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One of the most basic notions in physics is the partitioning of a system into subsystems and the study of
correlations among its parts. In this Letter, we explore this notion in the context of quantum reference frame
(QRF) covariance, in which this partitioning is subject to a symmetry constraint. We demonstrate that
different reference frame perspectives induce different sets of subsystem observable algebras, which leads
to a gauge-invariant, frame-dependent notion of subsystems and entanglement. We further demonstrate that
subalgebras which commute before imposing the symmetry constraint can translate into noncommuting
algebras in a given QRF perspective after symmetry imposition. Such a QRF perspective does not inherit
the distinction between subsystems in terms of the corresponding tensor factorizability of the kinematical
Hilbert space and observable algebra. Since the condition for this to occur is contingent on the choice of

QREF, the notion of subsystem locality is frame dependent.

DOI: 10.1103/PhysRevLett.128.170401

Introduction.—QOperationally, subsystems are distin-
guished by physically accessible measurements. Suppose
that one can measure the set of observables described by
the minimal algebra A containing a collection {A;}?_, of
commuting subalgebras, [A;,.A;] =0 for i # j. This implies
that observables in A; and A; are simultaneously measur-
able, as expected of observables associated with distinct
subsystems. When these algebras admit Hilbert space
representations A ~ B(H) and A; ~ B(H;), the commuting
subalgebra structure can induce a tensor product structure
on the composite Hilbert space H ~ ®}_, 'H;, where H; is
associated with the ith subsystem. Given that this tensor
product structure is induced by the distinguished sets of
observables A;, entanglement and the notion of subsystem
itself is defined relative to these distinguished sets [1-5].

The physically accessible observables and states of a
system are dictated by the symmetries of the situation under
consideration [1-6]. For example, in a gauge theory
physically accessible states and observables are invariant
with respect to arbitrary gauge transformations [7]. In the
canonical approach, going back to Dirac [8], this invariance
requirement is implemented by introducing a kinematical
Hilbert space Hyy, ~ &7, H; that may come equipped
with a kinematical tensor product structure. Supposing that
C € L(Hy,) is a generator of a gauge symmetry, the
physical, i.e., invariant states satisfy the constraint equation
C‘|y/phys) =0. This is necessary, for example, for the
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counting of independent gauge-invariant degrees of free-
dom (such as photon polarizations). Solutions to this
equation may lie outside of H,;, as they may not be
normalizable with respect to its inner product. To overcome
this issue, one introduces a new physical inner product that
is used to complete the solution space of the constraint
equation to form the physical Hilbert space H,ys (see, €.g.,
Refs. [9-14]). Physical observables are elements of the
physical algebra Ay, ~ B(Hphys) known as Dirac observ-
ables, and commute with the constraint on physical states,
[Aphyss C‘]|1//phys> = 0. This ensures that Ay, is invariant
under gauge transformations generated by C, which is
necessary for the gauge invariance of physical expectation
values. This constraint-based approach also applies to
operational scenarios without bona fide gauge symmetry,
where these constraints correspond to an agent using an
internal quantum system as reference frame instead of an
external classical one [15].

Itis important to note that the physical Hilbert space H s
does not inherit the kinematical tensor product structure
Hyin =~ 7, 'H; and associated notion of subsystem. Instead,
a notion of subsystem must be induced by commuting
subalgebras of .Aphys, and, in general, will be nonlocal with
respect to the kinematical tensor product structure [16].

In this Letter, we consider composite systems that are
invariant under a gauge transformation admitting a
tensor product representation across H;,: that is, gauge

