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Abstract
Conductivity imaging represents one of the most important tasks in medical
imaging. In this work we develop a neural network based reconstruction tech-
nique for imaging the conductivity from the magnitude of the internal current
density. It is achieved by formulating the problem as a relaxed weighted least-
gradient problem, and then approximating its minimizer by standard fully con-
nected feedforward neural networks. We derive bounds on two components of
the generalization error, i.e., approximation error and statistical error, explic-
itly in terms of properties of the neural networks (e.g., depth, total number of
parameters, and the bound of the network parameters). We illustrate the perfor-
mance and distinct features of the approach on several numerical experiments.
Numerically, it is observed that the approach enjoys remarkable robustness with
respect to the presence of data noise.
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1. Introduction

The conductivity value varies widely with soft tissue types [24, 52] and its accurate imaging
can provide valuable information about the physiological and pathological conditions of tis-
sue. This underpins several important medical imaging modalities [2, 13, 70]. For example,
electrical impedance tomography (EIT) [13] aims at recovering the interior conductivity dis-
tribution from given pairs of flux/voltage on the object’s boundary. However, it is severely ill-
posed, which makes it very challenging to develop a stable numerical algorithm to accurately
reconstruct the conductivity [13]. Especially, the attainable resolution of the reconstruction is
fairly limited. To lessen the inherent degree of ill-posedness, researchers have proposed several
novel conductivity imaging modalities, e.g., magnetic resonance electrical impedance tomog-
raphy/current density impedance imaging (CDII), impedance-acoustic tomography, acousto-
electric tomography and magneto-acoustic tomography with magnetic induction. All these
imaging modalities employ internal data that are derived from other modalities (hence the term
coupled-physics imaging). See the reviews [5, 70] for extensive discussions on the mathemati-
cal model and the mathematical theory, respectively. The availability of internal data promises
reconstructions with much improved resolution.

In this work we focus on CDII [53]. Let Ω ⊂ R
d, d = 2, 3, be an open bounded Lipschitz

domain modeling the conducting body with a boundary ∂Ω. The relation between the voltage
u and the conductivity σ is described by

{
−∇ · (σ∇u) = 0, inΩ,

u = g, on ∂Ω,
(1.1)

where g is the applied boundary voltage. In CDII, the current density J is given by J(x) =
−σ∇u(x), for x ∈ Ω. In practice, one employs an MRI scanner to capture the internal magnetic
flux density data �b induced by an externally injected current [25, 31, 36, 61] and then obtains
the current density J according to Ampere’s law J = μ−1

0 ∇× �b, where μ0 is the magnetic
permeability. This requires measuring all components of the magnetic flux �b, which may be
challenging in practice, as it requires a rotation of the object being imaged or of the MRI
scanner. CDII aims at recovering the conductivity σ from a(x) ≡ |J(x)| in Ω, the magnitude of
one current density field.

CDII has been intensively studied in the past decade, and a number of important theoretical
results have been obtained. Nachman et al [53] established the uniqueness of the recovery from
one internal measurement a together with Cauchy data on a part of the object’s boundary.
Later, the uniqueness was shown also for anisotropic conductivity with a known conformal
class [28]. The Hölder conditional stability for the nonlinear inverse problem of recovering
the conductivity distribution σ from one internal measurement was proved in [48]. The case
of partial data (i.e., a partial knowledge of one current density field generated inside a body)
has also been proved [49]. The conditional stability of the inverse problem under fairly general
assumptions was shown in [42].

The development of novel reconstruction algorithms has also received much attention. One
popular algorithm is an iterative method to solve the weighted least-gradient formulation [54],
which iteratively solves a well-posed direct problem, and the authors proved that the sequence
of iterates converges; see section 2.1 for more details about the derivation. It has been extended
to other scenarios, e.g., complete electrode model [55]. An alternative approach is based on the
level set [53, 67]. A linearized reconstruction technique was developed recently in [73]. The
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more conventional output least-squares formulation has not been employed for CDII recon-
struction, but it applies more or less directly (see [1, 41] for conductivity imaging from related
internal data, and [29] for iterative reconstruction).

In this work, we develop a new numerical method for the recovery of the conductivityσ from
the current density magnitude a(x). It is based on the weighted least-gradient reformulation of
the inverse problem, which has inspired the iterative algorithm in [54]. Instead of solving the
variational problem iteratively, we solve a relaxed version of the problem directly using neural
networks. The approach is flexible with domain geometry and problem data, and capitalizes
directly on recent algorithmic innovations in machine learning, e.g., stochastic optimization
[14] and automatic differentiation [11]. The numerical results in section 4 clearly demonstrate
the significant potential of the approach: it enjoys remarkable robustness with respect to the
presence of a large amount of data noise. Further, we provide a preliminary analysis of the
neural network approximation to the relaxed least-gradient problem, in terms of the approxi-
mation and statistical errors. The main tools in the analysis include approximation theory of
neural networks [26] and Rademacher complexity from statistical learning theory [63]. The
analysis sheds light into the choice of several important algorithmic parameters, e.g., network
width and depth, and the number of sampling points in the domain and on the boundary.

In recent years, the use of deep neural networks (DNNs) for solving PDEs has received
much attention, and several different methods have been developed; see the review [21] for a
recent overview on various ways of using neural networks for different classes of PDEs and
a fairly extensive list of relevant references. One notable idea is to utilize neural networks to
approximate solutions of PDEs directly, which can be traced back to the 1990s [18, 40]. Notable
recent developments include physics-informed neural networks [58], deep Galerkin method
[64] and deep Ritz method [22] etc. The first two methods are based on least-squares type
residual minimization for solving PDEs. The deep Ritz method is based on the Ritz variational
formulation of the elliptic problem. This work adopts a deep Ritz method to the weighted
least-gradient problem arising in CDII. Despite the great empirical successes of these methods,
rigorous numerical analysis of neural network based PDE solvers remains very challenging
and is still in its infancy [19, 30, 34, 35, 43, 44, 71]. The important works [30, 43, 44, 71]
derived a priori error bounds on the approximations obtained by two-layer neural networks
under suitable regularity conditions on the solutions, whereas the work [34] studied DNNs
for standard second-order elliptic PDEs with Robin boundary conditions. The present work
extends the analysis in [34] to the weighted least-gradient problem arising in CDII.

Very recently, the use of DNNs for solving PDE inverse problems also started to
receive attention, and existing methods can roughly be divided into two groups: supervised
[27, 37, 62] and unsupervised [6, 7, 57, 72]. The methods in the former group rely on the
availability of paired training data, and are essentially concerned with learning the forward
operators or its (regularized) inverses, and the methods in the latter group exploit essentially
the extraordinary expressivity as universal function approximators. Khoo and Ying [37] pro-
posed a novel neural network architecture, SwitchNet, for solving the wave equation based
inverse scattering problems via constructing maps between the scatterers and the scattered
field using training data. Seo et al [62] developed a supervised approach for the solution of
nonlinear inverse problems using a low dimensional manifold for the solution approxima-
tion, converting it into a well-posed one using variational autoencoder, and demonstrated the
idea on time difference EIT. Guo and Jiang [27] developed a neural network analogue for the
direct sampling method for EIT. The works [6, 7] investigated image reconstruction in the
classical EIT problem, using the weak formulation and the least-squares formulation (but also
with the L∞ norm consistency), respectively. Pakravan et al [57] developed a hybrid approach,
aiming at blending high expressivity of DNNs with the accuracy and reliability of traditional
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numerical methods for PDEs, and showed the approach for recovering the variable diffusion
coefficient in one- and two-dimensional elliptic PDEs. All these works have presented very
encouraging empirical results for a range of PDE inverse problems, and clearly demonstrated
the significant potentials of DNNs in solving PDE inverse problems. The approach proposed
in this work belongs to the second group, but unlike the existing approaches, it does not
directly approximate the unknown conductivity σ and thus differs substantially from existing
approaches.

The rest of the paper is organized as follows. In section 2 we develop a neural network based
approach for imaging the conductivity. Then in section 3 we provide an analysis of the neural
network based approach, and derive a convergence rate for the neural network approximation
in terms of properties of the neural network, e.g., the activation function, depth, number of
parameters, and parameter bound. In section 4, we present extensive numerical experiments
to show its performance and the impact of various algorithmic parameters on the reconstruc-
tion error (number of training points, network parameters and noise levels), and also present a
comparative study of the approach with an existing iterative reconstruction approach [54].

2. Reconstruction algorithm

In this section, we describe the proposed imaging algorithm. It is essentially a neural network
discretization of a relaxation of the variational formulation proposed by Nachman et al [54].
A preliminary analysis of the neural network approximation is given in section 3.

2.1. Variational formulation

First we briefly recall a variational formulation from [54]. By representing σ = a
|∇u| in accor-

dance with Ohm’s law, problem (1.1) can be recast into the following Dirichlet problem for
the weighted one-Laplacian⎧⎪⎨⎪⎩

∇ ·
(

a
∇u
|∇u|

)
= 0, inΩ,

u = g, on ∂Ω.

(2.1)

This was originally proposed by Kim et al [38], who also showed nonuniqueness of the solution
when the problem is equipped with a Neumann boundary condition. Formulation (2.1) was
utilized by work [53] for recovering the conductivity σ from Cauchy data on a part of the
boundary (along with the interior data) on a two-dimensional domain. Due to the singularity
and elliptic degeneracy of the differential operator, the concept of a solution requires some
care. Therefore, as a mathematical model of CDII, Nachman et al [54] employed the following
weighted least gradient (Dirichlet) problem

min
u∈W1,1(Ω)∩C(Ω),Tu=g

{
J (u) =

∫
Ω

a|∇u|dx

}
, (2.2)

where T is the trace operator, i.e., Tu = u|∂Ω. The equivalence can be seen by computing the
Euler–Lagrange equation of the functional J and observing that it formally satisfies problem
(2.1). It was proved in [54, theorem 1.3] that if g ∈ C1,ν (∂Ω), a ∈ Cν(Ω), ν ∈ (0, 1), and a > 0
a.e. in Ω, and the data (g, a) are admissible (i.e., there exists a conductivity σ that is essentially
bounded and bounded away from zero such that if u ∈ H1(Ω) is a weak solution to problem
(1.1) then a = σ|∇u|), then problem (2.2) is uniquely solvable in W1,1(Ω) ∩ C(Ω) and σ = a

|∇u|
is Hölder continuous. It was also shown that problem (2.1) is, formally, the Euler–Lagrange
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equation of the functional J (u) in (2.2), and that the solution of (2.2) is a weak solution to
(2.1).

