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SUMMARY There is an urgent need for new antimicrobial strategies for treating
complex infections and emerging pathogens. Human mesenchymal stromal cells
(MSCs) are adult multipotent cells with antimicrobial properties, mediated through
direct bactericidal activity and modulation of host innate and adaptive immune cells.
More than 30 in vivo studies have reported on the use of human MSCs for the treat-
ment of infectious diseases, with many more studies of animal MSCs in same-species
models of infection. MSCs demonstrate potent antimicrobial effects against the
major classes of human pathogens (bacteria, viruses, fungi, and parasites) across a
wide range of infection models. Mechanistic studies have yielded important insight
into their immunomodulatory and bactericidal activity, which can be enhanced
through various forms of preconditioning. MSCs are being investigated in over 80
clinical trials for difficult-to-treat infectious diseases, including sepsis and pulmonary,
intra-abdominal, cutaneous, and viral infections. Completed trials consistently report
MSCs to be safe and well tolerated, with signals of efficacy against some infectious
diseases. Although significant obstacles must be overcome to produce a standar-
dized, affordable, clinical-grade cell therapy, these studies suggest that MSCs may
have particular potential as an adjunct therapy in complex or resistant infections.

KEYWORDS antimicrobial, cell therapy, clinical trials, host-directed therapy,
immunomodulation, immunotherapy, infectious diseases, mesenchymal stromal cells,
pathogens

INTRODUCTION

here is an urgent need to develop new therapeutic strategies for treating infec-

tious diseases (1, 2). Research approaches include pathogen-directed therapies,
comprising innovative antimicrobial compounds and drug combinations, as well as
host-directed therapies (HDTs), which enhance the immune response to promote
pathogen clearance. A wide variety of candidate HDTs have been proposed, includ-
ing repurposed drugs, recombinant proteins, monoclonal antibodies, and cellular
therapies (3-5).

Mesenchymal stromal cells (MSCs) are adult multipotent cells with immunomodula-
tory, anti-inflammatory, and antimicrobial properties (6). More than 1,000 clinical trials
into MSC therapies have been registered on ClinicalTrials.gov, of which the majority
study their potential in promoting tissue repair and regeneration after injury or modu-
lation of dysregulated inflammation (as in the acute respiratory distress syndrome and
acute graft rejection) (https://clinicaltrials.gov/). However, MSCs are also being investi-
gated to treat infectious diseases and/or sepsis. These clinical trials (>80 to date
[https://clinicaltrials.gov/]) are supported by laboratory studies exploring diverse anti-
microbial mechanisms of MSCs in various infection models (7-9).

This review summarizes and critically appraises the preclinical and clinical evidence
for MSC efficacy against bacterial, viral, fungal, and parasitic infections. We also give an
overview of the current limitations of MSC therapies, the key questions around the
source and nature of MSC therapy, and finally the therapeutic potential of MSCs for
treating complex human infections for which there are limited treatment options.
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MESENCHYMAL STROMAL CELLS

MSCs are nonhematopoietic multipotent adult stromal cells that contribute to tis-
sue repair and regeneration across the body. They were first isolated from bone mar-
row where they play a supportive role in the hematopoietic stem cell niche (10). They
have since been found in the perivascular component of a diverse range of organs,
including the lung, umbilical cord (Wharton's jelly), and adipose tissue (11). They have
broad in vitro differentiation potential, including into cells of the mesenchymal lineage
(osteoblasts, adipocytes, and chondrocytes) (12) and also into ecto- and endodermal
cells, such as lung epithelium and astrocytes (13). In health, MSCs have important regu-
latory roles in inflammation and can modulate the activity of immune cells, including
dendritic cells (DCs), monocytes/macrophages, neutrophils, and lymphocytes that
drive regenerative processes (14). MSCs express a range of Toll-like receptors (TLRs)
through which they sense host injury and pathogen activity (15).

MSCs are defined by the International Society for Cellular Therapy (ISCT) (16) as (i)
being plastic-adherent under standard culture conditions; (ii) being able to differenti-
ate in vitro into osteoblasts, adipocytes, and chondroblasts; and (iii) having a specific
surface antigen profile (positive for CD105, CD73, and CD90; negative for CD45, CD34,
CD14, CD11b, CD79¢«, CD19, or human leukocyte antigen [HLAI-DR). The ISCT distin-
guishes mesenchymal stromal cells from “mesenchymal stem cells,” which must have
demonstrable self-renewal properties, and they recommend the use of the abbrevia-
tion MSCs for mesenchymal stromal cells supplemented by the tissue-source origin of
the cells to reflect any tissue-specific properties (17).

Tissue Sources for MSCs

Bone marrow-derived MSCs (BM-MSCs) remain the most extensively studied tissue
source, which are employed for the majority of in vivo infection studies and clinical tri-
als using human MSCs (Tables 1 to 3). However, a wide range of other tissue sources
are increasingly under investigation for infectious diseases, including adipose tissue
(AD-MSCs) (18-20), umbilical cord blood or umbilical cord connective tissue
(Wharton's jelly) (UC-MSCs) (21, 22), menstrual blood (Men-MSCs) (23), dental pulp (DP-
MSCs) (ClinicalTrials registration no. NCT04336254), and olfactory mucosa (OM-MSCs)
(ClinicalTrials registration no. NCT04382547).

BM-MSCs are isolated following bone marrow aspiration which is an invasive proce-
dure with associated risks for the donor. In addition, the MSC yield is small (as for den-
tal pulp and olfactory mucosa) and necessitates massive cell expansion to achieve suf-
ficient numbers for therapeutic use. AD-MSCs are isolated from adipose tissue
sampling by liposuction, which yields more tissue with less trauma for the donor. UC-
MSCs are found in large quantities from Wharton'’s jelly, which is typically discarded
postpartum. Therefore, AD-MSCs and particularly UC-MSCs have practical advantages
over BM-MSCs, although the evidence base for their efficacy is not as well-established.

MSCs from different tissue sources are similar morphologically and biologically but
have some distinct characteristics (24, 25). They include differences in surface cell
markers (such as CD36 which is specific to AD-MSCs [26]) and differentiation capacity
(with BM-MSCs demonstrating greater osteogenic potential than AD-MSCs [27]).
Differences in potency between MSC tissue source have been reported, although they
are better characterized in noninfectious disease models using animal MSCs (28, 29).
Only two in vivo studies to date have compared BM-MSCs and UC-MSCs in infection
models, with both using cecal ligation and puncture. One study found human BM-
MSCs and UC-MSCs were comparable in promoting survival in murine peritoneal sepsis
through modulating regulatory T cell (Treg) function (30). However, a later study
reported human BM-MSCs were more protective than UC-MSCs (31). Although both
cell types modulated levels of systemic inflammatory cytokines (including interleukin-6
[IL-6], IL-1 B, and tumor necrosis factor alpha [TNF-a]), only human BM-MSCs improved
7-day murine survival and enhanced bacterial clearance in blood, lung, and spleen.
The discrepancy between in these two studies may be related to the model severity,
with 7-day survival rates of 80% and 30%, respectively, in the placebo-treated groups.
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TABLE 3 Current clinical trials of MSCs in sepsis and infectious diseases?

Clinical Microbiology Reviews

ClinicalTrials.gov

registration no. Condition Study design Intervention Infection-related outcome
NCT02866721 Cystic fibrosis Phase 1, open label, dose Allogeneic BM-MSCs; 1 x 10°, Quantitative sputum
escalation, single group 3 x 10% or 5 x 10° cells/kg; microbiology
assignment; n =14 single dose, i.v.
NCT01872624 Pulmonary emphysema Phase 1, open label, Allogeneic BM-MSCs, dose ESR, CRP
nonrandomized, placebo not specified; i.t.
controlled; n =10
NCT02625246 Bronchiectasis Phase 1, open label, single- Allogeneic BM-MSCs, 1 x 108 Quantitative sputum
group assignment; n =6 cells; single dose, i.v. microbiology
NCT01686139 Diabetic neuropathic ulcer Phase 1, open label, single- Allogeneic BM-MSCs, Frequency of adverse events
group assignment; n =12 1 x 107-2 x 107 cells;
single dose, intradermal
NCT03826433 Decompensated hepatitisB ~ Phase 1, open label, Allogeneic UC-MSCs, 6 x 107 2-yr survival
liver cirrhosis nonrandomized, placebo cells; single dose, i.v.
controlled; n =20
NCT03158727 Community-acquired Phase 1/2, quadruple blind, Allogeneic AD-MSCs, 28-day mortality, time to
pneumonia and sepsis randomized, placebo 1.6 x 107 cells; 2 doses clinical cure
controlled; n =36 over 3 days, i.v.
NCT02645305 Moderate-to-severe COPD Phase 1/2, open label, single- Autologous AD-MSCs, dose CRP
group assignment; n = 20 not specified; single dose,
i.v.
NCT03113747 Burn wounds Phase 1/2 open label, Allogeneic AD- MSCs, dose Neutrophil phagocytic
randomized, placebo not specified; 2 doses over activity
controlled; n =20 3 days, topical
NCT03267784 Diabetic neuropathic ulcer Phase 1/2 open label, single- Allogeneic commercial MSCs, Occurrence of wound
group assignment; n = 37 dose not specified; 2 doses infection
over 6 wks, topical
NCT02145923 Neutropenic enterocolitis Phase 1/2, open label, single- Allogeneic BM-MSCs, Frequency of neutropenic
group assignment; n =16 1.5 x 106-2 x 106 cells per enterocolitis, frequency of
kg; single dose, i.v. infectious complications
NCT02095444 Influenza-induced lung Phase 1/2, open label, single- Allogeneic Men-MSCs, 107 Severity of lung injury
injury group assignment; n = 20 cells/kg; 4 doses over 2
wks; i.v.
NCT02290041 HIV immunological Phase 1/2 double blind, Allogeneic AD-MSCs, 1 x 106 Incidence of opportunistic
discordant response randomized, placebo cells/kg; 4 doses over infection, CD4" count
controlled; n=15 20 wks
NCT02883803 Sepsis with organ failure Phase 2, double blind; n = 65 Allogeneic heterogeneous SOFA score
MSCs, 1 x 106 cells/kg;
single dose, i.v.
NCT02083731 Refractory CMV infection Phase 2, open group, single- Allogeneic BM-MSCs, 1 x 10° Remission of CMV infection

after hematopoietic
stem cell transplant

group assignment; n = not
specified

cells; 1-2 doses over
14 days, i.v.

aAD-MSCs, adipose tissue-derived MSCs; BM-MSCs, bone marrow-derived MSCs; ESR, erythrocyte sedimentation rate; UC-MSCs, umbilical cord-derived MSCs.

In addition, three in vivo studies have compared rodent BM-MSCs and AD-MSCs in
infection models, reporting that they have similar efficacy in attenuating Crohn’s dis-
ease colitis (32), endotoxin-induced lung injury (33), and sepsis (34). However, they
also reported differential responses in systemic levels of some proinflammatory media-
tors, with BM-MSCs associated with a greater reduction in vascular endothelial growth
factor (VEGF) and transforming growth factor B (TGF-B) (33) and AD-MSCs with
reduced IL-8 levels (34). This finding suggests that distinctive immunomodulatory
mechanisms may be employed by the two MSC types. More work is under way to
explore differences in the efficacy and paracrine effectors secreted by human MSC
types in preclinical and clinical settings of infection.

