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Abstract 14 

Making accurate decisions often involves the integration of current and past evidence. Here 15 

we examine the neural correlates of conflict and evidence integration during sequential 16 

decision making.  Female and male human patients implanted with deep-brain stimulation 17 

(DBS) electrodes and age- and gender matched healthy controls performed an expanded 18 

judgement task, in which they were free to choose how many cues to sample. Behaviourally, 19 

we found that while patients sampled numerically more cues, they were less able to 20 

integrate evidence and showed suboptimal performance. Using recordings of 21 

Magnetoencephalography (MEG) and local field potentials (LFP, in patients) in the 22 

subthalamic nucleus (STN), we found that beta oscillations signalled conflict between cues 23 

within a sequence. Following cues that differed from previous cues, beta power in the STN 24 

and cortex first decreased and then increased. Importantly, the conflict signal in the STN 25 

outlasted the cortical one, carrying over to the next cue in the sequence. Furthermore, after 26 

a conflict, there was an increase in coherence between the dorsal premotor cortex and 27 

subthalamic nucleus in the beta band. These results extend our understanding of cortico-28 

subcortical dynamics of conflict processing, and do so in a context where evidence must be 29 

accumulated in discrete steps, much like in real life. Thus, the present work leads to a more 30 

nuanced picture of conflict monitoring systems in the brain and potential changes due to 31 

disease.  32 
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Significance Statement 40 

Decision-making often involves the integration of multiple pieces of information over time in 41 

order to make accurate predictions. We simultaneously recorded whole-head 42 

magnetoencephalography and local field potentials from the human subthalamic nucleus in a 43 

novel task which required integrating sequentially presented pieces of evidence. Our key 44 

finding is prolonged beta oscillations in the subthalamic nucleus, with a concurrent increase 45 

in communication with frontal cortex, when presented with conflicting information. These 46 

neural effects reflect the behavioural profile of reduced tendency to respond after conflict, as 47 

well as relate to suboptimal cue integration in patients, which may be directly linked to 48 

clinically reported side-effects of Deep Brain Stimulation such as impaired decision-making 49 

and impulsivity. 50 

Introduction 51 

Whether it is deciding which method of transportation to take to get to work most efficiently 52 

or which horse to bet on to maximize monetary gain, humans are constantly integrating 53 

noisy evidence from their environment and past experience, in order to optimize their 54 

decisions. Often the information comes at intervals, thus necessitating a system that can 55 

track incoming signals over time and only commit to making a choice after sufficient 56 

evidence has been integrated (Ratcliff, 1978; Busemeyer and Townsend, 1993; Usher and 57 

McClelland, 2001), a process that has been proposed to rely on the cortico-basal-ganglia 58 

circuit (Bogacz et al., 2010). Research in human patients with implanted electrodes for 59 

clinical deep-brain stimulation (DBS) treatment has pointed to the role of the subthalamic 60 

nucleus (STN) of the basal ganglia as a decision gate-keeper. The STN is postulated to set 61 

the decision threshold in the face of conflicting information by postponing action initiation 62 

until the conflict is resolved  (Frank, 2006). As predicted by the model, STN activity is 63 

increased for high conflict trials and STN-DBS affects decision making in the face of 64 

conflicting evidence (Frank et al., 2007; Coulthard et al., 2012; Green et al., 2013). 65 

Furthermore, the decision threshold correlated specifically with changes in STN theta 66 

oscillatory power (Cavanagh et al., 2011; Herz et al., 2016). Recent evidence has also 67 

pointed to the role of beta oscillations during conflict (Zavala et al., 2018). Thus, oscillatory 68 

activity, primarily in the theta and beta bands, in the basal ganglia, reflects immediate 69 

inhibition to motor output during situations involving conflict (Frank, 2006), whether it is the 70 

response, sensory or cognitive uncertainty (Bonnevie and Zaghloul, 2019).  71 

The majority of previous studies in the STN employed paradigms in which the putative 72 

processes of conflict detection and setting of decision threshold happened in close temporal 73 

proximity. For example, in previously used paradigms such as the flanker task (Zavala et al., 74 