From the point of view of calculus of variation, the space W1,1(Ω) is not the most convenient
choice for studying problem (2.2) [56]. Indeed, the minimizing sequences stay bounded in
W1,1(Ω). However, due to its non-reflexivity, J is no longer weakly lower semicontinuous in
W1,1(Ω) (since L1

loc(Ω) limits of functions in W1,1(Ω) may no longer belong to W1,1(Ω)). Thus,
it is natural to extend J (u) in (2.2) to the space BV(Ω) of functions of bounded variation,
which preserves the lower-semicontinuity. These considerations naturally lead to the study of
the following weighted least-gradient problems in the space BV(Ω) [56]

min
u∈BV(Ω),Tu=g

{
J (u) =

∫
Ω

a(x)|Du|
}

, (2.3)

where the distributional derivative Du is a signed Radon measure that can be decomposed into
its absolutely continuous and singular parts as Du = Dau + Dsu, with Dau = ∇uLd, where∇u
is the Radon–Nikodym derivative of the measure Du with respect to the Lebesgure measure
Ld , and Dsu denotes the singular part. The existence and uniqueness results of problem (2.3)
were established for either the case a ∈ C1,1(Ω), g ∈ C(∂Ω) [33] or the case a ∈ C(Ω), a � 0,
and that the pair (g, a) is admissible [50].

Once a minimizer u to problem (2.3) is found, the conductivity σ can be recovered by
σ = a

|∇u| , following the definition of the current density magnitude a. These observations and
the convexity of the energy functional J motivated several algorithms for recovering the con-
ductivity σ [51, 54]. Nachman et al [54] developed an iterative procedure for minimizing
problem (2.2) and then recovering the conductivity σ. Specifically, given an initial guess σ0,
they proposed to repeat the following two steps alternatingly

(a) Solve for un from the second-order elliptic PDE{
−∇ · (σn∇un) = 0, inΩ,

un = g, on ∂Ω.

(b) Update the conductivity σ by σn+1 = a
|∇un| .

The authors proved the convergence of the sequence {un}∞n=1 to the minimizer of functional
J in H1(Ω) for admissible pairs (g, a) [54, proposition 4.4]. This algorithm is appealing since
it is easy to implement, and converges within tens of iteration. The main cost is to solve one
elliptic PDE at each iteration. It will be employed as the baseline algorithm in the numerical
experiments. Note that the algorithm does not incorporate regularization explicitly [32]. Due
to the ill-posedness, in the presence of data noise, early stopping is needed in order to obtain
satisfactory reconstructions. However, the issue of early stopping has not been studied so far
for the algorithm.

2.2. Proposed algorithm

In this work, we take a slightly different route. Instead of iterative update, we propose to solve
the minimization problem (2.3) directly by using neural networks to approximate the minimizer
u (with parameter θ), and then to recover the conductivityσ using the defining relationσ = a

|∇u|
from Ohm’s law. More specifically, we proceed in the following two steps:

(a) Find a neural network approximation uθ to problem (2.3) by minimizing a suitable loss.
(b) Recover the conductivity σ by σ = a

|∇uθ |
.
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The crucial step to realize the algorithm numerically is to solve (2.3) stably. This is non-
trivial due to nonsmoothness of the functional J . Further, the imposition of the essential
boundary condition Tu = g is nontrivial, due to the nonlocality of neural networks. For special
geometries, one may construct neural networks that satisfy the boundary condition exactly,
but generally this is challenging. Thus, we employ an alternative formulation of problem (2.3)
from [45] (see also [16, 47]), using the concept of the space of total variation with respect to an
anisotropy defined below. Throughout we make the following assumption on the data a, which
is also known as the continuity and coercivity of the metric integrand.

Assumption 2.1. a ∈ C(Ω), and there exist constants α0,α1 > 0 with α1 > α0 such that
α0 � a � α1 in Ω.

Now we recall the space BVa(Ω) [16, 47]. Clearly when a(x) ≡ 1 in Ω, it recovers the
standard space BV(Ω) of functions of bounded variation.

Definition 2.1. Let u ∈ L1(Ω). Then the a-total variation of u in Ω is defined as∫
Ω

|Du|a := sup
ϕ∈Ka(Ω)

∫
Ω

u∇ · ϕ, with Ka(Ω) = {ϕ ∈ C1
0(Ω;Rd) : |ϕ(x)| � a(x) inΩ},

and let

BVa(Ω) =

{
u ∈ L1(Ω) :

∫
Ω

|Du|a < ∞
}

,

which is a Banach space when endowed with the norm

‖u‖BVa(Ω) = ‖u‖L1(Ω) +

∫
Ω

|Du|a.

Note that under assumption 2.1, there hold BVa(Ω) = BV(Ω) in the sense of set (but endowed
with different norms), and further

α0

∫
Ω

|Du| �
∫
Ω

|Du|a � α1

∫
Ω

|Du|.

Given a function g ∈ L1(∂Ω), problem (2.2) can be equivalently written as

min Jg(u) =

⎧⎪⎨⎪⎩
∫
Ω

a|∇u|dx, if u ∈ W1,1(Ω), Tu = g,

+∞, otherwise.

In [47, theorem 4] (see also [16, theorem 3.6] and [45, proposition 3.1]), it was proved that the

functional Jg admits the following relaxation to L
d

d−1 (Ω)

L(u) =

⎧⎪⎨⎪⎩
∫
Ω

|Du|a +
∫
∂Ω

a|Tu − g|ds, u ∈ BVa(Ω),

+∞, u ∈ L
d

d−1 (Ω) \ BVa(Ω),

(2.4)

in the following sense

L(u) = inf
{

lim inf
n→∞

Jg(un) : un → u in L1(Ω), un ∈ W1,1(Ω), Tun = g
}
.

6



Inverse Problems 38 (2022) 075003 B Jin et al

Therefore, for every u ∈ BVa(Ω), there exists a sequence {un}∞n=1 ⊂ W1,1(Ω) with Tun = g
such that un → u in L1(Ω) and∫

Ω

a(x)|∇un(x)|dx →L(u).

In particular, this implies the functional L is weakly lower semicontinuous, which automati-
cally guarantees the existence of a minimizer.

The relaxed functional L is convex and weakly lower semicontinuous in L
d

d−1 (Ω). Further-
more, we have the following results which connect the relaxed functional (2.4) to problem (2.3)
(see [45, definition 3.4] for the precise definition of a solution u to problem (2.1)). Thus, under
certain conditions, the solution of (2.4) coincides with that of (2.3).

Theorem 2.1. Under assumption 2.1, for each g ∈ L1(Ω), there exists a solution u to
problem (2.1). Further, for u ∈ BVa(Ω) satisfying Tu = g, the following three statements are
equivalent.

(a) u is a solution of problem (2.1).
(b) u is a function of the weighted least gradient in Ω, i.e., solves problem (2.3).
(c) L(u) � L(v) for all v ∈ BVa(Ω).

Proof. Note that assumption 2.1 implies that the metric integrand φ(x, ξ) = a(x)|ξ| is con-
tinuous and coercive in Ω. The first statement can be found in [45, theorem 3.6], and the
equivalence statements are taken from [45, corollary 3.9]. �

In practice, it is beneficial to introduce a weighing parameter γ > 1 to the boundary integral

Lγ(u) =
∫
Ω

a|Du|+ γ

∫
∂Ω

a|Tu − g|ds. (2.5)

Formally, it can be viewed as a nonstandard penalized formulation to impose the boundary
condition only weakly, and this idea is widely used in the context of finite element methods
[4]. However, the existence of a minimizer u∗ in BV(Ω) is generally unclear, since the trace
operator in BV(Ω) is not continuous with respect to the weak star convergence in BV(Ω). The
existence will be assumed for the analysis below in section 3.

Remark 2.1. There are alternative penalized formulations that ensure the existence of a
minimizer:

Lγ,ε(u) =
∫
Ω

a|∇u(x)|dx +
γ

2

∫
∂Ω

|Tu − g|2ds +
ε

2

∫
Ω

|∇u|2dx,

with small ε > 0. This formulation was studied in [66]. The neural network approach described
below can be extended directly and the analysis also holds upon minor changes.

2.3. Discretization via neural networks

Now we describe the discretization of problem (2.5) via neural networks. We employ the
standard fully connected feedforward neural networks, in which each neuron is connected to
neurons in the successive layer by an affine-linear map, and then followed by a nonlinear acti-
vation function; see figure 1 for a schematic illustration of a three-layer neural network. An
L-layer feedforward neural network consists of (L − 1) hidden layers, and maps a given input
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Figure 1. A schematic illustration of a three-layer feedforward neural network.

x ∈ R
d0 to an output y ∈ R

dL through compositions of affine-linear maps and a scalar nonlin-
ear activation function ρ : R→ R, with the �th layer having d� neurons. The width W of the
network is defined to be W :=max�=0,1,...,L d�. We define PN :=

∏L
�=1(Rd�×d�−1 × R

d�) to be
the set of neural network parametrizations. For a parametrization θ = {(W (�), b(�))}L

�=1 ∈ PN

(which will be identified with a vector below), we define its realization f (L)(x) by

f (0) = x,

f (�) = ρ(W (�) f (�−1) + b(�)), for � = 1, 2, . . . , L − 1,

f (L) = W (L) f (L−1) + b(L).

Here the nonlinear activation function ρ : R→ R is applied componentwise to a vector, and
f (�) ∈ R

d� . W (�) ∈ R
d�×d�−1 and b(�) ∈ R

d� for � = 1, 2, . . . , L are commonly known as the
weight matrix and bias vector at the �th layer, respectively. Note that the total number Nθ

of parameters is given by Nθ =
∑L

�=1d�d�−1 + d�. Also the activation function ρ should be at
least twice differentiable in order to facilitate the training process, due to the presence of one
spatial derivative and one derivative with respect to the network parameter θ, which is required
by gradient type algorithms. Common choices of ρ include sigmoid, tanh, rectified power unit
and softplus etc, but the standard rectified linear unit (ReLU) is not suitable, due to its limited
differentiability.

To solve problem (2.5), we approximate the function u with a feedforward neural network
f (L). Thus, the input dimension d0 is taken to be the dimension d of the domain Ω, and the
output dimension dL is taken to be 1. We denote the set of all such L-layer neural networks
by N ≡ N (L, Nθ, R), with R > 0 being the maximum bound on the network parameters, i.e.,
all components |W (�)

i, j |, |b
(�)
i | � R for all i, j, � (or equivalently ‖θ‖�∞ � R, with ‖ · ‖�∞ being

the Euclidean maximum norm), to explicitly indicate its dependence on the network properties
(i.e. depth, total number of parameters and the bound for each parameter).

Now we derive the loss for training neural networks. Let U(Ω) and U(∂Ω) be uniform dis-
tributions inside the domain Ω and on the boundary ∂Ω, respectively. The loss (2.5) can be
rewritten as

Lγ(u) = |Ω|EU(Ω)[a(X)|∇u(X)|]+ γ|∂Ω|EU(∂Ω)[a(Y)|Tu(Y) − g|],

where Eμ denotes taking the expectation with respect to a distribution μ. This formulation is
commonly known as the population loss in statistical learning theory. The empirical loss L̂γ

takes the form:
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L̂γ(θ) =
|Ω|
n1

n1∑
i=1

a(Xi)|∇uθ(Xi)|+ γ
|∂Ω|
n2

n2∑
j=1

a(Y j)|Tuθ(Y j) − g(Y j)|, (2.6)

where uθ ∈ N (L, Nθ, R) is the neural network realization with parametrization θ, and {Xi}n1
i=1

and {Y j}n2
j=1 are n1 independent and identically distributed (i.i.d.) training samples drawn from

U(Ω) and n2 i.i.d. training samples from U(∂Ω), respectively. The empirical loss L̂γ(θ) is a
Monte Carlo approximation of Lγ . Note that in the low-dimensional case, one may employ
standard quadrature rules. Then the training process boils down to solving the following
optimization problem:

min
θ

L̂γ(θ).