Allogeneic Versus Autologous Sources for MSCs

MSCs constitutively express low levels of human leukocyte antigen (HLA) major his-
tocompatibility class | (MHC-I) and negligible levels of HLA MHC-Il molecules (35, 36).
They are therefore considered immune privileged (37), although this conclusion has
recently become a matter of debate, as several animal studies have reported rejection
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of cells from MHC-II mismatched donors (38-41). In human studies, however, alloge-
neic transplant of MSCs has consistently generated a minimal transfusion reaction (42),
and most clinical trials, although not all, utilize allogeneic MSCs that are extracted from
well-characterized healthy volunteers.

There are variations between sites and tissue sources in the techniques and proto-
cols available for the isolation of MSCs for allogeneic administration (43). Briefly,
healthy volunteers are recruited for donation of tissue (e.g., BM-MSCs from bone mar-
row aspiration, AD-MSCS from adipose tissue, and UC-MSCs from postpartum umbilical
cord). MSCs can be isolated from tissue based on plastic adherence and other physical
characteristics, such as cell size and density. The MSC population can be enriched in
these preparations by the selection of surface markers, such as CD271 (44), Stro-1 (45),
and CD362 (46). MSC identity is then confirmed by surface marker expression accord-
ing to ISCT criteria (positive for CD105, CD73, and CD90 and negative for CD45, CD34,
CD14, CD11b, CD79¢«, CD19, or HLA-DR). MSCs are then expanded in vitro usually in
automated, large-scale cell culture systems prior to harvesting. Preservation of the phe-
notype is confirmed by surface marker expression, and MSCs are typically tested for
sterility, mycoplasma contamination, and karyotype stability before their release as a
clinical-grade therapy (47, 48).

Autologous MSCs are derived from the patient’s own tissues, which further mini-
mizes the risk of rejection. However, the process of acquiring sufficient autologous
MSCs for therapy is protracted and challenging. Prospective patients must undergo bi-
opsy for MSC sampling, followed by a labor-intensive and expensive period of cell
expansion (49, 50). In human trials, the period between MSC sampling and autologous
therapy can be up to 4 weeks (50). While feasible for the treatment of chronic diseases,
including some chronic infections, this period is prohibitive in acute illness, such as
sepsis or pneumonia. Generating an autologous MSC therapy may also be more expen-
sive and less feasible than off-the-shelf allogeneic products, especially if the patient is
acutely unwell. There have been no head-to-head comparison studies in humans
between autologous and allogeneic cells, but preclinical and clinical evidence do not
support a significant advantage to autologous cells (42, 51).

Safety of MSC Therapies

The safety considerations for a cell therapy must address the theoretical risks of
transfusion reaction, cell clumping, and vessel occlusion and engraftment with ectopic
or neoplastic tissue formation (52). There are also concerns over possible immunosup-
pression and susceptibility to infection in light of MSC immunomodulatory properties,
particularly in patients with impaired immunity (53).

Most tracking studies in humans suggest that the majority of transfused MSCs are
destroyed or escape from circulation within 24 hours of infusion (54). The proportion
that migrates into tissue appears to be dependent on the target organ and degree of
injury, with a significant number typically captured by the pulmonary microcirculation
in the first hours, followed by accumulation in the liver and spleen in the following
days. The therapeutic benefit of MSCs is seen in preclinical models within hours or
days, suggesting they exert their effects acutely before their destruction by apoptosis
or host cell clearance. Reporting of viable MSCs in target organs beyond 10 days is rare
(55), although a tiny population of fluorescently labeled rat BM-MSCs were still detecta-
ble in rat lung tissue up to 8 weeks after intratracheal (i.t.) administration (56).

The 2011 SafeCell study (53) was a systematic review and meta-analysis which
included 36 studies, representing 1,012 patients, in which MSCs had been adminis-
tered by intravenous (i.v.) infusion. It concluded that overall MSCs were safe, with no
significant associated cardiovascular, pulmonary, gastrointestinal, or renal adverse
effects. There was no increase in infection rates, malignancy, or death in the MSC treat-
ment groups. Transient fever was associated with MSC therapy.

A 2019 updated systematic review and meta-analysis capturing 47 randomized con-
trolled trials (RCTs) and representing 2,696 patients (42) had similar findings. Transient
fever that did not proceed to acute infusional toxicity was the only adverse effect
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significantly associated with MSC administration. Indeed, a pooled analysis on mortal-
ity found that the risk of death was reduced in the MSC group (relative risk [RR], 0.78;
95% confidence interval [Cl], 0.65 to 0.94). Although there was no evidence from this
meta-analysis for MSC engraftment and malignancy, long-term follow-up has become
a secondary safety measure for many current trials.

Dosing is a further safety consideration, with no consensus on the optimal dosage and
frequency of MSC therapies (57). Phase 1 safety testing is important each time a MSC ther-
apy is tested for a new clinical indication, but few studies address a substantial dose range.
Trial dosages are often based arbitrarily on prior tolerated regimens in other indications or
those given in preclinical models. Many trials now employ a dose-escalation element in
phase 1 to determine a “maximum tolerated dose” across a prespecified dose range. Doses
employed for systemic use in clinical trials range from of 0.5 x 10° to 10 x 10° cells/kg (57),
although some trials that employ fixed dosing have given up to 900 million cells per patient
(ClinicalTrials registration no. NCT02611609). A review of dose-response data from available
trials suggested an optimal dosage in the range of 100 to 150 million MSCs per patient with
efficacy falling with higher and lower dosages (58). However, these trials tested MSCs in the
settings of diabetes (glycemic control and diabetic nephropathy) or rehabilitation medicine
(physical recovery from hip arthroplasty and age-related frailty). No dose-response data have
yet been reported in MSC trials of infectious diseases. A further concern is the frequency of
dosing, with many studies now testing multiple (typically two to four) doses at regular inter-
vals (examples in Table 3). However, there is still a paucity of evidence to guide decisions
over the dosage frequency and interval of MSCs in clinical trials for a given indication.

Routes of Administration

Optimizing MSC administration strategies is important for maximizing their delivery
to the site of disease. Intravenous (i.v.) administration has been studied most exten-
sively but is limited by a pulmonary “first-pass” effect whereby the lung microcircula-
tion traps a large proportion of the MSCs (59). Although this effect appears beneficial
for the treatment of some pulmonary conditions, it is still reliant on successful migra-
tion of MSCs to focal sites of injury within the lung. A number of preclinical studies
have used intratracheal (i.t.) instillation, intranasal (i.n.) instillation, and oropharyngeal
aspiration (OA) for pulmonary infections with similar clinical benefits to i.v. administra-
tion (see examples in Table 1). Intraperitoneal (i.p.) injection is practically easier to
administer than i.v. and has been reported efficacious in models of pulmonary and
intra-abdominal infection (18, 23, 60).

Four studies have compared the efficacy of MSCs in the setting of pneumonia given
by different routes (i.v. versus i.p., i.t., and/or OA) (60-63). There was no difference in ef-
ficacy between routes for most outcomes, including survival, histological lung changes,
and levels of proinflammatory cytokines. In one study, i.v. was superior to i.t. adminis-
tration in reducing bacterial CFU in lung (63), whereas others reported MSCs given i.t.
resulted in higher lung concentrations of the antimicrobial peptide LL-37 (61). Most
clinical studies in infection have used i.v. administration for systemic illness, although
topical application is being trialed for treating cutaneous infections. However, more
comparison studies are needed as much remains unknown about the pharmacoki-
netics of MSCs after administration, particularly via routes other than i.v.

“Licensing” of MSCs

MSCs exhibit modulatory activity in their resting state, although some functions
require activation by a stimulus (64). Preconditioning of MSCs can enhance their
desired therapeutic effect in a process is known as licensing (65, 66). The main licens-
ing methods investigated for MSCs in infections are discussed below.

Culture conditions. Incubation of MSCs in an inflammatory milieu activates NF-«xB
transcription, enhances their migration to sites of injury, and stimulates expression of
immunomodulatory mediators, such as IL-10 and prostaglandin E2 (PGE2) (67, 68). One
study has reported that human MSCs with strong bactericidal activity in vitro did not have
the same effect in vivo unless preactivated by the TLR3 ligand poly(l-C) (69). Similarly,
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interferon gamma (IFN-y)-pretreated human BM-MSCs were more effective than unstimu-
lated MSCs in improving survival and attenuating systemic inflammation in a mouse model
of experimental colitis (70). Pretreatment with TNF-a had a similar but less pronounced
effect, whereas incubation in a proinflammatory cytokine mixture of IFN-y, TNF-, and
IL-18 (known as “cytomix”) potently enhanced human BM-MSC and AD-MSC protection of
lipopolysaccharide (LPS)-stimulated mononuclear cells (67). However, more studies are
needed to test inflammation-stimulated human MSCs in preclinical and clinical studies of
infection.

Carbon monoxide-preconditioned murine BM-MSCs were more effective than naive
MSCs in improving bacterial clearance and attenuating liver and kidney injury in a
mouse model of polymicrobial sepsis (71). Mechanistic studies highlighted the role of
CO-mediated release of specialized proresolving lipid mediators, such as lipoxin A4,
from mouse MSCs, which were important particularly for enhancing neutrophil phago-
cytosis. Hypoxic preconditioning (<1% environmental O,) stabilizes MSC levels of hy-
poxia-inducible factor 1«, which controls metabolism, reduces reactive oxygen species
(ROS) production, and protects against oxidative stress (72). Oxygen starvation both
mimics the conditions in MSC source tissues (1% to 7% O, in bone marrow [73], 2% to
8% in adipose tissue [74], and 2% to 5% in the gravid uterus [75]) and prepares the
MSC for survival in ischemic microenvironments that accompany inflammation (76).
Hypoxic preconditioned animal and human MSCs have been reported beneficial in in
vivo studies of noninfectious diseases (including hind limb ischemia and myocardial in-
farction [72, 77-79]), but they are less well described in infection models. Indeed,
hypoxic-preconditioning of Men-MSCs abrogated their in vitro antimicrobial activity in
association with reduced secretion of the antimicrobial peptide hepcidin (23).

Other cellular stress preconditions have generated MSCs in vitro with improved sur-
vival and enhanced function. They include serum deprivation which induces autoph-
agy in human BM-MSCs through mTOR inhibition (80) and heat shock treatment which
reduces rat BM-MSC susceptibility to apoptosis (81).

Genetic modification. Upregulation of specific genes in MSCs is associated with
improved survival and increased potency in vitro and in vivo. For instance, IL-10-overex-
pressing human UC-MSCs given to rats with Escherichia coli pneumonia, resulting in
improved survival, reduced lung CFU and increased the bactericidal activity of alveolar
macrophages (82).

A number of other protective gene candidates have been identified, including he-
patocyte growth factor (HGF), Ang1, and soluble ST2 which were upregulated in
human MSCs and resulted in attenuated lung injury in treated rodents (83-86).
Overexpression of other mediators, such as keratinocyte growth factor (KGF) (87), ACE2
(88), and Miro1 (89) in animal MSCs has proven beneficial in some models of infection,
but the efficacy of their upregulation in human MSCs has yet to be seen.

