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a b s t r a c t 

The brain’s functional connectome is dynamic, constantly reconfiguring in an individual-specific manner. How- 

ever, which characteristics of such reconfigurations are subject to genetic effects, and to what extent, is largely 

unknown. Here, we identified heritable dynamic features, quantified their heritability, and determined their as- 

sociation with cognitive phenotypes. In resting-state fMRI, we obtained multivariate features, each describing 

a temporal or spatial characteristic of connectome dynamics jointly over a set of connectome states. We found 

strong evidence for heritability of temporal features, particularly, Fractional Occupancy (FO) and Transition 

Probability (TP), representing the duration spent in each connectivity configuration and the frequency of shift- 

ing between configurations, respectively. These effects were robust against methodological choices of number of 

states and global signal regression. Genetic effects explained a substantial proportion of phenotypic variance of 

these features ( h 2 = 0.39, 95% CI = [.24,.54] for FO; h 2 = 0 .43, 95% CI = [.29,.57] for TP). Moreover, these temporal 

phenotypes were associated with cognitive performance. Contrarily, we found no robust evidence for heritability 

of spatial features of the dynamic states (i.e., states’ Modularity and connectivity pattern). Genetic effects may 

therefore primarily contribute to how the connectome transitions across states, rather than the precise spatial 

instantiation of the states in individuals. In sum, genetic effects impact the dynamic trajectory of state transitions 

(captured by FO and TP), and such temporal features may act as endophenotypes for cognitive abilities. 
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. Introduction 

Inter-individual variability in the time-averaged (static) functional

onnectivity architecture of the human brain is subject-specific and pre-

ictive of cognitive abilities ( Finn et al., 2015 ; Jalbrzikowski et al.,

020 ; Ousdal et al., 2020 ; Rosenberg et al., 2016 ; Gratton et al., 2018 ).

ith the increasing availability of large-sample fMRI datasets, signifi-

ant genetic contributions to this static large-scale connectome architec-

ure have been established. Specifically, individual connections (region-

airs) and networks of the functional connectome have been identified

s heritable ( Ge et al., 2017 ; Reineberg et al., 2020 ; Glahn et al., 2010 ;

olclough et al., 2017 ). Moreover, topological properties of the static

onnectome, such as the modular organization, have been shown to con-

titute heritable subject-specific traits linked to behavioral and cognitive

haracteristics ( Liu et al., 2019 ; Sinclair et al., 2015 ). 

However, the static architecture captures only part of the function-

lly significant properties of the connectome. In fact, the functional con-

ectome as measured by fMRI spontaneously exhibits flexible recon-

gurations over the course of seconds to minutes ( Lurie et al., 2020 ;

eilholz 2014 ). These reconfigurations can be described as changes in
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onnectivity strength between specific sets of brain region-pairs, form-

ng recurrent connectome states. Such functional connectome states

old great significance as their time-varying (dynamic) characteristics

easured during task-free resting state have been linked to behavior

nd cognition ( Eichenbaum et al., 2020 ; Vidaurre et al., 2017 ). 

Because some of the same behavioral and cognitive features linked

o connectome dynamics are also heritable ( Han and Adolphs 2020 ), the

ossibility emerges that the behaviorally relevant connectome dynam-

cs may themselves be heritable. A prior study provides some support

or this exciting possibility by demonstrating heritability of the ratio of

ime spent across two “meta-states ” and their association with cognitive

bilities ( Vidaurre et al., 2017 ). However, the magnitude of heritability

f such dynamic features, i.e.,% variance of the dynamic features ex-

lained by genetic effects, was not assessed. Another informative study

as provided estimation of heritability magnitude for the variance and

ean of a connection-wise dynamic connectivity measure ( Barber et al.,

021 ). However, the measure was assessed separately for each pair of

anonical intrinsic connectivity networks (ICNs) rather than the com-

rehensive architecture of connectome states, and the link between the

ynamic features and cognition was not investigated. Here, we argue
pril 2022 
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hat future advances in genetics neuroimaging of connectome dynam-

cs and its translational potential are contingent upon identifying which

ynamic features are heritable and linked to behavior. Therefore, in the

ollowing we focus on a set of dynamic connectome features that have

een most commonly reported as behaviorally relevant. This hypothesis-

riven approach allows us to home in on a select subset among the nu-

erous possible network features. 

Particular temporal features of connectome dynamics, such as dura-

ions and rates of states, or the probability of transitions among states,

ave been shown to be behaviorally relevant ( Nomi et al., 2017 ). Specif-

cally, the proportion of the total recording time spent in each connec-

ome state (Fractional Occupancy) and the probability to transition be-

ween specific pairs of discrete states (Transition Probability) have been

inked to behavior ( Eichenbaum et al., 2020 ; Vidaurre et al., 2017 ).

hese temporal features are different from the above-described spatial

eatures in that they define the state sequence, or the trajectory of the

onnectome through state space, rather than the states’ spatial pattern of

C strength. In fact, the matrix of Transition Probability values between

ll possible state-pairs fully characterizes connectome transitions. 

Beyond these temporal attributes of connectome reorganization, an

ften-reported observation is that dynamic changes in the spatial fea-

ures of the connectome shape behavior. By spatial features, we refer

o patterns of connection strength and ensuing topological characteris-

ics of connectome states. Indeed, spontaneous changes in the functional

onnectivity pattern of specific sets of connections have been linked to a

ide range of cognitive processes from perception to higher-order con-

rol ( Sadaghiani et al., 2015 ; Thompson et al., 2013 ; Douw et al., 2016 ;

ellyer et al., 2014 ; Vatansever et al., 2017 ). Beyond specific sets of

onnections, global topological properties of the connectome’s graph

easure the spatial connectome pattern of all connections in a wholistic

anner ( Rubinov and Sporns 2010 ). Modularity is the topological fea-

ure whose dynamics ( Betzel et al., 2016 ) are most commonly associated

ith various behaviors (J. R. Cohen and D’Esposito 2016 ; Finc et al.,

017 ; Sadaghiani et al., 2015 ; Shine et al., 2016 ). Modularity quantifies

he balance between segregation (prioritizing processing within special-

zed networks) and integration (combining specialized information from

arious networks) ( Shine and Poldrack 2018 ). While modularity of the

tatic connectome was found to be heritable ( Sinclair et al., 2015 ), ge-

etic contributions to the behaviorally-relevant time-varying dynamics of

odularity across connectome states have not been assessed. 