2015), go-no-go (Alegre et al., 2013; Benis et al., 2014), and Stroop task (Brittain et al., 75 

2012) evidence was presented simultaneously. Although STN activity was also studied in 76 

random dot motion paradigm that required evidence accumulation over time (Herz et al., 77 



 

2 

2018), it was unknown exactly what sensory evidence was presented when, on individual 78 

trials, due to the noisy nature of stimuli. As a result, previous studies do not allow us to fully 79 

disentangle the neural correlates of ongoing evidence accumulation and conflict during 80 

decision making. In particular, it is not clear what kind of conflicting information during 81 

evidence accumulation the STN responds to: does it respond to a local conflict, when a new 82 

piece of information does not match single previous piece in the sequence, or global conflict, 83 

when a new piece of information does not match overall evidence from the entire trial?  84 

An important role in shaping the STN activity is played by the interaction between the cortical 85 

circuits and the STN. However, the nature and cortical locus of this interaction has only been 86 

examined in a handful of studies. Resting-state coherence between the STN and ipsilateral 87 

frontal cortex has shown a peak in the beta band in human patients (Litvak, Jha, et al., 2011; 88 

West et al., 2020) as well as rodent models of Parkinson’s disease (Magill et al., 2004; West 89 

et al., 2018). Additionally, coherence in the theta band from frontal sites (as measured with 90 

electroencephalography) to the STN increased during a conflict detection task (Zavala et al., 91 

2014, 2016).  92 

To precisely characterize how the neural activity in cortex and the STN changes during the 93 

process of evidence accumulation, we recorded STN local field potential (STN-LFP) 94 

simultaneously with whole-head magnetoencephalography (MEG) while Parkinson’s disease 95 

patients performed an expanded judgement task (Leimbach et al., 2018). Here, cues are 96 

presented at discrete intervals, and evidence for the correct answer develops as the 97 

participant samples and integrates multiple cues over the course of the trial (Figure 1). This 98 

paradigm allowed us to investigate how behavioural and neural responses depend on the 99 

continual unfolding of evidence extended in time, determine what kind of conflicting 100 

information the STN responds to, and test predictions of computational models. 101 

Materials and Methods 102 

Participants 103 

We tested 15 patients with a clinical diagnosis of Parkinson’s disease (14 male, mean age: 104 

59, range 47-71, two left-handers), following electrode implantation for DBS treatment, 105 

before full closure of the scalp, thus allowing for intracranial recordings of the STN (all 106 

bilateral recordings, except 1 patient right unilateral and 1 patient with 3 contacts in the left 107 

STN and only 2 on the right, this patient was also subsequently diagnosed with Multiple 108 

Systems Atrophy). Among tested patients, 11 had Medtronic 3389 electrodes, while 4 had 109 

Boston VerciseTM directional leads. The surgical procedures are described in detail in 110 

(Foltynie et al., 2011). All patients were assessed on medication (mean Levodopa Equivalent 111 

Dosage 1272mg, range: 500-1727.5mg). Unified Parkinson's Disease Rating Scale 112 

(UPDRS) part 3 scores were 39.6±14 (mean±standard deviation, range: 18-61) when OFF 113 

medication, and 15.4±6.5 (range: 7-30) when ON medication. None of the patients had 114 

cognitive impairment (Mini–Mental State Examination (MMSE) scores: mean 28.8, range: 115 
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26-30, one patient score missing), clinical depression, or apathy. Two patients were 116 

excluded from the analysis due to poor performance of the task (see Task below). We 117 

recruited 13 age and gender matched controls (12 male, mean age: 57, range 44-70, two 118 

left-handers). The patient study was approved by the UK National Research Ethics Service 119 

Committee for South Central Oxford and the control study was covered by University 120 

