
Application of a Taylor series approximation to1

the Debye Wolf integral in time-domain2

numerical electromagnetic simulations3

ANDREA MAZZOLANI1,* , CALLUM MACDONALD 1 AND PETER R.T.4

MUNRO1
5

1Department of Medical Physics and Biomedical Engineering, University College London, Malet6

Place, Gower Street, London WC1E 6BT, UK7
*Corresponding author: andrea.mazzolani.18@ucl.ac.uk8

Abstract: Finite difference time domain (FDTD) and pseudo-spectral time domain (PSTD)9

methods are numerical electromagnetic simulation techniques, which have been employed to10

perform rigorous simulations of broadband illuminations in several contexts. However, the11

computational cost of calculating the incident source fields introduced into the FDTD/PSTD12

grid can be considerable. In some cases this can exceed the computational cost of what13

might be considered the principal part of the FDTD/PSTD algorithm, which calculates the14

spatial derivative of fields throughout the computational grid. In this article we analyze15

an existing method that has been used to approximate broadband illumination, which uses16

knowledge of the field only at a central frequency of the spectrum. We then present a new17

approximation of the broadband illumination, which is more accurate, whilst remaining18

computationally tractable. Finally, we present some examples to verify the accuracy and19

efficiency of the new method and compare these results with the existing method.20
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1. Introduction22

The finite difference time domain method (FDTD) [1] is a numerical electromagnetic23

simulation technique that is commonly used in a wide variety of applications [2–6]. One of24

the main advantages of the FDTD method is its ability to solve Maxwell’s equations in the25

time domain, thus allowing simulation of the propagation of broadband electromagnetic26

fields through scattering media. In the FDTD method, space and time are discretized, and27

the electric and magnetic fields are calculated on a 3D rectangular grid. The FDTD method28

is an initial value problem, where electric and magnetic fields known at an initial point in29

time are used to iteratively calculate the field at a later point in time. Focussed beams are30

introduced into the simulation through equivalent electric and magnetic current densities31

which produce the desired beam profile [7]. This requires that the current densities, and32

therefore the field associated with the focussed beam, are computed at each time step of33

the FDTD simulation [1, 7], in a plane 𝑧 = 𝑧𝑠 transverse to the optical axis, called the34

source interface plane. This calculation can be considerable since it generally involves the35

calculation of a diffraction integral, at multiple wave numbers, followed by the evaluation of36

a Fourier transform to calculate the field in the time domain.37

The pseudo spectral time domain method (PSTD) [8], is a memory-efficient variant of38

FDTD that employs the discrete Fourier transform to calculate the spatial derivatives of39

the electromagnetic fields instead of central differences. The use of spectrally evaluated40

spatial derivatives allows fields to be sampled at near the Nyquist rate, which allows for41

sparser sampling than is possible using the FDTD method. This allows for coarser grids to42

be used, thus allowing physically larger computational volumes to be simulated using the43

PSTD method compared with the FDTD method.44

In what follows we refer to the field introduced at the source interface plane, at each time step,45

as the "incident wave source". The simplest incident wave source used in the FDTD/PSTD46

method is the plane wave. However, many optical applications require the simulation of47



more complicated illumination beams. In this paper we focus on the simulation of focussed48

Gaussian pulses in the focal region. This choice is motivated by the fact that pulsed beams49

allow the simulation of a broadband response using a single FDTD/PSTD simulation.50

Several works propose approximate approaches to calculating the field associated with51

focussed beams, such as those based on the Debye-Wolf integral [9, 10], which describes the52

electromagnetic field distribution in the focal region of high NA objective lenses [11–21].53

As will be explained later, our goal is to develop a technique that does not require multiple54

monochromatic components to be stored in order to simulate pulsed focal fields. This is55

because such approaches lead to unfeasible storage and computational loads in FDTD/PSTD56

simulations.57

58

Even though our interest is primarily in approximating time-domain simulations of focussed59

broadband incident fields, it is instructive to mention some works where approximations and60

calculations of focussed beams have been made in the frequency domain.61

One such example introduces an eigenfunction expansion of the electric field in the focal62

region of the lens [11, 12]. In another work Török et al. [13] compared four approximations63

of the Debye-Wolf integral, which represent the directly evaluated integral as a sum of64

simpler integrals, and showed that the direct integration is the fastest method. Leutenegger65

et al. [14] calculated the focussed beam by applying the two-dimen-sional Fourier transform,66

achieving good accuracy and maintaining a limited computational time. More recently, a67

generalization of the Debye-Wolf integral that includes any kind of aberration has been68

proposed by Wang et al. [15].69

There have been a number of studies which employ the FDTD/PSTD method to simulate70

time-domain fields in the focal region of a converging lens. Davidson and Ziolkowski [16],71

created a model for introducing a focused beam for rotationally symmetric linear-optics72

problems, reducing the problem to two dimensions (if rotationally symmetric samples73

are employed). Çapoglu et al. [17] described a procedure to represent a focused pulse as74

a finite sum of plane waves, by calculating an angular spectrum decomposition of each75

monochromatic component. They also generalized this method to general laser TEM76

modes [18]. This method can be used to simulate electric and magnetic fields with good77

accuracy even if high NA lenses are employed, and it is faster than direct integration. Despite78

those advantages, Çapoglu et al.’s approach remains computational demanding, because79

several plane waves must be summed in order to accurately represent the Gaussian pulse.80

Çapoglu et al.’s method has inspired other subsequent works. Singh, Tan, and Chen made81

a model [19], which extended Çapoglu et al.’s work [17, 18] by introducing dispersion82

and polarisation compensation of the beam. Even Bessel beams have been analytically83

approximated with the same approach by Wu et al. [20, 21].84

In this paper we introduce a new approximate method for calculating the time domain fields85

associated with a focussed pulse, which significantly improves the computational efficiency86

of the FDTD/PSTD method. This new method employs a 6th order Taylor expansion of the87

inner function in the Debye-Wolf integral, and is valid only for low numerical apertures.88

The remainder of the paper is organized as follows. In Section 2, we introduce the rigorous89

definition of a focussed beam as the incident wave source for FDTD/PSTD methods. In90