Based on the preceding evidence for behavioral relevance, we chose

o investigate two dynamic temporal features and two dynamic spatial

eatures. Specifically, the temporal features comprised Fractional Oc-

upancy and Transition Probability. The two spatial features included

he time-varying connectivity strength (FC Time-Varying ) of the set of con-

ections exhibiting the strongest dynamic changes across states (cluster

f connections selected in a data-driven manner; Zalesky et al., 2010 ),

nd time-varying Modularity (Modularity Time-Varying ). We sought to an-

wer (i) whether the hypothesis-driven temporal and spatial features

f connectome dynamics are heritable; (ii) whether such heritability

merges from multivariate phenotypes jointly encompassing all connec-

ome states or contrarily as phenotypes of individual states; (iii) how

uch of the phenotypic variance of the dynamic connectome features

an be accounted for by genetic influence; and (iv) how much of the

ariance in heritable dynamic connectome features is associated with

he individual variability in cognitive domains. To address these ques-

ions, we extracted discrete brain states from resting-state fMRI data

cquired from the Human Connectome Project ( Smith et al., 2013 ), in-

luding monozygotic and dizygotic twin pairs, non-twin sibling pairs,

nd pairs of unrelated individuals, estimated their dynamic features,

tted quantitative genetic models to the features, and quantified their

ssociation with cognition. 

. Materials and methods 

Fig. 1 is a schematic representation of the overall approach and anal-

sis subsections. Because neuroimaging data processing inevitably in-
2 
olves numerous decision points, we provide reasoning for our choices,

nd further include supplementary results for several alternative choices

here appropriate (see Supplementary Information ). 

.1. Neuroimaging and behavior dataset 

We used the Washington University-University of Minnesota (WU-

inn) consortium of the Human Connectome Project (HCP) S1200 re-

ease ( Van Essen et al. 2013 ). Participants were recruited, and informed

onsent was acquired by the WU-Minn HCP consortium according to

rocedures approved by the Washington University IRB ( Glasser et al.,

013 ). For details of the HCP data collection protocol and cognitive mea-

ures, see ( Smith et al., 2013 ; Van Essen et al. 2013 ) and ( Barch et al.,

013 ), respectively. 

From the pool of all 1003 healthy adult subjects (aged 22–37 y,

34 females) with four complete resting-state fMRI runs (4800 total

imepoints) we investigated 120 monozygotic (MZ) twin pairs, 65 sex-

atched dizygotic (DZ) twin pairs, 96 sex-matched non-twin (NT) sib-

ing pairs, and 62 pairs of sex-matched unrelated individuals. Note that

ll pairs are uniquely defined so that none of the subjects overlap be-

ween groups to avoid dependencies across members of families with > 2

ubjects. All 1003 subjects entered HMM estimation of discrete connec-

ome states, while 686 subjects (as described in the pairs above) entered

eritability analysis. We included all 14 cognitive measures, which are

ummary scores for either a cognitive task or a questionnaire, under the

ognition domain provided by the HCP (see Table S1 for more detailed

escription for each variable, and Fig. S6A for their phenotypic corre-

ation structure). The measures were z-score normalized to zero mean

nd unit variance. Of 1003 subjects, 997 subjects had complete data for

he 14 cognitive variables measuring cognitive performance and entered

anonical correlation analysis (CCA). 

.2. Neuroimaging data preprocessing 

All imaging data were acquired on a customized Siemens 3T Skyra

t Washington University in St. Louis using a multi-band sequence.

ach 15-minute resting-state fMRI run was minimally preprocessed

 Glasser et al., 2013 ) using tools from FSL ( Jenkinson et al., 2012 )

nd Freesurfer ( Fischl 2012 ), and had artifacts removed using ICA + FIX

 Griffanti et al., 2014 ; Salimi-Khorshidi et al., 2014 ). Preprocessing fol-

owing the pipeline of Smith et al. ( Smith et al., 2013 , et al. 2013 ).

nter-subject registration of cerebral cortex was carried out using areal-

eature-based alignment and the Multimodal Surface Matching algo-

ithm (‘MSMAll’) ( Glasser et al., 2016 ; Robinson et al., 2014 ). 

.3. Parcellation 

The HCP team has previously parcellated the neuroimaging data

ith ICA in FSL using various model orders of 25, 50, 100, 200, and 300

ndependent components. Specifically, for group-ICA, each dataset was

emporally demeaned and variance normalized ( Beckmann and Smith

004 ). HCP provides averaged BOLD time-series for regions of these

roup-ICA-based parcellations. We used the time-series both with and

ithout global signal regression (GSR), reasoning that robust heritabil-

ty effects would be evident regardless of the choice of GSR/non-GSR. 

Among the available parcellations, the 300 model order ICA was

hosen for this study due to its following advantages: (i) independent

omponents in this parcellation better separate the individual brain ar-

as of the intrinsic connectivity networks (ICNs) than the lower model

rders; (ii) in this parcellation those independent components with mul-

iple brain regions spatially overlaps with a single ICN, whereas in lower

odel orders, independent components may overlap with multiple ICNs,

aking it difficult to consider the BOLD time-series extracted from a

iven independent component as representing a single ICN. 

However, the 300-model order ICA resulted in additional extreme

arcellation of the cerebellum and brainstem; 161 out of 300 indepen-
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Fig. 1. An overview of the analysis pipeline. We used minimally preprocessed resting state BOLD timeseries from 139 group-ICA-derived regions covering cortical 

and subcortical areas of the cerebrum as provided by the Human Connectome Project. [A] We used a hidden Markov model (HMM) to extract K = four discrete 

connectome states (or K = six states for replication) associated with a state time course for each subject indicating the probability of when each state is active. The 

four states are color coded (blue, red, yellow, purple) to illustrate their contribution to the connectome dynamics features of interest. We constructed each feature 

in a multivariate manner to comprehensively represent all states. Multivariate temporal features were defined as the proportion of the recording time spent in each 

connectome state (Fractional Occupancy) and the probability matrix of transitioning between all possible pairs of discrete states (Transition Probability). Multivariate 

spatial features include time-varying Modularity (Modularity Time-Varying ), and time-varying connectivity strength (FC Time-Varying ) averaged across the set of connections 

(region-pairs) that exhibited the strongest dynamic changes across states ( Zalesky et al., 2010 ). [B] We tested whether genetically more related subjects displayed 

greater similarity in their multivariate features than genetically less related subjects. First, for each feature of dimension m , we estimated a null model-derived origin 

point in the m -dimensional space. The position of each subject’s multi-dimensional feature value was estimated relative to this origin for genetic modeling (see 

below). Further, the similarity of this position between a given pair of subjects was quantified as Euclidean distance for ANCOVA analyses; a one-way ANCOVA of 

the factor sibling status with four levels (monozygotic twins (MZ), dizygotic twins (DZ), non-twin siblings (NT), and pairs of unrelated individuals) was performed 

on the distance value for each of the features. Secondly, we employed structural equation modeling (i.e., genetic variance component model) to quantify the genetic 

effects. Phenotypic variance of a trait was partitioned into additive genetic (denoted A), common environmental (denoted C) and unique environmental components 

(denoted E), with narrow-sense heritability ( h 2 ) quantified as the proportion of variance attributed to the genetic factor (A). Path A is dependent on the genetic 

similarity between twins. MZ twins are genetically identical (path denoted MZ = 1), whereas DZ twins based on the supposition of Mendelian inheritance share half 

of their genetic information (path denoted DZ = 0.5). [C] Finally, canonical correlation analysis (CCA) was used to find modes of population covariation between 

multivariate dynamic connectome features and cognition. CCA analysis was performed on dimension-reduced data including three multivariate dynamic connectome 

principal components and four cognitive factors. 
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ent components were identified as either cerebellar or brainstem using

utomated Anatomical Labeling (AAL) atlas-based masks, confirmed by

isual inspection. Including these regions would underestimate the con-

ribution of canonical ICNs to the dynamic reconfiguration of the con-

ectome, as the cortical and subcortical cerebrum comprises a consider-

bly larger overall volume but fewer independent components than the

erebellum and brainstem. FC reconfigurations among canonical neu-

ocognitive ICNs have been described as key contributors to the behav-

oral impact of connectome dynamics ( Douw et al., 2016 ; Hellyer et al.,

014 ; Sadaghiani et al., 2015 ; Thompson et al., 2013 ; Vatansever et al.,

017 ) and thus form the core of our features of interest. Therefore, we

ocused our investigation on the cerebral ICNs by excluding independent

omponents which fall into the cerebellar/brainstem regions, resulting

n a total of 139 out of 300 independent components. 

