayers with

each sublayer comprising a perceptron, also known as fully-connected NN. This is

defined by the following equations

ur = Θ(W1rxr +b1r) (6.5)

where:

xr = Σ(HT y, HT Hsr, sr, ar) (6.6)

ŝr+1 = ψ(W2rur +b2r) (6.7)

âr+1 = W3rur +b3r (6.8)

Σ(·) is the concatenation function, and Θ(·) and ψ(·) are nonlinear and piece-wise

linear sign functions, respectively, and subscripts 1r, 2r and 3r indicate the three

sublayers of layer r. The trainable parameters that are optimised during training are

defined by

Ψ = {W1r, W2r , W3r, b1r, b2r, b3r}L
r=1 (6.9)

6.3 Proposed Weight-Scaling NN based MIMO De-

tector (WeSNet)
In this section, we propose a scalable accuracy-complexity framework for DNN-

based MIMO receivers through systematic weight scaling with monotonic non-

increasing functions for both feed-forward and edge inference computations. This

allows for our proposal to have minimum deployment friction as it allows for the

best operating point in the accuracy-complexity sense to be devised at inference.

6.3.1 Weight Scaling Vector Coefficient (WSVC)

A WSVC is computed by applying monotonically non-increasing coefficients

(known as profile function coefficients) to the layer weights during the forward
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Figure 6.1: WSVC in a single layer of an MLP allowing for attenuated layer weights to
(optionally) be dropped.

propagation. This results in prioritising the selection of the layer weights in de-

creasing fashion from the most significant to least significant. Mathematically, for

two given vectors, x = [x1,x2, . . . ,xN ]
T and y = [y1,y2, . . . ,yN ]

T , if β is the vector

of the profile coefficients, WSVC is the pruned version of the form

N

∑
i=1

βixiyi = β1x1y1 +β2x2y2, ...+βNxNyN (6.10)

In a standard fully connected NN, the output of the feed forward pass is given by

z j =
N

∑
i=1

Wjixi +b j (6.11)

where i and j are the input and output dimensions (size of the neurons) respectively;

xi is the i-th input components, Wji is the channel or layer weight corresponding to
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the jth output and b j is the output bias. The corresponding WSVC is derived by

z j =
N

∑
i=1

βiWjixi +b j (6.12)

Figure 6.1 shows the difference between the feed forward computations of

a layer of an MLP and the MLP augmented by WSVC. The part of the WSVC

corresponding to significant layer weights is indicated by the light coloured shaded

region on the bottom-right side of the figure. The example shows that, via the

WSVC, we can compute and use only one-third of the channel/layer weights out

of the N layer dimension, as the remaining two-thirds of the weights are attenuated

and can be dropped.

6.4 Weight Coefficient Profile Function

We begin by introducing two non-increasing monotonic profile functions (Linear

and Half-Exponential functions) for the weight coefficients [185] as shown in Fig-

ure 6.2.

6.4.1 Linear Profile Function

This function comprises the profile coefficients obtained from the linear equation of

the form:

βi = 1− i
N

; ∀ i = 1, 2, . . . , N (6.13)

where N is the layer size.

6.4.2 Half-Exponential Profile Function

This is a hybrid profile function from uniform and exponential functions. This func-

tion attenuates coefficients corresponding to half of the channel via an exponential

decay function. The implication of this is that it allows the network training to ad-

just the gradient flow such that important weights are retained in the non-attenuated
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Figure 6.2: Profile coefficients vs Neurons/Layer weight index.

half of each layer and the less important ones in the exponentially-attenuated half.

βi =

1 i f i ≤ N
2 ∀ i = 1, 2, . . . ,N

exp
(N

2 − i−1
)

otherwise
(6.14)

6.4.3 Structure of the WeSNet-Detector

WeSNet is a nonlinear estimator designed by unfolding the ML metric using a re-

cursive formulation of the projected gradient descent optimisation. Our proposed

detector applies the profile coefficients on the existing DetNet. Such a modification

reduces the computational complexity for training the detector. We apply profile

coefficients to (6.5) and (6.8) to obtain the following non-linear WSVCs over the

i-th and j-th inputs of the first and third sublayers of the r-th layer, respectively.

u j[r] = Θ

{
N

∑
i=1

βi[1r]Wji[1r]xi[r]+b j[1r]

}
(6.15)

âk[r+1] =
M

∑
j=1

β j[3r]Wk j[3r]u j[r]+bk[3r] (6.16)
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Figure 6.3: WeSNet Model Architecture

where: j and k are the outputs of the first and third sublayers of layers r and r+ 1

respectively, N and M are their corresponding sizes, and bracketed subscripts are

added to explicitly indicate the membership of components to their corresponding

network layers and sublayers.

WeSNet has 3Nt layers with each layer having three sub-layers, the input layer,

the auxiliary and the detection layer. The layer weights of the last sub-layer (detec-
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tion layer) described by (6.7) are not scaled in order to maintain the full dimension

of the detected symbols as originally transmitted. The flowchart of a single-layer

WeSNet based on the (6.7), (6.15) and (6.16) is shown in Figure 6.3a. The complete

architecture of the WeSNet is shown in Figure 6.3b. Since the error estimation of

the ML-detector does not require the knowledge of the noise variance, the loss func-

tion of WeSNet is derived as the weighted sum of the detector’s errors normalised

with the loss function of the standard linear inverse detector (ZF) as

L (s; ŝ(H,y : Ψ)) =
L

∑
r=1

log(r)
‖s− ŝr‖2

2
‖s− s̃‖2

2
(6.17)

6.5 Introducing Robustness through Regularised

WeSNet (R-WeSNet)

In this section, we introduce log-regularisation with a sparsity-enforcing mecha-

nism. Unlike other proposals that employ such mechanisms as the means to avoid-

ing over-fitting, the combination of our log-regularisation with the proposed profile

functions enables the network to learn the best profile function scaling to gracefully

trade-off accuracy and complexity. Importantly, this achieves scalable accuracy-

complexity operation at inference by simply discarding parts of network layers (or

even entire layers).