Section 3, we summarize an existing approximation of the incident wave source, which uses91

the field at the central frequency to simulate the focussed beam of a broadband incident92

wave source [2]. In Section 4, we describe a new analytical approximation of the incident93

field in the time-domain, which is based on calculating the Taylor expansion of the inner94

function of the Debye-Wolf integral. In Section 5, we compare the performance of the two95

approximations of the incident wave source for some example applications.96

2. Rigorous definition of the incident field for FDTD/PSTD methods97

Although this article is focused on two approximate methods, we must first start with an
introduction of the rigorous formulation of the incident field. This will enable us to assess



the relative accuracy and performance of the approximate methods. With the aid of Fig.
(1), let us start by defining the monochromatic component of the electric field at a point
(𝑥, 𝑦, 𝑧) in the vicinity of the focus of a lens, which is calculated with the Debye-Wolf
integral [9, 10, 22]:

𝑬̃ (𝒓, 𝑧; 𝜈) = − 𝑖𝜈 𝑓
𝑐

∬
Ω

𝒖 (𝒔) 𝜙(𝒔; 𝜈)√︁
1 − |𝒔 |2

𝑒
𝑖2𝜋 𝜂𝜈

𝑐

(
𝒓 ·𝒔+𝑧

√
1−|𝒔 |2

)
𝑑𝑠𝑥𝑑𝑠𝑦 (1)

where 𝒓 = (𝑥, 𝑦), 𝒓 · 𝒔 is the dot product of the vectors 𝒓 and 𝒔, 𝜈 is the frequency, 𝑐 is the98

speed of light in a vacuum, 𝑓 is the focal length of the objective lens, 𝜂 is the refractive99

index in the focal region, 𝒔 =
(
𝑠𝑥 , 𝑠𝑦

)
, |𝒔 | =

√︃
1 − 𝑠2

𝑥 − 𝑠2
𝑦 , 𝜙(𝑠𝑥 , 𝑠𝑦; 𝜈) specifies the100

profile of the field on a Gaussian reference sphere located in the exit pupil of the lens ,101

Ω =

{
(𝑠𝑥 , 𝑠𝑦) ∈ IR2

����√︃s2
x + s2

y < NA
𝜂

}
and 𝒖

(
𝑠𝑥 , 𝑠𝑦

)
is a vector which describes refraction102

by the lens of the field incident upon the Gaussian reference sphere of the lens, and is103

calculated using the generalized Jones matrix formalism [23, 24]. For the remainder of this104

paper we will assume 𝜙(𝑠𝑥 , 𝑠𝑦 ; 𝜈) = 𝑒−( 𝜈
𝑊 )2 (𝑠2

𝑥+𝑠2
𝑦) , where𝑊 is a parameter that controls the105

waist radius of the Gaussian illumination. Assuming a collimated beam linearly polarised in106

the 𝑥-direction is incident upon the aperture of the objective, we have [23]:107
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Figure (1) A typical optical system to which the Debye-Wolf formula (Eq. (1))
can be applied. The function 𝜙

(
𝑢𝑥 , 𝑢𝑦

)
specifies the profile of the field incident

upon the aperture, which is mapped by the lens to the function 𝜙
(
𝑠𝑥 , 𝑠𝑦

)
on the

Gaussian reference sphere. Each point
(
𝑢𝑥 , 𝑢𝑦

)
uniquely corresponds to the vector(

𝑠𝑥 , 𝑠𝑦 ,

√︃
1 − 𝑠2

𝑥 − 𝑠2
𝑦)

)
, which defines the direction of a particular ray in the sample

space (see [24] for more details).
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Given that the FDTD/PSTD method simulates the propagation of the electric and magnetic
fields in the time domain, the incident field must also be introduced in the FDTD/PSTD
computational space in the time-domain at every iteration of the method. The source
fields are usually introduced on a plane transverse to the optical axis (usually the 𝑧

direction) in a region free of scatterers. Irrespective of whether the FDTD or PSTD method is
employed, the monochromatic components of the focussed pulse are calculated by modulating
monochromatic fields found using Eq. (1). Namely, a pulse with a Gaussian shape in the
time domain can be described by the following modulation terms:

𝐻̃ (𝜈) = 𝑖𝑃𝑒𝑖2𝜋𝜈𝑡0𝑒−𝜋𝑃
2 (𝜈−𝜈0)2

Frequency-domain (3a)

𝐻 (𝑡) = F
{
𝐻̃ (𝜈)

}
(𝑡) = 𝑖𝑒−𝑖2𝜋𝜈0 (𝑡−𝑡0)𝑒

−𝜋
(
𝑡−𝑡0
𝑃

)2

Time-domain, (3b)

where F
{
𝐻̃ (𝜈)

}
(𝑡) :=

+∞∫
−∞

𝐻̃ (𝜈)𝑒−𝑖2𝜋𝜈𝑡𝑑𝜈 is the Fourier transform, 𝜈0 is the central

frequency, 𝑡0 controls the delay of the pulse peak and 𝑃 controls the pulse width. We use
the superscript ’𝑅’ to denote fields related to the rigorous case, which is not subject to
any approximations. Namely, 𝑬𝑅 (𝒓, 𝑧, 𝑡) and 𝑬̃

𝑅 (𝒓, 𝑧; 𝜈) are the time domain and time
harmonic incident fields associated with the rigorous incident wave source, respectively.
The rigorous definition of the incident field, which would be calculated and introduced into
the FDTD/PSTD grid domain in a plane 𝑧 = 𝑧𝑠 is given by:

𝑬̃
𝑅 (𝒓, 𝑧; 𝜈) := 𝐻̃ (𝜈)𝑬̃ (𝒓, 𝑧; 𝜈); (4a)

𝑬𝑅 (𝒓, 𝑧, 𝑡) := 2 Re
{
F

{
𝐻̃ (𝜈)𝑬̃ (𝒓, 𝑧; 𝜈)

}
(𝑡)

}
, (4b)

110

where Re{∗} denotes the real part, and the factor of 2 has been included to normalize the111

inverse Fourier transform with the real part.112

In general, the calculation of Eq. (4b) has a large computational cost because for each113

point (𝑥, 𝑦, 𝑧) and each time step 𝑡, three integrals must be calculated (two integrals from114

Eq. (1) and one from the Fourier transform). This calculation can be sped up by using the115

Fast Fourier Transform (FFT) [25], to avoid the integration related to the Fourier transform.116

However, in order to apply the FFT, all monochromatic components must be calculated and117

stored in advance for each grid point on the plane where the source is introduced, which118

requires a substantial amount of computer memory. This article has been motivated by119

the need to reduce the computational load of Eq. (4b), which must be calculated for each120

time-step within the FDTD/PSTD algorithm.121

122

3. Approximation based on a incident wave source that employs the central123

frequency of the spectrum124

In this section we review an existing incident wave source, which is an approximation of the125

rigorous incident wave source that we will denote the central frequency approximation [2,26].126