We computed the spatial overlap between each of the 139

ndependent components and Yeo’s canonical neurocognitive ICNs

 Yeo et al., 2011 ) to identify the functional network represented by

ach independent component. Yeo’s 7 ICNs include visual network

VIS), sensory-motor network (SMN), dorsal attention network (DAN),

alience/cingulo-opercular network (CON called Ventral Attention by

eo et al.), limbic network (Limbic), frontoparietal network (FPN), and

efault mode network (DMN). While Yeo’s 7 ICNs are limited to cortical

urface maps, the Limbic system is well-known to include core subcorti-

al regions. To add these regions to our Limbic network, we selected the

espective independent components that overlapped with an additional

ubcortical mask from the AAL atlas including the bilateral hippocam-

us, thalamus, as well caudate, putamen, and pallidum regions that they
3 
re heavily connected to (see Fig. S1 for the independent components

rouped into the 7 ICNs). 

.4. Hidden markov modeling 

We applied a hidden Markov model (HMM) to the minimally pre-

rocessed region-wise BOLD time-series, resulting in K discrete states

f whole-brain connectivity, each associated with state-specific time-

ourse. The HMM assumes that time series data can be described using

 finite sequence of a hidden number of states. Each state and its asso-

iated time series comprise a unique connectivity pattern that tempo-

ally re-occurs over time. Using the HMM-MAR (multivariate autore-

ressive) toolbox ( Vidaurre et al., 2016 ), discrete connectome states

ere inferred from region-wise BOLD time-series temporally concate-

ated across all subjects. Whereas the states are estimated at the group-

evel, each individual has a subject-specific state time course, indicating

hen a given state is active. For a given K, the best fitting model corre-

ponding to the one with the lowest free energy was selected across five

uns ( Quinn et al., 2018 ; Vidaurre et al., 2016 ; 2018 ). 

HMMs require an a priori selection of the number of states, K . Gener-

lly, the objective is not to establish a ‘correct’ number of states but

o strike a balance between model complexity and model fit and to

dentify a number that describes the dataset at a useful granularity

 Quinn et al., 2018 ). Prior HMM studies that have directly compared

everal K s have identified K s between 3 and 7 as optimal ( Stevner et al.,

019 ; Vidaurre et al., 2016 ). Therefore, we chose K = 4 to fall within

his range, and further assessed K = 6, reasoning that robust heritability
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ffects would be evident regardless of the specific choice of K (within

he optimal range). 

.5. Null model 

We demonstrated that the dynamic trajectory of connectome state

ransitions is not random by generating 50 simulated state time

ourses of the same length as the original empirical state time courses

 Vidaurre et al., 2016 ). Note that fifty is a rigorous choice compared

o previous work (e.g., Vidaurre et al. ( Vidaurre et al., 2017 ) applied

our simulations). The surrogate data, simulated using the simhmmmar

unction provided by HMM-MAR toolbox, preserve the static covariance

tructure of the original data but destroy the precise temporal ordering

f states. An HMM inference with K = 4 and K = 6, respectively, was

un on each of 50 surrogate datasets and the dynamic connectome fea-

ures (Fractional Occupancy, Transition Probability, etc.) at the group-

nd subject-level were recomputed. We confirmed that the non-random

istribution of features over states observed in the original dataset was

bsent in the surrogate dataset (Fig. S7). 

.6. Deriving multivariate temporal features of the dynamic connectome 

HMM-derived estimates provided the multivariate temporal features

f dynamic connectome that concurrently characterize all states. Specif-

cally, we calculated Fractional Occupancy (the cumulative total time

pent in a given state) for each HMM-derived state per subject. Further,

he transition probabilities across all state-pairs (Transition Probability

atrix) were estimated for each subject. Therefore, the temporal fea-

ures included Fractional Occupancy (1 × K) and off-diagonals of Tran-

ition Probability matrix ( K × K) (cf. Fig. 1 A). 

.7. Deriving multivariate spatial features of the dynamic connectome 

As a core global topological characteristic, Newman’s Modular-

ty ( Newman 2006 ) was estimated separately for each of the HMM-

erived connectome states. Modularity quantified the level of segrega-

ion of each connectome state into modules (Brain Connectivity Toolbox

 Rubinov and Sporns 2010 )), where the modular partition was config-

red to comprise the canonical ICNs ( Yeo et al., 2011 ). The Modularity

alue for the K states were then combined into a K -dimensional vector

onstituting the multivariate feature for heritability analysis. 

Our second spatial feature was selected in a maximally data-driven

anner. Specifically, we adopted the network-based statistics (NBS) ap-

roach ( Zalesky et al., 2010 ) to identify clusters of connections that

re significantly different across discrete connectome states. NBS is a

on-parametric method that deals with the multiple comparisons prob-

em (multitude of connections) on a graph by identifying the largest

onnected sub-component (cluster) in topological space while control-

ing the family-wise error rate (FWER). More specifically, we first per-

ormed mass univariate F -testing across four connectome states, adjust-

ng for age and head motion, independently across every connection

ithin the connectome. Importantly, F tests were performed on abso-

ute values for all connections to focus on the strength of connections,

egardless of their connectivity direction. As a result, each connection is

ndowed with a single test statistic ( F value) reflecting the connection’s

hange in connectivity value across K states. Then, the test statistic is

hresholded to obtain a set of supra-threshold connections, then iden-

ify topological clusters among the set of supra-threshold connections.

ince the choice of threshold is arbitrary, we chose a range of thresh-

lds (connection densities) that allow 1% to 5% of all connections to

urvive. Next, significant sets of connected edges, i.e., clusters, were

dentified at FWER-corrected P -value ( p < .05) using permutation testing

 n = 5000). The permutation constructs an empirical null distribution

f the largest connected cluster size by randomly rearranging the corre-

pondence between data points and their labels under the null hypoth-

sis without affecting the test statistic. As a result, for each connection
4 
ensity (1 ∼5%), NBS-defined clusters that substantially differ across the

onnectome states are obtained. Finally, at each density, the FC value

as averaged among the connections of the data-driven clusters for each

f the K states, then combined into a K -dimensional vector. This vector

onstitutes the multivariate feature that encapsulates the time-varying

C (FC Time-Varying ) of data-driven clusters for heritability analysis. We

eport results for 5% density in the main manuscript and generalize to

he other densities in Table S5. 