6.5.1 Rationale

Given that our aim is to introduce sparsity in conjunction with our profile function

coefficients so that layers (and parts of layers) with few non-zero coefficients can

be removed to scale complexity, we propose the use of a log-l1-norm. The choice of

l1-norm is motivated by the fact that it forces some of the coefficients to be zero and

leads to sparsity [186], thereby making it more appealing and robust than l2-norm,

as well as a better candidate for feature selection.
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6.5.2 Proposed Loss Function

Following the above motivation, the loss function of (6.17) is modified such that a

log-l1-norm penalty term is imposed on the weights:

L (s; ŝ(H,y : Ψ)) =
L

∑
r=1

log(r)
‖s− ŝr‖2

2
‖s− s̃‖2

2
+ λ̃ f (βr,W̃r) (6.18)

where λ̃ is the regularisation parameter that controls the importance of sparsity in

the layers weights and f (βr,W̃r) is the function of layer weights with respect to the

neuron connections between adjacent layers, and is given by

f (βr,W̃r) =
L

∑
r=l

log(1+(r−1)|βrW̃r|) ∀ r = l, . . . ,L (6.19)

where (
βW̃
)
(r,k) =

lsublayers

∑
k=1

βkrWkr ∀ k = 1, . . . , lsublayers, (6.20)

r = l is the initial layer from which the penalty is imposed, k is the number of sub-

layers, lsublayers is the number of sub-layer in each layer block and β is one of the

profile functions of (6.13) and (6.14).

In the proposed loss function of (6.19), we opt for the logarithm function in or-

der to: (i) avoid the β profile functions converging into the constant unity function

and (ii) prevent gradient explosion, i.e., having the logarithmic decay act as a reg-

ularizer [187]. Unlike L1 norm, the ‘log-regularizer’ is non-convex. More broadly,

the objective function of an NN is only convex when there are no hidden units, all

activations are linear and the design matrix is of full-rank, otherwise, in most cases,

the optimisation objective is non-convex [188]. To avoid the challenge of having

to design an appropriate transformation [189], it is now standard practice to train

such NN designs with the combination of stochastic gradient descent (SGD) and

appropriate hyper-parameter tuning. Together with the use of the L1 norm, these

two aspects enforce sparsity in the network weights corresponding to the lowest

part of the β profile functions when the regularisation parameter (λ̃ ) is adequately

large [184]. In this way, the model size can be scaled down by expunging some lay-
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ers deterministically during inference, which reduces memory and computational

requirements during model deployment with graceful degradation in detection ac-

curacy.

6.5.3 WeSNet with Learnable Weight Profile Coefficients (L-

WeSNet)

To improve the robustness of the WeSNet against vanishing gradients and possi-

ble gradient explosion, the weight profile functions themselves are made trainable

parameters, whose values are optimised during the network training process. This

allows for significantly wider exploration of appropriate scaling functions than the

predetermined profile functions presented earlier, albeit at the expense of compu-

tational complexity during training. To achieve this, (6.9) is modified to include

profile weight functions as learned parameters.

Ψ̃ = {W1r, W2r , W3r, b1r, b2r, b3r, βr}L
r=1 (6.21)

It is important to note that the monotononicity during training and gradient update

is maintained by the shape of the functions of (6.13) and (6.14).

6.6 Complexity Analysis
WeSNet is a truncated version of DetNet, and the detection is performed at the

inference layer (see Figure 6.3b) by feed forward computation and subsequent ap-

plication of the soft sign activation function. The computational cost of WeSNet in-

ference is derived based on the cost of operations of an MLP (please see Appendix

B for the details). Our proposed model has 90 layers formed by stacking block

of layers, each consisting of three layers DNN. The propagation error is found by

computing the derivative of the cost function with respect to the parameters in each

block. The computational complexity is specifically measured by the number of

operations based on the detector’s model. Suppose A ∈ CM×N and B ∈ CN×L are

arbitrary matrices. D ∈ CM×N is a diagonal matrix, a, b ∈ CN×1 and c ∈ CM×1

are arbitrary vectors and Q ∈ CN×N is positive definite. The required number of
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FLOPs operations of the standard algebraic expressions of interest to this work are

summarised in Table 6.1.

Table 6.1: Matrix-vector floating point operations [190]

.

Expression Description Multiplications Summations Total Flops

αa Vector Scaling N N

αA Matrix Scaling MN MN

Ab Matrix-Vector Prod. MN M(N−1) 2MN−M

AB Matrix-Matrix Prod. MNL ML(N−1) 2MNL−ML

AD Matrix-Diagonal Prod. MN MN

aHb Inner Prod. N N−1 2N−1

acH Outer Prod. MN MN

AHA Gram MN(N+1)
2

N(M−1)(N+1)
2 MN2 +N(M− N

2 )−
N
2

‖A‖2
2 Euclidean norm MN MN−1 2MN−1

Q−1 Inverse of Pos. Definite N3

2 + 3N2

2
N3

2 −
N2

2 N3 +N2 +N Including N roots

Table 6.2: MIMO detectors’ complexity per symbol slot time.

MIMO Detector Number of Flops Operation

ZF
(56

3

)
N3

t +38N2
t +
(28

3

)
Nt

MMSE
(56

3

)
N3

T +40N2
t +
(34

3

)
Nt +1

ML |S|Nt (8N2
t +8Nt−2)

SDR
(
13N3

t +25N2
t +17Nt +4

)
Niterations [18, 106]

WeSNet
[(

β̃crNt(128Nt +5)+9Nt

)]
L, L = number of layers

DetNet [(Nt(128Nt−2))]L

We use the previous equations and the complexity of the feed-forward infer-

ence formulation as detailed in Appendix B to compute the number of floating point

operations of each MIMO detector. Our results are summarised in Table 6.2, and

correspond to the following standard assumptions:

1. One addition, subtraction of a real number is equal to one computational op-

eration.