Note that the box constraint Θ = {θ : ‖θ‖�∞ � R} enforces a compact set on the (finite-
dimensional) neural network parameter θ, and the continuity of L̂γ in θ (under mild conditions
on ρ) ensures the existence of a global minimizer to the empirical loss L̂γ . We denote any
global minimizer of the empirical loss L̂γ(θ) in (2.6) by θ∗, and the corresponding neural net-
work approximation in N by uθ∗ . Note that uθ∗ is the neural network approximation to the
minimizer u∗ of the population loss Lγ in (2.5). However, the empirical loss L̂γ(θ) is noncon-
vex in the parameter θ and may be fraught with local minimizers, and thus in theory, a global
minimizer can be difficult to obtain. Nonetheless, in practice, researchers have found that sim-
ple algorithms [14], e.g., (stochastic) gradient descent (SGD) [59] or ADAM [39], can perform
fairly well. In practice, the empirical loss L̂γ is optimized by one such random solver A (e.g.,
SGD and ADAM), which outputs a stochastic approximation θA to the optimal θ∗ and also the
corresponding network uθA .

In practical computation, the term |∇uθ(x)| in the loss (2.6) requires some care, since its
derivative with respect to the network parameters θ may be ill-defined when the gradient
∇uθ(x) vanishes. Thus we replace the term |∇uθ(x)| with a smooth approximation:

ψ(|∇uθ|) =

⎧⎪⎨⎪⎩
|∇uθ|, |∇uθ| � ζ,

|∇uθ|2
2ζ

+
ζ

2
, otherwise,

(2.7)

where ζ > 0 is a small constant controlling the amount of smoothing. The boundary term can be
treated similarly. In practice, the gradient∇uθ with respect to the spatial variable x is computed
using automatic differentiation techniques, which are implemented in many popular platforms,
e.g., tensorflow moduletf.gradients. Thus, the overall computational technique can fully
capitalize on modern algorithmic innovations, e.g., automatic differentiation [11].

3. Convergence analysis

Now we present a preliminary analysis of the neural network approximation uθA . In the analy-
sis, we take the domain Ω to be the unit hypercube Ω ⊂ (0, 1)d ⊂ R

d, and since the parameter
γ is fixed in the analysis, we suppress it from the notation and denote Lγ and L̂γ by L and
L̂, respectively. Let u

̂θ be the minimizer of the empirical loss L̂(θ), and let uθA be the opti-
mal network approximation to the minimizer u∗ of the functional L obtained by a randomized
optimizer A. The main aim is to bound the quantity L(uθA) − L(u∗), which is also known as

9
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the generalization error in statistical learning theory [63]. The following lemma gives a crucial
decomposition of the generalization error.

Lemma 3.1. The generalization error L(uθA) − L(u∗) can be decomposed into

L(uθA) − L(u∗) � [L(ū) − L(u∗)]︸ ︷︷ ︸
Eapprox

+ 2 sup
u∈N

|L(u) − L̂(u)|︸ ︷︷ ︸
Estats

+ [L̂(uθA) − L̂(u
̂θ)]︸ ︷︷ ︸

Eopt

,

where ū is any element in the network class N .

Proof. Since u
̂θ is the minimizer of L̂, we have

L̂(u
̂θ) − L̂(ū) � 0, ∀ ū ∈ N .

Consequently, by adding and subtracting terms, we deduce

L(uθA) − L(u∗) =
[
L(uθA) − L̂(uθA)

]
+
[
L̂(uθA) − L̂(u

̂θ)
]

+
[
L̂(u

̂θ) − L̂(ū)
]
+
[
L̂(ū) − L(ū)

]
+
[
L(ū) − L(u∗)

]
�
[
L(ū) − L(u∗)

]
+ 2 sup

u∈N
|L(u) − L̂(u)|+

[
L̂(uθA) − L̂(u

̂θ)
]
.

This completes the proof of the lemma. �
By lemma 3.1, the generalization errorL(uθA) − L(u∗) can be decomposed into three terms,

i.e., approximation error Eapprox, statistical error Estat, and optimization error Eopt. The error
Eapprox arises because we restrict the sought-for function within the set N , instead of the whole
space BVa(Ω). The error Estat is the quadrature error arising when approximating the population
lossLwith the empirical loss L̂. The error Eopt arises from the fact that the optimizer we employ
may not find a global minimizer. The error Eopt remains very challenging to analyze, due to the
non-convexity nature of the optimization problem. Thus, we shall assume that the network is
well trained and ignore the optimization error Eopt. Note that the functionalL is only convex in u
but not strictly so. Hence a bound on the state approximation u∗ − uθA does not follow directly.
Below we analyze the approximation error Eapprox and statistical error Eopt, in the following two
parts separately.

3.1. Approximation error

First we analyze the approximation error Eapprox, under certain a priori regularity assumption
u∗ ∈ W2,1(Ω) on the minimizer u∗ to the loss L. Note that since any neural network function
ū ∈ N is differentiable (with respect to the input variable x), and also the minimizer u∗ is
differentiable, the distributional derivative Du actually coincides with ∇u. Now we fix any
ū ∈ N , and let v = ū − u∗. Then by the triangle inequality and the definition of the loss L, we
have

L(ū) =
∫
Ω

a(x)|∇v(x) +∇u∗(x)|dx + γ

∫
∂Ω

a(x)|T(v + u∗) − g|ds

�
∫
Ω

a(x)(|∇v(x)|+ |∇u∗(x)|)dx + γ

(∫
∂Ω

a(x)|Tu∗ − g|ds +
∫
∂Ω

a(x)|Tv|ds

)
= L(u∗) +

∫
Ω

a(x)|∇v(x)|dx + γ

∫
∂Ω

a(x)|Tv(x)|ds.

10
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By assumption 2.1, a(x) is bounded by α1. Moreover, by the trace theorem [23], we have

‖Tv‖L1(∂Ω) � Cem‖v‖W1,1(Ω),

where Cem > 0 is the embedding constant from W1,1(Ω) into L1(∂Ω). Consequently,

L(ū) − L(u∗) � α1‖v‖W1,1(Ω) + α1γCem‖v‖W1,1(Ω)

= α1(1 + Cemγ)‖ū − u∗‖W1,1(Ω). (3.1)

To bound ‖ū − u∗‖W1,1(Ω), we employ the neural network approximation theory from [26].
The main idea is to approximate u∗ by localized Taylor polynomials, where the localization
is realized by partition of unity (PU), and the polynomials are then approximated by neural
networks. Let 𝟙[0,1]d be the characteristic function of the domain [0, 1]d. Note that there is no
canonical way to build a PU exactly by neural networks with general activation functions other
than ReLU. Gühring and Raslan [26] proposed to approximate 𝟙[0,1]d with bump functions
defined by admissible activation functions with exponential or polynomial decay property. For
the analysis below, we assume that the nonlinear activation function ρ is admissible in the
following sense [26, definition 4.2].

Definition 3.1. Let j ∈ N. The nonlinear activation function ρ : R→ R satisfies

(a) ρ and ρ′ are uniformly bounded by ρ0 and ρ1 > 0, respectively.
(b) ρ and ρ′ are η0- and η1-Lipschitz, respectively.
(c) There exists I > 0 with ρ ∈ C j(R \ [−I, I]) and ρ′ ∈ W j−1,∞(R), if j � 1.

Let τ = {0, 1} be the order of PU. ρ is said to be exponential (polynomial) ( j, τ )-
PU-admissible, if additionally there exist A = A(ρ), B = B(ρ) ∈ R, with A < B, some
C = C(ρ, j) > 0 and D = D(ρ, j) > 0, such that

1. |B − ρ(τ )(x)| � C e−Dx (Cx−D if polynomial) for all x > I;
2. |A − ρ(τ )(x)| � C eDx (C|x|−D if polynomial) for all x < −I;
3. |ρ(k)(x)| � C e−D|x| (C|x|−D if polynomial) for all x ∈ R \ [−I, I] and all k = τ +

1, . . . , j.

Remark 3.1. For τ = 0, ρ is approximately piecewise constant outside of a neighborhood
of zero (e.g., sigmoid) and for τ = 1, ρ is approximately piecewise affine-linear outside of a
neighborhood of zero (e.g., exponential linear unit). In particular arctan and inverse square root
unit are polynomial PU-admissible, and tanh and sigmoid are exponential PU-admissible.

Now we state the approximation theorem [26, proposition 4.8].

Theorem 3.1. Let d ∈ N, j, τ ∈ N0, k ∈ {0, . . . , j}, n � k + 1, 1 � p � ∞, and μ > 0. Let
Fn,d,p := { f ∈ Wn,p((0, 1)d) : ‖ f ‖Wn,p((0,1)d) � 1}. Suppose that ρ(x) is an exponential ( polyno-
mial) ( j, τ )-PU admissible activation function, and there exists x0 ∈ R such that ρ is three
times continuously differentiable in a neighborhood of x0. Then for any ε > 0 and for any
f ∈ Fn,d,p, there exists a neural network fNN with depth at most C log(d + n) and at most

Nθ =

⎧⎨⎩Cε−
d

n−k−μ(k=2) , if ρ is exponential admissible,

Cε−
d

n−k , if ρ is polynomial admissible,

11



Inverse Problems 38 (2022) 075003 B Jin et al

non-zero weights, where μ ∈ (0, 1) is an arbitrarily small positive number, such that

‖ f − fNN‖Wk,p([0,1]d ) � ε.

Moreover, the weights in the neural network are bounded in absolute value by⎧⎨⎩C(d, n, p, k)ε−2−2(d/p+d+k+μ(k=2))+d/p+d
n−k−μ(k=2) , if ρ is exponential admissible,

C(d, n, p, k)ε−2− 2(d/p+d+k)+d/p+d
n−k , if ρ is polynomial admissible.

To bound the approximation error (3.1), we apply theorem 3.1 with k = p = 1 and
n = 2. Then for any ε > 0 and any f ∈ W2,1([0, 1]d) such that ‖ f ‖W2,1((0,1)d) � 1, there exists a

neural network f̄ with c̄1(d) log(d + 2) layers and c̄2(d)ε−
d

1−μ (or c̄2(d)ε−d, if ρ is polynomial

admissible) number of network parameters each bounded by c̄3(d)ε−
4+6d
1−μ (or c̄3(d)ε−(4+6d) if ρ

is polynomial admissible), such that

‖ f − f̄‖W1,1([0,1]d) � ε.

The following proposition records the approximation result.