For exploratory analyses, we further included a more comprehensive

et of multivariate ( K- dimensional) spatial features. Specifically, we in-

estigated FC Time-Varying for all pairs of the seven canonical ICNs, includ-

ng each ICN’s connectivity to itself (within-network connectivity). The

C value was averaged among the connections of each ICN pair for each

f the K states, then combined into a K -dimensional vector. This vector

onstitutes the multivariate feature that encapsulates the time-varying

C (FC Time-Varying ) of the respective ICN pair for heritability analysis.

Table S6–7 ). 

.8. Similarity estimation and heritability testing 

The multidimensional space for each feature was created by setting

he origin point to the average of the given multivariate feature from the

0 surrogate datasets (see null model above). Within the multidimen-

ional space constructed for each of the multivariate features, we esti-

ated the similarity of each multivariate feature based on the Euclidean

istance between a given pair of subjects ( Colclough et al., 2017 ). Cru-

ially, this similarity estimation approach preserved the positional re-

ationship between elements in each multivariate variable. We tested if

he similarity of each of the multivariate features was dependent on the

imilarity of the genetic makeup between a given subject pair. Specifi-

ally, we used a one-way ANCOVA of the factor sibling status with four

evels (i.e., MZ twins, DZ twins, NT siblings, and pairs of unrelated indi-

iduals) on the similarity of each of the multivariate features, adjusting

or age and head motion similarity between subject pairs. Head motion

as quantified as framewise displacement (FD) ( Power et al., 2012 ),

nce in terms of the multivariate FD pattern across states (used for all

nalyses reported in the main manuscript, cf. SI Results II for details),

nd alternatively as FD across the total scan duration (reported in SI

esults II ). 

Further, we examined if heritability of features was driven by

he multivariate pattern or by individual (i.e., state-by-state) compo-

ents of the multivariate features. Specifically, we estimated the sim-

larity of each state-specific component of the Fractional Occupancy,

C Time-Varying of data-driven clusters and Modularity Time-Varying between

 given pair of subjects. Likewise, the similarity of each state-pair com-

onent of the Transition Probability matrix was estimated. We used two-

ay ANCOVAs to examine the effect of sibling status and connectome

tate on the similarity of individual components of the multivariate fea-

ures. 

.9. Quantification of heritability 

Heritability ( h 2 ) is the proportion of variance of a phenotype ex-

lained by genetic variance. We employed a structural equation model-

ng commonly used in classical twin studies to estimate heritability ap-

lied in twin studies. With multiple biological assumptions ( Keller and

oventry 2005 ), including that environment affects MZ and DZ twins

qually, the structural equations modeling partitions the phenotypic

ariance into the three components (A, C, and E) using maximum likeli-

ood methods: additive genetic variance (A; resulting from additive ef-

ects of alleles at each contributing locus), common environmental vari-

nce (C; resulting from common environmental effects for both members

f a twin pair), and random environmental variance (E; resulting from

on-shared environmental) ( Yashin and Iachine 1995 ). 
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The ACE model finds the correlation of univariate phenotypes be-

ween twin pairs and requires each subject to have a singular value for

ach phenotype. To accommodate the multivariate phenotypes to be fit-

ed into the model, we defined an origin point from which the Euclidean

istance of each multivariate phenotype will be estimated for each sub-

ect ( Fig. 1 ). 

This method was implemented in the R package mets ( http://cran.r-

roject.org/web/packages/mets/index.html ), adjusting for age and

ead motion. Nested models, specifically AE and CE, were fitted by drop-

ing C or A, respectively. Statistical significance of nested models was

ssessed by a likelihood ratio test and the fitness of models was tested

sing the Akaike’s Information Criterion (AIC) ( Akaike 1987 ). 

.10. Relating dynamic trajectories of states to cognitive performance 

Canonical correlation analysis (CCA) is a multivariate technique that

an identify and measure linear relations between two sets of variables

 Hotelling 1936 ). The CCA uses the Rao’s approximation approach to

est the null hypothesis that each linear relationship (or “mode ”) be-

ween the U and V canonical variates is zero. As a result, the significance

f each mode is estimated. As previously applied to the static connec-

ome and HMM-derived states, we trained CCA on the dimensionality-

educed temporal phenotypes of the connectome dynamics (U canon-

cal variate matrix) and cognitive measures (V canonical variate ma-

rix) ( Eichenbaum et al., 2020 ; Smith et al., 2015 ; Vidaurre et al., 2017 ;

ibon et al., 2021 ). Specifically, the canonical variate U consisted of

6 temporal phenotypes of connectome dynamics (i.e., 4 dimensions

rom 1 × K Fractional Occupancy and 12 dimensions from the off diag-

nals of K × K Transition Probability matrix) and the canonical variate

 consisted of 14 cognitive measures. Before applying dimensionality-

eduction procedures to each canonical variate, the variables that consti-

utes the canonical variate were normalized by z-scoring (mean centered

o zero and unit variance scaled to one) ( Wang et al., 2020 ). 

We performed a principal component analysis (PCA) to 16 dimen-

ions of the canonical variate U to reduce the dimensionality. By retain-

ng principal components of eigenvalues > 1, we identified three princi-

al components, together explaining about 88.27% of the total variance

n the temporal features of the dynamic connectome (Fig. S5). For CCA,

e used these three principal component coefficients as the U canonical

ariate. 

For canonical variate V, we applied the dimensionality-reduction

rotocol of the previous study that investigated the heritability of HCP-

rovided behavioral measures ( Han and Adolphs 2020 ). Specifically, we

erformed a factor analysis to cluster the cognitive measures into four

actors based on maximum likelihood estimates of the factor loadings

Fig. S6C). The number of factors was determined based on the number

f principal components having eigenvalues > 1 in a preceding PCA (Fig.

6B). Factors were rotated using Promax oblique rotation because there

as no evidence that the factors were orthogonal (Fig. S6A). We also

omputed factor scores using both regression and Bartlett methods for

eliability (since factor scores are indeterminate). These two methods

roduced two sets of very similar factor scores for the same four factors

see correlation structure between all 8 factor scores in Fig. S6D). For

CA, we used the four factor scores from the regression method as the

 canonical variate. 