2. One multiplication of a complex number is equivalent to four real number

multiplications and two real number addition.

3. One addition or subtraction of a complex number is equivalent to two real

number additions.
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4. One division of a complex number is is equivalent to eight real number mul-

tiplications and four additions.

Since only a certain fraction of the inputs are used to compute the layer weights

of WeSNet and R-WeSNet, most of the operations involved in the feed-forward

computations are either sparse vector-matrix multiplication and/or sparse matrix-

matrix multiplication. We can evaluate the asymptotic complexity as follows;

β1rW1r, β2rW2r and β3rW3r for detecting a single received symbol are computed

by matrix-vector and matrix-matrix multiplications as O
(
∑

L
r=1 u1r + s2r +a3r

)
=

O(n3 +n2) = O(n3).

6.7 Training
First, let us note that training of our model is done once, offline, and can, there-

fore, accommodate significant complexity followed by the actual deployment of

the detector at the inference. Our training dataset comprises transmitted symbols

generated stochastically from random normal distribution drawn from either BPSK

or 4-QAM constellation, additive white Gaussian noise (AWGN) generated from a

uniform distribution over a wide range of SNR values U(8dB - 14dB) and the corre-

sponding received symbols through general random channel taken from a complex

Gaussian distribution. On the other hand, our inference (test) dataset, is obtained

using the same modulation schemes as the training dataset but with different chan-

nel instantiations and distinct instantiations of AWGN over over different range of

SNR values U(0dB - 15dB). This training and inference scenario complies with

the vast majority of tests in the related literature [22, 23, 117, 122–126]. We train

the model for 25000 iterations with 5000 batch size for each iteration on a stan-

dard Intel i7-6700 CPU @ 3.40 GHz processor and use Adam Optimiser[127] for

gradient descent optimisation. It takes between 17-19 hours to train WeSNet with

20% and 50% profile weight coefficients respectively. This training time is substan-

tial, but it needs to be carried out offline, and only once. As earlier explained,

we assume an unknown noise variance during training. We therefore generate

the noise vector from a random uniform distribution over the training SNR val-
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ues U(SNRmin,SNRmax). This allows the network to learn over a wide range of

SNR conditions.

6.8 Numerical Results
In this section, we present the experimental setup and the performance of the WeS-

Net under different profile functions and their trainable versions. Amongst deep

learning based MIMO detectors, DetNet achieves the best complexity-accuracy per-

formance and also forms the basis of our proposal. Therefore, we deploy and bench-

mark WeSNet against DetNet, but also present performance comparisons against

other classical detectors.

Table 6.3: Simulation settings

Parameters Values

First Sublayer Dimension 8Nt = 240
Second Sublayer Dimension Nt = 30
Third Sublayer Dimension 2Nt = 60

Number of Layers L = 3Nt = 90
Fraction of non-zero Layer Weights β̃cr

Training Samples 500000
Batch Size 5000

Test Samples 50000
Training SNR range 8dB - 14dB

Test SNR range 0dB - 15dB
Optimiser SGD with Adam

Learning Rate 0.001
Weight Initialiser Xavier Initialiser

Number of Training Iterations 25000
Number of Monte Carlo during inference 200

6.8.1 Simulation Setup

WeSNet is implemented in Tensorflow 1.12.0 [191] using Python. Since deep learn-

ing libraries only support real number computations, we use real-valued represen-

tation of the random signals and fading channel to generate the training and test

datasets. The detector is evaluated under both asymmetric (30 transmit and 60 re-

ceive antennas) and symmetric channel (16 transmit and 16 receive antennas) condi-

tions. To ensure a fair comparison with the benchmark model, we use the simulation
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settings, which are summarised in Table 6.3. The benchmark detectors we consider

are:

1. Linear detectors (ZF and MMSE) implemented based on [19].

2. The optimal detector (ML) and optimisation based detector (SDR) based on

relaxed semidefinite programming as proposed in [105] and [18] respectively.

3. The deep learning-based MIMO detectors DetNet as proposed by Samuel

et al. [22], Samuel et al. [117] and OAMP-Net introduced by Hengtao et

al.[23].

6.8.2 Performance of a WeSNet Realisation with Half-Exponential

and Linear Profile Functions

For clarity, we begin by defining the following term; WeSNet-(HF/L)-x%: Weight-

scaled network obtained from Half-Exponential or Linear profile or function trained

and with ‘x’ fraction of the layer weights retained during training and inference.

Figure 6.4 shows the performance of WeSNet with the half-exponential

(WeSNet-HF) and linear (WeSNet-L) profile functions of (6.13) and (6.14) when

retaining increased percentage of inference layers (as marked in the corresponding

legends). The benchmarks comprise DetNet, ZF, MMSE, SDR and ML detectors.

Both linear and half-exponential profile WeSNet have comparable performance at

lower SNR and profile coefficients between 20% - 30% of the layer weights. As

expected, the addition of more profile coefficients increases WeSNet’s detection

accuracy, but performance saturates after 60% of the coefficients. However, we ob-

serve an appreciable difference at higher SNR as more profile weight coefficients

are added. At 10−3 BER, WeSNet can be trained with only 10% of the layer weights

and still outperforms ZF and MMSE by 1.68 dB and 0.79 dB respectively. Overall,

WeSNet with only 20% of the layer weights (WeSNet-HF-20%) achieves virtually

the same performance as our benchmark model (DetNet). In fact, with 50% profile

weight coefficients (WeSNet-HF-50%), WeSNet outperforms DetNet, producing

the accuracy of symbol detection equivalent to SDR. This gain is an experimen-
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Figure 6.4: BER comparison of the proposed DNN MIMO Detectors (WeSNet-HF,
WeSNet-L), DetNet, ZF, MMSE, SDR and ML under 60× 30 fading channel
using BPSK modulation.
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Figure 6.5: BER vs Percentage Weight Profile Coefficients for WeSNet.

tal validation that weight profile functions also act as regularisers, i.e., beyond their

sparsity-enforcing property, they also avoid overfitting when the model size grows.