© 2022 American Physical Society
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transformations that act locally on the kinematical factors H;.
We take one of these kinematical subsystems to serve as a
reference frame from which the remaining subsystems are
described. To do so, we make use of recent results from the
theory of quantum reference frames (QRFs) to transform
from the quantum theory on the physical Hilbert space H s,
which encodes all QRF choices, to an isomorphic theory
from the perspective of a subsystem serving as a reference
frame [15,17-26] (see also Refs. [27-31] for a related
formulation without constraints). We show that subsystems
encoded by a perspective-dependent tensor product structure
induce a partitioning of the physical Hilbert through the
construction of sets of commuting subalgebras of so-called
relational Dirac observables [9,10,15,17-23,32-39] associ-
ated with different reference frame perspectives. In general,
different reference frames induce different partitions of the
physical Hilbert space and invariant observable algebra, and
thus the associated notion of subsystems is reference frame
dependent. We identify the necessary and sufficient con-
dition for when the physical Hilbert space inherits (some of)
the kinematical subsystem partitioning in terms of the
spectrum of the relevant constraint, and this condition is
contingent on the choice of QRF. This allows us to develop a
description of subsystems and entanglement in terms of
physical Hilbert space structures that is manifestly gauge
invariant and reference frame dependent.

From physical states to QRF perspectives.—Consider a
kinematical Hilbert space that partitions into three factors,
Hiin = Ha ® Hg ® Hc,anda smgle constraint of the form
C = Cp + Cy + Cc, where each C; is self-adjoint and acts

only on H;. For simplicity, we assume that each C,- is
nondegenerate, and treat degeneracies in the Supplemental
Material [40]. Each C; thus generates a unitary representation
of either the translation group R or U(l) on H; [44].
Consequently, C generates a one-parameter unitary repre-
sentation of either R or U(1) on H,;,, depending on the
combination of the C',- [23]. The constraint C may be a
Hamiltonian constraint as in gravitational systems, generat-
ing temporal reparametrization invariance and dynamics
[9,10,19-23,32-39,45-49], or it may be the generator of a
spatial symmetry, such as spatial translation invariance
[17,18]. For simplicity, we do not consider interactions
between the subsystems A, B, and C in the constraint.

As noted above, physical states satisfy C [Wpnys) = 0, and
together they constitute H,s. This induces a redundancy
with respect to Hy;,, which can be removed by identifying
the choice of redundant subsystem with the choice of
QREF relative to which the other systems will be described.
A physical state encodes each choice of QRF, therefore
assuming the role of a perspective-neutral state, linking
all the different perspectives [17-23]. Letting i,j, k €
{A,B,C}, we denote the chosen reference system by k
and the remaining kinematical factors by i and j. We then
define

Cijlk *= spec(@i + (A?j) N spec(—f?k), (1)

allowing us to write an arbitrary physical state as

|l//phys> = I e W(Civcj)l_ci - Cj>k ® [ci); ® |Cj>j»
Cit+Ci€oijik
(2)

for some y(c;, ¢;), where |c;); is the eigenstate of C; with
eigenvalue c; (likewise for j and k). Thus, if w(c;, c;) has
nontrivial support over various values of the eigenvalues c;,
cj, then k is entangled with i, j relative to the kinematical
tensor product structure. However, due to the redundancy,
this entanglement is not gauge invariant [21].

We can then describe physics from k’s perspective via
either of two paths [21-23]: a “relational Schrodinger
picture” (known in the context of Hamiltonian constraints
as the Page-Wootters formalism [46,47]) and a “relational
Heisenberg picture” [17-20]. In both cases, observables on
i, j are described relative to outcomes of an observable
on k, namely an element of a positive operator-valued
measure (POVM). The elements of this POVM can be
constructed via projectors onto orientation states of the
reference frame:

9 = I ible=aud|c,), (3)
Ck

where 0(c;,) are arbitrary phases and g is a coordinate on Gy,
the group generated by C,. These orientation states transform
covariantly under G,, |¢) = e~(9-9Ck|g) [21-23,48-51].
The QRF perspective corresponding to k is obtained by
conditioning physical states on k being in the orientation g,
thus fixing the gauge, leading to a reduced physical
Hilbert space H;j;. In the relational Schrodinger picture,

this proceeds via the reduction map R,ES) (9): Hpnys =
Hiji given by R,((S) (9) = (9l ® 1;; (with its domain
restricted to H ). This leads to the orientation-dependent
relational Schrodinger state |y;;(g)) = RE(S) (9)|Wpnys) €
H,j and the decomposition | ) = p ka dglg); ®
lyijik(9)) exhibiting the kinematical entanglement between
k and i, j, where u is a normalization factor.