Pharmacological augmentation. MSCs are able to take up and release pharmacologi-
cal compounds, raising their potential as drug delivery vehicles (90). Human BM-derived
MSCs preconditioned in 100-mg/liter ciprofloxacin were able to internalize approximately
0.7 pg/cell, of which more than 90% was released into the surrounding media within 24
hours (91). If extrapolated to a typical trial dose of 1 million cells/kg, this would equate to
approximately 0.7-mg/kg ciprofloxacin. Although dose is around 10-fold less than the adult
i.v. dose given commonly to treat sepsis, the homing ability of MSCs to sites of injury may
still deliver high concentrations to infected tissue (92, 93). The ciprofloxacin released by
MSCs retained bactericidal efficacy against E. coli, Staphylococcus aureus and Pseudomonas
aeruginosa at the expected MIC. Ciprofloxacin-primed MSCs were more than 90% viable, as
well as having significantly enhanced direct antimicrobial activity against E. coli. There is
exciting an potential for MSC loading with other antimicrobials for direct delivery to
infected tissue, but further work is needed to understand the in vivo pharmacodynamics of
drug-primed MSCs.

MSC-drug combinations may also enhance their secretion of soluble mediators. A
high-throughput strategy has screened over 1,000 compounds for enhanced MSC
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PGE2 secretion and detected 5 candidates, including the calcium channel blocker tet-
randrine (94). Tetrandrine increased baseline PGE2 secretion by 30%, which is sus-
tained for 48 hours after removal from human BM-MSC culture without causing cyto-
toxicity. In a limited in vivo study, the tetrandrine-primed human BM-MSCs reduced
local levels of TNF-a in a mouse ear skin inflammation model generated by intradermal
LPS injection, but levels were unchanged by unprimed MSCs or a phosphate-buffered
saline (PBS) placebo (94).

MSC Secretome-Based Therapies

The MSC secretome comprises a large number of soluble factors and extracellular
vesicles (EVs), which mediate paracrine signaling. EVs are categorized by diameter into
“exosomes” (50 to 100 nm) or “microvesicles” (0.1 to 1 wm) and contain a diverse range
of cargo, including organelles, proteins, DNA, and RNA (95, 96). The secretome has
been shown in preclinical studies of bacterial pneumonia to confer comparable bene-
fits as a whole-cell therapy (63, 98, 186). These benefits included promoting animal sur-
vival, enhancing bacterial clearance, reducing inflammatory cell infiltrate, and amelio-
rating histological evidence of lung injury.

MSC EVs have pragmatic advantages, remaining viable through the freeze-thaw
process, and they do not require the addition of toxic preservatives for cold storage
(99). They may be less costly to manufacture, as EVs are more resilient than cells and
are less likely to shear during purification. They also do not self-replicate and so carry
less theoretical risk of engraftment and ectopic tissue formation, although toxicology
studies do not suggest that engraftment and replication are common features.

However, EV-based products have some important limitations also. The number of
MSCs required to generate a volume of EVs with equivalent biological activity to cell-
based therapy is currently prohibitively high (186). Also, some mechanisms of MSCs
are dependent on the microenvironment and may require activation at the site of
injury, which is an advantage of whole-cell therapy.

Mobilization of Endogenous MSCs

In normal health, MSCs have important regulatory roles in the induction and resolu-
tion of physiological inflammation (100). MSCs express a range of Toll-like receptors
(TLRs) through which they sense host injury and pathogen activity (15). MSCs are pres-
ent constitutively in circulation in low numbers which are increased in response to
injury, such as trauma, burns, and ischemia (101-103). During acute inflammation,
MSCs are mobilized from bone marrow in response to T cell-derived IFN-y (104). They
migrate to sites of injury and can modulate the activity of principal immune cells,
including dendritic cells, monocytes/macrophages, neutrophils, and T and B lympho-
cytes that drive regenerative processes (14).

These observations have raised the potential of in situ strategies to enhance the
host’s own MSC regenerative capacity in a range of conditions. Mobilization of endoge-
nous MSCs with granulocyte colony-stimulating factor (G-CSF) has been trialed in a
mouse study of traumatic brain injury with an enhanced resolution of hemorrhage
(105). It has also been observed in patients with acute respiratory distress syndrome
(ARDS) undergoing extracorporeal membrane oxygenation, although its role is unclear
(106). However, the utility of endogenous MSC mobilization in the treatment of infec-
tious diseases has not yet been investigated.

DIRECT ANTIMICROBIAL ACTIVITY OF MSCs

MSCs express a range of TLRs through which they sense and become activated by
microbial antigens, such as flagellin, peptidoglycan, and lipopolysaccharide (LPS) (15).
Early studies demonstrated that human BM-MSCs had broad-spectrum, direct antimi-
crobial activity, inhibiting the growth of important Gram-positive bacterial pathogens,
including Staphylococcus aureus, Staphylococcus epidermidis, group B streptococci, and
Enterococcus faecium (107). MSCs also have direct bactericidal activity against patho-
genic Gram-negative bacteria, including Escherichia coli (61, 108, 109), Klebsiella
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FIG 1 Direct antimicrobial activity of MSCs through secretion of antimicrobial peptides. Activated MSCs secrete
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pneumoniae (110), Pseudomonas aeruginosa (108, 111-113), Acinetobacter baumannii
(114), and Vibrio cholerae (115), as well as mycobacteria (116, 117), viruses (107, 118),
and parasites (107).

MSCs secrete various soluble factors that mediate some of these direct antimicrobial
effects, including cathelicidin LL-37, lipocalin-2, beta-defensin-2, and hepcidin (Fig. 1) (8).

LL-37

The human cathelicidin LL-37 is secreted by many cell types, including epithelial
cells and immune cells (119), and was the first AMP recognized to mediate MSC antimi-
crobial activity (108). LL-37 neutralizes bacterial endotoxins and forms pores in the
membranes and cell walls of Gram-positive and -negative bacteria (120). It also orches-
trates variable host-protective effectors, dependent on the stage of inflammatory
induction and resolution, by modulating master regulators, such as NF-kB inhibitor-«,
mitogen-activated protein kinases, and phosphoinositide 3 kinases (121). LL-37 inhibits
apoptosis of neutrophils, activates monocyte differentiation into macrophages, and
promotes wound healing through angiogenesis.

In vivo, mice treated with i.t. human BM-MSCs for E. coli pneumonia had reduced
CFU, inflammatory cell count, and total protein in bronchoalveolar lavage (BAL) fluid,
but this infection was abrogated largely with the coadministration of the LL-37 neutral-
izing antibody (108). Similarly, human BM-MSCs given i.t. and i.v. promoted the survival
and lung CFU clearance in a rat model of E. coli pneumonia (61). Interestingly, i.t.
administration was associated with higher plasma and alveolar levels of LL-37.

Lipocalin-2

Lipocalin-2 (Lcn2) is a widely distributed protein that can bind iron and small or-
ganic molecules (122). Bacterial metabolism and replication are dependent on retriev-
ing extracellular iron through siderophores. Iron availability also controls the expres-
sion of bacterial virulence, such as the outer membrane protein A (OmpA) which
protects bacteria from host attack by binding and degrading complement (123). Lcn2
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sequesters bacterial siderophores to restrict the access of bacteria to essential iron, in-
hibiting replication and exposing them to complement (Fig. 1). Its importance in infec-
tion control has been shown in Lcn2-deficient mice, which appear to be phenotypically
normal in a pathogen-free setting but succumb easily to sepsis (122).

Lcn2 is a key antimicrobial mediator of MSCs in animals, including mice and horses
(124, 125). Murine BM-MSCs given i.t. to mice in an E. coli pneumonia model increased
survival and reduced BAL fluid CFU in association with a higher BAL fluid concentration
of Lcn2 (126). This effect was abrogated when mice were given MSCs premixed with
the Lcn2-blocking antibody, indicating that the antimicrobial effect of MSCs was medi-
ated partly by Lcn2. Interestingly, parallel in vitro tests showed that bacterial endotoxin
and cytomix increased murine MSC Lcn2 production 10-fold and also stimulated its
expression in activated alveolar macrophages, suggesting that the local inflammatory
microenvironment could modulate the MSC antimicrobial potential.

Human MSCs secrete Lcn2 constitutively, and it can be further increased by IFN-y and
poly(I-C) stimulation (127). However, the definitive role for Lcn2 in mediating human MSC
antimicrobial activity in infection models has yet to be reported in mechanistic studies.

B-Defensin-2

Human defensins are short, cationic peptides with direct and broad antimicrobial
activity against Gram-positive and -negative bacteria (128). Their bactericidal mecha-
nisms include permeabilization of cell membranes to induce lysis and binding to
genomic DNA to cause breaks. Human a-defensins are produced mostly by monocytes,
lymphocytes, and natural killer (NK) cells, whereas B-defensins are produced by epithe-
lial cells as well as innate immune cells (121). They also have an important role in
immune cell chemotaxis, particularly in the recruitment of macrophages, dendritic
cells, and immature memory T cells to sites of infection.

One study has suggested a key antimicrobial role for B-defensin-2 (BD2) in human
UC-MSCs (129). Human UC-MSCs given to mice with E. coli pneumonia resulted in
reduced BAL fluid CFU, neutrophil infiltration, and histological evidence of lung injury.
However, BD-2 concentrations in BAL fluid and the associated benefits of MSC treat-
ment were both abrogated when MSCs were pretreated with small interfering RNA
(siRNA) targeting TLR4. Similarly, when TLR4 was inhibited by siRNA in MSCs in vitro,
BD2 secretion was lost and MSCs failed to inhibit the growth of E. coli. This failure was
rescued by supplementation of exogenous BD2. The authors concluded that activation
of TLR4 by E. coli induced BD2 production, which inhibited bacterial growth, but addi-
tional downstream mediators not identified in the study are likely to be involved.

Hepcidin

Hepcidin plays an essential role in human iron homeostasis (130) and is secreted in
two forms of MSCs in response to IL-6, as follows: hep-25 which partly mediates its
antimicrobial effect through limiting iron availability and hep-20 which acts through
an unknown antimicrobial mechanism (23, 131). Hep-25 binds the host iron transporter
ferroportin and sequesters it inside cells (132), preventing iron from being exported to
extracellular bacteria, which is essential for their replication. This iron restriction causes
a broad-spectrum antimicrobial effect against extracellular Gram-negative and -posi-
tive bacteria, as well as pathogenic fungi and mycobacteria (132, 133). However,
manipulation of intracellular iron sequestering has been described by intracellular
pathogens, such as Mycobacterium tuberculosis and Listeria monocytogenes, including
through the induction of hepcidin secretion (134, 135). MSCs appear to employ other
mechanisms to enhance intracellular clearance of these pathogens (117, 136).

Hepcidin has been reported in small concentrations in the secretome of human BM-
MSCs and UC-MSCs (137), but to date, its antimicrobial activity has been reported only
for Men-MSCs where its secretion appears to be oxygen dependent (23). Men-MSCs and
their secretome inhibited the growth of commensal gut bacteria cultured from mouse
feces, but this effect was lost when Men-MSCs were cultured in hypoxia. Hypoxia also
abrogated Men-MSC expression of hepcidin, whereas bacterial stimulation (like the
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FIG 2 MSC modulation of monocytes and macrophages. MSCs home to the site of infection and exert a range of immunomodulatory
effects on macrophages to enhance their function, including (i) promoting monocyte recruitment and differentiation into macrophages
via CCL2 secretion, (ii) increasing phagocytosis and oxidative burst via KGF and GM-CSF, (iii) enhancing macrophage degradation of
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(v) enhancing autophagy of cytosolic bacteria by TGF-3, and (vi) supporting macrophage repair of injured tissue via IL-10.

response of lipocalin to endotoxin) increased basal levels of hepcidin expression by 50-
fold. The correlation between Men-MSC antimicrobial activity and hepcidin levels sug-
gests that the hepcidin activity contributes to the antimicrobial effect, although this was
not investigated by inhibition studies. Also, the impairment of Men-MSC activity through
hypoxic preconditioning is inconsistent with findings of other studies in which hypoxia
augmented MSC function (72, 138). These results support the need for better under-
standing optimal tissue source and licensing strategies for MSC activity in any given
model or disease.