In Figure 6.5, we show the performance of the WeSNet-HF and WeSNet-L
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Figure 6.6: Performance comparison of R-WeSNet, L-WeSNet trained with 50% profile
weight coefficients as a function of layers, WeSNet-HF-50%, WeSNet-HF-20%
and DetNet detectors under 60×30 fading channel using BPSK modulation

parametric to the utilised layer weight profile coefficients at 12 dB and 14 dB SNRs.

Both outperform DetNet and WeSNet-HF surpasses the WeSNet-L at high SNR. For

example, at 14 dB and 10−5 BER, it has gain margin of 0.312 dB over the WeSNet-

L. We also observe that the BER at 12 dB and 15 dB SNR improves as more profile

coefficients are added, but saturates at 50% due to weight saturation. This illustrates

that, with the addition of profile weight coefficients, at higher SNR the size of the

WeStNet can be scaled down during training by almost 40% - 50% and still achieve

almost identical detection accuracy to the full architecture that retains 100% of the

weights during training.

6.8.3 Performance Evaluation of R-WeSNet and L-WeSNet

To examine in more detail the performance of our approach against the “direct”

approach of removing entire layers by enforcing penalty on the weights through

log-l1-norm regularisation, Figure 6.6(a) shows BER-SNR performance curves of

the full WeSNet (WeSNet-HF-100%), DetNet and WeSNet when removing entire

layers. The figure shows that removing 70 - 40 layers (R-WeSNet-HF-70L and R-
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Figure 6.7: BER for R-WeSNet-HF and L-WeSNet vs number of layers

WeSNet-HF-40L) results in considerable loss of accuracy as compared to the cor-

responding WeSNet-HF models (WeSNet-HF-20% and WeSNet-HF-50%). Never-

theless, 20-30 layers (R-WeSNet-HF-20L and R-WeSNet-HF-30L) can be removed

while still achieving BER-SNR performance slightly better than the DetNet’s. It

can be noticed that a R-WeSNet-HF-10L (with 10 layers short-fall) outperforms

both WeSNet-HF-50% and DetNet.

In order to examine the performance of our approach when the weight profile

coefficients are made learnable (L-WeSNet), Figure 6.6(b) presents the performance

of with 50% learnable weight coefficients (L-WeSNet-HF-50%) over different num-

ber of layers. It can be seen that there is a remarkable performance improvement as

the size of the network grows from 5 layers to 60 layers. For instance, at 7.2×10−2

BER, we observe margin of 2.8 dB between 5 to 30 layers. On the other hand,

accuracy remains fairly consistent from 20 to 40 layers. Our study also shows that

L-WeSNet-50% produces the same accuracy as DetNet trained with full 90 layers.

This means that, for the studied problem, an efficient deep MIMO detector can be

designed with 50% trainable weight coefficients and 50 layers.
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Figure 6.8: Performance comparison of L-WeSNe, WeSNet, DetNet and ML detectors un-
der 60×30 fading channel using BPSK modulation

Figure 6.7 shows the average BER for both R-WeSNet and L-WeSNet against

the number of layers at 12 dB, 14 dB and 15 dB SNRs respectively. At 12 dB SNR

(Figure 6.7(a)), removing 10 - 30 layers during feed forward inference does not

significantly change the performance as compared to at 14 dB and 15 dB. However,

at 12 dB and 15 dB, we observe a sharp decrease in performance from 70 - 20

layers. The BER is about 10−4 at 15 dB and less than 10−3 at 14 dB with 40 layers

removed. We also see that, at higher SNR, model size can be reduced significantly

by removing up to 50 layers during the inference with slightly loss of accuracy.

No rules or analysis exists to precisely determine the size of a neural network

(i.e., number of neurons, layers, or layer parameters) for a specific task. Therefore,

we train WeSNet-HF with trainable weight coefficients over the different number of

layers to determine the conditions under which we can obtain the minimum BER.

The average BER is evaluated at 12 dB, 14 dB and 15 dB for each layer configura-

tion as shown in Figure 6.7(b). It can be seen that the BER falls off quickly from 5

- 60 layers. The BER at 14 dB is approximately 3×10−5. This value is reasonably

constant from 20 - 30 layers and goes down as more layers are added. It can also be

seen that at 15 dB, L-WeSNet-50% produces nearly 10−5 BER with only 20 layers.
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In Figure 6.8, we compare the BER-SNR performance of WeSNet and L-

WeSNet both trained over the entire layers with 20% and 50% of the profile weight

coefficients (L-WeSNet-20% and L-WeSNet-50%) against other benchmark mod-

els. Our study shows that WeSNet with trainable weight profile functions outper-

forms the one with non-trainable functions. This comes at the expense of slightly

increased training cost due to the additional number of training parameters. This

additional training overhead, however, does not increase the inference complexity

of the L-WeSNet over WeSNet’s, as the inference architectures are the same, ex-

cept of the difference in the values of the trained weight scaling values. It can be

seen that L-WeSNet-20% at 10−3 BER outperforms both DetNet and WeSNet-HF-

20% by 0.19 dB. Similarly, L-WeSNet-50% yields better detection accuracy over

WeSNet-HF-50% and DetNet by 0.22 dB and 0.69 dB, respectively.