We consider this existing approximation for two reasons. The first reason is to understand127

the properties of this incident wave source. The second reason is in order to provide a128

comparison with the new incident wave source, which will be introduced in the next section.129

The central frequency approximation calculates only the field 𝑬 (𝒓, 𝑧; 𝜈0) at the spectrum’s130

central frequency 𝜈0. This considerably reduces the amount of computer memory required131

to perform the simulation. This single monochromatic component is used to generate132

an approximate broadband incident waveform, which is introduced into the FDTD/PSTD133

algorithm.134

We use the superscript ’𝐶’ to denote fields related to the central frequency approximation.135

Namely, 𝑬𝐶 (𝒓, 𝑧, 𝑡) and 𝑬̃
𝐶 (𝒓, 𝑧; 𝜈) are the time domain and time harmonic incident fields136

associated with the central frequency approximation, respectively. 𝑬̃𝐶 (𝒓, 𝑧; 𝜈) is defined as137

the multiplication of the modulation in spectral domain 𝐻̃ (𝜈) of the central monochromatic138

component (Eq. (1) with 𝜈 = 𝜈0). Each Cartesian component 𝜏 = 𝑥, 𝑦, 𝑧 of the approximate139

incident field in the frequency and time domains (at the source interface 𝑧 = 𝑧𝑠) is given by:140

𝐸̃𝐶
𝜏 (𝒓, 𝑧𝑠 , 𝜈) := 𝐻̃ (𝜈)𝐸̃𝜏 (𝒓, 𝑧𝑠; 𝜈0)

𝐸̃𝜏 (0𝒓 , 𝑧𝑠; 𝜈)
𝐸̃𝜏 (0𝒓 , 𝑧𝑠; 𝜈0)

; ∀𝜏 = 𝑥, 𝑦, 𝑧. (5a)

𝐸𝐶
𝜏 (𝒓, 𝑧𝑠 , 𝑡) := 2 Re

{
𝐸̃𝜏 (𝒓, 𝑧𝑠; 𝜈0)
𝐸̃𝜏 (0𝒓 , 𝑧𝑠; 𝜈0)

𝐸𝑅
𝜏 (0𝒓 , 𝑧𝑠 , 𝑡)

}
∀𝜏 = 𝑥, 𝑦, 𝑧. (5b)

where 0𝒓 represents the origin of the transverse coordinate system 𝒓 = (0, 0) in the plane141

𝑧 = 𝑧𝑠 . The factors 𝐸̃𝜏 (0𝒓 ,𝑧𝑠 ;𝜈)
𝐸̃𝜏 (0𝒓 ,𝑧𝑠 ;𝜈0)

have been included to modify the complex amplitudes such142

that the approximation matches the rigorous case at the point (0, 0, 𝑧𝑠) on the source plane.143

We emphasize that this approximation requires only a single frequency component of the field144

to be calculated and stored, thus avoiding the storage of several monochromatic components.145

This incident wave source (Eq. (5b)) is introduced into the FDTD/PSTD grid (at the source146

interface 𝑧 = 𝑧𝑠) as a computationally efficient approximation of the rigorous case (see Eq.147

(4b)). This approximation has the useful property that the temporal and spatial dependencies148

are separable, so that we need to update only the time dependent function, and not the space149

dependent function, at each time-step of the FDTD/PSTD algorithm, dramatically reducing150

the computational load relative to the rigorous case.151

3.1. Angular spectrum analysis152

In order to analyze how the central frequency approximation perturbs the focused beam, rela-
tive to the rigorous case, we compare the angular spectrum of the rigorous and approximate
fields at the source interface 𝑧 = 𝑧𝑠 where the approximation is defined.
We refer to the supplemental document for the angular spectrum definition [27] and for
its calculation in the rigorous (Ã𝑅

𝜏 (𝜶, 𝑧𝑠; 𝜈)) and approximate (Ã𝐶
𝜏 (𝜶, 𝑧𝑠; 𝜈)) cases. The

following equation shows the relation between the two angular spectra (see the supplemental
document for more details):

Ã𝐶
𝜏 (𝜶, 𝑧𝑠; 𝜈) =

𝐸̃𝑅
𝜏 (0𝒓 , 𝑧𝑠; 𝜈)

𝐸̃𝑅
𝜏 (0𝒓 , 𝑧𝑠; 𝜈0)

Ã𝑅
𝜏

(
𝜈

𝜈0
𝜶, 𝑧𝑠; 𝜈0

)
; ∀𝜏 = 𝑥, 𝑦, 𝑧. (6)

153

Given that
(
𝛼𝑥 , 𝛼𝑦 ,

√︃
1 − 𝛼2

𝑥 − 𝛼2
𝑦

)
is the direction of propagation of a plane wave component154

of the angular spectrum, the meaning of Eq. (6) is that, for a given frequency 𝜈, each plane155

wave component of the angular spectrum of the approximate case is given by a rescaled156

version of the same plane wave related to the rigorous case, whose propagation direction has157

been modified from
(
𝛼𝑥 , 𝛼𝑦 ,

√︃
1 − 𝛼2

𝑥 − 𝛼2
𝑦

)
to

(
𝜈
𝜈0
𝛼𝑥 ,

𝜈
𝜈0
𝛼𝑦 ,

√︂
1 −

(
𝜈
𝜈0
𝛼𝑥

)2
−

(
𝜈
𝜈0
𝛼𝑦

)2
)
.158
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Figure (2) Plot of the angular spectrum error (see Eq. (S5) of the supplemental
document) as a function of 𝜆 = 𝑐

𝜈 , calculated in four cases of source interface plane
𝑧 = 𝑧𝑠 , where 𝑧𝑠 = 0𝜇𝑚,−50𝜇𝑚,−100𝜇𝑚,−200𝜇𝑚, for a numerical aperture NA =
0.097. The smallest error is in focus (𝑧 = 0𝜇𝑚), and the error increases as 𝑧𝑠 increases
when 𝜆 is far from the wavelength related to the central frequency 𝜆0 = 𝑐

𝜈0
= 1300nm.