Proposition 3.1. Let the minimizer u∗ to the functional L satisfies u∗ ∈ W2,1(Ω), and let ρ
be the nonlinear activation function. Then for any ε > 0, there exists a network work class

N =

⎧⎨⎩N
(

c1 log(d + 2), c2ε
− d

1−μ , c3ε
− 4+6d

1−μ

)
, if ρ is exponential admissible,

N (c1 log(d + 2), c2ε
−d, c3ε

−(4+6d)), if ρ is polynomial admissable,

with μ ∈ (0, 1) being an arbitrarily small positive number, such that there exists a ū ∈ N with

‖u∗ − ū‖W1,1(Ω) � Cε,

with the constant C depending on ‖u∗‖W2,1(Ω). In particular, there exists a neural network
ū ∈ N such that

L(ū) − L(u∗) � Cα1(1 + Cemγ)ε.

Proof. By Sobolev extension theorem [23] and the assumption u∗ ∈ W2,1(Ω), since
Ω ⊂ (0, 1)d, there exists a bounded extension of u∗ from Ω to (0, 1)d, denoted by Eu∗ such
that

‖Eu∗‖W2,1((0,1)d) � C‖u∗‖W2,1(Ω).

Then by theorem 3.1, we can find a neural network u∗ ∈ N satisfies the desired approximation
for the function Eu∗/‖Eu∗‖W2,1((0,1)d). Then the desired assertion follows directly. �

Remark 3.2. In proposition 3.1, we have assumed the existence of a minimizer u∗ ∈ W2,1(Ω)
to the loss L. This assumption may be relaxed to an approximate minimizer uε ∈ W2,1(Ω)
such that L(uε) − infu∈BVa(Ω) L(u) � ε. However, the W2,1(Ω) norm of uε may depend on the
tolerance ε, which obscures the dependence between the network parameters and the error
tolerance ε.

12
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3.2. Statistical error

In this part, we bound the statistical error supu∈N |L(u) − L̂(u)|. To this end, we define

L1(u) = |Ω|EX∼U(Ω)[a(X)|∇u(X)|], L̂1(ū) =
|Ω|
n1

n1∑
i=1

a(Xi)|∇ū(Xi)|,

L2(u) = γ|∂Ω|EY∼U(∂Ω)[a(Y)|Tu(Y) − g(Y)|], L̂2(ū) = γ
|∂Ω|
n2

n2∑
j=1

a(Y j)|Tū(Y j) − g(Y j)|.

Then by the triangle inequality, we have

sup
u∈N

|L(u) − L̂(u)| �
2∑

i=1

sup
u∈N

|Li(u) − L̂i(u)|.

Below we denote both U(Ω) and U(∂Ω) by μ, and set n = n1 and n = n2 accordingly.
Hence, there are n i.i.d. samples drawn from μ, denoted by Zn = {zi}n

i=1 with zi ∼ μ. We
analyze EZn [supu∈N |L1(u) − L̂1(u)|] and EZn[supu∈N |L2(u) − L̂2(u)|] separately. The con-
cept of Rademacher complexity plays a crucial role in the analysis. Rademacher complex-
ity Rn(F ) measures the capacity of a function class F restricted on n random samples
Zn [9, 10]. For many function classes, the Rademacher complexity is known. For example,
see [43, theorem 3] for the class of two-layer neural networks.

Definition 3.2. The Rademacher complexity Rn(F ) of a function class F is defined by

Rn(F ) = EZn ,Σn

[
sup
u∈F

1
n

∣∣∣∣∣
n∑

i=1

σiu(zi)

∣∣∣∣∣
]

,

where Σn = {σi}n
i=1 are n i.i.d. Rademacher variables, i.e., with probability P(σi = 1) =

P(σi = −1) = 1
2 .

Given an L-layer neural network class N , we define an associated function class

G =
{

g : [0, 1]d → R such that g(x) = |∇u(x)|, ∀x ∈ [0, 1]d, with u ∈ N
}
.

Recall that |∇u(x)| denotes the Euclidean norm of the gradient vector (∂x1u, . . . , ∂xd u)t ∈ R
d .

First, we bound EZn[supu∈N |L1(u) − L̂1(u)|] in terms of the Rademacher complexity Rn(G).
The proof is based on a standard symmetrization argument (see, e.g., [46, theorem 14]), and it
is included only for completeness.

Lemma 3.2. The following bound holds

EZn

[
sup
u∈N

|L1(u) − L̂1(u)|
]

� 2α1|Ω|Rn(G).

Proof. We denote I = EZn[supu∈N |L1(u) − L̂1(u)|]. By the definitions of L1, L̂1, μ and Zn,
we have

13
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I = EZn

[
sup
u∈N

∣∣∣∣∣|Ω|Eμ[a(Z)|∇u(Z)|] − |Ω|
n

n∑
i=1

a(zi)|∇u(zi)|
∣∣∣∣∣
]

=
|Ω|
n
EZn

[
sup
u∈N

∣∣∣∣∣nEμ[a(Z)|∇u(Z)|] −
n∑

i=1

a(zi)|∇u(zi)|
∣∣∣∣∣
]

=
|Ω|
n
EZn

[
sup
u∈N

∣∣∣∣∣
n∑

i=1

EZ̃n
[a(z̃i)|∇u(z̃i)|] −

n∑
i=1

a(zi)|∇u(zi)|
∣∣∣∣∣
]

,

where Z̃n = {z̃i}n
i=1 denotes n independent samples from the distribution μ, independent from

Zn. Since sup(·) is a convex function, by Jensen’s inequality, we deduce

I � |Ω|
n
EZn ,Z̃n

[
sup
u∈N

∣∣∣∣∣
n∑

i=1

(
a(z̃i)|∇u(z̃i)| − a(zi)|∇u(zi)|

)∣∣∣∣∣
]
.

Since zi and z̃i are i.i.d., the distribution of the supremum is unchanged when we swap
them. One may insert any {σi} ∈ {±1}n, in particular, the expectation of the supremum is
unchanged. Since this is true for any σi, we can take the expectation over any random choice
of the σi. Thus, we deduce

I � |Ω|
n
EZn ,Z̃n,Σn

[
sup
u∈N

∣∣∣∣∣
n∑

i=1

σi

(
a(z̃i)|∇u(z̃i)| − a(zi)|∇u(zi)|

)∣∣∣∣∣
]
.

Then by the triangle inequality, we have

I � |Ω|
n

EZn,Z̃n,Σn

[
sup
u∈N

∣∣∣∣∣
n∑

i=1

σia(z̃i)|∇u(z̃i)|
∣∣∣∣∣+ sup

u∈N

∣∣∣∣∣
n∑

i=1

σia(zi)|∇u(zi)|
∣∣∣∣∣
]

=
|Ω|
n

EZ̃n,Σn

[
sup
u∈N

∣∣∣∣∣
n∑

i=1

σia(z̃i)|∇u(z̃i)|
∣∣∣∣∣
]
+

|Ω|
n

EZn,Σn

[
sup
u∈N

∣∣∣∣∣
n∑

i=1

σia(zi)|∇u(zi)|
∣∣∣∣∣
]

= 2|Ω|EZn,Σn

[
sup
u∈N

1
n

∣∣∣∣∣
n∑

i=1

σia(zi)|∇u(zi)|
∣∣∣∣∣
]
.

Now by assumption 2.1, we have a � α1 a.e. Ω and by the multiplicative inequality of
Rademacher complexity, we obtain

I � 2α1|Ω|EZn,Σn

[
sup
u∈N

1
n

∣∣∣∣∣
n∑

i=1

σi|∇u(zi)|
∣∣∣∣∣
]
= 2α1|Ω|R(G).

This completes the proof of the lemma. �
By lemma 3.2, it suffices to bound the Rademacher complexity Rn(G) of the function class

G. This can be achieved using Dudley’s formula from the theory of empirical process [69].
First we recall the covering number of a function class.

Definition 3.3. Let (X, ρ) be a metric space. An ε-cover of a set A ⊂ X with respect to
the metric ρ is a collection of points {xi}n

i=1 ⊂ A such that for every x ∈ A, there exists
i ∈ {1, . . . , n} such that ρ(x, xi) � ε. The ε-covering number C(A, ρ, ε) is the cardinality of
the smallest ε-cover of A with respect to the metric ρ.
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The Rademacher complexity Rn(G) is related to the covering number C(G, ‖ · ‖L∞(Ω), ε)
by the refined Dudley’s formula [20] (see, e.g., [60, 65] for the current form). Note that the
statement is slightly different from the standard Dudley’s theorem where the covering number
is based on the empirical �2-metric instead of the L∞(Ω)-metric. However, the L∞(Ω) metric is
stronger than the empirical �2 metric, and the covering number is monotonically increasing with
respect to the metric [60, lemma 2]. The lemma follows directly from the classical Dudley’s
theorem.

Lemma 3.3. The Rademacher complexity Rn(G) of a function class G is bounded by

Rn(G) � inf
0<δ<M

(
4δ +

12√
n

∫ M

δ

√
log C(G, ‖ · ‖L∞(Ω), ε)dε

)
,

where C(G, ‖ · ‖L∞(Ω), ε) is the covering number of the set G, and M := supg∈G‖g‖L∞(Ω).

Next we bound the covering number C(G, ‖ · ‖L∞(Ω), ε) of the set G. This is based on the
Lipschitz continuity of functions in the set G with respect to the network parameter θ. For g, g̃ ∈
G, there exist two neural networks f (L) and f̃ (L) (with the corresponding network parameters
being θ = {W (�), b(�)}L

�=1 and θ̃ = {W̃ (�), b̃(�)}L
�=1) such that f (L) and f̃ (L) can be written as

f (L) = W (L)ρ(W (L−1)ρ(W (L−2) . . .+ b(L−2)) + b(L−1)) + b(L),

f̃ (L) = W̃ (L)ρ(W̃ (L−1)ρ(W̃(L−2) . . .+ b̃(L−2)) + b̃(L−1)) + b̃(L),

and accordingly

g(x) = |∇ f (L)(x)| and g̃(x) = |∇ f̃ (L)(x)|.

To indicate the dependence of g on θ, we write gθ below. To bound the covering number C(G, ‖ ·
‖L∞(Ω), ε) of G, we bound ‖gθ − g̃θ̃‖L∞(Ω) in terms of ‖θ − θ̃‖�∞ . Meanwhile, we have

‖gθ − g̃θ̃‖L∞(Ω) = ‖|∇ f (L)| − |∇ f̃ (L)|‖L∞(Ω) � ‖|∇( f (L) − f̃ (L))|‖L∞(Ω). (3.2)

Thus, it suffices to bound the partial derivatives ‖∂xi( f (L) − f̃ (L))‖L∞(Ω), for i = 1, 2, . . . , d. The
next lemma gives the requisite estimates (as well as auxiliary estimates). Note that under dif-
ferent assumptions (i.e., boundedness assumptions on the activation function, different norms
on the parameters, or evaluation of the neural networks on input data), similar approaches can
be found in [3, 8, 12].