IMMUNOMODULATORY ACTIVITY OF MSCs
Monocytes and Macrophages

Modulation of monocytic phagocytes in infection is the most extensively character-
ized immunomodulatory activity of MSCs (139). Preclinical models of sepsis have
shown that the beneficial effects of MSCs are monocyte/macrophage dependent (140,
141). This distinct relationship between MSCs and macrophages has been linked to
their shared origin and close proximity in the hemopoietic stem cell niche (95, 142).
MSCs can modulate macrophage function and behavior in a number of ways (Fig. 2).

First, MSCs recruit monocytes to sites of infection. MSCs are potent producers of
CCL2 (MCP-1), the primary recruiting cytokine for inflammatory monocytes, and its
expression is enhanced by inflammatory activation (69). MSCs home to sites of inflam-
mation (23, 93) where they release CCL2 and other chemokines to attract circulating
monocytes (69, 92, 95).

Second, MSCs enhance the clearance of intracellular bacteria in infected macro-
phages through the secretion of paracrine mediators, including granulocyte-macrophage
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colony-stimulating factor (GM-CSF) (112), keratinocyte growth factor (KGF) (62, 143), and
TGF-B (144).

GM-CSF stimulates the expression of IFN-y which induces type 1 T helper (Th1) cells
to activate intracellular pathogen killing in macrophages (145). It also activates phos-
phorylation of macrophage STAT5 which leads to increased phagocytosis (146). GM-
CSF regulates zinc homeostasis, restricting access during infection, which inhibits bac-
terial replication (147). Sequestering zinc in phagocytes also increases oxidative burst
and enhances intracellular killing of bacteria by ROS (147).

KGF is an epithelial mitogen and differentiation factor produced by cells of the mes-
enchymal lineage (148). KGF may contribute to infection clearance by driving secretion
of opsonins and macrophage phagocytosis of bacteria (143, 148). TGF- is secreted by
activated MSCs and can induce autophagy in macrophages (144). MSC-induced
autophagy has been effective in reducing high-glucose injury to pancreatic cells and in
theory could be helpful for targeting intracellular bacteria that escape to the cytosol,
such as M. tuberculosis and L. monocytogenes (149).

Third, MSCs improve the bioenergetics of infected macrophages. Under oxidative
stress, MSCs transfer partially depolarized mitochondria to neighboring macrophages
where they fuse with the macrophage mitochondria (95). Mitochondrial fusion occurs
physiologically between cells and provides genetic complementation for mitochon-
drial DNA (150). In the inflammatory microenvironment, this has the benefit of reduc-
ing mitochondrial ROS levels in MSCs and promoting their survival in oxidative stress
while improving the bioenergetics of macrophages, enhancing phagocytosis, and driv-
ing inflammatory resolution (95).

Mitochondria are channeled between MSCs and macrophages, as well as other cell
types, by direct cell contact through cytoplasmic bridges known as tunneling nano-
tubes (TNTs) (141) and Connexin 43-containing gap junctional channels (151).
Mitochondria can also be transferred in extracellular vesicles in a cell contact-inde-
pendent mechanism (98). This process is facilitated by MSC microRNAs that tolerize the
macrophage to the incoming mitochondria through inhibition of TLR signaling (95).

Fourth, MSCs promote host-protective differentiation of macrophages. Early reports
described in vitro and in vivo MSC induction of an atypical M2-like macrophage phenotype
with enhanced phagocytic and bacterial killing properties (69, 98). Later studies showed that
MSCs can promote a heterogeneous population of host-protective macrophages in vitro and
in vivo that also included M1-like macrophages (20, 152). These M1-like macrophages killed
bacteria more effectively through enhanced production of phagosomal ROS while protecting
epithelial cells through the secretion of the vascular endothelial growth factor (VEGF).

This process of macrophage differentiation is dependent primarily on the paracrine
activity of MSC-produced indolamine 2,3-dioxygenase (IDO) and PGE2 (20, 152). IDO
catalyzes the conversion of tryptophan to kynurenine and is released by activated
MSCs to deplete macrophage stores of tryptophan (152, 153). Tryptophan is an essen-
tial factor for bacterial replication as well as for T cell activation and macrophage M1
polarization (153). IDO secretion therefore promotes a host-protective M2-like pheno-
type while displaying broad-spectrum activity against a range of pathogens, including
staphylococci, enterococci, human herpesviruses, and Toxoplasma gondii (107, 153).

MSC-derived PGE2 induces several changes in macrophages, including upregulation of
scavenger receptor expression, increased phagocytic activity, increased IL-10 production,
and activation of NAPDH oxidase (NOX2) to produce phagosomal ROS (20, 154). This PGE2
signaling promotes the development of coexisting and complementary M1-like and M2-
like macrophages, partly explaining their ability to suppress excessive inflammation while
enhancing microbial killing. However, the protective effect of MSC-secreted PGE2 may be
pathogen specific or host immune status dependent. For instance, PGE2 has correlated
with an increased susceptibility to organisms, such as P. aeruginosa, Paracoccidioides brasi-
liensis, and some herpesviruses in preclinical and clinical settings (111, 155-157). Further
work is needed to dissect the different effects of MSC-derived PGE2 on macrophage func-
tion in specific host-pathogen settings.
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including IDO, PGE2, and TSG-6.

Neutrophils

Neutrophils are typically recruited to injured tissues within minutes and drive the early
inflammatory response (158). Activated neutrophils release proteolytic enzymes, such as
myeloperoxidase (MPO) which have bactericidal activity but can also cause oxidative
damage to host tissues (159). In early lung infection, MSCs promote neutrophil recruit-
ment to the site of injury through expression of IL-6, IL-8, and GM-CSF (160). However,
MSCs also prevent excessive neutrophil infiltration through secretion of IL-10 and tumor
necrosis factor a-induced protein (TSG-6), which inhibits their transepithelial migration
and secretion of MPO (60) (Fig. 3). This migratory inhibition also maintains a larger propor-
tion of neutrophils in circulation, which is associated with elimination of bacteremia (140).

MSCs also promote neutrophil survival in an inflamed environment and inhibit their
apoptosis through secretion of IL-6, IFN-B, and GM-CSF. MSCs enhance neutrophil func-
tion by activating and improving phagocytosis through cell contact (161) and direct
paracrine mechanisms (69), although the precise mediators are less well described. MSCs
also act indirectly through upregulating IL-17 expression in CD4* memory T cells which
promotes neutrophil phagocytic activity (162). Despite these beneficial effects, MSC-neu-
trophil modulation may be auxiliary rather than critical for mediating their antimicrobial
potential of MSCs in some settings. For example, in a murine model of E. coli pneumonia,
MSC treatment of mice in which neutrophils had been depleted was still effective at
reducing lung tissue damage and bacterial counts in BAL fluid (141). Nevertheless, MSCs
may mediate a careful balance between recruiting sufficient phagocytes for microbial
killing and limiting damage caused by excessive inflammation (140).

Dendritic and Natural Killer Cells

MSC modulation of dendritic cells results in host protection from excessive inflamma-
tion during infection (Fig. 3). MSCs inhibit the maturation of dendritic cell precursors in
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acute inflammation and suppress the adaptive immune response through secretion of
PGE2, TSG-6, and GM-CSF (163) (Fig. 3). They can also downregulate DC expression of
antigen-presenting molecules to reduce lymphocyte activation and induce their apopto-
sis (164). Activated DCs in coculture with CD4* T cells typically stimulate the expression
of proinflammatory cytokines, such as TNF-« and IL-13; yet, in the presence of human
MSCs, they are suppressed partially through MSC production of IL-10 (164).

Similarly, MSC modulation of NK cells is largely host protective and characterized by
reduced cytotoxicity, cytokine production, and protease release. This process is medi-
ated by MSC direct cell contact (which modulates NK cell surface expression) as well as
secretion of IDO, PGE2, and TGF-B1 (165, 166) (Fig. 3). However, these modulations
depend on the maturity and microenvironment of the NK cells, as MSCs have also
been reported as stimulating NK cytotoxic function at low MSC:NK cell ratios (167).

Lymphocytes

MSC modulation of lymphocytes has been observed on all T cell subpopulations
through the expression of several mediators, including IDO and PGE2 (14) (Fig. 3). Most
evidence comes from in vitro and in vivo models of noninfective inflammatory disease.
However, these findings remain relevant for informing how MSCs may protect host tis-
sue from excessive inflammation during the infection immune response. MSC cocul-
ture inhibits the activation of CD4* T helper cells, increases the proportion of regula-
tory T cells by inducing FoxP3 expression and CD25 expression (168), and promotes
polarization of Th1 cells to Th2 cells (14, 169). The overall effect is the suppression of
proinflammatory T cell activity in the hyperinflamed state. This effect concurs with a
report of MSC therapy in rats with polymicrobial sepsis, whereby human BM-MSCs and
UC-MSCs improved survival in association with increased numbers of circulating Treg
cells (30).

MSCs can also reduce the proliferation, differentiation, and immunoglobulin pro-
duction of stimulated B cells via a number of mechanisms (170) (Fig. 3). MSC-produced
PGE2 and IL-35 promote the development of IL-10-producing regulatory B (Breg) cells
in the setting of in vivo noninfective systemic inflammation (171, 172). A similar popu-
lation of Breg cells were generated from quiescent tonsillar B cells following cellular
contact with human AD-MSCs, although the precise molecules involved are unknown
(173). Indirectly, MSC-produced IFN-yacts on Treg cells to suppress effector B cell activ-
ity and immunoglobulin production, which aids in the resolution of the inflammatory
response (14).

MSCs can also rescue lymphocyte exhaustion in a prolonged infection through mi-
tochondrial donation (174). This has been observed in the antiviral response of T cells,
particularly for CD8* and less so for CD4* cells (175). Such chronically stimulated T
cells are not able to metabolize glucose sufficiently and exhibit smaller, fragmented
mitochondria, which correlate with poorer long-term immune cell memory and effec-
tive antipathogen responses in the setting of chronic lymphocytic choriomeningitis vi-
rus infection (176, 177). MSC mitochondrial transfer may remedy “unfit” T-cells and
therefore aid in rebuilding long-term immune memory, as well as strong, immediate,
immune effector functions in acute infections (178).