On the other hand, in the relational Heisenberg picture
one first transforms [yp,s) to shift the nonredundant
information into the i, j partition with a frame disentangler
(“trivialization™) that is a shift conditional on frame k,

Tre =1 g, dge|g){gl ® ¢i(€i+Ca_ This factors out
the QRF, removing the kinematical entanglement between
k and i, j (see Supplemental Material [40]):

ek @ Iwijik) (4)

where ® denotes the kinematical tensor product between
koand i, j, lwie) = e GO0y (g)) € Hyy s the

Tk.e |l//phys> =
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corresponding “relational Heisenberg state,” and |e;), =
# |G, dge9|g),. Here, —e; must be a fixed, but arbitrary

element of o, ;; in which case Eq. (4) satisfies the transformed

ij|
constraint 7 .CT ,;i ~ (Cy — g1), which fixes the now-
redundant QRF k and preserves gauge invariance. One
then conditions on the reference frame being in a given

orientation of k, leading to the relational Heisenberg

picture reduction map R,((H) “Hphys = Hijix given by

R =R (9N (g, &) T e (5)

where N'(g,e,) is a normalization factor such that

R,((H>|y/phys> = |wijik)» which is (weakly) independent of g

and &, and we therefore do not include these labels in R,((m.

This reduction is unitarily equivalent to acting with R§(S> (9)
on physical states [21-23]. We will use the relational
Heisenberg picture in what follows, denoting the reduction
map by R, = R,({H) for simplicity.

The reduced physical Hilbert space H,;;; and observables
on it encode the physics of i, j as described from the internal
perspective of QRF k. When G, = U(1), H,;; need not
be a subspace of the kinematical factors H; ® H; [23].
Furthermore, thanks to the redundancy in describing
Hphys» the reduction is invertible on physical states (but
not on Hy;,), so that M, is isometric to H s [17-23].
Hence, the algebraic properties of observables are preserved.
This permits us to change QRF: the change from & to i takes
the compositional form of a “quantum coordinate trans-
formation,” A;_,; :== R,»oR;l, transforming both states and
observables via the structure on H,,, which is a priori
neutral with respect to QRF perspectives [17-23]; see Fig. 1.
The same physical situation, encoded in the perspective-
neutral state [y ), is thus described from different internal
QRF perspectives. We shall now exploit this gauge-invariant,
perspective-neutral framework to explain dependence of,
first, subsystem locality and correlations and, second, tensor
factorizability on the choice of QRF.

Frame-dependent subsystems and correlations.—The
QRF dependence of correlations has been observed in
Ref. [27], with the conclusion that superposition in one
frame manifests as entanglement in another frame. Later,
the formalism for changing QRFs introduced in Ref. [27]
was shown to be equivalent to the frame-change map in
Fig. 1 [17], and the frame dependence of correlations was
studied in a variety of contexts [15,17,21,24,29]. Here, we
use the perspective-neutral architecture to describe the QRF
relativity of subsystems and correlations.

The Heisenberg picture reduction illustrates why a fixed
perspective-neutral state |y,y) generally leads to different
properties, such as correlations, in A’s and B’s perspective
(see Fig. 1): when going to A’s perspective, the now-
redundant A becomes kinematically disentangled from the
nonredundant B, C, while B becomes disentangled from A,

Perspective-neutral physical Hilbert space
Hphys

[¥phys)

Disentangler

Tae

Disentangler

5.

le)a ® |TDBC|A>/ le) B ® Yac|s)

R (9N (g.) RE (9N (9,¢")
Quantum frame-change map
[YBo)a) [Vac|B)

Aass =RV o (R(AH))_l

\/

Perspective of A
@ Hpoja

@%@
Perspective ofB\/
Hacs

FIG. 1. The change from perspective A to perspective B takes
the compositional form of a “quantum coordinate transforma-
tion,” Ay_p = Rl(gH)o(RgH))‘1 [17-23]. This induces a trans-
formation on the algebra observables from the perspective of A to
the perspective of B, namely, Ay_pAgc| AAZL s C Aac|p, Where
Aij\k = B(Hij\k)'