Based on the factor loading matrix showing the variance explained

y each cognitive measure on a given factor (Fig. S6C) ( Han and

dolphs 2020 ), we cautiously (and inevitably subjectively) interpret

he extracted four factors as follows: factor 1: “Language ” (indicated

y high positive loadings on language-related cognitive tasks); factor 2:

Impulsivity/self-regulation ” (indicated by high positive loadings on de-

ay discounting tasks); factor 3: “Cognitive control ” (indicated by high

ositive loadings on fluid ability measuring tasks); and factor 4: “Mem-

ry ” (indicated by high positive loadings on episodic and working mem-

ry tests). 
5 
To assess the statistical significance of the discovered modes of co-

ariation, we calculated 10,000 permutations of the rows of U relative

o V, respecting the within-participant structure of the data, and recalcu-

ated the CCA mode for each permutation in order to build a distribution

f canonical variate pair correlation values ( Smith et al., 2015 ). By com-

aring the outcome from the CCA of the true data to the shuffled data,

e found that each mode of covariation discovered with the true data

as highly significant ( p < 1/10,000). The contribution of each factor to

he given mode was evaluated with post-hoc correlations between the

odes and the cognitive factors. 

. Results 

Results generated by the analysis procedures (illustrated in Fig. 1 )

re presented following the progression from Fig. 1 A through 1C. 

.1. Discrete connectome states have distinct spatial and temporal profiles 

We conceptualize dynamic connectome features as characteristics

hat describe FC changes between specific discrete connectome states.

e extracted discrete connectome states, i.e., whole-brain recurrent

onnectivity patterns, in a data-driven fashion using hidden Markov

odeling (HMM) ( Fig. 2 A) ( Vidaurre et al., 2016 ). HMMs require an

 priori selection of the number of states ( K ), and prior HMM studies

hat have explored several K s have identified K s between 3 and 7 as op-

imal ( Stevner et al., 2019 ; Vidaurre et al., 2016 ). Therefore, we chose

 of 4 to fall within this range, and further assessed K of 6, reason-

ng that robust heritability effects would be evident regardless of the

pecific choice of K (within the optimal range). In the following, we

how that robust heritability effects are observable in both parameter

egimes. Here, we report outcomes for K = 4 and replicate results for

 = 6 in Supplementary Information ( SI ). Characteristics of connectome

tates were convergent with prior literature that used similar number

f states regardless of state-defining approach (e.g., k-means clustering;

llen et al. 2014 ; Nomi et al., 2017 ), most notably a prominent contri-

ution of the visual and somatosensory ICNs to cross-state differences

 Fig. 2 A). 

We directly quantified these cross-state FC differences using

etwork-Based Statistics (NBS; Zalesky et al., 2010 ). We applied NBS

s a data-driven method to identify connected sets of connections (i.e.,

lusters) whose FC values differed significantly across connectome states

NBS enables cluster-level correction of multiple comparisons in graph

pace). Fig. 2 C shows the resulting (NBS-corrected) cluster of 473 con-

ections with strong cross-state FC difference (NBS applied at 5% uncor-

ected connection density out of 9591 total connections). The significant

luster showed large contribution of the visual ICN to the cross-state FC

ifference. Further, post hoc t-tests for FC averaged over all connections

f the cluster showed a difference across all pairwise comparisons ( p <

05); mean FC of the cluster was highest in state 2, followed by state 4,

tate 1, and lowest in state 3. This pattern of difference across state-pairs

as maintained over different connection densities (1% ∼ 5%; Fig. S4).

In addition to the strong contribution of the NBS-derived connec-

ions to cross-state FC differences, we added exploratory analyses into

ontributions of all canonical ICNs. Specifically, for each possible pair

f canonical ICNs we performed a one-way ANCOVA of the factor state

ith K levels on FC, adjusting for age and head motion ( Ks of 4 and 6

ithout GSR in Table S2, and with GSR in Table S3). Despite the visual

imilarity of the stats ( Fig. 2 A), this exploratory analysis showed that all

CN pairs contributed to FC differences across states. 

Beyond the FC of specific sets of connections, we investigated

ross-state differences in global topology, specifically Modularity

 Newman 2006 ; Rubinov and Sporns 2010 ). A one-way ANCOVA of fac-

or state was conducted for Modularity, adjusting for age and head mo-

ion. Fig. 2 D shows that the connectome states differed significantly with

espect to Modularity ( F (3, 2532) = 169.53, P = 2.23e-100, 𝜂2 
p = 0.167).

http://cran.r-project.org/web/packages/mets/index.html
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Fig. 2. HMM states and state-dissociating features. (A) HMM estimates the connectome states that are common to all subjects. The states are represented by z-scored 

functional connectivity (FC) matrices. The rows and columns represent 139 regions organized according to their membership to canonical intrinsic connectivity 

networks (ICNs) ( Yeo et al., 2011 ) including default mode network (DMN), frontoparietal network (FPN), dorsal attention network (DAN), salience/cingulo-opercular 

network (CON), sensory-motor network (SMN), visual network (VIS), and limbic network (Limbic; subcortical limbic regions omitted for visual succinctness). (B) 

HMM estimates a specific (probabilistic) state time course for each subject indicating when each state is active. The states are characterized by their mean activation 

and FC matrix. An approximately two-minute section of the state time course is visualized for one subject exemplifying periods occupied by each state and transitions 

across states. (C) A binary matrix showing a data-driven set of clusters of connections whose FC differed significantly across the four states. F values from an 

connection-wise ANCOVA of FC strength were threshold at 5% connection density followed by Network-Based Statistics (NBS) to control for multiple comparisons 

( Zalesky et al., 2010 ). Significant connections are widely distributed across networks, prominently including the DMN and VIS. (D) Bar plots show the mean FC of 

data-driven set of clusters, Modularity, and Fractional Occupancy for each state (686 subjects). F values are reported for one-way ANCOVAs of the factor state for 

each variable. Strong differences across states are observed in all three measures. 𝜂2 
p : Partial Eta squared effect size. Note that the F -tests of the left panel in D is 

providing equivalent information (and is circular with respect to) the non-parametric test in C. This information is provided solely to facilitate direct comparison 

with the F-statistics for Modularity and Fractional Occupancy in D. For details, see Fig. S5 and SI Results IV. 
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Regarding temporal characteristics of the states, an equivalent AN-

OVA of factor state was performed on Fractional Occupancy, adjusting

or age and head motion. This analysis showed that the cumulative time

pent in each state differed across states ( F (3, 2738) = 90.26, P = 1.07e-55,
2 

p = 0.090). 

In summary, these results confirm that the spontaneous connec-

ivity time courses can be described as non-random sequences of

our (or six) discrete connectome states that differ from each other

n terms of spatial organization, global topology, and proportion of

ccurrence. 
6 
.2. Multivariate temporal features of the dynamic connectome are 

eritable 

Heritability was tested for multivariate features that concurrently

haracterize all states. To circumvent the statistical limitations imposed

hrough multiple comparisons, the heritability analysis was confined to

 selection of hypothesis-driven phenotypes. Specifically, the multivari-

te features included Fractional Occupancy (1 × K) , Transition Proba-

ility matrix ( K × K) , FC Time-Varying of data-driven clusters (1 × K) , and

odularity Time-Varying (1 × K) (cf. Fig. 1 A). 
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We tested the supposition that genetically related subjects had more

imilar multivariate features than genetically less related subjects. The

imilarity of each of the multivariate connectome features between a

iven pair of subjects was quantified as Euclidean distance. Distance

alues entered a one-way ANCOVA of the factor sibling status with four

evels, including monozygotic (MZ) twins, sex-matched dizygotic (DZ)

wins, sex-matched non-twin (NT) siblings, and sex-matched pairs of

nrelated individuals, adjusted for age and head motion. No subjects

verlapped between groups. 