MSCs IN PRECLINICAL MODELS OF INFECTIOUS DISEASES

There have been more than 30 published in vivo bacterial infection models investi-
gating human MSCs and their secretome (Table 1), with many more animal models
trialing same-species MSCs (179). Although a small number of these studies have
reported mixed or negative effects with animal MSCs (180-182), human MSCs have
been associated invariably with clinically relevant benefits in preclinical models. MSCs
exhibit species-specific antimicrobial mechanisms, with human MSCs showing greater
preclinical efficacy than animal MSCs in comparative studies (107). However, the pau-
city of negative and neutral studies reported on human MSCs warrants caution over
the risk of publication bias. Here, we summarize the evidence for human MSC thera-
peutic potential from the most relevant preclinical models of infection:
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Preclinical Models of Bacterial Infections

Pneumonia. The most common in vivo pneumonia models in rodents use bacterial
endotoxin (60, 183, 184) or live bacteria (61, 109-111). Human MSC therapy has been
associated consistently with benefits such as increased survival, enhanced bacterial
clearance, attenuated histological lung injury, and reduced levels of proinflammatory
cytokines (Table 1). In larger animal models of pneumonia, including rabbits (185),
sheep (112), and pigs (21), MSC treatment also resulted in increased arterial oxygen-
ation and lung compliance. Ex vivo human lung models have helped determine the im-
portance of MSCs in promoting lung epithelial repair and reducing pulmonary edema
(109, 186). MSCs have been administered by various routes, including i.v., i.t., i.n., i.p.
and OA, with favorable outcomes reported across different approaches (Table 1) and
similar benefits reported within studies that compared different routes (60-63).

Human BM-MSCs and AD-MSCs have also been tested for cystic fibrosis-associated
bacterial pneumonia using cystic fibrosis transmembrane conductance regulator-defi-
cient (Cftrtm&th) mice (187). There are important limitations to this model, as Cftrtm1kth
mice do not spontaneously develop either pulmonary inflammation or chronic bacte-
rial infection and are not more susceptible to P. aeruginosa than wild-type mice.
Nevertheless, Cftrtm'th mice challenged with bacteria followed by a single dose of 1
million human MSCs had 100-fold and 10-fold reduced bacterial counts in BAL fluid for
P. aeruginosa or S. aureus, respectively, after 10 days. In a subsequent study using the
same model, total BAL fluid inflammatory cell infiltrate was reduced in MSC-treated
mice, with a shift in the differential count toward reduced neutrophil and higher mac-
rophage numbers (188).

A number of important mechanisms of the effect of MSCs have been revealed using
pneumonia models. They include modulation of host immune cells by MSC mitochon-
drial donation (98, 141) and secretion of KGF, GM-CSF, TSG-6, and PGE2 (20, 61-63,
189), as well as pathogen-directed mechanisms like secretion of antimicrobial peptides
LL-37, Lcn-2, and BD-2 (108, 126, 129).

Intra-abdominal infection. Preclinical models of intra-abdominal sepsis are gener-
ated typically by cecal ligation and puncture (23) or by i.p. injection of bacteria (113) or
feces (21). In these settings of polymicrobial sepsis, i.v. or i.p. administration of human
MSCs has been associated with increased survival, improved renal and liver function,
and normothermia, as well as reduced bacteremia and circulating levels of proinflam-
matory cytokines (23, 140, 190).

The mechanisms of MSC activity in abdominal sepsis are not as well characterized
as in pneumonia but bear some similarities. For instance, mononuclear cells isolated
from the blood of MSC-treated mice with P. aeruginosa peritonitis had improved phag-
ocytic capacity (32% compared with <20% in the control groups) via upregulation of
C5a activation, suggesting that MSC modulation of monocytes and macrophages
remains important (113). Likewise, MSC control of inflammation has been credited
with improving organ function and survival via Treg cell modulation, as well as direct
secretion of anti-inflammatory cytokines, such as IL-10 and IL-1Ra (30, 68, 140). One
study suggested a distinctive mechanism for Men-MSCs in polymicrobial sepsis, where
the activity of the antimicrobial peptide hepcidin correlated with survival, liver protec-
tion, and systemic bacterial clearance with an association not yet observed with other
tissue sources of MSCs (23).

Human UC-MSCs have also been reported as protective in a preclinical model of
chronic salpingitis (191). C3H/HeN mice were infected intravaginally with Chlamydia
trachomatis before intravaginal administration of 1 million human UC-MSCs or placebo.
MSC-treated mice had complete amelioration of histological evidence of fallopian tube
injury and improved fertility (5/5 mice pregnant within 8 weeks, compared with 1/5 in
the control group).

Skin and soft tissue infections. MSCs have been tested in a small number of pre-
clinical studies of infected skin and soft tissue. Rodent MSCs administered to same-
species models of S. aureus pouch or surgical mesh infections have demonstrated
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bactericidal activity, enhanced neutrophil phagocytosis, and promotion of wound heal-
ing (69, 192). Human BM-MSCs have yielded similar results in rats with S. aureus pouch
infections, with additional evidence from in vitro studies demonstrating antibiofilm ac-
tivity against developing and established methicillin-resistant Staphylococcus aureus
(MRSA) biofilms (192). Mechanistic studies from equine BM-MSCs suggest that direct
secretion of cystine proteases, including cathepsins B and V, may contribute to MSC
antibiofilm activity (114, 193).

Canine MSCs have been reported useful in the management of soft tissue infections
in pet dogs (69). This study included five dogs with joint or soft tissue infections caused
by multidrug-resistant (MDR) staphylococci, E. coli, and/or P. aeruginosa. All animals
were enrolled after treatment failure with antimicrobial therapy and received 3 doses
of allogeneic canine AD-MSCs, preactivated with poly(l-C), over 3 weeks with continua-
tion of antibiotics. After 8 weeks, the clinical evidence of infection had resolved, and
viable bacteria had been eliminated in dogs with native tissue infections. These find-
ings were limited by the absence of a control group and heterogeneity of infectious
presentations but support further investigation of human MSCs in cutaneous and mus-
culoskeletal infections.

Preclinical Models of Mycobacterial Infection

Mycobacteria are characterized by their ability to infect macrophages and other
host cells, evade degradation, and form an intracellular replicative niche (194, 195).
Given their phagocyte-enhancing properties, MSCs have gained interest as a potential
adjunct therapy for mycobacterial infections, particularly those caused by MDR/exten-
sively drug-resistant (XDR) Mycobacterium tuberculosis and pathogenic nontuberculous
mycobacteria (NTM) like Mycobacterium abscessus (3, 116).

Concerns about MSC susceptibility to intracellular mycobacterial infection were im-
portant to address before determining their therapeutic potential. Early reports sug-
gested Mycobacterium tuberculosis can establish latent infection in the hypoxic niche
of endogenous murine BM-MSCs, even after antimycobacterial treatment. MSCs from
mice with latent M. tuberculosis infection could also generate infection in other mice
by transplantation (196, 197). M. tuberculosis DNA could also be detected from BM-
MSCs extracted from patients after treatment for pulmonary tuberculosis, although via-
ble M. tuberculosis was not isolated (197). However, MSCs have since demonstrated
direct antimycobacterial properties which may be species and setting specific. Human
BM-MSCs and UC-MSCs phagocytosed M. tuberculosis via scavenger receptors at a simi-
lar efficacy as mouse and human macrophages and degrade bacilli through autophagy
and nitric oxide (NO)-mediated killing (136). M. tuberculosis did not multiply in human
MSCs but rather decreased in number over 7 days without inducing cell death.
Similarly, murine BM-MSCs internalized and restricted intracellular growth of M. bovis
BCG and M. smegmatis through the antimicrobial peptide cathelicidin but required
inflammatory stimulation to control the intracellular growth of M. tuberculosis (198).

Most in vivo studies of mycobacterial infection have employed animal MSCs, with
mixed results. Mice with disseminated Mycobacterium bovis BCG infection were given
murine BM-MSCS + preactivation of TLR3 receptors (182). Naive MSC treatment resulted
in a greater rise in splenomegaly and splenic mycobacterial counts than those of control
mice, whereas preconditioned MSCs saw a fall in both outcomes. However, this model
failed to generate sufficient counts of M. bovis in liver and lung tissue to determine an
antimicrobial MSC effect, and human MSCs may have been more efficacious.

A separate study investigated MSCs in murine M. abscessus pulmonary infection
(116). Mice treated with murine BM-MSCs had improved survival and around 50%
reduction in lung and splenic CFU after 10 days. Parallel mechanistic studies found
MSCs suppressed intracellular M. abscessus growth in macrophages by secreting PGE2
which upregulated nitric oxide production by macrophage inducible nitric oxide syn-
thase (iNOS). A more recent study tested human BM-MSCs in murine models of
Mycobacterium avium and/or Mycobacterium intercellulare cystic fibrosis pulmonary
infection and reported a significant reduction in lung homogenate CFU after 7 days
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compared with that of the control group (199). These reports warrant further research
into human MSCs therapies for chronic NTM pulmonary infections.

Current antimicrobial therapies for NTM pulmonary infections are prolonged, poorly
tolerated, and frequently ineffective so there is an urgent drive to develop new treat-
ment strategies (100). NTM are variably susceptible to some antimicrobial peptides
secreted by MSCs, such as lipocalin-2, hepcidin, and defensins (200), although some
species are intrinsically resistant to LL-37 (201). However, the immunomodulatory abil-
ity of MSCs on macrophages may disrupt their intracellular mycobacterial niche and
assist in bacterial killing, which may have particular application in patients with
impaired immunity.

Preclinical Models of Viral Infection

Viral pneumonia. Four preclinical studies have tested human MSCs in viral pneumonia
and all employed influenza virus (118, 202-204). Two studies found no beneficial effect
for pulmonary edema or inflammatory cell infiltrate when human BM-MSCs were admin-
istered to C57BL/6 mice with mouse-adapted H1N1 pulmonary infection (202, 203).
There was also no survival benefit, although in one of the studies, the influenza infection
did not cause any mortality (203). However, a later study, in which BALB/c mice were
infected with H5N1 influenza virus, a single dose of human BM-MSCs was associated
with increased survival, reduced proinflammatory cytokines, and increased numbers of
M2-like macrophages in the BAL fluid (118). The protective effect was attributable partly
to MSC secretion of KGF and Ang-1 which promotes repair of the vascular endothelium
(205). Most recently, human UC-MSCs were compared against human BM-MSCs in H5N1-
infected BALB/c mice (204). MSCs did not reduce lung viral titers, nor did they confer a
significant survival benefit, although MSC-treated mice did have reduced BAL fluid
inflammatory cytokines and pulmonary edema. UC-MSCs were more protective than
BM-MSCs and secreted larger amounts of Ang-1 and HGF.

The inconsistencies between these studies may be due to discrepancies in the mod-
els. The negative studies both tested a mouse-adapted strain of HIN1 virus in C56BL/6
mice, whereas the positive studies infected BALB/c mice with the more virulent H5N1
strain (206, 207). Inbred mouse strains also have differential responses to viral influ-
enza, with BALB/c mice demonstrating higher lung viral titers in early infection and
C56BL/6 mice having slower viral clearance (208). Although MSCs have already pro-
gressed to clinical trials for influenza-related ARDS, improving these preclinical models
will be important for mechanistic and optimization studies.

Preclinical testing of human MSCs for severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) infection has also been hindered by the lack of a clinically relevant
model (209). The technical challenges in establishing a model include the requirements
of adequate containment facilities, specialist researcher training, and a reliable supply
chain of resources amid the global economic pandemic. A murine model would be
most desirable, but mice do not typically express compatible receptors for SARS-COV-
2. The recently reported human ACE2 transgenic mouse did contract SARS-CoV-2 infec-
tion, with viral replication and infiltration of inflammatory cells into the alveolar tissue
(210). However, the resultant pneumonia was mild, and clinically relevant results from
interventional studies will be limited. The same investigators infected rhesus macaques
with SARS-CoV-2 and observed interstitial pneumonia with viral replication and weight
loss (211). Others have successfully modeled viral replication in hamsters, ferrets, and
cats, although transmission between individuals is limited, disease severity is low, and
there is no associated mortality (212). To date, these models have not been used to
trial human MSCs and the urgency of developing interventions for COVID-19 has accel-
erated their progress into clinical trials, as described below.