C when proceeding to B’s perspective. Which kinematical
tensor factor in |y/phys> is chosen as redundant and which as
independent changes. In other words, the nonredundant
(physical) information in |y ys) is shifted among different
kinematical tensor factors when going to different QRF
perspectives. Indeed, the wave function y(c;, c¢;) will look
different for different choices of i, j. As we shall see later,
Hijjx may not even be factorizable across i and j.
However, when there is a physical tensor product structure
this generically leads to different correlations in different
frames. This can be understood by examining the observables
that probe the respective tensor factorizations. Suppose the
reduced physical Hilbert space Hpcja = Hpja ® Heja
admits a tensor factorization across the subsystems B, C
from A’s perspective, induced from the original tensor
product structure of Hy;,, and similarly that Hcjp = Hyp ®
Hcjp so that we can consider entanglement across these
subsystems. The subsystem physical Hilbert spaces H,; may
be different from their kinematical counterparts H; of which
they may [21,22] or may not be [23] subspaces. We consider
the algebra generated by local subsystem observables on
Hij|k, namely, -Aij|k = .A,'|k ® Aj\k, where A,"k = B(H,‘k)
(hence a type I factor), so that [A;; @ 1, Lix ® A;ji] = 0.
Since A is dense in B(H,;,) with respect to the strong
operator topology [52,53], we can treat A, ;. for all practical
purposes as the observable algebra of the tensor product space
Hjjx (in finite dimensions the algebras are isomorphic).
Using the fact that R, is an invertible isometry,
these observable algebras can be embedded into the

algebra of relational Dirac observables Ay = B(Hphys)
as A;l}]:ys = R;l (Ai\k ® lj)Rk C Aphys- This

[Aﬂt]fys,AI]}fyS] = 0. Since the properties of R, thus imply

ilk jlk
that A o and A

yields

are commuting type I factors, and that
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-1 '
moreover R A, Ry = Aphyb Aphy5 is dense in Apyys, it

follows [52] that these factors induce a physical tensor
ilk |k

product on H s = Hp‘hys ® Hﬁhys.

shows this to be QRF dependent in general (see

Supplemental Material [40], also for the degenerate case).

Theorem 1.—The algebra Aphyb of relational observables

of C relative to A is distinct from the algebra Aphys
ClA  ACIB

hys phys*
. . C|B
is isomorphic to A when

The following theorem

relational observables of C relative to B,
However, note that AC
HCA o ClB

phys phys*

phys
The two tensor factorizations H

Hpis ® Hpgs and Moy = Hyl @ Myl
stitute different physical tensor factorizations. It is therefore
clear that a given physical state |wpnys) € Hpnys exhibits
different correlations in the two different factorizations.

Put differently, transforming the algebra Ac|, from A’s
to B’s perspective does not yield C’s algebra relative to B:
Aaop(ly ® Acia)AzLp # 14 ® Acip. The tensor factori-
zation between B, C relative to A thus does not map under
QRF transformations into the tensor factorization between
A, C relative to B. Instead, since Ay_p iS an invertible
isometry too, it maps into a different tensor factorization
relative to B, namely one between combinations of A and C
degrees of freedom. Consequently, the notion of subsystem
locality is QRF dependent, as are the correlations inherited
from a given physical state. We illustrate this observation in
an example in the Supplemental Material [40].

When are kinematical subsystems physical?—As noted
above, it is in general not the case that the reduced physical
Hilbert space and the observable algebra can be factorized
into the same subsystems that constitute tensor factors of
the kinematical Hilbert space. In other words, imposing a
given symmetry can remove the distinction between what
might have been expected to be physical subsystems.