6.8.4 Adaptability of WeSNet beyond the DetNet

The proposed approach can be applied to any model that has NN design, including

deep unfolding iterative algorithms such as OAMP-Net, TPG-Net, etc. by adding

a NN sub-layer design before the estimator and introducing the weight profiling to

trade off performance with complexity. Figure 6.9a shows the performance of the

OAMP-Net and its weight-scaled version (Wes-OAMP-Net) designed by introduc-

ing the weight-scaling framework to OAMP-Net. In addition, we present results

with the regularised Wes-OAMP-Net (RWes-OAMP-Net) under scalable reduction

of the utilised layers at inference (from L = 7 down to L = 3), showcasing the scal-

able accuracy-complexity behaviour of the proposed framework within the OAMP-

Net detector. Wes-OAMP-Net (with 10 layers) and the regularised Wes-OAMP-Net

(RWes-OAMP-Net) outperform OAMP-Net (with 10 layers). When scaling down

complexity at inference, Wes-OAMP-Net with L = 5 layers still slightly outper-

forms conventional OAMP-Net, while the accuracy can be further traded-off for

complexity in a graceful manner as more layers are removed during inference. Fig-

ure 6.9b shows BER performance of the WeSNet, MMSE, DetNet and OAMP-Net

evaluated under symmetric fading channel (16 receive and 16 transmit antennas)

using 4-QAM modulation scheme. It can be seen that the performance gap between
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Figure 6.9: Performance evaluation of OAMP-Net vs Weighted-Scaled OAMP-Net (WeS-
OAMP-Net)

classical MMSE and ML is significant, i.e., in the range of 15 dB. At lower SNR

values (0 - 11 dB), we observe that the performance of WeSNet and OAMP-Net
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Figure 6.10: BER vs. Layers over a 8 x 8 fading channel using 4QAM modulation.

is the same. However, at higher SNR, DetNet outperforms OAMP-Net slightly in

the range of 0.5 dB. We also observe that WesNet-HF-40% and SDR have simi-

lar performance, while L-WeSNet-HF-40% outperforms both of them. Similarly,

the regularised WeSNet (R-WeSNet-HF) with 30 layers eliminated during the infer-

ence is observed to have outperformed all the receivers. Finally, while the DetNet

and OAMP-Net have similar performance, WeSNet outperforms both of them at all

SNRs, with a reduced (2 - 3 dB) gap to ML.

Finally, the performance-complexity tradeoff is further exemplified in Figure

6.10, which shows the BER against number of layers. It can be seen that BER

decreases as more layers are added and the BER gains saturate at the seventh layer.

We also observe that 2.3 - 41.4% complexity can be saved by reducing the number

of OAMP-Net layers from 10 to 3 with loss of accuracy within the range of 0.5 -

3 dB for a system with 8 receive and 8 transmit antennas. Therefore, where before

OAMP-Net had only one BER vs complexity operating point in this scenario, our

proposed framework has provided a range of BER vs complexity operating points

which can be traded-off as per the communication’s link requirements.
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Figure 6.11: Computational complexity comparison of the detectors vs transmit antenna
size.
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Figure 6.12: Complexity comparison of WeSNet, L-WeSNet and DetNedt in terms of
FLOPs count and model parameters as a function of network layers.

6.8.5 Complexity Evaluation of the Proposed Scheme

To associate layer sizes with complexity and number of antennas in the MIMO con-

figuration, Figure 6.11(a) shows the complexity evaluated as the number of FLOPs

for WeSNet-HF-100%, WeSNet-HF-50%, WeSNet-HF-20%, DetNet, ZF, MMSE,
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SDR and ML detectors against the number of transmit antennas. As expected, as

the number of antennas increases, the complexity of ML grows exponentially. On

the other hand, WeSNet-HF-20% has the lowest computational cost. As far as the

model configuration is concerned, equal number of matrix-matrix and matrix-vector

floating point operations are performed by both WeSNet-HF-100% and DetNet

during the feed forward inference. However, WeSNet-HF-50% and WeSNet-HF-

20% are computationally more efficient than DetNet. For example, with 20% -

80% profile weights coefficients, the training of WeSNet-HF is less complex than

that of DetNet under the same operating conditions. When a regularised WeSNet-

HF-100% is trained and layers are removed deterministically at inference, Figure

6.11(b) shows that the complexity drops, with graceful degradation in performance.

Importantly, as expected from prior experiments, the first 30 layers can be abrogated

without any significant compromise on the performance.

Figure 6.12(a) depicts the complexity as function of network layers. The com-

putational requirement grows linearly as more layers are added. It can be observed

that the WeSNet-HF-50% and WeSNet-HF-20% are less complex than DetNet over

the entire range of layers. Our study shows that, at the inference, the complexity

of L-WeSNet is not affected by the presence of learnable weight profile functions.

Therefore, WeSNet-HF-50% and WeSNet-HF-20% and their corresponding learn-

able versions (L-WeSNet-50% and L-WeSNet-20%) have the same computational

complexity at inference. Figure 6.12(b) shows the variation of the model size in

terms of number of learnable parameters as a function of network layers. For a

given layer dimension (number of neurons), the size of the model is determined by

the number of layers and the number of trainable parameters. It can be seen that

WeSNet, in addition to having better detection accuracy, it is substantially more

memory efficient than DetNet and requires less training time under the same exper-

imental conditions.

As more weights profile coefficients are added, the number of FLOPs in-

creases. Figure 6.13 shows how the computational cost and model parameters

change with the profile weight coefficients. As shown by earlier experiments,



6.9. Summary 157

0 20 40 60 80 100
Weights Coefficients (%)

107

108

FL
O

Ps
 &

 P
ar

am
et

er
s

DetNet

DetNet

WeSNet-HF FLOPs
WeSNet-HF Parameters
L-WeSNet Parameters

Figure 6.13: Total FLOPs and model parameters vs weight profile coefficients.

WeSNet-HF achieves performance close to DetNet with only 20% to 30% of the

layer weights. Therefore, such weight scaling leads to a significant decrease in the

model size by 79.82% and 68.73% respectively. Similarly, we observe a reduction

of 51.43% computational cost and 49.78% decrease in model size with 50% profile

weight coefficients.