Herpesvirus infections. Herpesviruses are capable of infecting human MSCs in vitro,
with some members (herpes simplex virus 1 [HSV-1], HSV-2, varicella-zoster virus [VZV],
and cytomegalovirus [CMV]) capable of persistent intracellular replication (213, 214).
However, BM-MSCs and placenta-derived MSCs isolated from seropositive donors have
undetectable levels of the herpesvirus genome, suggesting that viral persistence may
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not occur in vivo. Human BM-MSCs appear to be resistant to Epstein-Barr virus (EBV)
infection and have some direct antiviral activity against CMV and HSV-1, mediated
through an increased expression of IDO (107, 214).

HIV infection. Early studies indicated that MSCs were susceptible to HIV infection
with subsequent suppression of their immunomodulatory properties (215). Specific
HIV proteins, such as p55-gag, can also suppress MSC cytokine expression and drive
cellular senescence in vitro (216). However, MSCs may still be beneficial against latent
HIV infection. MSCs can reactivate latent HIV in infected macrophages and T-helper
lymphocytes, removing them as reservoirs and enhancing HIV eradication (217). MSC
conditioned media also significantly enhanced the latency-reversing effect of panobi-
nostat, suggesting the presence of MSC soluble mediators that may enhance host
response in latent HIV.

Viral hepatitis. There are conflicting reports on the susceptibility of MSCs to infec-
tion with hepatitis B virus (HBV) (218, 219), but there is no evidence to date that hepati-
tis C virus (HCV) can replicate inside human MSCs. However, MSCs can enhance host
cellular response against both HBV and HCV in vitro. Human MSCs suppressed HBV rep-
lication in hepatoblastoma cells when cocultured with splenic lymphocytes and
reduced HCV replication in epithelial cells (220, 221).

Preclinical Models of Fungal Infections

Invasive candidiasis. The first evidence of MSC fungicidal activity was reported in a
subset (~3%) of isolated human BM-MSCs that expressed IL-17 and exhibited anti-
Candida activity (222). These IL-17+ BM-MSCs were superior to unselected BM-MSCs in
reducing Candida albicans CFU in vitro and promoting fungal clearance in a mouse
model of invasive candidiasis. However, unselected MSCs performed better than IL-
17+ BM-MSCs in treatment of polymicrobial sepsis caused by chemically induced
acute colitis, particularly in reducing colonic transmural inflammation and restoring
normal intestinal structure. The antifungal mechanisms of IL-17 are not well under-
stood but may be related to the recruitment of neutrophils, which are important for
controlling mucosal Candida infection, or induction of fungicidal antimicrobial pep-
tides calprotectin, B-defensin-3, and lipocalin-2 (223, 224). This hypothesis raises the
interesting prospect that MSCs could be selected and enriched where subphenotypes
have demonstrated enhanced efficacy in particular indications.

Aspergillosis and mold infections. Human BM-MSCs can directly phagocytose
Aspergillus conidia and reduce viable CFU by around 20% after 4 hours (225). This pro-
cess did not appear to elicit any significant inflammatory response in MSCs, which was
measured by mRNA and protein levels of IL-6, GM-CSF, and RANTES. However, MSCs
may themselves be susceptible to Aspergillus virulence factors, such as gliotoxin which
induces mitochondrial dysfunction (226).

MSCs also did not significantly modulate in vitro innate or adaptive immune
response activity against Aspergillus sp. (225). Human MSCs have yet to be tested in in
vivo models of invasive aspergillosis.

Human UC-MSCs were protective in a mouse model of fungal corneal keratitis gener-
ated by the mold Fusarium oxysporum (227). MSC-treated mice had reduced corneal opac-
ity, corneal thickness, and inflammatory cell infiltration. MSC treatment also had reparative
benefits, restoring collagen removal and reducing mRNA expression of fibrosis-related fac-
tors (such as a-SMA [smooth muscle actin] and TGF-31) in the cornea. However, the study
did not report on whether human MSCs had any effect on Fusarium viability.

Dimorphic fungi. Paracoccidioides brasiliensis is the causative agent of paracocci-
dioidomycosis, an endemic mycosis in Latin America (228). Murine BM-MSCs can
directly phagocytose P. brasiliensis, although this did not significantly change the
viable CFUs (229). However, CFUs in coculture with MSCs did not differ from those
cultured without, suggesting that MSCs had no direct fungicidal effect. In an in vivo
pulmonary infection, mice treated with murine BM-MSCs had a significantly higher
Paracoccidioides burden in lung and spleen, as well as increased lung infiltrate of neu-
trophils, eosinophils, and M2-type macrophages (180). The negative effect of MSCs in
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this study might be related to the host and MSC species or to the complex pathogene-
sis of dimorphic fungi which transform from mold to yeast form during infection of
mammalian hosts (230). These findings warrant further characterization of the interac-
tion between MSCs and dimorphic yeasts, especially to establish whether human MSCs
are similarly detrimental in preclinical models of paracoccidioidomycosis.

Preclinical models of Parasitic Infection

Malaria. Malarial parasites replicate intracellularly inside susceptible hosts and
induce regulatory T cells to evade the immune response (231). MSCs extracted from
the spleens of mice with malaria were administered by adoptive transfer to naive mice
prior to infection with Plasmodium bergei (232). MSC-treated mice arrested parasite
replication by day 9, cleared parasitemia by day 19, and survived the study, in contrast
to control mice which had uncontrolled parasitemia and 100% mortality by day 14.
Treated mice also had fewer circulating regulatory T cells and higher serum levels of
proinflammatory cytokines, including IL-12, IFN-y, TNF-¢, IL-183, and IL-6. In dysregu-
lated overexpression, these cytokines can cause the hyperinflammatory response seen
in sepsis, but at controlled levels, they are instrumental in generating the type 1
immune response required to eradicate intracellular pathogens (233). The effect of
human MSCs in preclinical models of malaria has yet to be determined.

Trypanosomiasis. Chagas disease is a common cause of cardiomyopathy and heart
failure in Latin America, which is caused by the parasite Trypanosoma cruzi (234). The
myocardial injury is characterized by inflammatory, structural, and ischemic changes,
leading to interest among cell therapy investigators over potential disease modulation
by MSCs (235).

Murine BM-MSCs given i.v. migrate to damaged cardiac tissue in chagastic mice
and are associated with reduced right ventricular dilatation (236). Rats with chronic try-
panosomiasis and established cardiac injury had improved ventricular function and
reduced histological evidence of myocardial fibrosis after treatment with a combina-
tion of autologous BM-MSCs and skeletal myoblasts (237). Therapies consisting of
bone marrow mononuclear cells, a heterogeneous population, including MSCs,
resulted in fewer histological counts of parasites in myocardial tissue of the treated
mice. (235, 238). Together, these data suggest the potential for MSC-based therapy in
Chagas disease treatment.

Schistosomiasis. Schistosomiasis remains endemic in many parts of world, with an
estimated global prevalence of over 230 million cases (239). The infectious agents are
trematode Schistosoma parasites, of which Schistosoma haematobium, Schistosoma
mansoni, and Schistosoma japonicum are the three main species that cause human
infection. Praziquantel is the current first-line therapy, although it is less active against
larval forms of Schistosoma spp., and treatment failure is common in children (240). In
a rat model of chronic schistosomiasis, rat BM-MSC therapy improved survival and
reduced histological evidence of injury on the liver and spleen (241). A similar attenua-
tion of liver injury on histological examination has been observed in mice infected
with S. mansoni or S. japonicum and treated with murine BM-MSCs (242, 243), human
UC-MSCs (244), and human UC-MSC EVs (245).

Toxoplasmosis. Human BM-MSCs can directly inhibit growth of Toxoplasma gondii
by IDO-induced tryptophan starvation (107). Human BM-MSCs are more efficacious
against T. gondii than mouse BM-MSCs, which require prestimulation with IFN-y, TNF-q,
and IL-1 to have any antitoxoplasma effect. Later studies also showed that activated
murine MSCs were active against the low virulent type Il ME49 strain but not the more
virulent type | RH strain of T. gondii (246). Human MSCs have yet to be tested in in vivo
models of toxoplasmosis.

Leishmaniasis. MSCs appear to be susceptible to leishmania infection and induce a
pathogen-permissive Treg cells response in preclinical models. Several Leishmania spe-
cies can infect human AD-MSCs, with some species viable up to 28 days after infection
(247). Disseminated Leishmania parasites can reside in a latent form in murine MSCs
extracted in vivo from bone marrow and spleen, persisting up to 60 days after infection
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(248). Murine BM-MSC therapy given to mice with cutaneous footpad leishmaniasis
resulted in a higher parasitic load and concentration of IL-10 in the footpad lesion, as
well as increased numbers of IL-10-secreting splenic T cells (181). Confirming if murine
MSCs are detrimental in other models of leishmaniasis and whether this is reproducible
with human MSC therapy will be key for determining if MSCs will be a viable treatment
option for this disease.

CLINICAL DATA FOR MSC THERAPY IN INFECTIOUS DISEASES

Clinical trials focused specifically on MSCs in the management of complex and re-
sistant infections remain underrepresented among cell therapy trials. In this section,
we highlight those infectious disease trials that are completed (Table 2) or ongoing
(Table 3) that measure outcomes relating to pathogen elimination and/or improving
host immunity.

MSC Trials in Sepsis

The Russian RUMCESS open-label phase 1 trial investigated MSC potential in neu-
tropenic sepsis treatment and reported improved short-term survival (249). Thirty
patients were recruited and randomized to receive conventional therapy with or
without a single dose of 1 million per kg allogeneic BM-MSCs. MSC therapy was well
tolerated and conferred a significant reduction in 28-day mortality compared with con-
ventional therapy (3 of 15 patients, versus 12 of 15, P = 0.05), although there was no
difference in subsequent death within 90 days from sepsis-related organ failure.
However, this study had important limitations, including a small sample size, no pla-
cebo in the control arm, and an absence of clear power calculations for mortality.

MSCs have been trialed in a small group of patients with neutropenic sepsis related
to acquired severe aplastic anemia (SAA) and treatment-refractory infections (250).

In this phase 2 study, six SAA patients were recruited with refractory bacterial and/
or fungal infections, defined as no response or recurrence of new signs of infection to
appropriate antibiotic or antifungal therapy. Participants received concurrent alloge-
neic hematopoietic stem-cell transplantation (HSCT) with 2 doses of 2 to 4 million allo-
geneic BM-MSCs at day 0 and day 14. Infusions of MSCs were well tolerated with no
adverse effects reported. There were no further episodes of bacteremia or sepsis in any
patient following HSCT nor intensive care unit (ICU) admission for organ support
requirement. Five of six patients were still alive at the time of reporting (range of 17- to
40.5-month follow up), and one patient died after 3 months from acute graft-versus-
host disease. Two patients had complete resolution of pulmonary infections 1 month
post-HSCT with resolution in all other surviving patients by 6 months. Although this
study was limited by the small participant number and lack of a placebo control, the
findings support further testing of human MSCs in refractory neutropenic sepsis and
invasive fungal infections.