To see this, note that one can also obtain the reduced
physical Hilbert space from k’s perspective directly from the
kinematical i, j tensor factors via the (possibly improper)
projector IT,  : H; ® H; — H;j given by [21-23]

=Y e ® leicly.  (6)
cicileitci€aiji

Observe that o;;; is symmetric in i and j but not in i and k.

phys =
therefore con-

Furthermore, defining o; := spec(C;), note that ijik =

(ff i+ C j) whenever 6, = R. The projector Ha,;,-\k is improper
if o;j;. is discrete, while at least one of é’,-, C ; has continuous
spectrum [23]. The reduced physical Hilbert space H;j;
factorizes into i and j subsystems H;; and H ;. if and only if

I1;,, does as well. This is only the case if (see Supplemental

Material [40] for proof)

ijik = M(0ijjk 0jjik) (7)

where 6 == 0; N spec(—é'j — ) is the subset of o; com-
patible with the constraint equation, and where M(-,)
denotes Minkowski addition, defined by M(X,Y):=
{x+y|x € X,y € Y}. When this is satisfied, the projector
defined in Eq. (6) becomes

= (Y eael)o (Y ). ®

and thus Hgij‘k(H,» ® H;) = Hx ® H;x- Here, H;, € H;,
unless C, has discrete and C; continuous spectrum [21-23]
(likewise for H;y). Note that when o = o;, then
Hix = H;. This holds for both i and j if 6; = R. We give
an example of nonfactorizability of the physical Hilbert
space in the Supplemental Material [40].

To understand this more explicitly, let A[ ® A j bea
kinematical basis element of B(H;) ® B(H;). Condition (7)
must be satisfied in order for the physical representation of
this operator from k’s perspective to factorize across i and j.
Otherwise, the degrees of freedom of i and j become
combined indivisibly into I1, (A; ® A;). This includes

the case when A; ® Aj is diagonal in the eigenbases of C;

lj

and C j» and thus commutes with I, (see Supplemental
Material [40]). Specifically, kinematical i subsystem observ-
ables of the formfll- ® 1; will not translate into a product form
on Hiji. In fact, the following theorem holds (see
Supplemental Material [40]).

Theorem 2.—There exist Ai ®1; and 1; ® ;\j in
B(H;) ® B(H;) whose images under I1, —in B(H)
do not commute unless condition (7) is met.

By linearity, these conclusions extend to an arbitrary
element of B(H;) ® B(H;). Consequently, when
condition (7) is not satisfied, the algebra of observables
loses its distinction between parties i and j from the
perspective of k’s reference frame.

Frame-dependent factorizability.—When Eq. (7) holds
in one frame but not in another, the preservation of the
kinematical factorization on H,;; likewise depends on the
frame, as we now illustrate. For concreteness, consider any
constraint such that 6y =R,, og =R,, and oc =R.
Considering first C’s perspective, we have that oapc =
R, =M(R,,R,), ie., condition (7) is satisfied, with
OAIBC = OA (likeWise JB‘AC)7 and HGAB\C(HA ® HB) =
Ha ® Hg. From B’s perspective, on the other hand, one
can prove by contradiction that condition (7) is not satisfied
(see Supplemental Material [40]), and therefore the reduced
physical Hilbert space does not factor into A and C parts. This
latter fact does not, however, imply that there exists no tensor
factorization of H,cp. Indeed, one can use the tensor
factorization of H,p|c to construct one on Hycp via the
frame-change map A._p, as in our discussion of frame-
dependent correlations above. In this case the algebra of local
observables from C’s perspective, namely, Ay c ® Apc,

170401-4



PHYSICAL REVIEW LETTERS 128, 170401 (2022)

maps to a tensor factorization between combinations of A and
C degrees of freedom, and therefore does not correspond to a
partitioning into subsystems A and C.