The angular spectrum for the rigorous and approximate cases have been calculated with
Eq. (S2) and Eq. (S4) of the supplemental document.
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Fig. (2) shows a plot of the relative error at the source interface of the angular spectrum160

of the incident wave source of the central frequency approximation relative to the rigorous161

case. It is clear from the figure that the relative error increases as a function of the distance162

of the interface plane from the focus, and also increases as |𝜆 − 𝜆0 | (or |𝜈 − 𝜈0 |) increases,163

showing that the approximation is not reliable for values of 𝜈 far from 𝜈0.164

4. Approximation based on a incident wave source that employs the Taylor165

expansion166

In this section we introduce an alternative approximation of the rigorous wave source that
employs a sixth order Taylor expansion of the inner integrand function of Eq. (4b) to find an
approximate analytical solution for focussed fields in the time domain which does not require
any integrals to be evaluated. We will refer to this as the Taylor-based approximation. In
order to construct this incident wave source we first need to re-write explicitly the rigorous
incident field in the time-domain (details in supplemental document):

𝑬𝑅 (𝒓, 𝑧, 𝑡) := 2 Re
{
F

{
𝐻̃ (𝜈)𝑬̃ (𝒓, 𝑧; 𝜈)

}
(𝑡)

}

= 𝑐𝑃 Re


∬

{
|𝒔 | ≤ 𝑁𝐴

𝜂

}
𝒖 (𝒔)√︁
1 − |𝒔 |2


(
−𝑖𝑇𝑠 + 𝑣0𝑃

2) 𝑒− 𝜋2𝑊2𝑇2
𝑠 +𝜋𝑣2

0 𝑃2 |𝒔 |2

𝜋𝑃2𝑊2+|𝒔 |2 𝑒−𝑖2𝜋𝑣0𝑃
2𝑇𝑠(

𝜋𝑃2𝑊2 + |𝒔 |2
) 3

2


𝑑𝑠𝑥𝑑𝑠𝑦


(7)

where 𝑐𝑃 =
2𝜋

3
2 𝑓 𝑃𝑊3

𝑐
and 𝑇𝑠 = 𝑡 − 𝑡0 − 𝜂

𝑐

(
𝒓 · 𝒔 + 𝑧

√︁
1 − |𝒔 |2

)
. The main idea of this

approximation is to seek a suitable approximation of the integrand function of Eq. (7) that
can be integrated analytically, in order to find an explicit approximation of Eq. (4b). We use
superscript ’ 𝑇 ’ to denote fields related to this new approximation. Let us call int𝑅 (𝒔) the



inner function of Eq. (7). This function can be written as int𝑅 (𝒔) = 𝒇 (𝒔) 𝑒𝑔 (𝒔) , where

𝒇 (𝒔) =
𝒖 (𝒔)

(
−𝑖𝑇𝑠 + 𝑣0𝑃

2)√︁
1 − |𝒔 |2

(
𝜋𝑃2𝑊2 + |𝒔 |2

) 3
2
, (8a)

𝑔 (𝒔) = −
𝜋2𝑊2𝑇2

𝑠 + 𝜋𝑣2
0𝑃

2 |𝒔 |2

𝜋𝑃2𝑊2 + |𝒔 |2
− 𝑖2𝜋𝑣0𝑃

2𝑇𝑠 , (8b)

and 𝒇 is a vector function and g is a scalar function. We want to apply the Taylor expansion
to the integrand inner function of Eq. (7). However, in order to maintain the exponential term
(the term 𝑔, which has an exponential decay) we apply the Taylor expansion to the functions
𝒇 and 𝑔 separately. Let us start by calculating the sixth order of the Taylor expansion of both
functions:

𝒇
(
𝑠𝑥 , 𝑠𝑦

)
≈ 𝑻6

𝒇

(
𝑠𝑥 , 𝑠𝑦

)
(9a)

𝒈
(
𝑠𝑥 , 𝑠𝑦

)
≈ 𝑇6

𝑔

(
𝑠𝑥 , 𝑠𝑦

)
(9b)

where 𝑻6
𝒇
, 𝑇6

𝑔 are the 6-th order Taylor expansions of the vector function 𝒇 and the scalar
function 𝑔, respectively. The first approximation of the integrand function is:

int𝑅 (𝑠𝑥 , 𝑠𝑦) ≈ 𝑻6
𝒇

(
𝑠𝑥 , 𝑠𝑦

)
𝑒𝑇

6
𝑔 (𝑠𝑥 ,𝑠𝑦) . (10)

In order to make Eq. (10) analytically integrable we need to have a second order polynomial in
the exponent, in which case the integrand function becomes a multiplication of a polynomial
and a Gaussian function having a complex argument. By manipulating the second order of
Taylor expansion to the exponent term 𝑇6

𝑔

(
𝑠𝑥 , 𝑠𝑦

)
, we obtain:

𝑻6
𝒇 (𝒔) 𝑒

𝑇6
𝑔 (𝒔) = 𝑻6

𝒇 (𝒔) 𝑒
𝑇6
𝑔 (𝒔)+[𝑇2

𝑔 (𝒔)−𝑇2
𝑔 (𝒔)]

= 𝑒𝑇
2
𝑔 (𝒔)𝑻6

𝒇 (𝒔) 𝑒
𝑇6
𝑔 (𝒔)−𝑇2

𝑔 (𝒔) ≈ 𝑒𝑇
2
𝑔 (𝒔)𝑻6,2 (𝒔) , (11)

where𝑻6,2 (𝒔) is the Taylor expansion to the 6-th order of the vector function𝑻6
𝒇
(𝒔) 𝑒[𝑇6

𝑔 (𝒔)−𝑇2
𝑔 (𝒔)] .

Given that 𝑻6,2 (𝒔) is a sixth order polynomial in the variables (𝒔), it can be rewritten as
𝑻6,2 (𝒔) = ∑6

𝑛=0
∑6

𝑚=0 𝑻𝑛𝑚𝑠
𝑛
𝑥𝑠

𝑚
𝑦 , where 𝑻𝑛𝑚 are three-dimensional coefficients. Now we in-

sert the approximation of Eq. (11) in Eq. (7) and we obtain the first step of the approximation:

𝑬1 (𝑥, 𝑦, 𝑧, 𝑡) := 𝑐𝑃 Re


∬

{
|𝒔 | ≤ 𝑁𝐴

𝜂

} 𝑻6−2 (
𝑠𝑥 , 𝑠𝑦

)
𝑒𝑇

2
𝑔 (𝑠𝑥 ,𝑠𝑦)𝑑𝑠𝑥𝑑𝑠𝑦


= 𝑐𝑃 Re


6∑︁

𝑛=0

6∑︁
𝑚=0

𝑻𝑛𝑚

∬
{
|𝒔 | ≤ 𝑁𝐴

𝜂

} 𝑠𝑛𝑥𝑠
𝑚
𝑦 𝑒

𝑇2
𝑔 (𝑠𝑥 ,𝑠𝑦)𝑑𝑠𝑥𝑑𝑠𝑦


= 𝑐𝑃 Re


6∑︁

𝑛=0

6∑︁
𝑚=0

𝑻𝑛𝑚

𝑁𝐴
𝜂∫

− 𝑁𝐴
𝜂

𝑠𝑛𝑥



√︂(
𝑁𝐴
𝜂

)2
−𝑠2

𝑥∫
−
√︂(

𝑁𝐴
𝜂

)2
−𝑠2

𝑥

𝑠𝑚𝑦 𝑒
𝑇2
𝑔 (𝑠𝑥 ,𝑠𝑦)𝑑𝑠𝑦


𝑑𝑠𝑥


. (12)



The exponent 𝑇2
𝑔

(
𝑠𝑥 , 𝑠𝑦

)
in the inner integral is a second degree polynomial of the variable

𝑠𝑦 , and can be rewritten as 𝑇2
𝑔

(
𝑠𝑥 , 𝑠𝑦

)
= 𝑐(𝑠𝑥) −

(
𝛼(𝑠𝑥)𝑠𝑦 + 𝛽(𝑠𝑥)

)2, where all parameters
𝑐(𝑠𝑥), 𝛼(𝑠𝑥), 𝛽(𝑠𝑥) are polynomials in the variable 𝑠𝑥 . By rearranging the variables in this
way we can rewrite the inner integral as:

𝑒𝑐 (𝑠𝑥 )



√︂(
𝑁𝐴
𝜂

)2
−𝑠2

𝑥∫
−
√︂(

𝑁𝐴
𝜂

)2
−𝑠2

𝑥

𝑠𝑚𝑦 𝑒
−(𝛼(𝑠𝑥 )𝑠𝑦+𝛽 (𝑠𝑥 ))2

𝑑𝑠𝑦


(13)

where 𝑐(𝑠𝑥) is a second order polynomial in the variable 𝑠𝑥 , and Eq. (13) can be solved
analytically by using the erf function [28]. The result can be written as:

√︂(
𝑁𝐴
𝜂

)2
−𝑠2

𝑥∫
−
√︂(

𝑁𝐴
𝜂

)2
−𝑠2

𝑥

𝑠𝑚𝑦 𝑒
−(𝛼(𝑠𝑥 )𝑠𝑦+𝛽 (𝑠𝑥 ))2

𝑑𝑠𝑦


=

= 𝑐0

[
erf

(
𝛼(𝑠𝑥)𝑧 + 𝛽(𝑠𝑥)

)
− erf

(
− 𝛼(𝑠𝑥)𝑧 + 𝛽(𝑠𝑥)

)
+ 𝑝𝑚 (𝑠𝑥)𝑒−(𝛼(𝑠𝑥 )𝑧+𝛽 (𝑠𝑥 ))2

] 𝑧=+√︂(
𝑁𝐴
𝜂

)2
−𝑠2

𝑥

𝑧=−
√︂(

𝑁𝐴
𝜂

)2
−𝑠2

𝑥

.

(14)

From the simulations that we have run we have seen that the Gaussian terms[
𝑝𝑚 (𝑠𝑥)𝑒−(𝛼(𝑠𝑥 )𝑧+𝛽 (𝑠𝑥 ))2

] 𝑧=+√︂(
𝑁𝐴
𝜂

)2
−𝑠2

𝑥

𝑧=−
√︂(

𝑁𝐴
𝜂

)2
−𝑠2

𝑥

are much smaller in amplitude than the terms re-

lated to the erf function, so we can neglect those terms. We approximate the erf function terms
of Eq. (14) with their sixth order Taylor expansion in the variable 𝑠𝑥 , so that Eq. (14) becomes:



√︂(
𝑁𝐴
𝜂

)2
−𝑠2

𝑥∫
−
√︂(

𝑁𝐴
𝜂

)2
−𝑠2

𝑥

𝑠𝑚𝑦 𝑒
−(𝛼(𝑠𝑥 )𝑠𝑦+𝛽 (𝑠𝑥 ))2

𝑑𝑠𝑦


≈

≈ 𝑐0
[
erf

(
𝛼(𝑠𝑥)𝑧 + 𝛽(𝑠𝑥)

)
− erf

(
− 𝛼(𝑠𝑥)𝑧 + 𝛽(𝑠𝑥)

) ] 𝑧=+√︂(
𝑁𝐴
𝜂

)2
−𝑠2

𝑥

𝑧=−
√︂(

𝑁𝐴
𝜂

)2
−𝑠2

𝑥

≈
6∑︁

ℎ=0
𝐸𝑚
ℎ 𝑠ℎ𝑥 (15)



By substituting Eq. (15) into Eq. (12) we can calculate an approximate analytical solution:

𝑬1 (𝑥, 𝑦, 𝑧, 𝑡) := 𝑐𝑃 Re


6∑︁

𝑛=0

6∑︁
𝑚=0

𝑻𝑛𝑚

𝑁𝐴
𝜂∫

− 𝑁𝐴
𝜂

𝑠𝑛𝑥𝑒
𝑐 (𝑠𝑥 )



√︂(
𝑁𝐴
𝜂

)2
−𝑠2

𝑥∫
−
√︂(

𝑁𝐴
𝜂

)2
−𝑠2

𝑥

𝑠𝑚𝑦 𝑒
𝑇2
𝑔 (𝑠𝑥 ,𝑠𝑦)𝑑𝑠𝑦


𝑑𝑠𝑥


(16a)

≈ 𝑐𝑃 Re


6∑︁

𝑛=0

6∑︁
𝑚=0

𝑻𝑛𝑚


𝑁𝐴
𝜂∫

− 𝑁𝐴
𝜂

𝑠𝑛𝑥𝑒
𝑐 (𝑠𝑥 )

6∑︁
ℎ=0

𝐸𝑚
ℎ 𝑠ℎ𝑥

 𝑑𝑠𝑥


= 𝑐𝑃 Re


6∑︁

𝑚=0

6∑︁
𝑛=0

6∑︁
ℎ=0

𝐸𝑚
ℎ 𝑻𝑛𝑚

𝑁𝐴
𝜂∫

− 𝑁𝐴
𝜂

𝑠𝑛+ℎ𝑥 𝑒𝑐 (𝑠𝑥 )𝑑𝑠𝑥

 . (16b)