College London Ethics Committee approval for minimum risk magnetoencephalography 121 

studies of healthy human cognition. All participants gave written informed consent. Patients 122 

did not receive financial compensation and the controls were compensated for their time 123 

according to our centre’s standard hourly rate. 124 

Surgical Procedure 125 

Bilateral DBS implantation was performed under general anaesthesia using a stereotactic 126 

(Leksell frame G, Elekta) MRI-guided and MRI-verified approach without microelectrode 127 

recording as detailed in previous publications (Holl et al., 2010; Foltynie et al., 2011). Two 128 

stereotactic, preimplantation scans were acquired, as part of the surgical procedure, to guide 129 

lead implantation; a T2-weighted axial scan (partial brain coverage around the STN) with 130 

voxel size of 1.0×1.0 mm2 (slice thickness=2 mm) and a T1-weighted 3D-MPRAGE scan 131 

with a (1.5 mm)3 voxel size on a 1.5T Siemens Espree interventional MRI scanner. Three 132 

dimensional distortion correction was carried out using the scanner’s built-in module. Target 133 

for the deepest contact was selected at the level of maximal rubral diameter (~5 mm below 134 

the AC-PC line). To maximise DBS trace within the STN, the target was often chosen 1.5 - 2 135 

mm posterolateral to that described by Bejjani (Bejjani et al., 2000). Stereotactic imaging 136 

was repeated following lead implantation to confirm placement. 137 

Task 138 

To investigate the neural basis of evidence accumulation over time, we used the expanded 139 

judgement task (Figure 1, similar to the task previously used by Leimbach et al, 2018). 140 

Participants were shown a series of images of a mouse facing either left or right. Cues were 141 

presented for 200ms, with an inter-stimulus interval (ISI) of 600ms, so there was 800ms 142 

interval from one onset to another, to which we refer as Stimulus Onset Asynchrony (SOA). 143 

Participants were required to judge in which direction the mouse will ‘run’, based on the 144 

probabilities extracted from a series of sequential cue images, and then respond 145 

accordingly. The validity of the cues was 70%, such that each cue (left or right mouse) 146 

represented the correct choice 70% of the time. The two directions were equally likely across 147 

trials, thus the chance level in the task was 50%. If the participants responded based on one 148 

of the cues only, without accumulating information over time, then their expected success 149 

rate would be 70%. Responses were made by pressing a button with the thumb of the 150 

congruent hand after a self-chosen number of cues, when the participant felt they had 151 

enough evidence to make a decision. Prior to the recording, the participants underwent a 152 

short training session where they were first asked to respond only after seeing a set number 153 

of stimuli (between two and ten) and then told that for the main experiment they will decide 154 
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themselves how many stimuli to observe. This was to ensure that participants chose to 155 

respond based on accumulating evidence from a sequence of images rather than just the 156 

first stimulus. Participants performed up to 200 trials (Patients: 168±11; Controls: 200 each, 157 

except one control who completed 150 trials). Two patients were excluded from the analysis 158 

due to poor performance of the task (accuracy at chance level). 159 

Recording and Analysis 160 

Participants performed the task while seated in a whole-head MEG system (CTF-VSM 275-161 

channel scanner, Coquitlam, Canada). For patients, STN-LFP, electrooculography (EOG) 162 

and electromyography (EMG) recordings were also obtained using a battery-powered and 163 

optically isolated EEG amplifier (BrainAmp MR, Brain Products GmbH, Gilching, Germany). 164 

STN-LFP signals were recorded referenced to a common cephalic reference (right mastoid). 165 

All preprocessing was performed in SPM12 (v. 7771, http://www.fil.ion.ucl.ac.uk/spm/, 166 

(Litvak et al., 2011b)), and spectral analysis and statistical tests were performed in Fieldtrip 167 

(http://www.ru.nl/neuroimaging/fieldtrip/ (Oostenveld et al., 2011)) using the version included 168 

in SPM12.  169 

STN-LFP recordings were converted offline to a bipolar montage between adjacent contacts 170 