6.9 Summary

In this chapter, we present an efficient and scalable deep neural network based

MIMO detector, where complexity can be adjusted at inference with graceful degra-

dation in the detection accuracy. We introduce a weight scaling framework using

monotonically non-increasing profile functions to dynamically prioritise a fraction

of the layer weights to be used during training. In order to allow for the neural

network architecture to self-adjust to the detection complexity, we also allow for

the profile functions themselves to be trainable parameters in the proposed architec-

ture. From our simulation results, we find that the model with trainable coefficients

outperforms the one with non-trainable coefficients, but at the cost of complexity.
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In addition, our proposal shows that adding weight scaling via monotonic profile

functions maintains the detection accuracy when dropping layer weights. This is

achieved in part by introducing an log− l1-norm based regularisation function on

the layer weights and their profile function coefficients so that the model size can be

scaled down by nearly 40% during the feed-forward inference with marginal impact

in the detection accuracy.



Chapter 7

Concluding Remarks and Future

Work

Downlink transmit precoding and signal detection techniques are quintessential re-

quirements for exploiting the benefits of spatial multiplexing of multiple-antenna

systems. Considering the hardware requirements for practical implementation

and deployment, integrating ML techniques for downlink transmission designs is

needed for future 5G and beyond wireless communication systems. Correspond-

ingly, this thesis studies model and data-driven ML approaches and proposes vari-

ous scalable memory-efficient and hardware-inspired DL frameworks for multiuser

downlink transmission strategies and signal MIMO detection designs.

7.1 Summary and Conclusion
Chapter 2 of this thesis presents a general review of fundamental theoretical con-

cepts of MIMO communication systems and the related technologies. We have

focused explicitly on the downlink transmission and reviewed different linear and

nonlinear precoding and detection techniques that have been reported in the lit-

erature. The chapter highlights the merit and demerits of such signal processing

schemes. Furthermore, the chapter reviews various existing precoding optimisa-

tion schemes based on the conventional approach, where the MUI interference is

treated as a pernicious entity. The optimisation-based precoding schemes, where

the MUI is exploited and combined with the knowledge of data symbols at the BS
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for QPSK and 8PSK modulated signals, are also reviewed. Similarly, the chap-

ter has presented a detailed rundown of the MIMO detectors based on the iterative

algorithms reported in the literature and their corresponding unfolded DL-based

counterparts. Additionally, Chapter 3 presents a recap of relevant ML theoretical

foundations. Distinctively, the chapter expounds on ML algorithms and their ap-

plications in wireless communications. An overview of DL-based MIMO detectors

derived from traditional iterative algorithms is also presented.

Following the above two introductory chapters that explain the fundamental

concepts and literature review exclusively relevant to this research work, the details

of the main contributions of this thesis are presented in Chapter 4 - Chapter 6. More

specifically:

• Chapter 4 investigates applications of interference exploitation to an MU-

MIMO downlink transmission system with ML. We propose a novel unsu-

pervised learning-based precoding framework that trains DNNs with no tar-

get labels by unfolding an interior point method (IPM) proximal ‘log’ bar-

rier function. Different proximal ‘log’ barrier functions are derived based

on strict and relaxed power minimisation formulations subject to SINR con-

straints. The proposed scheme exploits the known interference via SLP to

minimise the downlink transmit power. The idea is also extended to robust

power minimisation problem, where channel error due to uncertainty in the

channel estimation is considered. The main observations of this chapter are

elucidated as follows:

1. Thanks to IPM SLP proximal ‘log’ barrier function, the performance

of the proposed SLP-DNet is promising commensurate with the SLP

optimisation-based solutions. With this approach, we use the original

SLP optimisation Lagrange function as a loss function with an addi-

tional regularisation term. When there is not sufficient data to train the

model, the proposed learning scheme is attractive because it opens a way

of transforming constrained optimisation problems into an unfolded se-

quence of unconstrained subproblems that can be trained in an unsuper-



7.1. Summary and Conclusion 161

vised manner.

2. The gain in the transmit power reduction of the proposed SLP-DNet

precoding schemes is near the optimal SLP optimisation-based precod-

ing method. The loss of performance is worth the benefits of the re-

duced computational complexity offered by the proposed unsupervised

learning-based precoding solutions. Therefore, our proposals demon-

strate an indispensable balance between the performance and the com-

putational complexity involved. However, we observe that transforming

the optimisation problem into a learning framework is increasingly chal-

lenging as the number of constraints increases (see robust SLP formu-

lation), translating into additional computational complexity, as clearly

shown in the execution time.

3. The proposed SLP-SNet is feasible for all BS antennas and mobile user

configurations. More importantly, we observe that the performance gap

between the SLP optimisation-based and proposed learning-based tech-

niques closes rapidly as more users are served. This observation further

highlights the flexibility of the proposed SLP-DNet and the possibility

of extending it to a multi-cell scenario.

• To reduce the offline and online computational requirements of the learn-

ing frameworks developed in Chapter 4, we introduce the concept of NN

model compression in Chapter 5. The compression is performed through NN

weights quantisation, where the weights are quantised to binary (−1,+1)

and ternary (−1,0,+1) values to reduce the computational complexity of the

developed learning architectures. Fully quantised SLP-DNet models (SLP-

DBNet and SLP-DTNet) offer complexity reduction gains in terms of com-

putational inference power between 40%− 58% and memory savings up to

∼ 21× and ∼ 13× compared to the full-precision SLP-DNet, respectively.