Lemma 3.4. Let the activation function ρ satisfy the conditions (a) and (b) in definition 3.1,
W be the width of the network class, and R the �∞ bound on the network parameters θ. Then
with ρ0, ρ1, η0, η1, R and W , there holds

‖∂xi ( f (L) − f̃ (L))‖L∞(Ω) � L2ρ0ρ
L−1
1 η1η

L−2
0 R2L−2W2L−2‖θ − θ̃‖�∞ , (3.3)

sup
g∈G

‖g‖L∞(Ω) �
√

dRL(ρ1W)L−1. (3.4)

Proof. Let r := ‖θ − θ̃‖�∞ . Recall that f (1) = ρ(W (1)x + b (1)), and f (�) = ρ(W (�) f (�−1) +
b (�)), for � = 1, 2, . . . , L − 1. We denote the jth component of f (�) ∈ R

d� by f (�)
j . Noting

W (L) ∈ R
1×dL−1 and b(L) ∈ R, writing out explicitly f (L) and f̃ (L) and applying the triangle

inequality lead to
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∥∥∥∂xi ( f (L) − f̃ (L))
∥∥∥

L∞(Ω)

=

∥∥∥∥∥∥∂xi

⎛⎝dL−1∑
j=1

W (L)
j f (L−1)

j + b(L)

⎞⎠− ∂xi

⎛⎝dL−1∑
j=1

W̃ (L)
j f̃ (L−1)

j + b̃(L)

⎞⎠∥∥∥∥∥∥
L∞(Ω)

=

∥∥∥∥∥∥
dL−1∑
j=1

W (L)
j ∂xi f (L−1)

j −
dL−1∑
j=1

W̃ (L)
j ∂xi f̃ (L−1)

j

∥∥∥∥∥∥
L∞(Ω)

�
dL−1∑
j=1

∥∥∥W (L)
j ∂xi f (L−1)

j − W̃ (L)
j ∂xi f̃ (L−1)

j

∥∥∥
L∞(Ω)

�
dL−1∑
j=1

[
|W (L)

j − W̃ (L)
j |‖∂xi f (L−1)

j ‖L∞(Ω) + |W̃ (L)
j |‖∂xi

(
f (L−1)

j − f̃ (L−1)
j

)
‖L∞(Ω)

]

� r
dL−1∑
j=1

‖∂xi f (L−1)
j ‖L∞(Ω) + R

dL−1∑
j=1

‖∂xi( f (L−1)
j − f̃ (L−1)

j )‖L∞(Ω), (3.5)

in view of the definition of r and the condition |W̃ (L)
j | � R. Thus, to bound ‖∂xi ( f (L) −

f̃ (L))‖L∞(Ω), it suffices to estimate ‖∂xi f (L−1)
j ‖L∞(Ω) and ‖∂xi ( f (L−1)

j − f̃ (L−1)
j )‖L∞(Ω). We derive

the requisite bounds below using mathematical induction. The rest of the proof is elementary
but fairly lengthy, and hence we divide it into four steps.

Step 1 Bound ‖∂xi f (�)
j ‖L∞(Ω) for � = 1, 2, . . . , L − 1, j = 1, 2, . . . , d�. By the chain rule, we

have

∂xi f (�)
j = ρ′

⎛⎝d�−1∑
k=1

W (�)
jk f (�−1)

k + b(�)
j

⎞⎠ d�−1∑
k=1

W (�)
jk ∂xi f (�−1)

k .

For the case � = 1, the assumptions |ρ′| � ρ1 (cf definition 3.1(a)) and |W (1)
ji | � R

yields

‖∂xi f (1)
j ‖L∞(Ω) �

∥∥∥∥∥ρ′
(

d∑
k=1

W (1)
jk xk + b(1)

j

)
W (1)

ji

∥∥∥∥∥
L∞(Ω)

� ρ1R.

For � � 2, the triangle inequality and the conditions |ρ′| � ρ1, |W (�)
jk | � R and d�−1 �

W imply

‖∂xi f (�)
j ‖L∞(Ω) � ρ1

d�−1∑
k=1

|W (�)
jk |‖∂xi f (�−1)

k ‖L∞(Ω) � ρ1RW max
k

‖∂xi f (�−1)
k ‖L∞(Ω).

Combining the preceding two estimates directly leads to

‖∂xi f (�)
j ‖L∞(Ω) � (ρ1R)�W�−1, � = 1, 2, . . . , L − 1, j = 1, 2, . . . , d�.

(3.6)
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Step 2 Bound ‖ f (�)
j − f̃ (�)

j ‖L∞(Ω) for � = 1, 2, . . . , L − 1, j = 1, 2, . . . , d�, assuming

ρ0, ρ1, η0, η1 � 1. For the case � = 1, by the definitions of f (1)
j and f̃ (1)

j , the
Lipschitz continuity of ρ, and the triangle inequality, we have

‖ f (1)
j − f̃ (1)

j ‖L∞(Ω)

=

∥∥∥∥∥ρ
(

d∑
k=1

W (1)
jk xk + b(1)

j

)
− ρ

(
d∑

k=1

W̃ (1)
jk xk + b̃(1)

j

)∥∥∥∥∥
L∞(Ω)

� η0

∥∥∥∥∥
d∑

k=1

W (1)
jk xk + b(1)

j −
d∑

k=1

W̃ (1)
jk xk − b̃(1)

j

∥∥∥∥∥
L∞(Ω)

� η0

d∑
k=1

|W (1)
jk − W̃ (1)

jk |‖xk‖L∞(Ω) + η0|b(1)
j − b̃(1)

j | � η0r(1 + ρ0W),

in view of the definition r = ‖θ − θ̃‖�∞ and the trivial estimate ‖xp‖L∞(Ω) � 1 for
all p = 1, . . . , d, since x ∈ [0, 1]d. Meanwhile, for the case � � 2, by the Lipschitz
continuity of and the uniform bound ρ0 on ρ, the triangle inequality and the induction
hypothesis, we obtain

‖ f (�)
j − f̃ (�)

j ‖L∞(Ω)

� η0

∥∥∥∥∥∥
d�−1∑
k=1

W (�)
jk f (�−1)

k + b(�)
j −

d�−1∑
k=1

W̃ (�)
jk f̃ (�−1)

k − b̃(�)
j

∥∥∥∥∥∥
L∞(Ω)

� η0|b(�)
j − b̃(�)

j |+ η0

d�−1∑
k=1

[
|W (�)

jk − W̃ (�)
jk |‖ f (�−1)

k ‖L∞(Ω)

+ |W̃ (�)
jk |‖ f (�−1)

k − f̃ (�−1)
k ‖L∞(Ω)

]
� η0r + η0rρ0d�−1 + η0R

d�−1∑
k=1

‖ f (�−1)
k − f̃ (�−1)

k ‖L∞(Ω)

� η0(1 + ρ0W)r + η0RWc�−1

with c� = maxk‖ f (�)
k − f̃ (�)

k ‖L∞(Ω). Then the preceding inequality implies

c� � η0(1 + ρ0W)r + η0RWc�−1.

By repeatedly applying the inequality and using the bound on c1, we arrive at

c� � η0r(1 + ρ0W)
(
1 + · · ·+ (η0RW)�−1

)
.

In particular, we directly obtain (for η0, R,W � 1)

‖ f (�)
j − f̃ (�)

j ‖L∞(Ω) � 2�ρ0η
�
0W�R�−1r, � = 1, 2, . . . , L − 1, j = 1, 2, . . . , d�.

(3.7)
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Step 3 Bound the term D(�)
j := ‖ρ′(

∑d�−1
k=1 W (�)

jk f (�−1)
k + b(�)

j ) − ρ′(
∑d�−1

k=1 W̃ (�)
jk f̃ (�−1)

k +

b̃(�)
j )‖L∞(Ω). By the Lipschitz continuity of ρ′, the triangle inequality, and the

bounds |ρ| � ρ0 and d�−1 � W , we have

D(�)
j � η1

∥∥∥∥∥∥
d�−1∑
k=1

W (�)
jk f (�−1)

k + b(�)
j −

d�−1∑
k=1

W̃ (�)
jk f̃ (�−1)

k − b̃(�)
j

∥∥∥∥∥∥
L∞(Ω)

� η1|b(�)
j − b̃(�)

j |+ η1

d�−1∑
k=1

[
|W (�)

jk − W̃ (�)
jk |‖ f (�−1)

k ‖L∞(Ω)

+ |W̃ (�)
jk |‖ f (�−1)

k − f̃ (�−1)
k ‖L∞(Ω)

]
� η1r(1 + ρ0W) + η1RW max

k
‖ f (�−1)

k − f̃ (�−1)
k ‖L∞(Ω).

This and the bound (3.7) imply

D(�)
j � 2�ρ0η1η

�−1
0 W�R�−1r. (3.8)

Step 4 Bound P(�)
i j := ‖∂xi( f (�)

j − f̃ (�)
j )‖L∞(Ω) for � = 1, 2, . . . , L − 1, j = 1, . . . , d�. We claim

P(�)
i j � �(�+ 2)ρ0ρ

�
1η1η

�−1
0 (RW)2�−1r, � = 1, 2, . . . , L − 1, j = 1, . . . , d�. (3.9)

For the case � = 1, the chain rule and the triangle inequality give

P(1)
i j =

∥∥∥∥∥ρ′
(

d∑
k=1

W (1)
jk xk + b(1)

j

)
W (1)

ji − ρ′

(
d∑

k=1

W̃ (1)
jk xk + b̃(1)

j

)
W̃ (1)

ji

∥∥∥∥∥
L∞(Ω)

�
∥∥∥∥∥ρ′

(
d∑

k=1

W (1)
jk xk + b(1)

j

)
− ρ′

(
d∑

k=1

W̃ (1)
jk xk + b̃(1)

j

)∥∥∥∥∥
L∞(Ω)

|W (1)
ji |

+

∥∥∥∥∥ρ′
(

d∑
k=1

W̃ (1)
jk xk + b̃(1)

j

)∥∥∥∥∥
L∞(Ω)

|W (1)
ji − W̃ (1)

ji |.

Then it follows from the bound (3.8) (with � = 1) that

P(1)
i j � 2ρ0η1Wr · R + ρ1r � 3ρ0η1RWρ1r.

Now suppose that the claim holds for some � � 1. Then for �+ 1, by the chain rule
again, we have

P(�+1)
i j =

∥∥∥∥∥ρ′
(

d�∑
k=1

W (�+1)
jk f (�)

k + b(�+1)
j

)
·

d�∑
k=1

W (�+1)
jk ∂xi f (�)

k

− ρ′

(
d�∑

k=1

W̃ (�+1)
jk f̃ (�)

k + b̃(�+1)
j

)
·

d�∑
k=1

W̃ (�+1)
jk ∂xi f̃ (�)

k

∥∥∥∥∥
L∞(Ω)

�
∥∥∥∥∥
(
ρ′

(
d�∑

k=1

W (�+1)
jk f (�)

k + b(�+1)
j

)
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− ρ′

(
d�∑

k=1

W̃ (�+1)
jk f̃ (�)

k + b̃(�+1)
j

))
d�∑

k=1

W (�+1)
jk ∂xi f (�)

k

∥∥∥∥∥
L∞(Ω)

+

∥∥∥∥∥ρ′
(

d�∑
k=1

W̃ (�+1)
jk f̃ (�)

k + b̃(�+1)
j

)

×
(

d�∑
k=1

W (�+1)
jk ∂xi f (�)

k −
d�∑

k=1

W̃ (�+1)
jk ∂xi f̃ (�)

k

)∥∥∥∥∥
L∞(Ω)

:= I1 + I2.

