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Ηιγηλιγητς

• Α νεω γενερις αππροαςη ιν γλοβαλ οπτιμιζατιον υσινγ ςυττινγ πλανε δεςομποσιτιον.

• Υσε οφ ΑΙ ιν ουτερ αππροξιματιον ανδ εχυαλιτψ ρελαξατιον προβλεμς.

• Δατα-εναβλεδ λοωερ σπαςε δεςομποσιτιον μετηοδς ιν νον-ςονvεξ οπτιμιζατιον φορμυλατιονς.

• Δεvελοπμεντ οφ α νεω μετρις (αφφινιτψ) το ασσεσς ανδ σςρεεν ςυττινγ πλανες.

• Σιγνιφιςαντ ιμπροvεμεντς (40-80%) ιν ςλοσινγ δυαλιτψ γαπς ιν νον-ςονvεξ χυαδρατις προβλεμς.
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Abstract

Data-driven technologies have demonstrated their potential on various scientific and industrial
applications. Their use in the development of generic optimization algorithms is relatively unex-
plored. The paper presents such an application to design a global optimization algorithm that
is generic and suitable to address quadratic box constraint problems. The new method reformu-
lates cutting plane decomposition methods substituting the solution of the master problem by a
data-driven selection of cutting planes. The paper presents the theoretical background, data tech-
nologies used and computational results that compare the new against state-of-the-art methods.
Computational experiments include 100 quadratic programming (QP) problems featuring a wide
range of density (25-75%), size (40-100 variables), and complexity. Results are particularly en-
couraging and demonstrate significant reductions in the duality gap, as high as 40-60% scope on
average. Largest improvements are traced in larger formulations (over 100 variables, 75% density).
The research is based solely on data produced at a particular iteration. Future work is intended
to extend the analysis comparing and considering data patterns across different iterations, also to
apply the methodology in other classes of optimization problems.

1 Introduction

Optimization remains in the core of process systems engineering and is a key subject in numerous
applications. The advent of computing power in the 70’s has essentially revolutionized analytical
optimization methods. Formerly limited into a few dimensions, new generations of optimization algo-
rithms now offer powerful means to address complex and large problems, systematise decision support,
and accelerate system analysis. In the following decades, rather than merely offering context and ex-
amples for applications, the engineering community has emerged as dynamic, mathematically literate,
and proficient. The engineering community addressed fundamental challenges in optimization and,
in the case of decomposition techniques, produced technology suitable to tackle complex and diffi-
cult problems unable to solve with off-the-self methods. The proliferation and wide acceptance of
successful commercial solvers in global optimization [25, 11], mixed-integer nonlinear programming
[38, 32, 7, 30], and modelling environments [21] constitute convincing and strong evidence to support
this claim. Prof. George Stephanopoulos and co-workers were instrumental in the way by which
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optimization has been approached, explored, and applied in engineering problems. His early publi-
cations communicated developments through rigorous analytics that highlighted the importance of
mathematics over empiricism. Typical examples included his communication on two-level methods
for systems optimization (1973)[41], critical reviews on the application of discrete forms of the Pon-
tryagin’s Minimum Principle in chemical engineering (1974)[42], and the analysis of Hestenes’ method
to resolve dual gaps (1975)[43]. They also included decomposition techniques that addressed func-
tional non-convexities (1975)[44] and approximation methods to improve convergence characteristics
of optimization algorithms (1975)[54]. While he was later attracted to other subjects in his career,
Prof Stephanopoulos returned to mathematical optimization recently with a fresh interest in game-
theoretical methods and Nash equilibrium analysis[50]. The legacy and impact of his work reflected
on further research that produced seminal contributions in outer approximation[16, 53, 10, 29], cut-
ting plane approximations [20, 55, 9], branch-and-bound [2, 1] and branch-and-cut algorithms [49],
and complete software solutions (Misener and Floudas, 2014)[32]. This paper joins the long list of
researchers motivated by the early developments and his work.

In the decades that followed, an increasing command of computing power has set challenges driven
by large volumes of data streams alongside off-the-self methods available for analysis. Technologies
entrenched in Artificial Intelligence, machine learning, and advanced analytics are tested with a strong
promise to revolutionize conventional methods in modelling and mathematical analysis[8, 28]. George
Stephanopoulos had foreseen such challenges in his early work on intelligent systems [46] preparing
groundwork for applications on data analytics in data reduction and functional approximations [33],
classification, [31, 48], data extraction and pattern recognition [5, 47], and precursive versions of deep
learning [4]. He explored these methods in modelling and optimization [4, 27] explaining their potential
in several applications [45, 26]. Many recent publications are in the spirit of his early work.

Publications include data models for complex nonlinear systems in the absence of first principle
models. Using commercial simulators, Vargas [37] demonstrated forecasting capabilities of ANNs in
dividing wall columns. Espuna [40] explored ordinary kriging, ANNs and SVR methods to photo-
Fenton plants. Asprion [22] improved kriging-based methods on industrial BASF applications that
combine machine learning with chemical simulations. Boukouvala [23] reviewed available methods in
surrogate models, specifically addressing uncertainty. In most studies modelling is invariably combined
with optimization. Baldea [51] demonstrated applications in dynamic optimization using low-order
Hammerstein-Wiener models. With a view in global optimization, Mitsos combined surrogate mod-
els trained by ANNs[24] with in-house global optimization technology (MaiNGO)[11]. Recent work
included stochastic optimization by means of a two-stage algorithm aided by machine learning. You
[34] proposed such a framework to leverage machine learning and extract uncertainty information
from multi-class uncertainty data. Stochastic programming was nested as an outer optimization prob-
lem leveraging probability distributions; adaptive robust optimization was nested (inner problem) for
computational tractability.