Keeping only the terms having the exponent of 𝑠𝑛+𝑚𝑥 smaller or equal to 6, and rearranging
the terms of Eq. (16b) such that 𝑘 = 𝑛 + ℎ, we find the analytical approximation of the
electric incident field:

𝑬𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑐𝑃 Re


6∑︁

𝑚=0

6∑︁
𝑘=0

𝑪𝑚𝑘

𝑁𝐴
𝜂∫

− 𝑁𝐴
𝜂

𝑠𝑘𝑥𝑒
𝑐 (𝑠𝑥 )𝑑𝑠𝑥


= 𝑐𝑃 Re


6∑︁

𝑚=0

6∑︁
𝑘=0

𝑪𝑚𝑘

𝑁𝐴
𝜂∫

− 𝑁𝐴
𝜂

𝑠𝑘𝑥𝑒
𝑐 (𝑠𝑥 )𝑑𝑠𝑥

 (17)

where 𝑪𝑚𝑘 =
∑6−𝑘

ℎ=0 𝐸
𝑚
ℎ
𝑻𝑘−ℎ,𝑚.

Given that the term 𝑐(𝑠𝑥) is a second degree polynomial, the integrals appearing in Eq.
(17) can be solved analytically by calculating the complex erf function, as we have done
in Eq. (14). Given that the evaluation of the complex erf function can be computationally
expensive, we have approximated that function as follows:

erf(𝑥 + 𝑖𝑦) ≈ 𝑓1 (𝑥, 𝑦), if {𝜌 ≤ 4} (18a)

erf(𝑥 + 𝑖𝑦) ≈ +1, if {𝜌 > 4} ∩
{
|𝜃 | < 𝜋

6

}
; (18b)

erf(𝑥 + 𝑖𝑦) ≈ −1, if {𝜌 > 4} ∩
{
|𝜃 − 𝜋 | < 𝜋

6

}
; (18c)

erf(𝑥 + 𝑖𝑦) ≈ 𝑓2 (𝑥, 𝑦), if {𝜌 > 4} ∩
{ 𝜋

6
≤ |𝜃 | ≤ 𝜋

6

}
(18d)

167

where 𝜌 =
√︁
𝑥2 + 𝑦2 and 𝜃 = atan

( 𝑦
𝑥

)
are the polar coordinates in the Euclidean plane and168

𝑓1 (𝑥, 𝑦) and 𝑓2 (𝑥, 𝑦) come from approximations ’7.1.29’ and ’7.1.23’ of Abramowitz and169

Stegun [29] (details in the supplemental document). With those approximations, the erf170

function is approximated with a relative error smaller than 10−5 over the entire complex171

plane.172

4.1. Practical implementation of the Taylor-based approximation173

The accuracy of the approximation of Eq. (17) depends on both the spatial location and
time instant at which the field is evaluated. The relative error between the rigorous and



Taylor-based incident wave source is minimized when 𝑥 = 0 or 𝑦 = 0. In particular, the
terms containing 𝑠𝑥 and 𝑠𝑦 to first order vanish when 𝑥 = 0 and 𝑦 = 0, respectively, from

𝑇𝑠 = 𝑡 − 𝑡0 − 𝜂

𝑐

(
𝑥𝑠𝑥 + 𝑦𝑠𝑦 + 𝑧

√︃
1 − (𝑠2

𝑥 + 𝑠2
𝑦)

2
)

in Eq. (7). Under this condition, 𝑇𝑠 is better

approximated by the Taylor expansion. When 𝑥 = 0 or 𝑦 = 0, the variable of integration of
the inner integral of Eq. (16a ) can be chosen to maximize the efficiency of the approximation.
In particular, the inner integral of Eq. (16a ) should be the 𝑠𝜏 variable associated with the
null coordinate (𝑥 or 𝑦). Eq. (16a ) has been derived by choosing the inner integral related
to 𝑠𝑦 , which is more suitable for the case 𝑦 = 0. On the other hand, in the case 𝑥 = 0, it is
better to choose the inner integral of (16a ) related to 𝑠𝑥 and the outer integral related to 𝑠𝑦 .
The most efficient way to use the Eq. (17) in a FDTD/PSTD simulation is to evaluate
the Taylor-based approximation at the points (𝑥, 0, 𝑧, 𝑡) and (0, 𝑦, 𝑧, 𝑡), and use the radially
symmetric properties of the integral in Eq. (17) to evaluate the field at all points. The
approach we follow is based on existing works [9, 10] and is described in the supplemental
document. This approach allows us to re-write the rigorous field in Eq. (7) as:

𝑬𝑅 (𝑥, 𝑦, 𝑧, 𝑡) =



𝐼0 (𝜌, 𝑧, 𝑡) + 𝐼2 (𝜌, 𝑧, 𝑡) cos (2𝜃)

𝐼2 (𝜌, 𝑧, 𝑡) sin (2𝜃)

𝐼1 (𝜌, 𝑧, 𝑡) cos(𝜃)


, (19)

where (𝜌, 𝜃) are the polar coordinates of the Euclidean plane. Now we explain how to use Eq.
(19) to evaluate the rigorous field at each point of the space (𝑥, 𝑦, 𝑧) towards the calculation
of the rigorous field only at the points (0, 𝜌, 𝑧) and (𝜌, 0, 𝑧). From Eq. (19) we have:

𝐸𝑅
𝑥 (𝜌, 0, 𝑧, 𝑡) = 𝐼0 (𝜌, 𝑧, 𝑡) + 𝐼2 (𝜌, 𝑧, 𝑡) (20a)

𝐸𝑅
𝑥 (0, 𝜌, 𝑧, 𝑡) = 𝐼0 (𝜌, 𝑧, 𝑡) − 𝐼2 (𝜌, 𝑧, 𝑡) (20b)

and then

𝐼0 (𝜌, 𝑧, 𝑡) =
1
2

(
𝐸𝑅
𝑥 (𝜌, 0, 𝑧, 𝑡) + 𝐸𝑅

𝑥 (0, 𝜌, 𝑧, 𝑡)
)

; (21a)

𝐼2 (𝜌, 𝑧, 𝑡) =
1
2

(
𝐸𝑅
𝑥 (𝜌, 0, 𝑧, 𝑡) − 𝐸𝑅

𝑥 (0, 𝜌, 𝑧, 𝑡)
)
. (21b)

In order to maintain this symmetry in the Taylor-based approximation, we calculate the
Taylor-based approximation at the points (𝜌, 0, 𝑧, 𝑡) and (0, 𝜌, 𝑧, 𝑡) and we approximate the
functions 𝐼0 and 𝐼2 by using Eq. (21a) and Eq. (21b), where 𝐸𝑅