The Canadian CISS trial was a phase 1 clinical trial of safety of allogeneic BM-MSC
therapy for septic shock treatment (251). Escalating doses of 0.3, 1.0, and 3.0 million cells
per kg were given to nine patients in a 3 + 3 + 3 design study, with 21 participants in
an observational arm. There were no differences in temperature, physiological or pulmo-
nary parameters, or mortality or plasma cytokine levels between the MSC-treated and
observational subjects. The study was not powered to measure efficacy, but it reported
that the therapy was well tolerated with no adverse MSC-related events.

There are two trials in progress for MSC therapy in sepsis, namely, SEPCELL and
CHOCMSC. The SEPCELL study is a phase 1/2 double-blind study testing allogeneic AD-
MSCs in two doses over 3 days in patients with community-acquired pneumonia and
sepsis (ClinicalTrials.gov under registration no. NCT03158727). This study aims to
recruit 36 patients and measure safety as the primary outcome, based on adverse
effects and plasma cytokine levels in the 90 days following the first MSC infusion. The
CHOCMSC study is a phase 2 double-blind study in community-acquired sepsis with
organ failure (ClinicalTrials.gov under registration no. NCT02883803). Sixty-six partici-
pants will be recruited, with parallel assignment to interventional and placebo arms.
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Treated participants will receive a single dose of 10 million/kg heterologous MSCs with
sequential organ failure assessment (SOFA) score measured as the primary outcome.

MSC Trials in Pulmonary Infection

Pulmonary tuberculosis is characterized by a failure of the type 1T immune response
to contain and clear Mycobacterium tuberculosis. Antimicrobial therapy is prolonged (at
least 6 months) and often poorly tolerated, leading to drug resistance and poor patient
outcomes. The combination of host- and pathogen-directed activities of MSCs in preclin-
ical studies highlighted their potential as an adjunct therapy for tuberculosis (4, 252).

MSCs have been trialed in a phase 1 study for multidrug resistant (MDR) or exten-
sively drug resistant (XDR) tuberculosis (50). Thirty patients with smear-positive MDR or
XDR tuberculosis were recruited to this open-label trial to commence a new course of
personalized second-line antitubercular therapy based on antimicrobial-susceptibility
results. Bone marrow aspiration was performed within 1 month of the new antibiotic
regimen to prepare autologous BM-MSCs, which were administered as a single dose of
1 million cells per kg. Thirty time-matched control patients were recruited consecu-
tively to receive no MSC intervention. All patients received concurrent antitubercular
medication and were followed up for 6 months.

The safety record of MSCs from this phase 1 trial was reassuring. There were no severe
adverse effects associated with MSC infusion, nor in the 6-month observation period after-
ward. There was no deterioration in radiological changes, sputum culture rates, or hemato-
logical or biochemical parameters compared with the control population. There was a fall
in C-reactive protein (CRP) at 1 month after MSC treatment, but the study was underpow-
ered to assess for significance. There was also no impairment to IFN-y production by periph-
eral blood mononuclear cells after MSC infusion. This was to investigate the risk of MSC
suppression of type 1 immune responses, which are essential for mycobacterial eradication.

Fourteen phase 1 or 2 trials into MSC safety and/or efficacy in chronic obstructive
pulmonary disease (COPD) have commenced since 2010 (253). Of these trials, three
have been reported (49, 253, 254) and one has completed, for which we await results
(ClinicalTrials.gov under registration no. NCT02216630). All reported trials have verified
the safety of MSC infusions in COPD patients with two studies confirming this with
multiple (i.e., two to four) doses. In two of the reported trials, CRP levels were signifi-
cantly reduced at least 1 month after MSC infusion, although more research is required
to determine the clinical significance of this finding (255).

The CEASE cystic fibrosis (CF) trial was the first to test MSCs in adults with CF and has
recently finished recruitment (ClinicalTrials.gov under registration no. NCT02866721).
Fourteen participants were recruited to this open label, single-group phase 1 study and
received up to 5 million allogeneic BM-derived MSCs as a single infusion. There are 10
primary outcome measures that cover safety but also include change in sputum quanti-
tative microbiology and number of pulmonary exacerbations.

A phase 1 trial into non-CF bronchiectasis has recently completed with results
awaited (ClinicalTrials.gov under registration no. NCT02625246). Six participants were
recruited into a single-group, open-label study to determine MSC safety in this patient
population. Secondary outcome measures include difference in bacterial CFUs in spu-
tum culture and frequency of acute exacerbations.

MSC Trials in Cutaneous Infections

In burn injury, the success of skin grafting and wound recovery relies on effective
neutrophil activity at the injured site. MSC promotion of neutrophil migration to infected
tissue have been described in preclinical models of skin infection (160, 192). A phase 1/2
trial is currently testing a tissue-engineered biological construct using allogeneic
AD-MSCs in burn wounds (ClinicalTrials.gov under registration no. NCT03113747). The
primary outcome will be the degree of wound healing. Neutrophil phagocytosis at skin
flaps following MSC administration will be an important secondary outcome measure.

Diabetic foot ulcers (DFUs) are characterized by poor wound healing and suscepti-
bility to chronic infection. A single-arm phase 1/2 study recruited patients with
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neuropathic DFU to assess the safety and efficacy of topical application of MSCs to the
wound matrix (ClinicalTrials.gov under registration no. NCT03267784). A number of
outcome measures are planned, including reduction of wound area and the presence
of infection, and the trial has completed with a report awaited.

The ACellDREAM2 phase 2 study is currently open to recruitment and will look into MSC
efficacy in critical limb ischemia (ClinicalTrials.gov under registration no. NCT03968198).
Forty-three participants will be enrolled into this single-group, open-label study where au-
tologous adipose tissue-derived MSCs will be given by intramuscular injection. The primary
outcome measures will be survival without amputation or limb ischemia, but wound heal-
ing and infection rates will be measured as secondary outcomes.

MSC Trials in Intra-abdominal Infections

Inflammatory bowel disease (IBD) is characterized by episodes of inflammatory colitis,
frequently exacerbated by bacterial translocation and intra-abdominal infection. There
are currently more than 30 registered clinical trials investigating MSC therapy for various
complications of ulcerative colitis and Crohn’s disease (https://clinicaltrials.gov/). A large
multicenter, randomized double-blind phase 3 study reported on the benefits of alloge-
neic AD-MSCs in refractory perianal fistulas in patients with Crohn’s disease (256). A total
of 212 patients were recruited and randomized 1:1 to receive 120 million MSCs or a pla-
cebo by local injection to the fistula site. In the treatment arm, 50% of patients had
achieved the primary endpoint of fistula closure and resolution of collections after
24 weeks, compared with 34% who received placebo (P = 0.024). A phase 1 trial with a
4-year follow-up period recently reported on using allogeneic BM-derived MSCs for the
same indication (257). Doses of 10, 30, and 90 million cells were administered by local
injection to cohorts of 5 patients each. Fistula closure was reported in these cohorts of
67%, 86%, and 29%, respectively, after 24 weeks and 63%, 100%, and 43% after 4 years.
This finding compared favorably against the placebo group (n = 6) which saw fistula clo-
sure of 33% and 0% at the same time points, although the study did not appear to be
powered to determine significance.

Typhlitis, or neutropenic colitis, is a common complication of chemotherapy for
hematological malignancy. A phase 1/2 trial is planned to test allogeneic bone mar-
row-derived MSC efficacy for preventing neutropenic colitis and enhancing hemopoi-
etic recovery following chemotherapy for Hodgkin’s lymphoma (ClinicalTrials.gov
under registration no. NCT02145923). Sixteen patients will receive 1.5 to 2 million cells
per kg, with no comparator group. The study will measure serious adverse events and
reactions as the primary outcome measure, with frequencies of neutropenic enterocoli-
tis and other infectious complications among the secondary outcomes.

MSC Trials in Viral Infections

MSCs were first trialed for COVID-19 treatment in a small case series of 7 Chinese
patients in Beijing, China (258). MSCs were well tolerated even in severe ARDS and associ-
ated with increased oxygenation, reduced infiltration on computed tomography (CT)
imaging, and decreased serum inflammatory markers. Over 80 trials have since been regis-
tered to test human MSCs in COVID-19 respiratory disease treatment . The majority of
them are phase 1 safety trials with a focus on MSC potential in the amelioration of COVID-
19-related ARDS. One of these trials has already reported (ClinicalTrials.gov under registra-
tion no. NCT04457609) (259). Forty patients were recruited to receive 1 million UC-MSCs
per kg or placebo. Survival rates in the MSC-treated group were 2.5 times higher, rising to
4.5 times in patients with comorbidities (diabetes mellitus, hypertension, chronic kidney
disease, or cardiovascular disease). These results are encouraging, although the study sam-
ple was relatively small and survival rates will be assessed more reliably in a phase 2/3 trial.

Among phase 2 trials, 1 study of 101 participants has already reported (ClinicalTrials.gov
under registration no. NCT04288102) (260). Patients with severe COVID-related ARDS
received 3 doses of 40 million human UC-MSCs or placebo. Treated patients tolerated MSC
therapy well and had significantly reduced radiological evidence of lung injury after 28 days.
Mortality and markers of viral response were not reported. However, there are 31 active or
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recruiting trials in phases 2 or 3 trials focused on MSC impact on of mortality, systemic
inflammation markers, organ dysfunction, duration of symptoms, and long-term complica-
tions, such as pulmonary fibrosis (Table 4).

Among the phase 3 trials for COVID-19, 1 study is testing 2 infusions of 2 million
MSCs per kg or placebo plus standard care in 300 participants (ClinicalTrials.gov under
registration no. NCT04371393). The primary outcome measure is 30-day mortality, with
numerous secondary outcomes, including timing of ARDS resolution and change in
inflammatory. The multicenter phase 2 REALIST COVID-19 trial has completed recruit-
ment and results are awaited. In this study, 60 COVID-19 patients were randomized to
receive standard care plus UC-MSCs or placebo (ClinicalTrials.gov under registration
no. NCT03042143). Patients in the treatment arm received a single dose of 400 million
MSCs, which was well tolerated in critical care patients with ARDS in the phase 1
REALIST trial. It will report on oxygenation index and incidence of serious adverse
events as primary outcomes, with relevant secondary outcomes, including SOFA score,
ventilator dependence, and length of hospital stay and mortality.

The preventative potential of MSCs against COVID-19 is being investigated by two
parallel phase 2 trials, looking at allogeneic (ClinicalTrials.gov under registration no.
NCT04348435) and autologous (ClinicalTrials.gov under registration no. NCT04349631)
AD-MSCs. Participants from “high-risk exposure” occupations, such as front-line health
care workers, are being invited to receive five infusions of human AD-MSCs over
14 weeks and observed for incidence of COVID-19 symptoms and hospitalization.

In contrast to the large trial numbers for SARS-CoV-2 and ARDS, only two clinical tri-
als have been registered to test MSCs specifically in viral influenza. The first is a phase
1/2 study planned to test allogeneic menstrual blood stem cells on 20 participants and
measure the severity of H7N9 influenza-induced lung injury, although its recruitment
status is unknown (ClinicalTrials.gov under registration no. NCT02095444). The second
is the RECOVER trial, a phase 1, double-blind, placebo-controlled RCT that will test up
to 3 doses of 100 million allogeneic BM-MSCs in subjects with ARDS caused by influ-
enza or SARS-CoV-2 (ClinicalTrials.gov under registration no. NCT04629105). The study
outcomes revolve around safety measures, although virus-specific antibody titers are
included as a secondary measure.