(three bipolar channels per hemisphere; 01, 12, and 23) to limit the effects of volume 171 

conduction from distant sources (for more details see Litvak et al., 2010 and Oswal et al., 172 

2016b). Four of the patients had segmented DBS leads (VerciseTM DBS directional lead, 173 

Boston Scientific, Marlborough, USA). In these cases, we averaged offline the signals from 174 

the 3 segments of each ring and treated them as a single ring contact. Thus, for each 175 

participant, we had a total of 3 STN EEG channels in each hemisphere (except for 2 176 

participants: one with right side electrodes only, thus 3 channels, and one with 1 contact on 177 

the right excluded due to extensive noise, thus 5 channels). The LFP data were 178 

downsampled to 300Hz and high-pass filtered at 1Hz (Butterworth 5th order, zero phase 179 

filter). 180 

A possibly problematic but unavoidable feature of our task was that the stimuli were 181 

presented at relatively short SOA not allowing for the power to return to baseline before the 182 

next stimulus was presented. Furthermore, the SOA was fixed making entrainment and 183 

anticipation possible. These were deliberate design choices to be able to collect a large 184 

number of trials for model-based analyses. Any jittering of the SOAs (which would have to 185 

go in the direction of increasing their duration) would have led to far fewer trials being 186 

collected. The total duration of the recording had to be kept short as the patients were 187 

unable to tolerate extended periods of testing. Furthermore, having a very long SOA would 188 

make it more likely that the participants would resort to explicit counting, which was 189 

something we aimed to avoid. 190 

To account for these design issues, we developed an unconventional way of performing 191 

time-frequency analysis on these data in the absence of a baseline. We first ran time 192 
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frequency analysis on continuous LFP data (multitaper method (Thomson, 1982) 400ms 193 

sliding window, in steps of 50ms) on a priori defined beta power (13-30 Hz average = 194 

21.5Hz; note that when looking at individual participant beta power around the response 195 

period, we found a similar band as defined a priori: individual mean range: 16.6-28.4Hz; 196 

overall min: 11Hz, max: 31Hz). Separately we also estimated the power in the theta band (2-197 

8Hz average = 5Hz, e.g. Herz et al., 2016). The resulting power time series were log-198 

transformed and high-pass filtered at 0.5 Hz (Butterworth 5th order, zero phase filter) to 199 

remove fluctuations in power that were slower than our SOA. Afterwards, the power time 200 

series were epoched around the presentation of each cue stimulus (-500 to 800ms). We 201 

averaged power across contacts within each hemisphere, resulting in 1 left and 1 right STN 202 

channel, and we also calculated the mean STN signal by combining hemispheres. We used 203 

a permutation cluster-based non-parametric test to correct for multiple comparisons across 204 

time (the duration of the whole cue epoch (0-800ms) and report effects that survive 205 

correction only (p<0.05 family-wise error (FWE) corrected at the cluster level). 206 

Similarly to LFP, MEG data were downsampled to 300Hz, and high-pass filtered at 1Hz 207 

(Butterworth 5th order, zero phase filter). For sensor-level analysis, we used only the control 208 

group data, as in the patients the sensor signals were contaminated by ferromagnetic wire 209 

artefacts (Litvak et al., 2010). 210 

For the MEG sensor-level time-frequency analysis, we used all channels and a frequency 211 

range of 1-45Hz. All other analyses were identical to the LFP pipeline reported above. 212 

However, we corrected for multiple comparisons across all MEG channels, timepoints (0-213 

800ms) and frequencies (1-45Hz), and only report effects that survived that correction 214 

(p<0.05 FWE corrected at the cluster level). 215 

For source-level analysis, the continuous MEG data were projected to source space with 216 

Linearly Constrained Maximum Variance (LCMV) beamformer (Veen et al., 1997) using a 217 