𝑥 is replaced with 𝐸𝑇
𝑥 . After

that, we use Eq.(19) to calculate the Taylor-based approximation at each point in space.
We have seen that the efficiency of the Taylor-based approximation can be further enhanced

by modifying the integration domain Ω =

{
(𝑠𝑥 , 𝑠𝑦) ∈ IR2 |

√︃
s2
x + s2

y < NA
𝜂

}
during the

calculation of the points 𝐸𝑅
𝑥 (𝜌, 0, 𝑧, 𝑡) and 𝐸𝑅

𝑥 (0, 𝜌, 𝑧, 𝑡). In the case 𝑥 = 0, the integration
domain is modified to:

Ω̃ =

(𝑠𝑥 , 𝑠𝑦) ∈ IR2
���� −

√︄(
NA
𝜂

)2
− s2

y ≤ sx ≤

√︄(
NA
𝜂

)2
− s2

y , −N(y) ≤ sy ≤ N(y)
 ,

(22)



where 𝑁 (𝑦) =
(
0.935(1 − 𝑦

𝑛𝑤
) + 0.99 𝑦

𝑛𝑊

)
𝑁𝐴
𝜂

, and where 𝑛𝑤 = 20 × 10−6.174

5. Comparison of the two approximations of the rigorous incident wave175

source176

In this section we compare the approximations presented in the previous sections. There are177

some physical parameters related to the simulation of the broadband illumination that must178

be chosen in advance, including 𝜈0, 𝜂, 𝑊 , the frequency bandwidth of the beam Δ𝜈 and the179

numerical aperture NA. In all examples shown here, we have chosen the parameters related to180

a Thorlabs TELESTO-II Spectral Domain OCT Imaging System [2]: 𝜈0 = 2.3061 × 1014Hz181

(giving a wavelength in air related to the central frequency of 𝜆0 = 𝑐
𝜈0

= 1300nm) and182

Δ𝜈 = 3.015 × 1013𝑠−1 ( corresponding to a wavelength width of 170 nm in air), 𝜂 = 1.42,183

𝑁𝐴 = 0.097, 𝑊 = 1.44 × 1013Hz.184

5.1. Relative error at the source interface185

The first comparison is made at the source interface (i.e., 𝑧 = 𝑧𝑠), where all fields are
known analytically. Thus, we do not use the FDTD/PSTD algorithm for this comparison.
The central frequency approximation has the advantage that it agrees very closely with the
rigorous field when it is calculated near 𝜈0 and it is identical in the case 𝜈 = 𝜈0. However, the
error can be significant at frequencies far from 𝜈0 (as shown in Fig. (2)). By comparison, the
error of the Taylor-based approximation is small and it is accurate even for frequencies far
from 𝜈0. For this reason, the incident wave source related to that approximation is superior
to the wave source related to the central frequency approximation for broadband simulations.
Fig. (3) compares the approximations for several different values of 𝑧𝑠 using the following
error metric:

𝐸𝑟𝑟 𝜉 (𝜈, 𝑧) :=

√√√√√√√√√√√√
+∞∫
−∞

+∞∫
−∞

����𝑬𝑅 (𝒓, 𝑧; 𝜈) − 𝑬 𝜉 (𝒓, 𝑧; 𝜈)
����2 𝑑𝑥𝑑𝑦

+∞∫
−∞

+∞∫
−∞

����𝑬𝑅 (𝒓, 𝑧; 𝜈)
����2 𝑑𝑥𝑑𝑦 (23)

where 𝜉 = 𝑇, 𝐶, namely 𝑬 𝜉 = 𝑬𝑇 or 𝑬 𝜉 = 𝑬𝐶 . Fig. (3) shows that the accuracy of186

the central frequency approximation is maximized for 𝜆 = 𝜆0. In this case, the central187

frequency approximation matches exactly the rigorous case. The error of the Taylor-based188

approximation does not change substantially with wavelength, and remains at less than189

2% for all cases excluding 𝑧𝑠 = −200𝜇𝑚, where the relative error reaches 14%. We thus190

consider that for this example, 𝑧𝑠 = −200𝜇𝑚 is where the the Taylor-based approximation191

begins to be invalid. These results show that, in general, the Taylor-based approximation is192

more accurate than the central frequency approximation for broadband beams.193

In order to further validate the accuracy of the approximations, we have added a sub-194

section to section 5) of the supplemental document where two additional error metrics are195

considered. These alternative error metrics give similar results to Eq.(23) and suggest that196

the Taylor-based approximation is more accurate than the central frequency approximation.197

5.2. Relative error after propagating the incident field with the PSTD algorithm198

Fig. (4) shows the integrated relative error (see Eq. (23)) of the electric fields obtained using199

both approximations, after having propagated all of the three wave sources (𝑬𝑅, 𝑬𝑇 , 𝑬𝐶)200

with the PSTD algorithm, from the source plane 𝑧 = 𝑧𝑠 to another transverse plane 𝑧 = 𝑧𝐹201

(see Fig. (5)). The PSTD simulations employed a spatial step size Δ𝑥 =
𝜆0
4 and a time step202

of Δ𝑡 =
1

2
√

3
𝜂Δ𝑥

𝑐
(which is about 25% smaller than the maximum time step allowed by the203

stability criterion for PSTD algorithm [8]). This choice of Δ𝑡 results in numerical dispersion,204

so that even the numerical propagation of the rigorous field 𝑬𝑅 will be slightly different205
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Figure (3) Plot of the error metric of the central frequency and Taylor-based approxi-
mations (see Eq. (23)) on a log scale, evaluated at the source interface plane 𝑧 = 𝑧𝑠 , for
four different values of 𝑧𝑠 .

to the field at the plane 𝑧 = 𝑧 𝑓 calculated analytically using the Debye-Wolf integral (see206

Eq. (1)). Numerical dispersion does not, however, complicate the comparison since the207

numerical dispersion acts in a similar way for the rigorous and approximate cases.208

For this test the field was introduced at the plane 𝑧 = 𝑧𝑠 = −50𝜇𝑚. Then, the rigorous209

and the two approximate source fields have been propagated using the PSTD algorithm to210

3 transverse planes located at 𝑧 = 𝑧𝐹 = 𝑧𝑠 + Δ𝑧 , where Δ𝑧 = 0, 50𝜇𝑚, 100𝜇𝑚. For each211

case the relative error (see Eq. (23)) has been calculated. Fig. (4) shows that the error212

does not increase with the propagation distance of the field. For this reason, the error of213

both approximations is principally related to the error of the fields at the source interface.214