It follows directly from the bounds (3.8) and (3.6) and the triangle inequality that

I1 � 2(�+ 1)ρ0ρ
�
1η1η

�
0R2�+1W2�+1r.

Similarly, the bound (3.6), the induction hypothesis for P(�)
i j , and the condition d� � W

imply

I2 � ρ1

d�∑
k=1

[
|W (�+1)

jk − W̃ (�+1)
jk |‖∂xi f (�)

k ‖L∞(Ω)

+ |W̃ (�+1)
jk |‖∂xi f (�)

k − ∂xi f̃ (�)
k ‖L∞(Ω)

]
� ρ1Wr · (ρ1R)�W�−1 + ρ1WR · �(�+ 2)ρ0ρ

�
1η1η

�−1
0 (RW)2�−1r

= ρ�+1
1 (RW)�r + �(�+ 2)ρ0ρ

�+1
1 η1η

�−1
0 (RW)2�r.

Consequently,

P(�+1)
i j � I1 + I2 � (�+ 3)(�+ 1)ρ0ρ

�+1
1 η1η

�
0(RW)2�+1r,

which completes the induction step and proves the claim (3.9).

Finally, the inequalities (3.5), (3.6) and (3.9) together lead to

‖∂xi ( f (L) − f̃ (L))‖L∞(Ω) � rW(ρ1R)L−1WL−2

+ (L + 1)(L − 1)RW · ρ0ρ
L−1
1 η1η

L−2
0 (RW)2L−3r

� L2ρ0ρ
L−1
1 η1η

L−2
0 (RW)2L−2r.

This shows the bound (3.3). Meanwhile, we have

sup
f (L)∈N

‖|∇ f (L)(x)|‖L∞(Ω) � sup
f (L)∈N

(
d∑

i=1

‖∂xi f (L)‖2
L∞(Ω)

) 1
2

.

Direct computation gives

∂xi f (L) = ∂xi

⎛⎝dL−1∑
j=1

W (L)
j f (L−1)

j + B(L)

⎞⎠ =

dL−1∑
j=1

W (L)
j ∂xi f (L−1)

j .
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This, the condition |W (L)
j | � R and the bound (3.6) imply

‖∂xi f (L)‖L∞(Ω) � RW(ρ1R)L−1WL−2 = RL(ρ1W)L−1.

Combining these estimates yields the bound (3.4). This completes the proof of lemma 3.4. �

Remark 3.3. Throughout the proof, without loss of generality, we have assumed
ρ0, ρ1, η0, η1 � 1. Otherwise, when ρ0, ρ1, η0, η1 � 1, we have

‖ f (�)
k − f̃ (�)

k ‖L∞(Ω) � 2�W�R�−1r, D(�)
i j � 2�W�R�−1r, and

‖∂xi ( f (�)
j − f̃ (�)

j )‖L∞(Ω) � �(�+ 2)(RW)2�−1r.

In particular, we have

‖∂xi ( f (L) − f̃ (L))‖L∞(Ω) � L2(RW)2L−2r.

The next result shows that the covering number C(G, ‖ · ‖L∞(Ω), ε) can be reduced to that of
the parameter space Θ.

Corollary 3.1. Let the activation function ρ satisfy (a) and (b) in definition 3.1. Then there
holds

C(G, ‖ · ‖L∞(Ω), ε) � C
(
Θ, ‖ · ‖�∞ ,

ε

Λ

)
, with Λ :=

√
dL2ρ0ρ

L−1
1 η1η

L−2
0 (RW)2L−2. (3.10)

Proof. It follows from lemma 3.4 that

‖gθ − g̃θ̃‖L∞(Ω) � ‖|∇ f (L) −∇ f̃ (L)|‖L∞(Ω)

�
(

d∑
i=1

‖∂xi f (L) − ∂xi f̃ (L)‖2
L∞(Ω)

) 1
2

�
√

dL2ρ0ρ
L−1
1 η1η

L−2
0 (RW)2L−2‖θ − θ̃‖∞. (3.11)

Thus, the mapping θ �→ gθ is Lipschitz continuous, which enables reducing the covering num-
ber of the function class G to that of the parametric space Θ. With the given choice of Λ, the
estimate (3.11) and the definition of C(G, ‖ · ‖L∞(Ω), ε) imply the assertion. �

Moreover, the parametrization Θ is an Nθ-dimensional ball with a radius R (with respect to
the Euclidean �∞ norm ‖ · ‖�∞). Recall that the total number Nθ of parameters in the network
f (L) is Nθ =

∑L
�=1d�d�−1 + d�. Next, we recall a basic result on the covering number of a

hypercube with respect to the maximum norm ‖ · ‖�∞ , which follows directly from a counting
argument. Note that a similar statement holds for any ball in a finite-dimensional Banach space
[17, proposition 5].

Lemma 3.5. Let n ∈ N, R ∈ [1,∞), ε ∈ (0, 1), and BR := {x ∈ R
n : ‖x‖�∞ � R}. Then

there holds

log C(BR, ‖ · ‖�∞ , ε) � n log

(
2R
ε

)
.
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Now we can bound the statistical error EZn [supu∈N |L1(u) − L̂1(u)|].

Proposition 3.2. The following estimate holds

EZn

[
sup
u∈N

|L1(u) − L̂1(u)|
]

� C1
RLNL

θ (
√

log n +
√

log R +
√

log Nθ)√
n

,

where the constant C1 > 0 depends on |Ω|, d, L, ρL
1 , ρ0, η0, and η1 at most polynomially.

Proof. Combining the estimate (3.10) with lemma 3.5 gives, with
Λ :=

√
dL2ρ0ρ

L−1
1 η1η

L−2
0 (RW)2L−2

log C
(
G, ‖ · ‖L∞(Ω), ε

)
� log C

(
Θ, ‖ · ‖�∞ ,

ε

Λ

)
� Nθ log

(
2RΛ
ε

)
. (3.12)

By the estimate (3.4), one may take M =
√

dRL(ρ1W)L−1. This choice, the estimate (3.12) and
the refined Dudley’s formula in lemma 3.3 with the choice δ = 1√

n yield

Rn(G) � inf
0<δ<M

(
4δ +

12√
n

∫ M

δ

√
log C(G, ‖ · ‖L∞ , ε) dε

)

� 4√
n
+

12√
n

∫ M

1√
n

√
Nθ log

(
2RΛ
ε

)
dε

� 4√
n
+

12√
n

M
√

Nθ log(2RΛ
√

n)

� 4√
n
+

12√
n

√
dRL(ρ1W)L−1

√
Nθ

√
log(2R ·

√
dL2ρ0ρ

L−1
1 η1η

L−2
0 (RW)2L−2

√
n).

Since W � Nθ and noting L is of constant layer (c log(d + 2), cf proposition 3.1), we may
bound the log term by

log(2R ·
√

dL2ρ0ρ
L−1
1 η1η

L−2
0 (RW)2L−2√n)

� 2L log(R) + 2L log Nθ + log n + log(dL2ρ0ρ
L
1η1η

L
0 )

� 2L(log(nRNθ) + C0),

with the constant C0 depending on d, L, ρ0, ρ1, η0 and η1. Substituting this bound directly
yields

Rn(G) � 4√
n
+

12√
n

√
dRL(ρ1Nθ)L−1

√
Nθ

√
2L

(√
log n +

√
log R +

√
log Nθ +

√
C0

)
� C1

RLNL
θ (
√

log n +
√

log R +
√

log Nθ)√
n

,

where the constant C1 > 0 depends on d, L, ρ1, ρ0, η0, and η1 at most polynomially. Combining

the preceding results gives the desired bound for EZn

[
supu∈N |L1(u) − L̂1(u)|

]
. �

Remark 3.4. Now we specialize the result to two popular choices of the activation function,
i.e., ρ = 1/(1 + e−x) and ρ = (ex − e−x)/(ex + e−x). It can be verified that for both activation
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functions, there holds ρ0 = ρ1 = η0 = η1 = 1, and both are exponential PU admissible of type
( j, 0) for any j ∈ N.

Next we bound the statistical error EZn[supu∈N |L2(u) − L̂2(u)|]. Given an L-layer neural
network class N , we define an associated function class

H =
{

h : ∂Ω ⊂ [0, 1]d → R such that h(x) = |Tu(x) − g(x)|, ∀ x ∈ ∂Ω, with u ∈ N
}
.

Lemma 3.6. Let the activation function ρ satisfy conditions (a) and (b) in definition 3.1.
Then for hθ, h̃θ̃ ∈ H, there hold

‖hθ − h̃θ̃‖L∞(∂Ω) � 2Lρ0WL(Rη0)L−1‖θ − θ̃‖�∞ ,

‖hθ‖L∞(∂Ω) � ‖g‖L∞(∂Ω) + 2ρ0RW .

Proof. Let r = ‖θ − θ̃‖�∞ . By the definition of H, there exist two neural networks f (L) and
f̃ (L) (with parameters θ and θ̃, respectively) such that h = |T f (L) − g| and h̃ = |T f̃ (L) − g|. Next
we show that the map from θ → hθ is Lipschitz. Indeed, by the triangle inequality, we have

‖hθ − h̃θ̃‖L∞(∂Ω) = ‖|T f (L) − g| − |T f̃ (L) − g|‖L∞(∂Ω)

� ‖T f (L) − T f̃ (L)‖L∞(∂Ω).

By the definitions of f (L) and f̃ (L), the triangle inequality, and the bound (3.7), we have

‖ f (L) − f̃ (L)‖L∞(∂Ω) =

∥∥∥∥∥∥
⎛⎝dL−1∑

j=1

W (L)
j f (L−1)

j + b(L)

⎞⎠−

⎛⎝dL−1∑
j=1

W̃ (L)
j f̃ (L−1)

j + b̃(L)

⎞⎠∥∥∥∥∥∥
L∞(∂Ω)

� |b(L) − b̃(L)|+
dL−1∑
j=1

[
|W (L)

j − W̃ (L)
j |‖ f (L−1)

j ‖L∞(∂Ω)

+
∣∣∣W̃ (L)

j |‖ f (L−1)
j − f̃ (L−1)

j ‖L∞(∂Ω)

]
� r + rρ0W + RW · 2(L − 1)ρ0η

L−1
0 WL−1RL−2r

� 2Lρ0rWL(η0R)L−1.

This shows the first estimate. Similarly, we deduce

‖ f (L)‖L∞(∂Ω) =

∥∥∥∥∥∥
dL−1∑
j=1

W (L)
j f (L−1)

j + b(L)

∥∥∥∥∥∥
L∞(∂Ω)

�
dL−1∑
j=1

|W (L)
j |‖ f (L−1)

j ‖L∞(∂Ω) + |b(L)|

� R + ρ0RW � 2ρ0RW .