The present paper makes use of data analytics and intelligence for the design of global optimization
algorithms. The approach is generic but suitable for quadratic problems with box constraints. The pro-
posed method reformulates a cutting plane decomposition substituting master problems by data-driven
screening procedures entitled to select cutting planes. The work is motivated by unexplored volumes
of algorithmic data as they are generated by local optimization search steps at internal iterations
of the algorithm. In cutting plane decomposition methods, recent algorithms involve low-dimension
approximations that produce significant volumes of cutting plane approximations; the application of
heuristics to screen cutting planes is a debatable choice and may be a weak option. Instead, the paper
makes use of data analytics and data-enabled screening. The following sections present the theoretical
background for the decomposition approach, the presentation of the data populations generated, and
metrics suitable to differentiate data groups for analysis. The method is illustrated and tested in
problems featuring different sizes, sparsity, and problem complexity. Results are quite encouraging
consistently reporting the development of tighter duality gaps and performance. The last section
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summarizes results from experiments and highlights the scope for future extensions.

2 Background: cutting planes and the separation problem

Cutting plane methods exist in several variations. The section provides the background for cutting
plane method used in this paper. The section introduces assumptions made, as well as the description
of the specific problem (separation problem) that is assigned to data analytics. The presentation
includes the general problem and the decomposition framework with respect to the primal and the
master problems to solve. The general problem takes the form:

min
x,y

cT y + f(x)

s.t. g(x) +By ≤ 0

x ∈ X ⊆ Rn

y ∈ Y ⊆ Rm

(Π1)

where f : Rn → R and g : Rn → Rp are nonlinear functions, continuously differentiable and con-
vex on the n-dimensional compact polyhedral convex set X = {x| x ∈ Rn, A1x ≤ α1}; U = {y| y ∈
Rn, A2y ≤ α2}. The variables, y, are often binary variables. More generally, however, they account for
sets of variables (complicating variables) that once projected they result into much simpler and man-
ageable mathematical formulations. In our (Π1) the complicating variables are continuous variables.
B,A1, A2, also c, a1, a2 are matrices and vectors of conformable dimensions. The decomposition ap-
proach reformulates (Π1) into a sequence of optimization sub-problems where the primal sub-problems
are projected versions of the original problem and the master problems generates approximations of
lower bounds.

2.1 Cutting plane methods

Cutting plane methods perform relaxations of the complicating variables of (Π1). Unless the relaxed
problem satisfies the feasibility constraint for the complicating variables, sets of linear inequalities
are added as cutting plane constraints to the primal problem. Unlike branch-and-bound approaches,
cutting plane methods do not partition the feasible region into subdivisions; they function instead
in a seamless procedure, essentially augmenting the primal problem by new constraints. The new
constraints successively reduce the feasible region until a feasible optimal solution is found. Com-
mon cutting planes are Chvatal-Gomory planes and strong cutting planes from polyhedral theory
[20]. While branch-and-bound procedures typically outperform cutting-planes [13], the development
of polyhedral theory and the consequent introduction of strong, problem-specific cutting planes have
recently led to the resurgence of the latter. Results now compete between the two methods with their
performance depending on the types of problems solved [20]. Results vary immensely with the selec-
tion of suitable cutting plane constraints [12], a challenge that constitutes the well-known separation
problem. The separation problem invites intelligence and could be naturally associated with advanced
data analytics. Outer approximation (OA) can be viewed as a special case of cutting plane decompo-
sition. Introduced by Duran and Grossmann (1986)[16] to tackle binaries as complicating variables,
the approach can be generalized into a wider range of complexity. The decomposition of (Π1) yields
a non-linear primal problem (Π2) and a relaxed master (Π3) that are formulated as follows:

(i)Primal problem projects y variables to yk:

min
x

cT yk + f(x)

s.t. g(x) +Byk ≤ 0

x ∈ X
(Π2)
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Depending on the yk projections, (Π2) can be either feasible or infeasible. For (Π2) feasible at k,
the optimal [xk, f(xk)] stands as an upper bound UBD = cT yk + f(xk). For convex f(x), g(x),
linearization at xk yields:

f(x) ≥ f(xk) +∇f(xk)(x− xk),∀xk ∈ X,
g(x) ≥ g(xk) +∇g(xk)(x− xk),∀xk ∈ X,

If (Π2) is not feasible, the problem reformulates constraints following the Generalized Benders Decomposition[18].
To identify a feasible point an l1 sum of constraint violations can be minimized:

min
x∈X

p∑

j=1

αj

s.t. gj(x) +Byk ≤ αj , j = 1, 2, · · · , p
αj ≥ 0

Its solution provides the corresponding xt point based on which the constraints can be linearized:

g(x) ≥ g(xt) +∇g(xt)(x− xt), ∀xt

.
(ii) Master problem in the form:

min
x,y,µOA

cT y + µOA (Π3)

s.t. µOA ≥ f(xk) +∇f(xk)(x− xk), ∀k ∈ F,
0 ≥ g(xk) +∇g(xk)(x− xk) +By, ∀k ∈ F,

x ∈ X
y ∈ Y

where F = {k : xk} is a solution to (Π2). Figure 1[19] graphically illustrates the outer-approximation
featuring a nonconvex objective function approximated by linear envelopes; in this case the envelope
may not necessarily meet points with the feasible region. In the proposed algorithm the envelopes
actually intersect the feasible region and the objective function. The solution of master problems
updates under-estimators (cutting planes) and provides new projections to the primal problems.
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Figure 1: Illustration of outer-approximation algorithm[19]. In the left, the objective function (red)
is gradually approximated by linear underestimators (blue), as outer-approximation iterations
progress tighter bounds are achieved. On the right the original nonconvex variable space (red) is
approximated by convex envelopes (blue) dictated by the bounds introduced in the left figure.