As it can be seen in Fig. (4), the field related to the central frequency approximation215

remains inaccurate across the spectrum after that the associated wave source is numerically216

propagated with the PSTD algorithm.217

In the Section 5) of the supplemental document we have plotted similar figures to Fig. (3)218

and to Fig. (4) with two alternative error metrics, which give an estimation of the error as a219

function of the positive x-axis.220
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Figure (4) Plots of the integrated relative error (see Eq. (23)) of the two approximations
after the incident field has been propagated by the PSTD algorithm (see Fig. (5)) from
the source interface 𝑧 = 𝑧𝑠 , where 𝑧𝑠 = −50𝜇𝑚 for a distance of Δ𝑧𝜇𝑚.
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Figure (5) Representation of the rigorous incident field (red) and an its approximation
(the draw is valid for both Taylor based and central frequency approximation). The
approximate field is introduced at the source plane (𝑧 = 𝑧𝑠), and both fields are
propagated to and evaluated at the plane (𝑧 = 𝑧𝐹 ).

Δ𝑥 =
𝜆0
4 Δ𝑥 =

𝜆0
20

Field time RAM time RAM

(R) 2h 3m 460 MB 57h 56m 22s 18 GB

(C) 1m 02s 4.66 MB 22m 47s 90 MB

(T) 1m 14s 2.3 MB 1h 06m 37 MB

Table (1) A table showing the computational time required to calculate the introduction
of the entire incident field in the PSTD algorithm at the source interface 𝑧 = −50𝜇𝑚,
for the rigorous case (R), central frequency approximation (C) and Taylor-based
approximation (T). In the first case, the PSTD grid domain spacing was set to Δ𝑥 =

𝜆0
4 ,

whilst in the second case it was set to Δ𝑥 =
𝜆0
20 . For both cases the time step has been

set as: Δ𝑡 =
1

2
√

3
𝜂Δ𝑥

𝑐 .

5.3. Computational time and RAM occupied to calculate the incident field in the221

rigorous and approximate simulations222

In this section we compare the rigorous incident field and the two approximations in terms223

of computational time and memory occupied. For each case, the computational time is the224

total time needed to calculate the incident field for all time steps of the PSTD algorithm.225

The occupied memory includes the RAM related to all variables employed in the calculation226

of each incident field.227

Tab. (1) shows data for the three different ways used to calculate the incident field, in228



particular, the rigorous, central frequency approximation and Taylor-based approximation.229

For each simulation, the computational time and RAM required to perform the computation230

are shown. For both cases (Δ𝑥 = 𝜆
4 and Δ𝑥 = 𝜆

20 ), computational time and occupied memory231

are much smaller for the approximations ((C) and (T)) than the rigorous case (R). In the case232

Δ𝑥 =
𝜆0
20 , it is clear that the approximation can save many hours of simulation and many GBs233

of RAM.234

5.4. Limitations of the Taylor-based approximation235

The principal limitation of the Taylor-based approximation is related to the filling parameter236

𝐹 of the Gaussian beam at the aperture plane, which specifies the fraction of the beam237

that is inside the physical aperture of the objective lens. From the Gaussian component of238

the Debye-Wolf integral (see Eq. (1)) we calculate the filling parameter as 𝐹 (𝜈) such that239

𝑒−( 𝜈
𝑊

|𝒔 |)2
= 𝑒

−
(

𝐹
NA/𝜂 |𝒔 |

)2

=⇒ 𝐹 (𝜈) = NA
𝜂

𝜈
𝑊

. If 𝐹 (𝜈) > 1 the aperture is underfilled,240

which means that a small diameter Gaussian fits well within the aperture. If 𝐹 (𝜈) < 1 the241

aperture is overfilled, which means that much of the beam is not transmitted through the242

aperture. In Fig. (6) we have plotted the averaged error of Eq. (23) over all the frequencies of243

the spectrum ©­«Err (𝑧) := 1
Δ𝜈

𝜈0+ Δ𝜈
2∫

𝜈0− Δ𝜈
2

Err (𝜈, 𝑧) 𝑑𝜈ª®¬ for several values of NA and 𝐹 (𝜈0). Each244

pair (𝐹 (𝜈0),NA) is related to a single simulation, and the error is showed as a function of245

NA
𝜂

, for four cases of 𝐹 (𝜈0). Both fields (rigorous and Taylor-based) have been calculated at246

the focus (𝑧𝑠 = 0). Fig. (6) shows that the rigorous incident field is well approximated by the247

Taylor-based approximation in the underfilled case, and the error increases as a function of248

the numerical aperture. The error of the central frequency approximation (right side of Fig.249

(6)) is roughly independent of the choice of NA, but even in this case the filling parameter250

𝐹 (𝜈0) significantly affects the accuracy of the approximation.251

Another important limitation of our approximation is that it can be employed only for252

time-domain focussed pulses whose monochromatic components are fundamental Gaussian253

beams
(
𝑇𝐸𝑀(0,0)

)
on the Gaussian reference sphere of the lens, unlike the central frequency254

approximation or Çapoglu et al.’s approach [18], which can be generalized to any transverse-255

electric-magnetic mode
(
𝑇𝐸𝑀(𝑛,𝑚)

)
.256

257
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Figure (6) Plots of the average over the frequencies of the error (Eq. (23)) of the
Taylor-based (on the left (T)) and central frequency (on the right (C)) approximations
as a function of 𝑁𝐴

𝜂 , for four cases of filling parameter. Each field has been calculated
in focus (𝑧𝑠 = 0).

6. Conclusion258

In this paper we have studied two incident wave sources that are approximations of the259

rigorous incident field for FDTD/PSTD methods for simulations of focussed Gaussian260

pulses. We have analyzed the central frequency approximation that employs the complex261

amplitude calculated at only the central frequency of a spectrum to approximate a focussed262

broadband beam in the time-domain. We have also introduced a new approximation which263

employs the Taylor expansion to approximate the rigorous incident field. This new analytical264

approximation is accurate for underfilled apertures, but remains accurate in the overfilled265

case for low numerical apertures. We showed that the error related to the central frequency266

approximation increases for frequencies far from the central value, whilst the Taylor-based267

approximation well approximates the rigorous field for all frequencies in the spectrum,268

therefore the Taylor-based approximation is a reliable approximation of the rigorous field.269
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