22



Inverse Problems 38 (2022) 075003 B Jin et al

This and the triangle inequality imply

sup
h∈H

‖h‖L∞(∂Ω) � sup
f (s)∈N

‖ f (L)‖L∞(∂Ω) + ‖g‖L∞(∂Ω).

This completes the proof of the lemma. �

Next we bound the statistical error EZn[supu∈N |L2(u) − L̂2(u)|].

Proposition 3.3. The following estimate holds

EZn

[
sup
u∈N

|L2(u) − L̂2(u)|
]

� C2γ
RN

3
2
θ (
√

log n +
√

log R +
√

log Nθ)√
n

,

where the constant C2 depends on
√

L, ρ0, ηL
0 and B.

Proof. The proof technique is similar to proposition 3.2. First, similar to lemma 3.2, we can
derive

EZn

[
sup
u∈N

|L2(u) − L̂2(u)|
]

� 2γ|∂Ω|Rn(H). (3.13)

By lemma 3.6, with Λ′ := 2LWL(η0R)L−1ρ0, for any hθ, h̃θ̃ ∈ H, we have

‖hθ − h̃θ̃‖L∞(∂Ω) � Λ′‖θ − θ̃‖∞.

This and lemma 3.5 directly lead to

log C
(
H, ‖ · ‖L∞(∂Ω), ε

)
� log C

(
Θ, ‖ · ‖�∞ ,

ε

Λ′

)
� Nθ log

(
2RΛ′

ε

)
. (3.14)

Similarly, with B := ‖g‖L∞(∂Ω), by lemma 3.6, we may take M′ = B + 2ρ0RW . Using the
estimate (3.14) in the refined Dudley’s formula from lemma 3.3 with δ = 1√

n yields

Rn(H) � 4√
n
+

12√
n

∫ M′

1√
n

√
Nθ log

(
2RΛ′

ε

)
dε

� 4√
n
+

12√
n

M′√Nθ

√
log(2RΛ′√n)

� 4√
n
+

12√
n

(B + 2ρ0RW)
√

Nθ

√
log(2R · 2LWL(η0R)L−1ρ0

√
n).

Since W � Nθ, L � 1, we have

log(RLWL(η0R)L−1ρ0
√

n) � L log R + L log Nθ + log n + C0,
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with the constant C0 depending on L, ρ0 and η0. Substituting this bound yields

Rn(H) � 4√
n
+

12√
n

(B + 2ρ0RW)
√

Nθ

√
L
(√

log R +
√

log Nθ +
√

log n +
√

C0

)

� C2
RN

3
2
θ (
√

log n +
√

log R +
√

log Nθ)√
n

,

where the constant C2 depends on L, ρ0, η0 and B at most polynomially. Combining the

preceding results gives the desired error bound for EZn

[
supu∈N |L2(u) − L̂2(u)|

]
. �

Finally we state the main result of the section, i.e., the generalization error bound.

Theorem 3.2. Let the minimizer u∗ to the functionalL satisfy u∗ ∈ W2,1(Ω), and ρ be expo-
nential/polynomial PU-admissible. Then for any ε > 0, there exists a neural network class
given by⎧⎨⎩N

(
c1 log(d + 2), c2ε

− d
1−μ , c3ε

− 4+6d
1−μ

)
, if ρ is exponential PU-admissible,

N (c1 log(d + 2), c2ε
−d, c3ε

−(4+6d)), if ρ is polynomial PU-admissible,

with ρ being the activation function, such that when trained with

⎧⎪⎨
⎪⎩

n1 = O

(
ε
−2− 2c1(4+7d) log(d+2)

1−μ −ε′
)

, n2 = O

(
ε
−2− 8+15d

1−μ −ε′
)

, if ρ is exponential PU admissible,

n1 = O(ε−2−2c1(4+7d) log(d+2)−ε′ ), n2 = O(ε−2−(8+15d)−ε′ ), if ρ is polynomial PU admissible,

training points (ε′ > 0 arbitrarily small), and an optimization algorithm A that well trains
the neural network with parameters θA, the generalization error between the optimal network
approximation uθA and u∗ is bounded by

L(uθA) − L(u∗) � Cγε,

where the constant C > 0 depends on ρ0, ρ1, η0, η1, α1 and d.

Proof. Fix an arbitrary ε > 0. Then the choice of the neural network and proposition 3.1
imply

Eapprox � C(α1, Cem)γε.

Meanwhile, it follows from propositions 3.2 and 3.3, and the inequality L > 1 that with n1

sampling points in the domain Ω and n2 sampling points on the boundary ∂Ω, there holds

Estats � C1
RLNL

θ (
√

log n1 +
√

log R +
√

log Nθ)√
n1

+ C2γ
RN

3
2
θ (
√

log n2 +
√

log R +
√

log Nθ)√
n2

:= I1 + I2.

Now we discuss the case of ρ being exponential PU admissible, and the other case follows

analogously. Substituting the network parameters L = c1 log(d + 2), Nθ = c2ε
− d

1−μ and R =
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ε−
4+6d
1−μ into the above estimate for Estats, we have

I1 � C′
1

ε−
c1 log(d+2)(4+7d)

1−μ

(√
log n1 +

√
log

(
ε−

4+6d
1−μ

)
+

√
log

(
ε−

d
1−μ

))
√

n1
,

where the constant C′
1 depends on C1, c2, c3 and d. Then by choosing n1 to be

O(ε−2− 2c1 log(d+2)(4+7d)
1−μ −ε′), with a small ε′ > 0, and using the fact that the function x−ν log x

is uniformly bounded over [1,∞) for any ν > 0, we deduce I1 � C′′
1ε. Similarly, we derive

I2 � C′
2γ

ε−
8+15d
2(1−μ)

(√
log n2 +

√
log

(
ε−

4+6d
1−μ

)
+

√
log

(
ε−

d
1−μ

))
√

n2
,

where the constant C′
2 depends on C1, c2, c3, and d. Thus the choice n2 = O(ε−2− 8+15d

1−μ −ε′)
yields I2 � C′′

2ε. Consequently, we arrive at

Estats � C′′
1ε + C′′

2γε = (C′′
1 + C′′

2γ)ε.

Then the assertion follows from lemma 3.1, since the optimization error Eopt is assumed to be
small. �

Remark 3.5. Theorem 3.2 indicates that the generalization error can be made arbitrarily
small, by choosing the neural network sufficiently wide and trained with sufficiently many
training points. The convergence rate is dependent on the numbers of training points (n1 and
n2), and domain dimension d. It is also observed that the number n2 of boundary training points
can be taken to be much smaller than the number of training points in the domain. Note that in
the analysis, γ is taken to be a fixed constant, which can be large. The analysis indicates that the
corresponding statistical error can be much reduced by taking a large n2, but the approximation
error on the boundary term behaves in a different way.

4. Numerical experiments and discussions

Now we demonstrate the performance of the proposed algorithm. The activation ρ is taken
to be tanh. Unless otherwise specified, the neural network is chosen to have nine layers and
811 parameters in total. The training is conducted with n1 = 10 000 interior training points
and n2 = 4000 boundary training points (n2 = 1000 for example 3), and Huber constant ζ =
0.01. The weighing parameter γ is taken to be γ = 100 and γ = 10 for examples 1, 2 and 3,
respectively. The resulting empirical loss is minimized by ADAM [39], with a learning rate 8
× 10−4 (for 5000 epochs) and 1 × 10−4 (for 10 000 epochs and 5000 epochs) for examples
1, 2 and 3, respectively. Similar results can be obtained by other optimizers, e.g., L-BFGS
[15]. Throughout, the domain Ω is taken to be the unit square Ω = (0, 1)2, and we maintain
an almost two-to-one voltage potential g on the boundary given by g(x, y) = y, which ensures
that the current density magnitude a does not vanish on a set of positive Lebesgue measure in
2D [54]. All computations are performed on TensorFlow 1.15.0 using Intel Core i7-11700K
Processor with 16 CPUs.
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Figure 2. The reconstructions for example 4.1 with exact data, obtained by the neural
network approach (top) and the iterative algorithm of Nachman et al (bottom).

We first solve problem (1.1) using MATLAB PDE toolbox, and then compute the exact data
a†. The noisy data aδ is generated by adding Gaussian random noise pointwise as

aδ(x) = a†(x) + δ · a†(x)ξ(x),

where δ � 0 denotes the (relative) noise level, and the random variable ξ(x) follows the stan-
dard Gaussian distribution. In the presence of data noise, computing σ directly via the formula
σ = aδ

|∇u| is ill-advised, since the perturbation in aδ is inherited by σ. To partly overcome the

issue, we denoise the data aδ at the beginning of step (ii) of the algorithm (cf section 2.2)
using a feedforward network with nine layers and each hidden layer with 10 neurons, follow-
ing the idea of deep image prior [68]. Denoising is also employed in the iterative algorithm
(cf section 2), without which it is observed to be fairly unstable, since it does not include any
regularization directly in the formulation to overcome the inherent ill-posedness of the inverse
problem.

We measure the accuracy of the reconstruction σ̂ (with respect to the exact conductivity σ†)
by the relative L2 error e(σ̂) over the domain Ω (or the subdomain Ω′ ⊂ Ω for partial data),
defined by

e(σ̂) = ‖σ† − σ̂‖L2/‖σ†‖L2 .

The first example is concerned with recovering a smooth conductivity σ† with four
modes [54].

Example 4.1. In this example, taken from [54], the conductivity
σ† is a four-mode function: σ†(x, y) = 1.1 + 0.3(α(x, y) − β(x, y) − γ(x, y)),
with α(x, y) = 0.3(1 − 3(2x − 1))2e−9(2x−1)2−(6y−2)2

, β(x, y) = ( 3(2x−1)
5 − 27(2x − 1)3 −

(3(2y − 1))5)e−9(2x−1)2−9(2y−1)2
, and γ(x, y) = e−(3(2x−1)+1)2−9(2y−1)2

.