3 Cutting plane approximations and BoxQPs

A special class of (Π1) problems include nonconvex Box formulations in the form:

zqp = min
x
{xTQx+ cTx | Ax ≤ b, x ∈ [0, 1]N}

N-variable vector x; A ∈ Rp×N and Q ∈ RN×N are indefinite matrices. The nonconvex QP is
now addressed with complicating variables in the continuous space. The decomposition relaxes the
nonconvexity of the BoxQP so that convex sub-problems are solved at each iteration. A rather
promising approach to reformulate and relax sub-problems of the decomposition has been proposed
recently in [39] and is fully adopted here. The approach transforms each quadratic term xixj through
new variables (lifted variables) Xij and a new matrix X = xxT . Let,

Q •X = Tr(QTX) =
∑

i,j

QijXij

represent the Frobenius inner product (applied to pairs of either matrices or vectors with the same
dimensions). Then zqp is lower-bounded by,

zqp(B) := min
x,X
{Q •X + cTx | Ax ≤ b, x ∈ [0, 1]Nand (x,X) ∈ B}, (Π1′)

Problem (Π1′) is parametric on any convex set B that adds valid constraints to the lifted reformulation
of the quadratic problem.

3.1 Solving BoxQP via RLT and SDP relaxations

Let G(V,E) denote the sparsity pattern graph introduced by Q (linking lifted X variables) where set
V and edge E are defined by

V = {1, 2, ..., N}, E = {{i, j} ∈ V × V | i > j,Qij 6= 0}
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The relaxation of nonconvex X = xxT to X ≥ xxT , or equivalently

[
1 xT

x X

]
� 0 results in the

semidefinite relaxation S (SDP) of the quadratic problem with a positive semidefinite (PSD) restriction
[39, 36].

S :=

{
(x,X)

∣∣∣∣
[

1 xT

x X

]
� 0, Xii ≤ xi ∀i ∈ V

}
.

The semidefinite relaxation, S, is augmented by the reformulation-linearization technique (RLT) or
the McCormick bounds M [3]. Based on four bounds xi − li ≥ 0, xi − ui ≤ 0, xj − lj ≥ 0, xj − uj ≤ 0,
the McCormick M approximations yield:

M := {(x,X) |∀i, j ∈ V and {i, j} ∈ E :

Xij ≥ lixj + ljxi − llj = 0,

Xij ≥ uixj + ujxi − uiuj = xi + xj − 1,

Xij ≤ lixj + ujxi − liuj = xi,

Xij ≤ uixj + ljxi − uilj = xj .





PSD constraints are not included initially. For each primal solution (X∗, x∗), an eigenvalue decompo-

sition is performed on

[
1 x∗T

x∗ X∗

]
. Let Ne be the number of eigenvectors, vk, with negative eigenvalues,

then the following inequality constraints are added in the subsequent primal problems:

vTk

[
1 xT

x X

]
vk ≥ 0, ∀k ∈ 1, .., Ne (1)

Qualizza et. al. (2012)[36] have first used such cuts to replace the solution of the master problem.
The cuts that they introduced are (a) very few (e.g. at most N+1 negative eigenvalues can be found
in (N + 1)× (N + 1) matrix) and, (b) very dense (e.g. almost all entries in vk are nonzeros). As cuts
delayed the algorithm, Qualizza et al. introduced heuristics to sparsificy the PSD constraints. Given
that the number of cuts is small there is very limited scope to explore advanced data analytics.

3.2 Sparsification prior to cut generation

With a view to improve previous work, Baltean-Lugojan et. al. [6], introduced a low-dimensional
approach leading to tighter linear relaxations. Let P denote the power set of the vertex set V ;
ρ ∈ P(ρ ⊆ V ) be any arbitrary index subset; xρ ∈ R|ρ| be the vector slice of x and Xρ ∈ R|ρ|×|ρ| the
submatrix slice of X. For any subset of P, a semidefinite relaxation is introduced,

(∀F ⊆ P) S(F) :=
{

(x,X)
∣∣∣∀ρ ∈ F :

[
1 xTρ
xρ Xρ

]
� 0, Xii ≤ xi ∀i ∈ ρ

}

A fixed cardinality n(1 ≤ n ≤ N) is imposed upon P such that :

Pn := {ρ ∈ P| |ρ| = n}, with |Pn| =
(
N

n

)

The decomposition eventually introduces ρ sub-problems as:

[
1 x̃ρ
x̃ρ
T X̃ρ

]
� 0 ρ sub-problem

In that respect, the decomposition runs from the full variable space into a set of subspaces that yields a
new separation problem in which the population of pools is dramatically increased. The new separation
problem involves

(
N
n

)
inequalities at each iteration. The attributes of the cutting planes, as addressed

by [6], include feasibility and optimality.

7

                  



• For feasibility, one measures the eigenvalues of each ρ sub-problem (as calculated at each ρ),
keeping the minimum eigenvalue λmin(ρ) at each time. Selections are made from lists of cutting
planes where lower eigenvalues are placed higher up.

• For optimality, one measures the improvement in the objective function by solving:

IX(ρ) = f∗(X∗ρ |x̃ρ)− f(X̃ρ)

∀S ∈ Pn





f∗S(X∗S |x̃S) = min
XS

QS •XS

s.t.

[
1 x̃S

x̃S
T XS

]
≥ 0, Xii ≤ x̃i ∀i ∈ S

For higher dimensions (N ≥ 50−100) and small dimensional cuts (5 ≤ n ≤ 3), one is challenged
by the (very) large number of permutations and the time that is required to solve each problem.
To overcome the challenge, Baltean-Lugojan et. al. [6] made use of a fast estimator f∗(X∗S |x̃S) ≈
f̂∗n(Qs, x̃s) that was developed by training an ANN offline. IX(ρ) was then approximated by
ÎX(ρ).

IX(ρ) ≈ ÎX(ρ) = f̂∗n(Qs, x̃s)−Qs • X̃s

Alternative strategies may consider versions where optimality and feasibility are combined as by

C(ρ) =

{
ÎX(ρ) + T, if ÎX(ρ) > 0 and λmin(ρ) < 0

−λmin(ρ) otherwise
,

T is an arbitrarily large positive number. Algorithm 1 [6] sets the framework to outer-approximate
B + S given any B linear base relaxation and B ⊆ Pn for small n ≤ 5. Note that even though
there is an option to define the termination criterion in terms of improvement of the objective
function in two consecutive rounds, in the future sections we set the termination criterion to be
20 rounds.