10-fold reduced version of  the SPM canonical cortical mesh (Mattout et al., 2007) as the 218 

source space (resulting in 818 vertices and the same number of source channels). The 219 

source orientation was set in the direction of maximum power.  See Litvak et al., (2012) for 220 

details on beamforming and Litvak et al. (2010) for details on issues regarding beamformer 221 

use for removing artefacts from simultaneous MEG and intracranial recordings. Next, time-222 

frequency analysis was performed on continuous source data the same way as for STN-LFP 223 

except the frequencies of interest were informed by the sensor-level analysis. This biased 224 

the statistical test for discovery of an effect (cf. double dipping, Kriegeskorte, Simmons, 225 

Bellgowan, & Baker, 2009) but our aim in this analysis was post-hoc interrogation of the 226 

effects established at the sensor level in terms of their location in the cortex rather than 227 

hypothesis testing (Gross et al., 2012). To limit our search space for the coherence analysis 228 

(below), we only investigated sources that survived p<0.05 FWE correction.  229 

Time-resolved coherence was then computed between the identified cortical sources and 230 

STN contacts by going back to raw source time series. The data were epoched  (-1000 to 231 



 

6 

1000ms to increase the window for analysis), and time-frequency analysis was performed as 232 

described above with coherence between the sources and the left and right STN also 233 

computed from the cross-spectrum. Non-parametric permutation testing between conditions 234 

was corrected for multiple comparisons across channels (source vertices), time (0-1600ms 235 

to cover both cue ‘i’ and cue ‘i+1’) and frequencies (1-30Hz), and we only report effects that 236 

survive correction (p<0.05 FWE corrected at the cluster level). For completeness, we also 237 

ran an alternative connectivity measure, debiased weighted phase lag index, which is less 238 

sensitive to unequal trial numbers across conditions and volume conduction effects. 239 

Reconstruction of electrode locations 240 

We used the Lead-DBS toolbox (http://www.lead-dbs.org/ (Horn and Kühn, 2015)) to 241 

reconstruct the contact locations. Post-operative T2 and T1 images were co-registered to 242 

pre-operative T1 scan using linear registration in SPM12 (Friston et al., 2007). Pre- (and 243 

post-) operative acquisitions were spatially normalized into MNI_ICBM_2009b_NLIN_ASYM 244 

space based on preoperative T1 using the Unified Segmentation Approach as implemented 245 

in SPM12 (Ashburner and Friston, 2005). DBS electrode localizations were corrected for 246 

brain shift in postoperative acquisitions by applying a refined affine transform calculated 247 

between pre- and post-operative acquisitions that was restricted to a subcortical area of 248 

interest as implemented in the brain shift correction module of Lead-DBS software. The 249 

electrodes were then manually localized based on post-operative acquisitions using a tool in 250 

Lead-DBS specifically designed for this task. The resulting locations were verified by an 251 

expert neurosurgeon. 252 

Choice Strategy  253 

In order to analyse the strategy used by the participants during choice, we investigated 254 

which factors influence commitment to a choice on a given trial. We considered two factors: 255 

The first of them is the evidence integrated for the chosen option. Such accumulated 256 

evidence was computed from Equation 1 that continuously updates the evidence (decision 257 

variable, DV) for a choice at time t based on the existing DV from the previous stimuli and 258 

the new incoming stimulus 𝑆௧, where 𝑆௧ = −1 for the left stimulus, and 𝑆௧ = 1 for the right 259 

stimulus. At the start of each trial, the decision variable was initialized to 𝐷𝑉଴ = 0. 260 𝐷𝑉௧ = 𝐷𝑉௧ିଵ + 𝑆௧ (1) 261 

The second factor we considered was whether the stimulus was the same as the previously 262 

presented one, i.e. 𝑆𝐴௧ = 1 if 𝑆௧ = 𝑆௧ିଵ and 𝑆𝐴௧ = 0 otherwise. For all stimuli excluding the 263 

first stimulus on each trial (for which it is not possible to define 𝑆𝐴௧) we performed a logistic 264 

regression predicting if the choice has been made after this stimulus, i.e. we tried to predict a 265 

variable 𝐷௧ = 1 if choice made after stimulus t and 𝐷௧ = 0 otherwise. For each participant, 266 

we looked at the significance of the two factors. 267 

 268 
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Estimating accumulated evidence using computational models  269 