As a particular example, consider a reparametrization-
invariant system consisting of two free (nonrelativistic)
unit-mass particles, A and B, and an ideal clock C (i.e., one
whose Hamiltonian is equivalent to a momentum operator
[19,24,48,54-56]). This corresponds to the constraint

o _Pi Ph .
Thus o5, =R, og =R_, as above, and therefore the
distinction between kinematical subsystems survives on

Hap|c» but not on Hj“’cw, where dp = +1 labels the

degeneracy of p% (see Supplemental Material [40] for a
discussion of degeneracies). In the Supplemental Material
[40], we illustrate this by examining how the kinematical
canonical pairs (%;, p;) on H; and (&;, p;) on H; appear
from B’s and C’s perspectives. We show that their com-
mutation relations are preserved on Hypc, but not on

HZBC‘ > Where they yield mutually noncommuting canonical

pairs, in line with Theorem 2, explaining the absence of a
tensor factorization across A and C relative to B. The same
conclusion holds for the corresponding relational observ-
ables on Hpp,. This further highlights the distinction
between local observables on Hy;, and the observables
in a given physical reference frame.

Another example of the above class of constraints is
obtained by replacing systems A and B in Eq. (9) with the
nondegenerate Hamiltonian A = p2/2m + a,e®? with a,,
a, > 0. This observation can also be easily extended to the
case when A, B are harmonic oscillators.

Discussion and conclusions.—We have established a
gauge-invariant and quantum frame-dependent notion of
subsystems, locality, and correlations using relational
observables. We have exploited the perspective-neutral
approach to QRF covariance [15,17-26], showing alge-
braically how different QRF choices necessarily induce
distinct tensor factorizations of the physical Hilbert
space when the latter admits such structures. Further, we
have identified the necessary and sufficient condition for
QRF perspectives to inherit the kinematical partitioning
of subsystems. Specifically, we have illustrated that the
kinematical definition of subsystems may survive in some
QRF perspectives, but dissolve in others.

The ensuing QRF dependence of subsystems and entan-
glement is a particular realization of the proposal for an
observer-dependent notion of generalized entanglement
put forward in Refs. [2,3,5] in terms of relational observ-
ables and QRFs. It is also related to the generic feature of
the dependence of entanglement on classical coordinate
choices [57]. However, here, as in previous work on QRFs
[15,17,21,24,27,29], specific choices of coordinates are
associated to the internal perspectives of different systems

to form quantum reference systems and these may be in
superpositions of “orientations.” This provides a physical
interpretation to the coordinate choices, and in turn the
quantum relativity of subsystems and entanglement.

Note that the notion of QRF here is physically distinct from
one sometimes used in the context of quantum information
theory [6,58—62] (see, e.g., the discussion in Ref. [15]), where
entanglement must be operationally defined relative to
observables that are independent of the choice of an external
frame not shared by two parties, for example, by appending an
ancilla system. This approach also resonates with the proposal
in Refs. [2,3,5], but does not involve the adoption of an
internal perspective relative to a subsystem through the
reduction maps employed here. In particular, the aim in that
context is to define an external-frame-independent notion of
entanglement, in contrast with our investigation of an internal-
frame-dependent entanglement.

In the relativistic case, the entanglement between spin
and momentum degrees of freedom for relativistic particles
[63,64], as well as the momentum mode decomposition in
quantum field theory [65], leading to the Unruh effect [66],
Hawking radiation [67], and particle creation due to the
expansion of the Universe [68], are also dependent on the
choice of spacetime frame. In contrast to QRFs, these
coordinate frames are not associated to dynamically evolv-
ing quantum systems, but are idealized noninteracting
classical entities external to the physics being considered.

The frame dependence of factorizability demonstrated in
this Letter implies that frameworks for general physical
theories which take system composition as a primitive
concept [69-74] are not currently able to describe fully
general physical scenarios with multiple frames.

Finally, it will be fruitful to connect our observations with
the currently widely explored notions of local subsystems and
entanglement in gauge theories and gravity [75-86]. For
example, defining local subsystems in gravity nonperturba-
tively in terms of commuting subalgebras of relational
observables can complement the perturbative investigation
of subsystems in terms of dressed observables in Refs. [76—
78]. Conversely, the possible nonfactorizability of the physi-
cal Hilbert space observed here calls for a revision of the
notion of subsystems. This question seems to be related to the
construction of entangling products using edge modes and
extended Hilbert spaces in gauge theories [80,86-90].
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