Algorithm 1: Iterative SDP outer-approx. with cut selection/generation based on an ordering

input :
-current base LP relaxation of B of QP, either fully added from the start,i.e. M or separates iteratively at each cut
round;
-decomposed SDP relax. S(F) to outer-approx., where B ⊆ Pn with small n;
-incumbent LP solution (x̃, X̃);
- selection strategy/ordering metric M(ρ)∀ρ ∈ F at (x̃, X̃) e.g. ÎX(ρ),−λmin(ρ), C(ρ) etc.;
-selection size, i.e. a fixed % of |F|or a fixed number of cuts;
-number of cut rounds Nr (set to 20);
-termination criteria, if active terminate on an improvement between to consecutive cut rounds of≤ 0.01% of the
gap closed overall so far from the M bound;
output : Polyhedral outer-approximation that lower bounds z(B + S(F)) and SDP relax.z(B + S);

1 for Nr cut round if termination criteria not met do

2 Sort F by descending M(ρ)∀ρ ∈ F at current(x̃, X̃);
3 for top ρ sub-problems in sorted F within selection size do

4 if −λmin(ρ) < 0 (viol. PSD condition for

[
1 x̃ρ
x̃ρ
T X̃ρ

]
) then

5 B = B∪ {new Cut (ρ) based on −λmin(ρ)}
6 Resolve (warm-start) new LP relaxation B that includes added cuts;

7 Update current incumbent solution (x̃, X̃);

8 Last obtained z(B) lower bounds z(B + S(F)) and z(B + S);

4 A data-driven approach to separation and optimization

Unlike conventional master problems, the decomposition of the SDP relaxations generates large popu-
lations of cutting planes in the solution space. The number of low-dimensional cuts follow a binomial
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distribution. For a problem of 100 variables with 3-D cuts the population accounts for ≈ 162.000 cuts;
in the case of 4-D cuts they rise to almost 4.000.000 cuts. Thus, the population of cutting planes nat-
urally turns into an engaging basis in which advanced data analytics and machine learning techniques
could render meaningful assistance. The objective of the approach would be to replace a need to solve
the master problem by wisely selecting cutting planes at each iteration. Entailing challenges include
means to:

a) represent cutting planes as data streams amenable for analysis;

b) configure which space geometry, metrics, and norms are suitable to measure; and

c) configure the size of permutation population samples required to ensure solution quality.

The section explains the cutting plane population, further elaborating on the metrics applied for their
non-quantitative attributes, namely the patterns of variables in the permutations (ρ ∈ Pn) used for
each sub-problem of PSD.

4.1 Cutting plane populations and attributes

The populations involve low-dimensional vectors produced from the low-dimensional sub-systems used
in the cutting plane approximations. Population attributes include:

• qualitative (or space/domain) aspects represented by the subset of variables involved in the
permutations of each different realization ρ;

• quantitative aspects represented by the values of x̃ρ of each realization

• quantitative aspects represented by the performance measures declared in [6], namely λ(ρ), ÎX(ρ)
and C(ρ) as presented in Section 3.2.

In reference to the above attributes, the populations are denoted by:

1. quantitative aspects

Px̃ρ := {x̃ρ | ρ ∈ Di, i ∈ I} (2)

2. qualitative aspects

Pρ := {ρ | ρ ∈ Di, i ∈ I} (3)

The set I := {1, 2, 3} enumerates the different criteria introduced to label population clusters: they
relate to feasibility (D1), optimality (D2) and to weighted measures that combine both (D3). Di are
subsets of permutations as subjected to different constraints:

D1 := {ρ ∈ Pn| λmin(ρ) < 0}, D2 := {ρ ∈ Pn| ÎX(ρ) > 0}, D3 := {ρ ∈ Pn| C(ρ)} (4)
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4.2 Metric space and geometry

The paper makes use of different metrics to separately cope with quantitative and qualitative at-
tributes. Euclidean metrics and norms are natural choices for the quantitative aspects. Then, to that
purpose they have been used exclusively in the paper (even though other norms may render better
results). Qualitative aspects constitute a separate challenge though as Euclidean metrics are not nat-
ural choices to differentiate qualitative features (e.g. similarity), and/or differences in the patterns of
variables in the subspaces that are made up by the low-dimensional permutations (e.g. affinity). In
the context of a particular iteration, subspaces featuring common dimensions (affine sets) hold essen-
tially similar information that is replicated by other planes. Instead, subspaces featuring dissimilar
dimensions contribute to a fuller representation of the problem domain (as it is now approximated by
the low-dimensional subspaces). To that purpose, a new measure is specifically introduced to capture
the bias as affinity metric. For x, y ∈ RN , the affinity metric is defined by

da(x, y) :=

N∑

i=1

[1− g(xi, yi)],

where

g(xi, yi) =

{
1, if xi = yi

0, otherwise

The rationale behind the affinity metric has been to prevent the proliferation of subspaces with very
similar or identical pattern of variables. Once a cutting plane approximation is selected, new ap-
proximations have to compete with the particular choice for performance. For a subspace defined
by x = (xi, xj , xk), all x′ = (x′i, x

′
j , x
′
k), such that xi = x′i, xj = x′j or xk = x′k, they would yield

da(x, x
′) > 0. The higher the number of common variables the lower the value of da. The new metric

essentially controls the affine part of the subspace. By setting da(x, x
′) = n′ we can force the subspaces

to have n′ non-common variables. In the proceeding Section 5.2 we take advantage of this property
to eliminate overlapping cutting planes.