In order to analyse if STN activity reflects the amount of available evidence for each 270 

response based on the stimuli presented so far, we employed computational models that 271 

can estimate this quantity at each point in time. We compared how well different models of 272 

evidence accumulation could capture the behaviour of different patients, and then generated 273 

regressors for each patient based on the best model for that patient. In addition to the model 274 

assuming evidence is integrated according to Equation 1, we also considered three 275 

extended models which included a forgetting term (𝜆), a bonus term (𝜔), or both (Equations 276 

2-4). 277 𝐷𝑉௧ = ሺ1 − 𝜆ሻ𝐷𝑉௧ିଵ + 𝑆௧ (2) 278 𝐷𝑉௧ = 𝐷𝑉௧ିଵ + ሺ1 + 𝜔𝑆𝐴௧ሻ𝑆௧ (3) 279 𝐷𝑉௧ = ሺ1 − 𝜆ሻ𝐷𝑉௧ିଵ + ሺ1 + 𝜔𝑆𝐴௧ሻ𝑆௧ (4) 280 

The forgetting term was used to model the decay of memory over the course of the trial and 281 

the bonus term is a weighting of ‘same’ pairs, i.e. the stimuli which match the directly 282 

preceding one (e.g.: in a ‘left-left-right’ sequence the second left stimulus would be weighted 283 

extra as it is the same as the first one). 284 

To estimate the parameters (𝜆, 𝜔), we assumed that the ratio of making a right choice to 285 

making a left choice is related to decision variable according to: 286 

 287 

𝑙𝑜𝑔 𝑃ሺ𝑅ሻ𝑃ሺ𝐿ሻ = 𝛽଴ + 𝛽௧𝐷𝑉௧ 
For each participant, we looked for parameters that maximized the likelihood of participant’s 288 

behaviour after all stimuli shown to that participant. 289 

We found the winning model (based on Bayesian information criterion) to be variable across 290 

participants (number of participants in patients/control group indicated): M1 = 1/2; M2 = 0/0; 291 

M3 = 4/9; M4 = 8/2, although the model that included bonus terms was the most common.  292 

Estimating Bayesian normalization term 293 

We investigated if the STN activity follows a pattern predicted by a computational model of 294 

the basal ganglia (Bogacz et al., 2007; Bogacz and Larsen, 2011). This model suggests that 295 

the basal ganglia compute the reward probabilities for selecting different actions according to 296 

Bayesian decision theory. These probabilities are updated after each stimulus and the 297 

updated information is fed back to the cortex via the thalamus. An action is initiated when the 298 

expected reward under a particular action exceeds a certain threshold. The model attributes 299 

a very specific function to the STN: ensuring that if the probability of one action goes up, the 300 

probabilities of the others go down at the same time by normalising all probabilities so that 301 

they add up to one.  302 
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In order to create regressors for neural activity recorded from the STN, we used the original 303 

proposal that the STN computes the normalization term of the Bayesian equation during the 304 

evidence integration process (Bogacz & Gurney, 2007). We defined 2 cortical integrators YL 305 

and YR, which integrate evidence for the left and right stimulus respectively, as described 306 

above. Additionally, we subtracted the STN normalization term from the cortical integrators 307 

after each stimulus input in a sequence (Bogacz et al., 2016). For each participant, we 308 

assumed the integration follows one of the models described by Equations 1-4, which best 309 

describes given participants (see previous subsection). So, for example, for participants best 310 

described by Equation 1, the integrators were updated as follows 311 𝑌௅,௧ = 𝑌௅,௧ିଵ + 𝐿௧ − 𝑆𝑇𝑁௧ିଵ (5) 312 𝑌ோ,௧ = 𝑌ோ,௧ିଵ + 𝑅௧ − 𝑆𝑇𝑁௧ିଵ (6) 313 𝑆𝑇𝑁௧ = 𝑙𝑜𝑔൫𝑒𝑥𝑝𝑌௅,௧ + 𝑒𝑥𝑝𝑌ோ,௧൯ (7) 314 