We found that temporal features, describing the dynamic trajec-

ory of connectome state transitions, are heritable ( Fig. 3 A). Specifi-

ally, genetically closer subject pairs have more similar Fractional Oc-

upancy ( F (3, 337) = 15.49, P † = 7.32e-9, 𝜂2 
p = 0.121, where P † is the

 value Bonferroni-corrected for four dependent variables) and Transi-

ion Probability ( F (3, 337) = 12.00, P † = 6.98e-7, 𝜂2 
p = 0.097) pheno-

ypes, compared to less genetically-related pairs. This impact of sibling

tatus on temporal features was of consistently large effect size (partial

ta squared ( 𝜂2p) ∼ 0.11; J. Cohen 1988 ), regardless of global signal

egression (GSR) and the chosen number of states (see SI Results I, Fig.

2 ). No effect of sibling status was observed in surrogate data lacking

ime-varying dynamics but with preserved static covariance structure

Fractional Occupancy F (3, 337) = 0.66, P † = 1, 𝜂2 
p = 0.006, and Transi-

ion Probability F (3, 337) = 0.82, P † = 0.965, 𝜂2 
p = 0.007). 𝜂2 

p 

Contrary to the temporal features, we did not find robust

choice-independent) support for heritability of the spatial features,

hich describe how connectome states are spatially instantiated

n individuals. Specifically, outcomes of equivalent ANCOVAs for

odularity Time-Varying ( F (3, 337) = 2.21, P † = 0.347, 𝜂2 
p = 0.019)

nd FC Time-Varying of data-driven clusters ( F (3, 337) = 0.81, P † = 1,
2 

p = 0.007) showed no impact of sibling status, and effect sizes re-

ained small ( 𝜂2 
p ∼ 0.02) irrespective of the chosen number of states

nd GSR ( SI Results I, Fig. S3 ). This lack of robust heritability was con-

rmed by a subsequent variance-component genetic analysis (see Re-

ults III). Our sample size permitted detecting, at 80% power, effects of

mall size ( 𝜂2 = 0.03, equivalent to f = 0.179, or larger). Therefore, if for

patial features heritability produced effects smaller than the detectable

ize, these effects would be of low practical impact. Further, we pro-

ide additional Bayesian Factor values to directly assess the probability

f H 0 (i.e., the null hypothesis that there is no effect of sibling status)

gainst H 1 (Table S4). Indeed, the Bayes Factor for Modularity Time-Varying 

howed that the data are more likely to occur under H 0 than under H 1 

BF 01 of 2.15; anecdotal evidence for H 0 ). For FC Time-Varying of data-

riven clusters (BF 01 = 131.88), the Bayes Factor showed that the data

re 132 times more likely to occur under H 0 than under H 1 . 

To ensure that the lack of a robust outcome for spatial attributes

as not driven by a narrow feature selection, we further performed

dditional ANCOVAs of sibling status for exploratory spatial features:

C Time-Varying of data-driven clusters defined across four other connec-

ion densities (Fig. S4 and Table S5) and FC Time-Varying of all 28 possible

airs among the seven ICNs (including within-network FC Tables S6 –7 ).

s with the previous features, we argued that robust heritability effects

ould persist irrespective of core methodological choices of number of

tates ( K = 4 or 6) and GSR/non-GSR. We thus investigated each of the

8 ICN pairs under all four methodological choices. Only a single ICN

air, namely Limbic-Limbic or the set of connections within the Lim-

ic ICN, showed a significant effect of sibling status (corrected for 28

omparisons). This effect was observed for K = 4 both under GSR and

on-GSR conditions but did not replicate for K = 6. For all other ex-

loratory spatial features BF provided anecdotal to decisive evidence

or H 0 , i.e., the lack of heritability, with exception of three cases under

ll four methodological choices combined ( Tables S5-S7 ). These findings

trongly contrast the observations for temporal features, where Bayes

actor of both Fractional Occupancy and Transition Probability showed

hat the data are > 100 times more likely to occur under H 1 than under

 0 (BF 01 < 10 − 6 ). 
7 
Importantly, the effect size of heritability of Fractional Occupancy

nd Transition Probability was considerably larger for multivariate tem-

oral features ( Fig. 3 ) compared to the individual (i.e., state-by-state)

omponents of the multivariate features (Table S8). Therefore, our find-

ngs demonstrate that the dynamic trajectory of connectome state transi-

ions are heritable predominantly when considered as multivariate pat-

erns, rather than as individual state-specific components. 

.3. Genetic effects account for substantial variability in temporal 

onnectome dynamics 

We employed a structural equation modeling common in classical

win studies ( Falconer 1990 ) to estimate how much of the phenotypic

ariance is explained by genetic variance, or heritability ( h 2 ). Tradition-

lly, the model is fitted to univariate phenotypes. However, our above-

escribed ANCOVAs suggest that temporal characteristics of connec-

ome dynamics are inherited predominantly as multivariate phenotypes

 Fig. 3 A). Therefore, we adjusted the model to accommodate multivari-

te phenotypes by quantifying the similarity (or Euclidean distance) be-

ween multivariate features from each subject’s real data and a “null ”

oint of origin (from dynamics-free surrogate data Fig. 1 ). To replicate

ur results independent of this novel approach, we provide results from

n alternative approach for multivariate features ( Ge et al., 2016 ), which

owever does not account for collinearities among the univariate com-

onents ( SI Results III and Table S9). 

A substantial portion of variance of temporal features was explained

y additive genetic variance in the ACE model, adjusted for age and

ead motion ( Table 1 ). The additive genetic effect (A, or narrow-sense

eritability) of Fractional Occupancy and Transition Probability was es-

imated as h 2 = 0.39 (95% confidence interval (CI): [.24, 0.54]) for

ractional Occupancy and h 2 = 0 .43 (95% CI: [.29, 0.57]) for Transition

robability. Note that the impact of common environment (C) was esti-

ated as zero for both Fractional Occupancy and Transition Probability.

or both features, the fitness of the nested models was not significantly

etter than the full ACE model. These outcomes indicate that genetics

ontribute substantially to the temporal features of connectome dynam-

cs. 

Consistent with the ANCOVA-based heritability findings ( Fig. 3 B

nd Fig. S3), the ACE model did not support genetic effects

n either spatial feature (FC Time-Varying of data-driven clusters and

odularity Time-Varying ). The h 2 was estimated as 0.27 for FC Time-Varying 

f data-driven clusters and 0.05 for Modularity Time-Varying , but with a

ide 95% CI crossing zero, supporting the null hypothesis (i.e., there

s no evidence for heritability): CI of [ − 0.01, 0.58] and [ − 54, 0.63],

espectively. 