5 Progressive space reduction for cut selection

The cutting plane selection process is implemented as a multi-stage screening procedure made up by
sequences of convoluted reduction steps. Different stages involve different selection criteria; screening
procedures are tested against different priorities (biases) in the use of these criteria. The progressive
reduction takes schematically the form:

P ⊂ Pn f1−→ P ′ ⊆ P f2−→ P ′′ ⊆ P ′′′ f3−→ · · · fm−−→ P (m) (5)

P (m) denote diminishing populations at each reduction stage; fi denote the reduction technologies
used for each case. Reductions associated with quantitative attributes apply clustering with fixed
or variable numbers of clusters. Reductions of qualitative attributes apply the metric introduced in
Section 4.2. Initial populations are produced from Eq.4 in conjunction with different performance
measures. Most experiments apply Schematic 5 as a two-stage process. Additional experiments
studied hybrid convolutions and different hierarchies (biases) in the application of selection criteria
(performance, cluster size, variance). Versions of the approach include cases with a bias on either the
qualitative or the quantitative attributes of the population. A bias on variable distribution favours a
spread of vectors in Eq.2. A Euclidean distance can be used to create clusters of neighbouring vectors.
Then, based on performance, a fixed number of vectors is selected from each cluster to create cutting
planes. A bias on performance generates other populations of vectors to screen using the affinity
metric. The analysis determines the degree of overlap (affinity) between vectors concluding with a
selection of cutting planes that feature the least overlap.
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5.1 Bias on variable dispersion

A wider space representation is declared as a first priority. Off-the-shelf clustering (k-means, agglom-
erative clustering) is applied to minimize cluster inertia. Agglomerative clustering is a bottom-up
approach of hierarchical clustering where each observation starts as a cluster with clusters succes-
sively merging. The process terminates once a maximum number of clusters is reached. Vectors with
the highest rank are selected for cutting planes. The total number of cuts is fixed; variations involve
different clusters and different number of cuts as selected from each cluster. For clusters fewer than the
number of cuts, additional cuts are selected per cluster. Otherwise, higher rank vectors are selected
over lower rank vectors. Details of the process are presented in Algorithm 2.

Algorithm 2: Iterative SDP outer-approx. with cut selection/generation based on off-the-shelf cluster-
ing methods

input :
-current base LP relaxation of B of QP, either fully added from the start,i.e. M or separates iteratively at each cut
round;
-decomposed SDP relax. S(F) to outer-approx., where B ⊆ Pn with small n;
-incumbent LP solution (x̃, X̃);
- selection strategy/ordering metric M(ρ)∀ρ ∈ F at (x̃, X̃) e.g. −λmin(ρ), C(ρ) etc.;
-selection size, i.e. a fixed % of |F| or a fixed number of cuts (set to 100 cuts/round);
-number of cut rounds Nr (set to 20);
-termination criteria, if active terminate on an improvement between to consecutive cut rounds of≤ 0.01% of the
gap closed overall so far from the M bound;
-conventional clustering (k-means or Agglomerative clustering);
- total number of clusters Nk
output : Polyhedral outer-approximation that lower bounds z(B + S(F)) and SDP relax.z(B + S);

1 for Nr cut round if termination criteria not met do
2 Cluster all elements in F ;
3 for Every cluster do

4 Sort all elements in cluster by descending M(ρ) ∀ρ ∈ F at current(x̃, X̃);
5 if k ≥ selection size then
6 Create Cut (ρ) based on −λmin(ρ) for the top (1st) sorted element in cluster;
7 Let the set Eg containing all the selected eigencuts then Eg = Eg ∪ {Cut(ρ)};
8 if Nk ≤ selection size then
9 for top selection size/k sub-problems in cluster do

10 Create Cut (ρ) based on −λmin(ρ) and Eg = Eg ∪ {Cut(ρ)}
11 Sort Cut (ρ) in Eg based on M(ρ);
12 for top Cut (ρ) in Eg within selection size do
13 B = B∪{ Cut (ρ)}
14 Resolve (warm-start) new LP relaxation B that includes added cuts;

15 Update current incumbent solution (x̃, X̃)

16 Last obtained z(B) lower bounds z(B + S(F)) and z(B + S);

5.2 Bias on performance

The selection of cuts with a higher apparent performance (e.g. a performance based on estimates) is
declared next as a priority. The population is ranked against performance; then the affinity metric
is used to formulate clusters. The process continues until all vectors are processed. Cluster repre-
sentatives are finally selected. Selection may involve (a) the vector with the highest performance in
the cluster (C1); a predefined number of highly ranked vectors(C2a), or (c) cuts accounting for the
highest standard deviation (C2b). Algorithm 3 outlines the clustering methodology. Results of the
computational experiments are presented in Section 6.1.2.
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Algorithm 3: Iterative SDP outer-approx. with cut selection/generation based on the affinity metric

input :
-current base LP relaxation of B of QP, either fully added from the start,i.e. M or separates iteratively at each cut
round;
-decomposed SDP relax. S(F) to outer-approx., where B ⊆ Pn with small n;
-incumbent LP solution (x̃, X̃);
- selection strategy/ordering metric M(ρ)∀ρ ∈ F at (x̃, X̃) e.g. −λmin(ρ), C(ρ) etc.;
-selection size, i.e. a fixed % of |F|or a fixed number of cuts (set to 100);
-number of cut rounds Nr (set to 20);
-termination criteria, if active terminate on an improvement between to consecutive cut rounds of≤ 0.01% of the
gap closed overall so far from the M bound;
- criterion for sorting clustered elements e.g. C1, C2a and C2b;
-maximum number of points MN to be examined with Affinity metric for a reference point x (set to 1000)
output : Polyhedral outer-approximation that lower bounds z(B + S(F)) and SDP relax.z(B + S);

1 for Nr cut round if termination criteria not met do

2 Sort F by descending M(ρ) ∀ρ ∈ F at current(x̃, X̃);
3 for top ρ sub-problems in F within maximum number MN do
4 Fix x̃ρ as x being the initial element of a cluster K = K ∩ x;
5 for following top ρ sub-problems(y) in sorted F within maximum number of MN − 1 do
6 Apply da(x, y);
7 if da(x, y) = 2 then
8 Cluster x with y in K = K ∪ y
9 Apply selection criterion to discard elements in K