CMV reactivation is a common complication following allogeneic HSCT. Ganciclovir is
the current first-line therapy, but its use is limited due to associated bone marrow suppres-
sion and rising CMV resistance. An open-label phase 2 trial testing allogeneic BM-derived
MSC treatment potential for refractory CMV infection following HSCT has completed and
results are awaited (ClinicalTrials.gov under registration no. NCT02083731). Participants
received 1 million cells per kg as a single dose, with a second dose given after 14 days if
they had not entered remission. The study will measure the percentage of patients achiev-
ing CMV remission for 1 year as the primary outcome.

In HIV infection, MSCs are currently being trialed for two complications, as follows:
discordant immune response (DIR) and immune reconstitution inflammatory syndrome
(IRIS). In DIR, there is successful virological control but a failure to recover satisfactory
counts of CD4* T cells. There is no specific therapy for DIR, and it is associated with up
to a 3-fold rise in mortality risk from opportunistic infections. Although MSCs are gen-
erally associated with suppression of CD4" T-cell activity, in HIV infection, they sup-
press their by cytotoxic CD8" T cells and allow their recovery (261). A single-center
phase 1/2 trial is currently investigating the effect of a 4-dose regimen of MSCs over
20 weeks versus placebo on CD4™ T cell count and rate of opportunistic infection
(ClinicalTrials.gov under registration no. NCT02290041).

In IRIS, recovery of CD4* T cells with antiretroviral therapy is associated with a
hyperinflammatory response to the antigenic burden accumulated during the period
of immunosuppression (262). A small phase 2 trial investigated systemic inflammation
and opportunistic infection in seven patients who received UC-MSCs, given in three
doses at 1-month intervals, compared with placebo. MSC-treated patients had
increased CD4* T cell numbers and function after 6 months, as well reduced levels of
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inflammatory markers, including CRP, p-dimer, and total IgG (ClinicalTrials.gov under
registration no. NCT01213186) (261).

MSCs have also been investigated for their potential in the management of viral
hepatitis. One trial recruited 527 patients with hepatitis B virus-induced liver failure in
a 4-year study, giving a single dose of autologous BM-derived MSCs (ClinicalTrials.gov
under registration no. NCT00956891). Although the primary outcome of short-term
improvements were met (measured by levels of total bilirubin, albumin, and prothrom-
bin time after 4 weeks), there was no significant difference in the secondary outcome
of incidence of hepatocellular carcinoma or mortality after 3 years (263). A current
phase 1 study is looking at MSC safety and effectiveness in decompensated hepatitis B
cirrhosis (ClinicalTrials.gov under registration no. NCT03826433). Twenty participants
are being recruited to this nonrandomized, open-label study that will test the MSC
effect versus placebo on mortality and liver function tests.

In HCV-related liver cirrhosis, autologous BM-MSCs were administered to the liver
parenchyma of six patients in a nonrandomized, noncontrolled phase 1 trial (264).
MSCs were well tolerated, with jaundice resolving in four of six patients after 6 months
and a reduction of transaminitis, although this reduction did not reach statistical signif-
icance. Histological examination showed evidence of fibrolysis and regeneration of he-
patocytes, although the significance of this is uncertain without a control group.

CHALLENGES FOR DEVELOPING MSC THERAPIES
Standardization of Cell Products

The heterogeneity of MSCs between donors and tissue sources leads to potential
difficulty in standardizing candidate cell therapies (265, 266). Potency assays are pro-
posed tools to verify that an MSC product has the expected and a consistent effect at a
specified dose. These tools should characterize MSC phenotype as well as function
(267, 268). The phenotype can be determined on the basis of cluster of differentiation
(CD) expression, which differs between MSC tissue sources. An assay for functionality
should be specific to the intended effect, and several assays have been suggested,
including expression of soluble mediators (such as IDO, PGE2, and TGF-3) and modula-
tion of T cell surface activity (268).

An alternative approach to cellular profiling is based on measuring levels of key
MSC transcription factors, known as the Clinical Indications Prediction (CLIP) scale
(269). For example, Twist1 is a master regulator of multiple pathways related to MSC
functionality, such as cell cycle and growth, differentiation, angiogenic ability, and
expression of cytokines and immunomodulatory mediators (270). Higher Twist1
expression in MSC donors was associated with proangiogenetic ability, whereas a
lower expression correlated with enhanced immunomodulatory ability. Thus, expres-
sion or genetic manipulation of Twist1 could help direct MSC subtypes toward applica-
tions in clinical settings that require immunomodulation (such as infection) or angio-
genesis (such as stroke or myocardial infarction).

Detailed profiling of candidate MSC therapies remains research priority, as both the
United States Food and Drug Administration (FDA) and the European Medicines
Agency (EMA) recommend that a satisfactory potency assay should be a prerequisite
for approving their clinical use (271, 272).

Manufacturing Standards, Resources, and Costs

The production of a clinical-grade cell therapy requires a scalable and affordable cul-
ture system that meets good manufacturing practices (GMPs). This production involves a
complex series of upstream processing (isolation from donor, culturing, and expansion),
downstream processing (harvesting, concentration, and medium exchange) before for-
mulation, packaging and storage, then final distribution, and administration to patients
(273, 274).

Initial efforts to culture the high numbers of cells required focused on planar culti-
vation systems for monolayer cell growth. The introduction of roller bottles, where cells
are cultured in hundreds of rotating cylinders, improved the consistency of pH, oxygen,

October 2021 Volume 34 Issue4 e00064-21

Clinical Microbiology Reviews

cmr.asm.org 30

Downloaded from https://journals.asm.org/journal/cmr on 11 May 2022 by 37.156.73.51.


https://cmr.asm.org

Mesenchymal Stromal Cell Therapy for Complex Infection

and metabolites through the system but still could not deliver sufficient cells for clini-
cal therapy (275). An alternative to conventional culture involves the use of bioreactors,
for which there are a number of models (274). The “stirred tank” model uses beads as
surface contacts for cell attachment and growth. In the “hollow fibre” model, cells
attach during passage through porous capillaries and are fed by media passed through
the extracapillary spaces.

During harvesting, cells are detached from the culture scaffold using proteolytic enzymes,
collected, washed, and concentrated in cryopreservation buffer. MSCs must then pass qual-
ity-control process to check cell identity, purity, characteristics, and efficacy (276). The MSCs
undergo formulation which may involve the generation of a cell suspension for systemic
administration, encapsulation into beads, or grafting onto a 3D matrix (such as alginate
beads or graphene scaffold) for topical therapy (273, 274, 277). The need for substantial and
simultaneous investments to generate MSC therapies for infectious diseases to GMP stand-
ards remains the greatest challenge for bringing them to the patient bedside (278).

NEXT STEPS AND OUTLOOK

The antimicrobial activities of MSCs have been well established against a broad
range of human pathogens, highlighting a potential new strategy in the management
of complex infections. Here, we outline the most pressing indications for which MSCs
should be further investigated.

The pathogen-directed activity of MSCs offers therapeutic potential in the global
fight against MDR infections, in particular chronic disease. MSCs retain activity against
multidrug-resistant bacteria, representing a possible new strategy against resistant
Gram-positive and -negative organisms (9, 114). The number of effective and tolerable
antimycobacterial drugs is already limited, making MSCs an attractive prospect for
MDR/XDR tuberculosis and nontuberculous mycobacterial pulmonary disease (50,
199). Complex fungal infections are increasing in incidence globally and are driven
partly by the emergence of resistant species, such as Candida auris and azole-resistant
aspergilli (279, 280). The fungicidal properties of MSCs make them an attractive poten-
tial alternative to the limited range of antifungal chemotherapies.

MSCs may have a role in treating drug-resistant environmental commensals that
cause pulmonary infections in patients with pre-existing lung disease (187). Burkholderia
cepacia, Stenotrophomonas maltophilia, and Achromobacter species cause particularly dif-
ficult infections in the setting of cystic fibrosis and bronchiectasis (281). Although MSCs
have not yet been tested directly against these pathogens, MSC-related mechanisms,
such as antimicrobial peptide expression (282) and macrophage enhancement (283), are
important in their clearance.

MSCs may also help meet the growing demand for host-directed therapies in
impaired immunity. Infections in the immunocompromised host are rising in incidence
and complexity, which is attributable in part to the increased use of immunosuppres-
sant drugs and improved life expectancy for transplant recipients (284). MSCs have ac-
tivity against opportunistic pathogens (including herpesviruses, Candida species, and
Toxoplasma gondii) that cause severe morbidity among immunocompromised patients
and have already shown some clinical benefits in small phase 1 trials of neutropenic
infection (107, 222).

Similarly, sepsis is caused by a dysregulated immune response to infection and still
has no specific therapy (285). MSCs can modulate innate and adaptive immune cells to
protect the host from excessive inflammation while enhancing microbial clearance.
Clinical trials have shown that MSCs are safe to administer in sepsis and other infec-
tious diseases, although the process of establishing their efficacy will be more difficult.

Therefore, we propose two priorities to determine the full therapeutic potential of
MSCs and facilitate their development as adjunct therapies for infectious diseases:

Enhanced Profiling of MSC Therapies

MSCs are a heterogeneous population of cells, with some subsets already identified
that confer advantages for treating infection (46, 222). There are also variable mechanisms
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and degrees of potency between MSCs from different tissue sources. In addition, MSCs
can activated through a range of preconditioning strategies to produce cell phenotypes
that are primed for specific indications. Thus, a considerable amount of effort lies ahead to
determine the optimal tissue source, subtype, and preconditions for generating the best
MSC therapy for specific infectious diseases. This effort will require international collabora-
tion and investment in cell therapy research and development.

Improved Clinical Trial Design for MSC Therapies

The efficacy of MSCs in graft-versus-host disease generated much excitement over
their potential in a wide range of inflammatory and degenerative conditions (286). As a
result, MSCs progressed rapidly to clinical trials for some diseases for which their puta-
tive therapeutic mechanism and optimal dosage regimen had not been elucidated.
Parallel laboratory studies, whereby the mechanism of action can be investigated
alongside clinical efficacy, is one addition to clinical trials that will help build confi-
dence in the plausibility and reliability their findings. Another important element will
be more comprehensive dose-finding studies, in which participants receive escalating
numbers of MSCs in phase 1 to determine the maximum tolerable doses. This element
would be followed by subsequent studies to determine the optimal dosing frequency
and interval for the indication, which may differ between acute and chronic infections.

With these approaches, we encourage the prioritization of MSCs in clinical trials for
the most difficult and complex infections.

CONCLUSIONS

The preclinical and clinical data support the further testing of MSCs for therapy
against infectious diseases. Their combined immunomodulatory and direct antimicro-
bial properties place them uniquely at the interface of host- and pathogen-directed
therapies. Their low immunogenicity and accumulating safety record will be important
for their progress through medicine licensing. More work is needed to understand
their mechanism of action, demonstrate their safety, and produce a standardized cell
therapy. Yet, MSCs represent an exciting new avenue for the management of difficult-
to-treat infectious diseases.
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