In the above equations, 𝐿௧ = 1, 𝑅௧ = 0 if cue 𝑡 is left, and 𝐿௧ = 0, 𝑅௧ = 1, otherwise. 315 

However, for models 2-4 we added decay to the cortical integrators and bonus terms to 316 

Equations 5-6 analogously to Equation 2-4, i.e. we ensured that 𝐷𝑉௧ = 𝑌ோ,௧ − 𝑌௅,௧. At the start 317 

of each trial, the integrators were initialized to 𝑌௅,଴ = 𝑌ோ,଴ = 𝑙𝑜𝑔0.5 (corresponding to equal 318 

prior probabilities of the two responses). The value computed from Equation 7 was used as 319 

Bayesian normalization regressor in Figure 2. 320 

Results 321 

Patients are able to accumulate evidence over time 322 

Patients waited on average 6.6 stimuli before making a response (6.59±0.52 sem) and their 323 

accuracy was significantly above the 70% level expected if they only based their decision on 324 

a single cue (80±0.03 sem, t=3.6, p=0.004). Controls waited on average 6.3 stimuli before 325 

making a response (6.29±0.46 sem) and were similarly above 70% in their accuracy 326 

(88.6±0.01 sem, t=18.4, p<0.001). There was no significant difference between groups in the 327 

number of stimuli viewed before making a choice (t=0.42, p-value = 0.68), but patients had 328 

lower accuracy (t=-2.99, p=0.0009) and slower reaction time (as measured from the onset of 329 

the last cue before a response was made, t=2.16, p=0.041). See Table 1 for summary of 330 

behavioural measures. 331 

To explore potential strategies participants could have used in the task, we compared 332 

performance in both groups to an agent that would have been an optimal observer, and 333 

would choose to respond left if the number of left cues was higher than the number of right 334 

cues, to respond right for a larger number of right cues, and would choose randomly if the 335 

numbers were equal. In other words, for each participant, we calculated the accuracy they 336 

would have achieved had they integrated evidence optimally, having seen the stimuli 337 

sampled by the participant on each trial. We found that controls and patients had 338 



 

9 

significantly lower accuracy (controls: p=0.019, patients: p=0.0076) than an ideal observer 339 

would have, based on the same cue sampling (89% for controls and 87% for patients).  340 

Next, we asked whether participants were just solving the task by responding after they 341 

spotted two of the same stimuli in a row (i.e. after the first ‘same’ pair). To address this 342 

question, we investigated to what extent participants’ response after stimulus was predicted 343 

by accumulated evidence, and by same stimuli in a row (see Materials and Methods for 344 

details). Most participants had responses best predicted either by accumulated evidence 345 

alone (6 patients and 6 controls), or by both accumulated evidence and stimulus repetition (5 346 

patients and 7 controls). For remaining 2 patients none of these factors was predicting their 347 

response. Hence, there was no participant who exclusively relied of making a choice after 348 

seeing the ‘same’ stimulus, without considering evidence integrated so far. 349 

Table 1: Behavioural results showing mean and standard deviations for each group. RT: 350 

Reaction time; ACC: accuracy. The analytical probability of a ‘same’ pair at the end of the 351 

sequence would be 58% if participants chose the moment of response randomly. Both 352 

patients and controls responded significantly more often after a ‘same’ pair (both groups 353 

p<0.001). 354 

 
# stimuli 

seen 
Accuracy RT(ms) 