10 Renew F based on the discarded elements of K

11 for top ρ sub-problems in sorted F within selection size do

12 if −λmin(ρ) < 0 (viol. PSD condition for

[
1 x̃ρ
x̃ρ
T X̃ρ

]
) then

13 B = B∪ {new Cut (ρ) based on −λmin(ρ)}
14 Resolve (warm-start) new LP relaxation B that includes added cuts;

15 Update current incumbent solution (x̃, X̃);

16 Last obtained z(B) lower bounds z(B + S(F)) and z(B + S);

5.3 Hybrid convolutions

A final approach essentially combined previous methods using hybrid convolutions. Variations are pro-
duced using a hybridization that interchanged the application of selection criteria: Hybrid-1 involves
clustering (k-means) followed by affinity; Hybrid-2 involves affinity followed by clustering.

• Hybrid 1
The motivation is to disperse cuts ahead of performance. K-means minimizes cluster inertia
and the clustered vectors are set in order to select cuts based on performance and affinity. The
process is applied using Algorithm 4.
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Algorithm 4: Iterative SDP outer-approx. with cut selection/generation based on Hybrid 1 clus-
tering
input :
-current base LP relaxation of B of QP, either fully added from the start,i.e. M or separates iteratively at each cut
round;
-decomposed SDP relax. S(F) to outer-approx., where B ⊆ Pn with small n;
-incumbent LP solution (x̃, X̃);
- selection strategy/ordering metric M(ρ)∀ρ ∈ F at (x̃, X̃) e.g. −λmin(ρ), C(ρ) etc.;
-selection size, i.e. a fixed % of |F|or a fixed number of cuts (set to 100);
-number of cut rounds Nr (set to 20);
-termination criteria, if active terminate on an improvement between to consecutive cut rounds of≤ 0.01% of the gap
closed overall so far from the M bound;
-off-the-shelf clustering technique (k-means or Agglomerative clustering);
- number of clusters Nk ;
- criterion for sorting clustered elements e.g. C1, C2a and C2b;
-maximum number of points MN to be examined with Affinity metric for a reference point x (set to 1000);
-number of cuts created from the top ranked cluster NC
output : Polyhedral outer-approximation that lower bounds z(B + S(F)) and SDP relax.z(B + S);

1 for Nr cut round if termination criteria not met do
2 Cluster all elements in F (conventional clustering);
3 for Every cluster do

4 Sort all elements in cluster by descending M(ρ)∀ρ ∈ F at current(x̃, X̃);
5 for top ρ sub-problems in cluster within maximum numberMN do
6 Fix x̃ρ as x being the initial element of a cluster K = K ∩ x;
7 for following top ρ sub-problems in sorted F within maximum number ofMN − 1 do
8 Apply da(x, y);
9 if da(x, y) = 2 then

10 Cluster y with x in K = K ∪ x
11 Apply selection criterion to discard elements in K
12 Renew clusters elements based on the discarded elements of K

13 if Nk ≤ selection size then
14 for top selection size/k sub-problems in cluster do
15 B = B∪{new Cut (ρ) based on −λmin(ρ) }
16 if Nk ≥ selection size then
17 Sort clusters based on the sub-problem with maximum M(ρ) they contain;
18 for cluster in sorted clusters do
19 for top ρ sub-problems within cluster and within NC do
20 B = B∪{ new Cut (ρ)based on −λmin(ρ)}
21 Redefine NC = g(NC) to compute the created cuts at the following cluster

22 Resolve (warm-start) new LP relaxation B that includes added cuts;

23 Update current incumbent solution (x̃, X̃);

24 Last obtained z(B) lower bounds z(B + S(F)) and z(B + S);

• Hybrid 2
The hybrid sets variable dispersion as priority. Once ordered by feasibility, vector populations
are reduced by affinity metrics selecting the highest rank vectors from each cluster. In the
reduced population, variable dispersion is favored using k-means. A fixed number of cuts is
selected from each cluster to make up a total of 100 cuts; these 100 cuts are used in the primal.
The hybrid is implemented through Algorithm 5. Results of both approaches are illustrated in
Section 6.1.3.
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Algorithm 5: Iterative SDP outer-approx. with cut selection/generation based on Hybrid 2 clustering

input :
-current base LP relaxation of B of QP, either fully added from the start,i.e. M or separates iteratively at each cut round;
-decomposed SDP relax. S(F) to outer-approx., where B ⊆ Pn with small n;
-incumbent LP solution (x̃, X̃);
- selection strategy/ordering metric M(ρ)∀ρ ∈ F at (x̃, X̃) e.g. −λmin(ρ), C(ρ) etc.;
-selection size, i.e. a fixed % of |F|or a fixed number of cuts (set to 100);
-number of cut rounds Nr (set to 20);
-termination criteria, if active terminate on an improvement between to consecutive cut rounds of≤ 0.01% of the gap closed
overall so far from the M bound;
-off-the-shelf clustering technique (k-means or Agglomerative clustering);
- number of clusters Nk ;
- criterion for sorting clustered elements e.g. C1, C2a and C2b;
-maximum number of points MN to be examined with Affinity metric for a reference point x (set to 1000)
output : Polyhedral outer-approximation that lower bounds z(B + S(F)) and SDP relax.z(B + S);

1 for Nr cut round if termination criteria not met do

2 Sort F by descending M(ρ)∀ρ ∈ F at current(x̃, X̃);
3 for top ρ sub-problems in F within maximum numberMN do
4 Fix x̃ρ as x being the initial element of a cluster K = K ∩ x;
5 for following top ρ sub-problems in sortedF within maximum number ofMN − 1 do
6 Apply da(x, y);
7 if da(x, y) = 2 then
8 Cluster y with x in K = K ∪ y
9 Apply selection criterion to discard elements in K