However, they suffer a performance loss compared to the conventional SLP

optimisation-based solutions. We propose a stochastic quantisation based on

binary and ternary quantisations (SLP-DSQBNet and SLP-DSQTNet) to ad-
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dress this drawback. With stochastic quantisation, part of the NN weight

matrix is quantised to either binary or ternary, and the remaining portion is

retained in complete floating-point numerical precision. A lottery disc-like

algorithm combined with a monotonically non-increasing probability func-

tion for selecting the row of the NN channel/filter weights to be quantised is

introduced. The main observations of this chapter are:

1. The introduction of quantisation within the NN weight tensor has a sig-

nificant impact on the performance of the precoder. Specifically, the

proposed SLP-DBNet and SLP-DTNet incur a substantial performance

loss due to the non-homogeneous nature of the quantisation error at each

iteration, leading to a lousy gradient direction during training. In addi-

tion to significant memory savings offered by SLP-DBNet and SLP-

DTNet, they show corresponding computational complexity reductions

of ∼ 20× and ∼ 10×, respectively, compared to plane SLP-DNet. To

improve the performance further, we propose a stochastic quantisation

technique. Here, the quantisation error is used to direct the gradient

descent towards the best local minima during training, improving the

performances of SLP-DSQBNet and SLP-DSQTNet compared to their

fully quantised counterparts. While SLP-DSQBNet and SLP-DSQTNet

exhibit promising performances, SLP-DSQT, in particular, offers higher

power savings of 50%−58% comparable to that of the optimal solution.

2. A considerable transmit power increase is observed where the channel

uncertainty lies within the region of CSI error bounds of ς2 = 10−3.

Interestingly, like the robust SLP optimisation-based scheme, the pro-

posed quantised DN-based SLP models show a descent transmit power

savings by exploiting the CI. This observation reveals the potential ben-

efits of exploiting quantisation techniques to build learning-based pre-

coders instead of adopting traditional fully precisioned DNN models.

3. The proposed DNN quantisation is promising for online inference and

the realistic implementation of learning-based precoders and signal de-
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tectors on practical communication systems. It may be exceptionally

effective for 5G and beyond communication systems that require many

antenna arrays at the BS, potentially leading to the decreased complexity

of signal processing problems involved.

• In Chapter 6, we study downlink MIMO detection strategies for m-MIMO

systems. Unequivocally, this chapter focuses on general systematic struc-

tural simplification by dynamically scaling the NN weight values using mono-

tonically non-increasing functions to design efficient learning-based MIMO

detectors. The proposed concept is applied to the state-of-the-art DL-based

MIMO detector, DetNet. Despite the performance of the DetNet, its heuris-

tic nature makes its NN design challenging to understand and modify. Be-

cause DetNet is the first learning-based MIMO detector whose performance

matches the SDR MIMO detector, it presents the best baseline model for

learning-based decoders. To address this challenge, we propose a system-

atic NN weight scaling mechanism to improve network performance over a

wide range of signal modulation schemes and significantly reduce unneces-

sary model complexity. We extend the idea to the learning-based iterative

algorithms that do not have an explicit NN design, such as OAMP-Net, to

improve their expressibility. The following are the critical remarks based on

results observed in this chapter:

1. The introduction of non-increasing monotonic profile functions allows

us to modify the structure of the DetNet and can be applied to any

learning model that contains an NN architecture. The two functions

employed are linear and half-exponential and multiplied element-wise

across the NN weight’s elements. We observe that these modifications

allow us to dynamically cut down the size of the DetNet and improve

its learning ability with a significant complexity reduction in terms of

the number of learning parameters, training and inference times. The

proposed NN scaling approach presents a potential generic structural

simplification mechanism for reducing model computational complex-
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ity. It will be interesting to explore different types of non-decreasing

monotonic profile functions.

2. We have exploited the log l1-norm penalty function to induce sparsity to

the proposed learning-based MIMO detection network by adding a regu-

larisation term to allow the network to adjust its training strategy so that

some layers can be dynamically exterminated during inference without

compromising the performance. The regularised WeSNet with fewer

layers achieves impressive performance better than the model with many

cascade layers. The approach is particularly effective when the dimen-

sion of the dataset is large, or the number of the transmit antennas is

large.

7.2 Possible Future Extensions
In this thesis, we have investigated the concept of model-driven and data-driven DL

and developed specific learning frameworks based on expert or domain knowledge

by transforming the original constrained and unconstrained optimisation problems

into learning layers of NN architectures for SLP and MIMO detector designs. We

have extensively studied lightweight NN methods through model structural sim-

plification and weight quantisation to design fast and compressed DL-based archi-

tectures for SLP and MIMO detection. While this work has fully covered some

physical layer communications areas, others remain unexplored. Our studies have

sparked off further investigations in the following directions as follows:

• General learning framework design: The proposed DL approaches can

potentially open a new way of developing generic and customised learning

architectures based on the specific optimisation problems for physical layer

communications. For instance, this idea can be extended to SINR balancing

problems, sum-rate maximisation problems, interference alignment, network

management, modulation classification, etc. Furthermore, the adaptability of

the proposed learning schemes should be studied when tested in different en-

vironmental settings, e.g. testing the model with a channel type different from
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the one it was trained.

• DL frameworks for constrained optimisation problems: Large antenna ar-

rays provide phenomenal performance vis-a-vis transmission reliability and

high data rate communications. It offers enormous amounts of baseband data,

which can be used to assess the environment. The ability of DL algorithms

to deal with data makes them suitable to analyse the vast amounts of data

generated by m-MIMO arrays. Because parametric models are usually com-

plex, classical signal processing, such as precoding, detection or equalisation

schemes, require iterative algorithms that are challenging to run on practical

systems. More specifically, in terms of function approximation and itera-

tive algorithmic approaches, deep-unfolding offers the most promising path

to new learning-based designs for physical layer communications problems.

Significant future research directions should include both relevant physical

modelling and the development of an algorithmic framework that exploits ap-

propriate ML tools and convexity of the constrained optimisation problems.

While trained DNNs represent an indispensable technology in this context,

other learning methods, such as dictionary learning techniques involving a

learning matrix as a sparse signal, are also crucial for designing scalable mod-

els. In addition, it will reduce the computational overheads of online training,

which are often associated with conventional model-based signal process-

ing techniques. The model trained with the synthetically generated channel

instantiation should be validated with experimental data obtained from real

measurements. Such a practice will outstandingly facilitate state-of-the-art

learning frameworks for 5G and beyond technologies.