.4. Temporal phenotypes of the dynamic connectome are associated with 

ognition 

Finally, for the heritable phenotypes of connectome dynamics, we

ssessed associations with cognitive measures using canonical cor-

elation analysis (CCA) ( Smith et al., 2015 ). CCA was performed

n dimensionality-reduced data (three principal components for dy-

amic connectome phenotypes and four factors for cognitive measures).

mong the three linear relationships (modes) of covariation, three

odes were significant (against 10,000 permutations, p < 10 − 4 ) and

obust after correcting for age, sex, and head motion ( Fig. 4 A). Post-hoc

orrelation between the modes and cognitive factors revealed the contri-

ution of each factor to each mode ( Fig. 4 B). The most significant mode

as defined by negative weights for the “Language ” ( r = − 0.21) and

Memory ” ( r = − 0.18), followed by “Impulsivity ” ( r = − 0.15) and “Cog-

itive control ” ( r = − 0.13). The second significant mode was defined by

 positive weight for “Cognitive control ” ( r = 0.06). No significant con-

ribution from cognitive factors was found for the third mode. Post-hoc

nalysis further revealed substantial contribution of principal compo-
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Fig. 3. Heritability of temporal features of the dynamic connectome. Heritability of each of the multivariate features was assessed separately by one-way ANCOVAs 

of the factor sibling status (four levels: monozygotic twins (MZ), dizygotic twins (DZ), non-twin siblings (NT), and pairs of unrelated individuals), adjusted for age 

and head motion. The main effect of sibling status indicates the heritability, or genetic effect. (A) Bar graphs show that more genetically similar subject pairs have 

smaller Euclidean distance, which denotes similarity of a given temporal connectome feature. Specifically, temporal connectome features were more similar among 

MZ twin pairs than DZ twins, followed by NT siblings and pairs of unrelated individuals. This heritability effect was statistically significant and stable, irrespective 

of global signal regression and the chosen number of states (see Fig. S2). (B) The illustration provides an intuition of the similarity of Fractional Occupancy and 

Transition Probability using the subject pair with highest ( Left ) and respectively lowest ( Right ) multivariate feature similarity. The subject pair in the Left panel, an 

MZ twin set, illustrates that genetically identical subject pairs display similar duration of time spent in each connectome state (Fractional Occupancy; pie graph) 

and similar connectome state transition patterns (Transition Probability; directed graph). The subject pair in the Right panel were unrelated and illustrate that the 

temporal features are dissimilar across genetically dissimilar subjects. (C) In contrast to temporal features, bar graphs show that genetic similarity did not affect the 

similarity of each given spatial connectome features. The effect sizes of the heritability analysis of spatial features remained small for alternative analysis choices 

(see Fig. S3). P † : P values Bonferroni-corrected for four dependent variables, 𝜂2 
p : Partial Eta squared effect size. 
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ents of dynamic connectome phenotypes to the modes. Together, these

ndings suggest that temporal phenotypes of the dynamic connectome

re linked to cognitive abilities. 

. Discussion 

The present interest in time-varying dynamics of the functional con-

ectome is rooted in its impact on cognitive processes that are inherently
8 
ynamic ( Kucyi et al., 2018 ), with implications for inter-individual dif-

erences in cognitive abilities ( Eichenbaum et al., 2020 ; Nomi et al.,

017 ). Subject-specific features of connectome reconfigurations are both

ynamic and multidimensional —they collectively incorporate patterns

rom multiple connectome states that evolve over time. However, the

rowing literature on heritability of connectome features has, for the

ost part, overlooked the connectome’s inherently dynamic and multi-

imensional character. Thus, we introduce a novel method providing
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Fig. 4. Heritable temporal dynamic connectome phenotypes are related to cognition. Canonical correlation analysis (CCA) finds the maximum correlation between 

the linear combination between the two multi-dimensional canonical variates: U and V. Canonical variate U is defined as the three principal components (PCs), 

representing the temporal phenotypes of connectome dynamics. Canonical variate V is defined as four Factors, each representing the different domain of cognitive 

task measures. The principal coefficients matrix displays the weight that each component of the temporal phenotypes has on each of the PCs. The factor loading 

matrix displays the weight that each cognitive measure has on each of the Factors (see Table S1 for details of cognitive task measures). CCA revealed three significant 

linear relationships (or modes) between the two canonical variates, corrected for age, sex and head motion. The contribution of each PC or Factor to the given mode 

(as evaluated through post-hoc Pearson’s correlations with each mode) is illustrated by the thickness of the arrows linking PCs or Factors to each canonical variate. 

These contributions and their statistical significance are quantified by the bar plots in the lower panel. 𝜎2 : the variance explained by each principal component, Cog 

Control: cognitive control. ∗ p < .05, ∗ ∗ p < .005, ∗ ∗ ∗ p < 5.0e-4. 
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omprehensive heritability assessments of a variety of multidimensional

ynamic connectome features, and quantify the genetic effects on these

ulti-dimensional phenotypes ( Table 1 ). This approach successfully

emonstrates that heritability effect size is larger and more robust for

ultivariate dynamic features (i.e., Fractional Occupancy, Transition

robability; Fig. 2 and Fig. S2) than for state-wise scalar features (cf.

xample here; Table S8). Taken together, our findings provide strong

vidence for a substantial genetic effect on the dynamic trajectory of

onnectome state transitions that does not extend to the spatial and

opological features of connectome states. 

Previous studies based on the classical twin designs have found

onsiderable genetic effects on multiple structural and static (i.e.,

ime-averaged) functional connectome features of the human brain.

or example, heritable features of the structural connectome in-

lude size ( h 2 = 23–60%) and topography ( h 2 = 12–19%) of ICNs

 Anderson et al. 2021 ), and average regional controllability as derived

rom network control theory ( h 2 = 13–64%) (Lee et al. 2020). Regarding

he functional connectome, heritability has been established for static

C within canonical neurocognitive ICNs in several studies ( h 2 = 13–

6% ( Adhikari et al., 2018 ); h 2 = 45–80% ( Ge et al., 2017 ); ( h 2 = 9–

8% ( Elliott et al., 2019 )). Further, genetic effects have been reported

or topological properties of the static functional connectome, such as

lobal efficiency ( h 2 = 52–62%), mean clustering coefficient ( h 2 = 47–

9%), small-worldness ( h 2 = 51–59%), and modularity ( h 2 = 38–59%)
9 
 Sinclair et al., 2015 ). The present multivariate approach represents a

ignificant departure from previous studies which traditionally estimate

eritability for univariate connectome features. Time-varying changes

easured in a multivariate (cross-state) manner are independent of the

ime-averaged (static) strength of connectivity. Therefore, the previ-

usly observed heritability of static connectivity strength and its spatial

attern does not inform about whether or not changes in the connectivity

attern are heritable. 