10 Renew F based on the discarded elements of K

11 Cluster all elements in F (conventional clustering);
12 for Every cluster do

13 Sort all elements in cluster by descending M(ρ) ∀ρ ∈ F at current(x̃, X̃);
14 if Nk ≥ selection size then
15 Create Cut (ρ) based on −λmin(ρ) for the top (1st) sorted element in cluster;
16 Let the set Eg containing all the selected eigencuts then Eg = Eg ∪ {Cut(ρ)};
17 if Nk ≤ selection size then
18 for top selection size/k sub-problems in cluster do
19 Create Cut (ρ) based on −λmin(ρ) and Eg = Eg ∪ {Cut(ρ)}
20 Sort Cut (ρ) in Eg based on M(ρ);
21 for top Cut (ρ) in Eg within selection size do
22 B = B∪{ Cut (ρ)}
23 Resolve (warm-start) new LP relaxation B that includes added cuts;

24 Update current incumbent solution (x̃, X̃)

25 Last obtained z(B) lower bounds z(B + S(F)) and z(B + S);

6 Design of experiments and results

Α set of experiments are used to test the potential of the proposed approach. Results offer comparisons
with existing and available algorithms (e.g. the SDP relaxations in Section 3.1; the sparsification
methods in Section 3.2). The purpose is to explain

• the improvements in the quality of the optimal solution, namely the potential of the algorithm
to reduce the duality gap in the decomposition;

• the dependence of the performance on problem size and sparsity;

• the significance of choices in the convoluted approach (presented in Section 5),

The tested BoxQP problems include 99 cases generated by matrix Q with elements −50 ≤ qi,j ≤ 50.
The set is identical to the one used in [6] and includes:
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1. 54 problems with sizes 20 ≤ N ≤ 60 generated by Vandenbussche and Nemhauser (2005)[52]

2. 36 problems with sizes 70 ≤ N ≤ 100 generated by Burer and Vandenbussche (2009)[15]

3. 9 problems with N = 125 generated by Burer (2010)[14]

Following [6], the performance of the algorithm is assessed by the closure of the duality gap at con-
vergence. The global solution is known while convergence is declared after 40 cut rounds, by adding
5% of the total cuts selected by feasibility in each round. All computational experiments feature
3-dimensional subspaces (n = 3), up to 20 iterations, and 100 new cuts/round. Different versions ad-
dress feasibility or feasibility jointly with optimality. In all cases the default reference for comparisons
and conclusions are results attained by Algorithm 1 [6]. Experiments are carried out in python 3.5
using cplex 12.8 python API solver and the scikit-learn v0.2 package for k-means and agglomerative
clustering. Problems are labelled by VxxDyy where xx denotes the number of variables and yy denotes
the problem density (e.g. V100D25 corresponds to a problem with 100 variables and 25% density).

6.1 Results

Three rounds of experiments are used to compare the proposed methodology in Section 5 with reference
Algorithm 1. The first round evaluates only quantitative aspects and relies on off-the-shelf clustering.
The second and third round of experiments involve both qualitative and quantitative aspects: in the
second round the evaluation of qualitative and quantitative aspects is carried out at separate stages;
in the third round the evaluation explores hybridized use of the available criteria.

6.1.1 Round of Experiments 1

The first round of experiments is essentially a proof of concept to validate that, suitable cutting planes
can be successfully selected using data analytics. The concept is illustrated with conventional data
analytics and clustering (k-means and agglomerative clustering). Experiments apply the reduction
outlined in Section 5.1 combining k-means with Algorithm 2. The approach is tested for different
numbers of clusters Nk. Figure 2 illustrates the % gap closure in convergence as cut rounds accumulate.
The % gap closure is expressed as:

%
∆f

f∗
=
f∗ − f
f∗

× 100 (6)

f∗ denotes the convergence limit. f is the solution of the proposed approach. Comparisons are
presented for D1 (selection based on feasibility) and D3 (selection based on a combined measure
of optimality and feasibility). For D1 the algorithm performance on different problems (number of
variables, problem density) is illustrated in Fig. 2(a)-2(d). Fig.2a and Fig.2b illustrate the performance
of the algorithm for 70 and 100 variables; Fig.2b, Fig.2c and Fig.2d address densities 50%, 25% and 75%
respectively. The gap naturally decreases with cut rounds. In lower complexity problems (V70D50 and
V100D25) the new algorithm features a similar performance to the reference algorithm; all variations
achieve a significant gap closure, almost 99%. For large and more difficult problems (V100D50 and
V100D75), however, the new algorithm outperforms the reference algorithm reducing the gap by 20-
50%. In all cases the better results (smallest gap) are achieved with Nk = 100. The number of clusters
match the cutting plane size set in Algorithm 2.

15

                  



Figure 2: Impact of clusters’ number(Nk) in optimization. Selection measure used: feasibility. Prob-
lem sizes:(a) 70,(b,c,d) 100. Problem density:(a,b)50, (c)25, (d)75.

Feasibility is important and illustrated with results using an alternative domain D3. Results are
summarized in Fig.3. Based on the results the reference algorithm outperforms k-means, suggesting
that conventional clustering does not adapt well with the subspace provided by D3.

16

                  



Figure 3: Impact of clusters’ number(Nk) in optimization. Selection measures used: feasibility and
optimality. Problem size: 100. Problem density: 50.

Figure 4 highlights the significance in the choice of clustering methods (k-means, and agglomer-
ative clustering). In agglomerative clustering data points are presumed of equal importance in the
initialization; k-means is based on the distribution of the dataset. Clustering yield 50% improvements
in closing the gap when compared with the reference algorithm (Nk, Na = 100). k-means demonstrates
a better performance for smaller clusters (k=10); differences diminish for higher cluster populations
(k=100). The results suggest that the clustering approach, hierarchical or k-means, does not affect
the overall performance.