First we show the reconstruction performance. Figure 2 shows the recovered conductivity
σ̂ for exact data and the error |σ̂ − σ†|, along with the results by the iterative approach (cf
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Figure 3. Noisy data aδ versus denoised data for example 4.1 with δ = 10% noise
(top), and the reconstructions by the neural network approach (middle) and the iterative
algorithm at the 14th iterations (bottom).

section 2). The error plots show that the neural network approximation has largest error in
regions near the top-bottom edges, and that the attainable accuracy is inferior to that by the
iterative algorithm (which can be made arbitrarily accurate for exact data, since the algorithm
converges to the exact conductivity σ† [54]). This accuracy limitation is attributed to the opti-
mization error; see the discussions below. For the data with 10% noise, denoising using neural
networks is quite effective in recovering the current density magnitude a, cf figure 3, concur-
ring with the empirical success for deep image prior [68]. It is worth noting that for noisy
data aδ , denoising alone is insufficient to ensure the convergence of the iterative algorithm,
which is only guaranteed for admissible data pairs. Thus the iterative algorithm requires care-
ful early stopping, in order to obtain the best possible reconstruction, and a few extra iterations
can greatly deteriorate the reconstruction quality. To the best of our knowledge, a provably
convergent stopping rule for the algorithm is still unavailable. Hence, in the numerical experi-
ments, we have chosen the optimal iteration index so that the error is smallest. In the proposed
approach, the neural network learns the direct solution u from noisy aδ , and it is observed to be
very robust with respect to the presence of noise, cf figure 4. More surprisingly, the approach
seems to be fairly stable in the iteration index, cf figure 5 below, and additional iterations do not
lead to much deteriorated reconstructions, despite the fact that the employed neural network
has high expressivity for approximating rather irregular functions and thus in principle might
be susceptible to severe over-fitting.
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Figure 4. The reconstructions of u for example 4.1 with exact data (top) and with data
with δ = 10% noise (bottom), obtained by the neural network approach.

Figure 5. The convergence of the empirical loss and the L2-relative error e(σ̂) versus
training epoch k for example 4.1 at various noise levels.

In the neural network approach, there are various problem/algorithmic parameters influenc-
ing the overall performance, e.g., number of training points (n1 and n2), network parameters
(width, depth, and activation function) and noise level δ. However, a comprehensive guidance
for properly choosing these parameters is still completely missing. Instead, we explore the
issue empirically. Tables 1 and 2 show the relative L2-error of the recovered voltage û and con-
ductivity σ̂, respectively, at different noise levels and different n1. The algorithm is observed to
be very robust with respect to the presence of data noise, and the reconstruction remains fairly
accurate even for up to 10% data noise. This contrasts sharply with more traditional optimiza-
tion based approaches. However, there is also an accuracy limitation of the approach, i.e., the
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Table 1. The L2-relative error of the recovered u vs δ and n1.

n1

δ

0% 1% 10%

4000 1.73 × 10−2 9.98 × 10−3 1.06 × 10−2

6000 9.57 × 10−3 1.50 × 10−2 1.02 × 10−2

8000 9.95 × 10−3 9.95 × 10−3 9.83 × 10−3

10 000 1.23 × 10−2 1.51 × 10−2 9.50 × 10−3

Table 2. The variation of the relative L2 error e(σ̂) with respect to various parameters.

(a) e vs n1 and δ

n1

δ

0% 1% 10%

4000 4.83 × 10−2 4.79 × 10−2 4.80 × 10−2

6000 4.82 × 10−2 5.06 × 10−2 4.70 × 10−2

8000 4.89 × 10−2 4.82 × 10−2 4.75 × 10−2

10 000 4.68 × 10−2 4.91 × 10−2 4.70 × 10−2

(b) e vs γ and ζ

γ
ζ

0.01 0.1 1

10 4.99 × 10−2 5.06 × 10−2 4.71 × 10−2

100 4.70 × 10−2 4.81 × 10−2 4.79 × 10−2

1000 4.79 × 10−2 4.79 × 10−2 4.87 × 10−2

10 000 4.79 × 10−2 4.79 × 10−2 4.92 × 10−2

(c) e vs L and W

L
W

10 20 40

2 4.17 × 10−2 4.17 × 10−2 4.20 × 10−2

4 4.31 × 10−2 4.08 × 10−2 4.26 × 10−2

6 4.67 × 10−2 4.14 × 10−2 4.30 × 10−2

9 4.70 × 10−2 4.50 × 10−2 4.73 × 10−2

(d) e vs n1 and n2

n2

n1

4000 6000 8000 10 000

40 8.11 × 10−2 9.04 × 10−2 6.96 × 10−2 7.21 × 10−2

400 4.79 × 10−2 4.75 × 10−2 5.06 × 10−2 4.81 × 10−2

1000 4.66 × 10−2 4.57 × 10−2 4.88 × 10−2 4.70 × 10−2

4000 4.69 × 10−2 4.64 × 10−2 4.63 × 10−2 4.78 × 10−2
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Figure 6. Noisy data aδ versus denoised data for example 4.2 with δ = 10% noise
(top), and the reconstructions obtained by the neural network (middle) and the iterative
algorithm (bottom) at six iterations.

reconstruction cannot be made arbitrarily accurate for exact data a†. This is attributed to the
optimization error, which has also been observed across a broad range of solvers based on neu-
ral networks [22, 58]. Table 2 shows that the error e(σ̂) of the recovered conductivity σ̂ does
not vary much with various parameters, e.g., different network architectures. This agrees with
the convergence behavior of the optimization algorithm in figure 5: it is largely independent of
the noise level δ, and the value of the loss eventually stagnates at a certain level, so is for the
reconstruction error e(σ̂). Thus, the optimization error seems dominating when the noise level
δ is low. In particular, further iterations do not affect much the accuracy of the reconstructions.
Although not presented, a similar convergence behavior is also observed for much larger neural
networks. Of course, if the neural network is vastly expressive and the optimization algorithm
continues running for many iterations, it is expected and also numerically observed that over-
fitting eventually will kick in, due to the lack of explicit regularization, necessitating the use
of early stopping or explicit regularization then. These studies show the typical behavior of
neural network based approaches, i.e., high-robustness to the data noise and the low sensitivity
to the stopping iteration index.

Last we briefly comment on the computational expense. Due to the high non-convexity of
the empirical loss L̂γ(θ) (in θ), a global optimizer is often challenging to obtain. The stand-
alone optimizers, e.g., ADAM/L-BFGS, often take hundreds of iterations to reach convergence,
cf figure 5. Thus, overall the neural network approach appears less efficient than the iterative
algorithm when the direct problem is solved using the standard Galerkin finite element method,
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Figure 7. The reconstructions of u for example 4.2 without (top) and with (bottom) δ =
10% noise in the data, obtained by the neural network approach.

Figure 8. The reconstructions for example 4.3 for full data (top) and partial data with
1% noise.

for which there are highly customized and thus very efficient linear solvers. One important issue
is to accelerate the neural network approach.

The second example is concerned with recovering a discontinuous conductivity σ†.

Example 4.2. The exact conductivity σ† is σ†(x, y) = 1 + χ{x>0.5} e−2((x−0.5)2+(y−0.5)2),
where χS denotes the characteristic function of the set S.

We present reconstructions for the data with 10% noise. The results by the neural network
approach and the iterative one in figure 6 indicate that the reconstructions by the two algorithms
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Figure 9. The reconstructions of u for example 4.3 for full data (top) and partial data
(bottom), with δ = 10% noise.

are of very similar qualities. The error plots indicate that for both approaches, the error is mainly
along the discontinuous interface. Quantitatively, the relative L2 error of the conductivity by
the neural network approach is 3.68 × 10−2, which is of almost no difference when compared
to that for the noiseless case (3.99 × 10−2). This clearly shows the remarkable robustness of
the approach for noisy data. These observations fully agree with that for the recovery of the
voltage u for exact and noisy data in figure 7: visually there is no difference between the two
cases.

The last example is concerned with recovering the Shepp–Logan CT phantom.

Example 4.3. In this example, the exact conductivity σ† is a piecewise constant function
corresponding to the standard Shepp–Logan CT image. The intensity of the image is rescaled
to a conductivity distribution σ ranging from 1 to 1.8 S m−1.

In this example, for the reconstruction of σ, we consider 1% noise, since the current den-
sity magnitude a is highly challenging for denoising, due to the low contrast of conductivity
in different regions (within the range from 1 to 1.8). The reconstructions of the conductivity
for data with 1% noise in figure 8 is nearly identical with that for exact data (which is not
shown). It only tends to be less accurate near the top-bottom edges of the outer circle, where
the exact conductivity σ† undergoes big sudden jumps. This observation agrees with the previ-
ous examples. Nevertheless, the learning of the neural network at step (a) of the algorithm (cf
section 2.2) is not affected much by high noise levels: even for up to 10% noise, the recovered
voltage u remains highly accurate, cf figure 9, confirming the remarkable robustness of the
neural network approach with respect to data noise.

Last, we examine the case of partial interior data, i.e. with a on a subdomain Ω′ ⊂ Ω. Then
the population loss L′

γ(u) is given by

L′
γ(u) =

∫
Ω′

a|Du|+ γ

∫
∂Ω

a|u − g|ds.
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This functional is then discretized by neural networks, but with random sampling points in the
subdomain Ω′. In this case, we reconstruct only the conductivity distributions inside Ω′. In the
experiment, we take Ω′ to be a square region inside the outer circle. The reconstructions for
data with 1% noise in figure 8 show that the network can accurately recover the conductivity
values from partial data apart from the regions near the outer circle. This shows the feasibility
of the approach for partial data, corroborating existing theoretical results [49]. Interestingly,
even with 10% noise in the data, the recovery of u remains very accurate, cf figure 9, which
again shows the robustness of the approach with respect to data noise.

5. Conclusion

In this work we have developed a direct and novel neural network based reconstruction tech-
nique for imaging the conductivity distribution from the magnitude of the internal current den-
sity. The reconstruction problem was formulated as a relaxed weighted least-gradient problem,
whose minimizer was then approximated by standard fully connected feedforward neural net-
works. We have also provided a preliminary analysis for the convergence rate of the generaliza-
tion error, which provides guidelines for properly choosing the depth, width, the total number
of parameters of neural networks, and the number of training points in order to achieve the
desired convergence rate. The performance and distinct features of the proposed approach were
illustrated on a wide range of numerical experiments.

The excellent performance of the neural network based algorithm motivates further
research, for which there are several interesting directions. First, the numerical findings suggest
that the neural network reconstruction is highly robust with respect to noise. This is commonly
attributed to the implicit bias induced by the neural network architecture (e.g., deep image prior
[68]) as well as the optimizer. However, the precise characterization of the implicit bias within
the context or the mechanism behind the robustness remains mysterious. Second, the relative
approximation errors for the neural network reconstructed conductivities are usually only of
order 10−2, even for relatively large neural networks. This appears to be suboptimal, in view of
the approximation capacity of DNNs. The experiments indicate that the source of error might
be attributed to the optimization aspect: the optimizer may have only found a local minimizer
due to the complex landscape, and may be unable to reach a global optimizer. Then one natural
question is how to achieve better approximation by choosing optimization algorithms differ-
ent from stand-alone optimizers, e.g., L-BFGS, SGD and Adam. Note that these algorithms
often take many iterations to reach convergence, and acceleration strategies are highly desired
for better computational efficiency. Third, it is interesting to extend the convergence analysis
to related models, e.g., complete electrode model for CDII or other imaging modalities with
variational formulations. Fourth and last, one highly acclaimed feature of approaches based on
DNNs is that they may hold significant potentials to overcome the notorious curse of dimen-
sionality when the solution satisfies certain favorable properties, e.g., lying in Barron space
[43]. It is thus of much interest to extend the analysis and numerics to the high-dimensional
setting.

Data availability statement

All data that support the findings of this study are included within the article (and any
supplementary files).
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