Beyond the above-described studies on structural and static func-

ional connectomes, heritability and quantitative estimation of the ge-

etic impact have been largely unknown for connectome dynamics. To

ur knowledge, only few dynamic features have undergone heritabil-

ty analysis, specifically Fractional Occupancy across a set of states

nd their binary meta-states ( Vidaurre et al., 2017 ) and variance and

ean of dynamic connectivity in/across canonical ICNs ( Barber et al.,

021 ). The current study establishes heritability of a wider hypothesis-

riven set of multivariate dynamic connectome phenotypes that en-

ompasses both temporal and spatial dynamic features. The statistical

ffect sizes of heritability were consistently large across several dif-

erent methodological choices for temporal characteristics of connec-

ome state transitions (Fractional Occupancy and Transition Probabil-

ty). Further, we provided the quantitative estimate of additive genetic

ffect on Fractional Occupancy ( h 2 = 39%) and Transition Probability

 h 2 = 43%), using the classical twin design ( Falconer 1990 ). This strong
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10 
eritability is in the range reported above for structural and static FC

nvestigations. 

Interestingly, for both Fractional Occupancy and Transition Prob-

bility, the effect of common environment was estimated to be zero

 Table 1 ). The twin model assumes that environment affects MZ and DZ

wins equally and, thereby, greater phenotypic similarity of MZ twins

ust be due to their greater genetic similarity. However, such biological

ssumptions can be violated as both intrauterine and postnatal environ-

ents can differ as a function of zygosity ( Conley et al., 2013 ). There-

ore, the impact of common environment on the phenotypic variance

annot be estimated with precision. Nonetheless, our estimated values

uggest that the common environment is unlikely to have a sizable in-

uence on these phenotypes. 

Importantly, we showed that the chosen temporal characteristics of

onnectome state transitions are linked to cognitive abilities. Recently,

he well-established association between cognition and structural (Lee

t al. 2020) or static functional connectome features ( Cole et al., 2013 ;

lliott et al., 2019 ; van den Heuvel and Sporns 2013 ) has been ex-

ended to functional connectome dynamics ( Eichenbaum et al., 2020 ;

idaurre et al., 2017 ). Our observations further corroborate the associ-

tion between cognitive abilities and connectome dynamics and extends

hem to our specific features. Although CCA-derived associations cannot

eveal the mechanistic nature of this relationship ( Eichenbaum et al.,

020 ), it has been suggested that connectome dynamics may facili-

ate cognitive processes that are inherently dynamic in nature (J. R.

ohen 2018 ). Notably, the association with dynamic temporal features,

pecifically, suggest that subject-specific trajectories across connectome

tates are of importance to cognitive processes, most notably language,

emory, and cognitive control. Importantly, our observations further

uggest genetic contributions to connectome dynamics that impact cog-

ition. A potential driving force of the heritability of such temporal as-

ects of connectome dynamics could be variability in (e.g., receptor)

enes of modulatory neurotransmitter systems. This possibility is in line

ith a leading theory suggesting that ascending neuromodulatory input

ay serve as a primary drive behind connectome dynamics and cog-

ition ( Shine et al., 2019 ; 2019 ). Therefore, the link between dynamic

rajectories of the time-varying connectome and cognitive abilities may

uggest that temporal phenotypes are potential endophenotypes for cog-

itive abilities and therefore suitable candidates for genetic association

tudies. 

In contrast to the temporal features, outcomes for spatial characteris-

ics of connectome states largely supported the null hypothesis of a lack

f heritability for an extensive set of features. Specifically, for our initial

patial features of cluster-based FC Time-Varying and Modularity Time-Varying ,

ibling status had no effect on similarity across subjects under any of the

ethodological choices (number of states and GSR). Lack of heritabil-

ty was confirmed for cluster-based FC Time-Varying at additional connec-

ion densities. Among an exhaustive exploratory set of 28 ICN pairs,

C Time-Varying did not show an impact of sibling status under any of the

ethodological choices with exception of within-network FC Time-Varying 

n the Limbic ICN. The heritability effect in the Limbic ICN occurred un-

er both GSR and non-GSR choices but was not robust across the chosen

umber of states. Nevertheless, this observation provides preliminary in-

ication that the Limbic network might be unique in that the change in

ts FC pattern across connectome states may be under genetic influence.

e speculate that this unique observation may be related to the par-

icularly large representation of sub-cortical areas as this aspect posits

 major difference compared to the other ICNs. Because of the limited

obustness especially in the context of the exploratory approach, this

bservation should be interpreted with caution and further investigated

n future work. 

Note that our investigations of FC spatial patterns from discrete

hole-brain connectome states are not to be confused with FC variance

erived in a state-unrelated manner and in separately studied ICN pairs

 Barber et al., 2021 ); the latter encapsulates temporal characteristics

hat are indeed heritable, rather than spatial patterns. In principle, our
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ull result for spatial features may be driven by limited signal-to-noise

atio, limited statistical power, or other factors. However, the weight

f evidence suggests that genetic effects primarily contribute to how

he connectome transitions across different states, rather than the pre-

ise way in which the states are spatially instantiated in individuals.

e note however, that other non-genetic contributors, including in-

ividuals’ experience and learning, strongly shape the subject-specific

onnectome and its state-wise spatial patterns. In line with this notion,

xploratory analyses (Table S10) showed that our spatial features, al-

eit not heritable, were significantly associated with all four cognitive

actors (with major contributions from language, memory, cognitive

ontrol, and impulsivity, respectively) conforming with prior literature

 Eichenbaum et al., 2020 ). 

Our study is subject to several limitations and methodological con-

iderations. In principle, one might conceive of a scenario where genetic

ffects impact a mental process or a different neurobiological process

hat in turn affects connectome dynamics. In such a hypothetical case,

e believe that our results would still be of basic and translational value

s they would demonstrate that genetic effects contribute –via an indi-

ect route– to inter-individual differences in connectome dynamics. An-

ther consideration is that the available sample size is relatively small

or a heritability study. Despite this limitation, the confidence intervals

ndicate that the sample size was sufficient to establish the genetic ef-

ect on Fractional Occupancy and Transition Probability with high con-

dence. Another limitation is that other spatial features that may be

eritable may have been missed in this study. In the supplementary, we

eported the absence of heritability of a more exhaustive set of features:

C Time-Varying of data-driven clusters at different connection densities

Table S5) and FC Time-Varying of 28 ICN pairs ( Tables S6–7 ). However,

arger sample sizes may provide insights into heritability of other spa-

ial dynamic features in the future; our results provide a starting point

or explorations of these larger feature sets. 

In conclusion, our findings establish that transitions between whole-

rain connectome states and the proportion of time spent in each state

re heritable and subject to substantial genetic influence. These results

lso suggest a likely non-genetic origin for inter-individual differences

n the spatial layout of connectome states. This evidence adds to previ-

us findings linking heritable temporal dynamics of connectome states

nd cognition ( Vidaurre et al., 2017 ; Eichenbaum et al., 2020 ) and iden-

ifies Transition Probability and Fractional Occupancy in the resting hu-

an brain as potential endophenotypes for cognitive abilities. As such,

hese features may inform investigations into specific, functionally rele-

ant genetic polymorphisms and translate to efficient connectome-based

iomarkers. 
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