Figure 4: Comparison of alternative clustering methods. Clustering type: k-means (Nk), agglomera-
tive clustering (Na). Selection measures used: feasibility. Problem size: 100. Problem density: 50.
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6.1.2 Round of Experiments 2

The second round of experiments combines qualitative and quantitative aspects. Qualitative aspects
use the affinity metric. The experiments apply the reduction explained in Section 5.2 and Algorithm
3. Figure 5 illustrates the % gap closure with the convergence limit for (a) a selection driven by
feasibility as this is set up by D1, and (b) a selection driven by both feasibility and optimality as this
is set up by D3. Different criteria are examined to determine which cut(s) will be selected from the
generated clusters; C1: select only the highest in rank cut from each cluster; C2a: select a predefined
number of higher rank cuts; C2b: select cuts corresponding to the highest standard deviation within
a particular cluster.

Figure 5: Impact of selection criteria on gap closure. Different criteria. C1: select only the highest
in rank cut from each cluster, C2a: select a predefined number of the highest in rank cuts from each
cluster, C2b: select the cuts corresponding to the highest standard deviation within a cluster. Se-
lection measures: (a) feasibility selection, (b) feasibility and optimality selection. Problem size: 100.
Problem density: 50.

For datasets in (D1), the affinity metric combined with C1 results in significant improvements to
close the gap by as high as 60% compared to the reference. Both C2 criteria similarly achieve a gap
closure of 40% compared to reference. As observed in previous rounds, the datasets produced by D3

are inferior to the other datasets. Even with inferior data though, the affinity metric makes headway
and gives enough edge for a marginal improvement, eventually matching a gap closure as high as 8%.

6.1.3 Round of Experiments 3

The final round of experiments involves convoluted approaches that combine both affinity metric and
k-means. Hybrid 1 follows Algorithm 4: k-means is implemented first and followed next by affinity
clustering. Hybrid 2 follows Algorithm 5: affinity is implemented and followed by k-means. The
convoluted approaches are compared for three problems of fixed size (100 variables) with varying
density. In all cases the initial population is based on D1. Figure 6 presents the % improvement in
the solution quality illustrating the performance of conventional clustering, affinity metric and hybrid
convolutions. The % improvement against state-of-the-art is measured by:
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%
∆f

f̃
=
f̃ − f
f̃
× 100 (7)

f̃ is the objective value achieved by the reference Algorithm 1. f are objective values from different
Algorithms tested in the paper. The higher the value of the measure the further the new algorithms
outperform reference performance [6].

Figure 6: Performance of clustering approaches against state-of-the-art[6]. Implementation scenarios
S1: k-means, S2: affinity metric, S3: Hybrid1, S4: Hybrid2. Selection measure: feasibility. Problem
size=100. Problem density:(a) 25, (b) 50, (c) 75.

Both Hybrids yield consistent improvements; they are smaller for the smaller and sparse problems
and significant for the larger and dense ones. Hybrid 2 is generally better. Hybrid 1 yields 4%
improvement in problems of 25%density, then 11% and 42% respectively for problems of 50% and
75% density. Hybrid 2 yields similar improvements in problems of 25% density, then 35% and 90%
respectively for problems of 50% density and 90% density. Hybrid 2 outperforms Hybrid 1 in higher
complexity problems, just as affinity clustering outperforms k-means.

The measure in Eq.7 offers insightful evidence concerning the progress of improvements as the
algorithm progresses. The results are illustrated in Fig.6. Even for problems of smaller density the
figures illustrate that gains with the new algorithm can as high as 20-60% in early iterations; such gains
though decrease at later iterations. For larger problems the gains continue to increase monotonically
for all iterations. However, one may anticipate that a similar trend with the smaller problem could be
observed by letting the maximum number of cuts used in the comparisons set to higher values. The
diminishing impact of affinity can be explained as the application of the metric discards data from
previous iterations and essentially repeats itself from one iteration to another. In such a conjecture is
true the analysis of temporal data (e.g. relate data from one iteration to the previous ones) is expected
to improve further the algorithm.

Figure 7 presents the required computational time for the conducted experiments, using Intel R©
CoreTM i7-4510U CPU @ 2.00GHz×4.
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Figure 7: Comparison of different CPU time for problems with different complexity. Feasibility se-
lection was used in all cases for all clustering approaches.

The use of clustering increases the computational time in all cases. The CPU increases with the
complexity of the problem as the population of the data set is increasing as well. Hybrid 2 is the slowest
option in all comparisons. The use of affinity also slows down the algorithm. Delay overheads are
larger both in small and medium problems (50% density) as well in larger problems (25%). In higher
dimensional and density, the use of affinity converges faster (in CPU time) due to the deployment of
MN in Algorithm 3. That use ofMN also suggests that the ranking of sub-problems in the original
Algorithm 1 has proved very valuable.

7 Conclusions and further research

The results apparently provide encouraging evidence in the joint use of data-analytics with decompo-
sition algorithms, especially in methods using low-dimensional approximations for cutting planes. In
summary, the approach manages to improve the final solution up to 90% compared to state of the art
methods, with the largest improvements associated with the larger problems (over 100 variables, 75%
density V100D75). As the dimensionality and density of the problems increase, so does the impact
of the proposed approaches. The aim for greater dispersion of the cutting planes to the full variable
space has been achieved mainly via the use of the affinity metric. Hybridizing by both affinity and
off-the-shelf technology does not propose any additional improvements, actually impedes the compu-
tational time. The different clustering methods did not produce significantly different results; instead,
the use of the affinity metric proved critical.

There is plenty of scope to significantly reduce computational times as the work shifted the em-
phasis to improve the solution quality. Considering that the joint application of affinity with low-
dimensional approximations proved promising, future work could further explore larger subspaces
(e.g. n > 3). A wider range of BoxQP (e.g.QPlib [17] or quadratically constrained quadratic pro-
grams, (QCQP), or solvers (Mosek, BARON, ANTIGONE) could be tested as well. However, the most
promising line of future research is by exploiting temporal sets of data from successive and previous
iterations in relation to the performance reported in Fig. 6.
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