• Combined NN weight scaling and quantisation: In Chapter 5, we have

considered DNN compression via quantisation, where a probability function

is used to select the portion of the weight matrix to be quantised based on

the magnitude of the quantisation error. It will be an exciting feature work

to combine the approaches described in Chapter 5 and Chapter 6. Instead of

quantising the portion of the weights based on quantisation error, the least sig-
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nificant NN weights, which are dynamically removed, as described in Chapter

6, can be quantised. This may potentially deal with the impact of the quanti-

sation error on training convergence and model learning instability.

• Running trained model on different set of users and dimension scaling:

Throughout the thesis, we have considered a BS with a fixed number of an-

tennas serving different simultaneous users. For a given BS, DNN models

trained for a specific number of users cannot be used for another set of users

due to the change in the dimension of the input dataset. The model has to

be trained for every new set of users. A compelling future work will be to

develop a generic conversion module that will deal with the variation of the

input matrix shapes and allow the trained model to be tested without neces-

sarily retraining it from scratch for every new transmit-receive antenna con-

figuration. Furthermore, the input data dimension is often a multiple of the

transmit-receiver composition or channel matrix dimension. However, as for

the intermediate layers, the dimensions are arbitrarily selected. Depending on

the size of the problem, scaling these dimensions can affect the accuracy of

the trained model. Unfortunately, the traditional scaling process has not yet

been fully understood. The conventional way of doing it is arbitrarily scal-

ing across depth, width and resolution (channel) in the case of CNN, which

requires manual tuning. It will be a mesmerising future research direction to

consider the model dimension optimisation, where the model accuracy (per-

formance) is maximised by finding the appropriate layer dimensions subject

to given target memory and computational target cost in FLOPs.

• Extension to MU-MIMO SLP: The proposed learning-based SLP can be

extended to a multiuser system with multiple receive antennas (MU-MIMO

system), where multiple independent radio terminals are enabled to access

a system, enhancing the communication capabilities of each terminal. Mul-

tiple users can simultaneously access the same channel to exploit the maxi-

mum system capacity offered by MIMO’s spatial degrees of freedom. While

such antenna configuration provides higher throughput, it will come with ad-
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ditional hardware and computational costs on both BS and receiver sides.

Therefore, scalable DNN frameworks proposed in this thesis will facilitate

the designs of memory-efficient and low computationally efficient learning-

based models for MU-MIMO SLP designs to address such complexities.

Conclusively, this thesis has presented potential machine learning applications,

specifically DL, in physical layer communications. Several strategies for designing

low complexity DNN frameworks for interference management at the BS via pre-

coding and receiver designs have been developed. The author desires the solutions,

results, and conclusions stemmed within this thesis will help explore the potentials

and invigorate new novel ML strategies for the 5G and beyond wireless communi-

cation systems.



Appendix A

Proximity operator barrier for

Robust SLP

For every transmit precoding vector w2 ∈ R2Nt×1, the proximity operator of the

barrier γµBrobust(w2) is given by

Φrb(w2,γ,µ) =
2Γn0tan2φ −X(w2,γ,µ)

2

2Γn0tan2φ −X(w2,γ,µ)2 +2γµ
w2 (A.1)

where X(w2,γ,µ) is the unique solution of the cubic equation expressed as [159]

x3−
((

ς
2− Φ̂

T
Φ̂

)
‖w2‖2 +4Φ̂
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√
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)
= 0. (A.2)

where Φ̂ = Φ
T

ϒ. It can be observed that (A.2) is a cubic equation and can be

solved analytically. In the final analysis, following similar steps as in (4.23)-(4.27),

the robust deep-unfolded model is obtained by finding the Jacobean matrix of (A.1)

with respect to the optimisation variable w2, and the derivatives with respect to the

step-size γ > 0 and the Lagrange multiplier associated with the inequality constraint

µ > 0. We use similar concepts presented in subsection 4.3.3 to formulate the

learning algorithm of the robust SLP as a series of sub-problems with respect to the
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combined effect of the two inequality constraints as follows

min
w2∈R2NT×1

‖w2‖2
2 +λw2 +µBrobust(w2). (A.3)

Similar to a nonrobust SLP-DNet, the update rule for every iteration is expressed as

w[r+1]
2 = prox

γ [r]µ [r]Brobust

(
w[r]

2 − γ
[r]

∆Drobust(w
[r]
2 ,λ [r])

)
(A.4)

where

Drobust(w
[r]
2 ,λ [r]) = ‖w2‖2

2 +λw2. (A.5)



Appendix B

Feed-Forward Computational Cost

of an MLP

Consider an input, X ∈ R( j,k) and weight W ∈ R(i, j), the linear combination of X

and W is given by

Zik = Wi jX j,k +bi (B.1)

Applying non linear activation to (B.1), gives:

aik = g(Zik) (B.2)

where g(·) is the nonlinear activation function. The matrix multiplication has an

asymptotic computational complexity O(n3) and the activation function has O(n)

complexity.

B.1 Feed-Forward Inference

For N[L] number of neurons including bias unit in the r-th layer, the total complexity

can be calculated as a sum of the total number of matrix multiplication and the

applied activation over the entire layers as

Nmatmul =
L

∑
r=2

(N[r]N[r−1]N[r−2])+N[1]N[0] (B.3)
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Ng =
L

∑
r=1

(N)[r] (B.4)

Complexity = Nmatxmul +Ng

= NL . N3
(B.5)

The complexity for r-th layers:

Nmatmul = O(n . n3)

= O(n4)
(B.6)

Similarly, the complexity Ng for the activation function with L layers is:

Ng = NL . N

= O(n2)
(B.7)

Therefore, the total complexity of the forward propagation is

Total complexity = O(n4 +n2)

≈O(n4)
(B.8)
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