Fraction of 

responses after 

‘same’ at end 

PATIENTS Mean 6.59 0.80 536.52 0.73 

PATIENTS SD 1.88 0.10 29.48 0.11 

CONTROLS Mean 6.29 0.89 502.74 0.81 

CONTROLS SD 1.65 0.04 48.81 0.09 

 355 

STN beta power reflects multiple variables related to ongoing decision making 356 

In order to understand the impact of different variables related to the decision making 357 

process on activity in the STN, we created a combined GLM, including four regressors: cue 358 

identity, normalization model, accumulated evidence and sample number. These are 359 

described in detail below. 360 

Cue identity was taken as a measure of ‘local conflict’, by taking all cues (excluding the first 361 

and last cues in a sequence) and categorizing them as the ‘same’ or ‘different’ from the 362 

previous cue (Figure 2A & 2D). We found that beta power carried information about the 363 

similarity of the stimulus to the previous one (‘cue identity’, 200-350 and 650-800ms, 364 

p=0.024 and p=0.032, see Figure 2B & 2D). 365 

In addition to local conflict, we analyzed whether other variables occurring in theoretical 366 

models of decision making were reflected in neural activity. We explored if STN represents 367 



 

10 

the normalization term in Bayes theorem as proposed in a previously suggested 368 

computational model (Bogacz et al., 2007). This model predicts that the activity in the STN is 369 

proportional to a logarithm of the normalization term in Bayes theorem ln P(cue i). This 370 

probability is computed on the basis of all previous cues {cue 1 , …, cue i-1} so it expresses 371 

how expected the current cue is given all cues seen before. The negative of this regressor, -372 

ln P(cue i), is equal to Shannon’s surprise, so it expresses how much cue i disagrees with 373 

overall information in all previous cues, and hence it could be viewed as a measure of global 374 

conflict. Therefore, a possible correlation between the normalization term ln P(cue i) and 375 

LFP activity could be explained by either of two hypotheses. A computational model (Bogacz 376 

et al., 2007) predicts a positive correlation, whereas a hypothesis that STN responds to 377 

global conflict predicts a negative correlation. We tested if the normalization term affects 378 

power of beta oscillations in the STN and did not find evidence supporting any of these two 379 

hypotheses in our data (Figure 2B).  380 

We also explored whether there was a signal reflecting the magnitude of accumulated 381 

evidence in the STN. Additionally, we included a regressor on beta power equal to the serial 382 

position of the cue stimulus within a trial. Including this regressor was motivated by two 383 

observations: reports of decreasing beta power as a result of increasing working memory 384 

load (Zavala et al., 2017), and presence of “urgency signals” in the basal ganglia that 385 

increase within a trial and reflect the growing urgency to making a choice (Thura & Cisek, 386 

2017). We found a significant effect in both regressors (absolute evidence: 550-700ms, 387 

p=0.008; cue number or urgency: 0-250 and 500-650ms, p=0.01 and p=0.02). 388 

We did not find a clear relationship between behaviour on the task and these neural effects 389 

(see Extended Data Table 2-1). However, cue identity (early peak) showed a relationship 390 

with both RT (r=0.62,p=0.024; note if an outlier of the STN data is taken out then the 391 

correlation is no longer significant, p=0.12; outlier detected as more than 1.5 interquartile 392 

range above the upper quartile or below the lower quartile, which is appropriate when data is 393 

not normally distributed), as well as a trend for the number of cues sampled 394 

(r=0.53,p=0.064).  395 

STN beta power shows persistent activity to local conflict during evidence accumulation 396 

Complementing, and extending on the above regression analyses, in order to further 397 

investigate how the STN represents the inconsistencies when faced with conflicting evidence 398 

over time, we separated all cues into two categories: ‘same’ or ‘different’ to the one 399 

immediately before it (we term this ‘cue i’, Figure 3A). In our analyses of neural responses to 400 

cues, we excluded the first cues in a sequence, because it is not possible to classify them as 401 

‘same’ or ‘different’, and last cues seen as they overlapped with the response period. Thus, if 402 

a participant experienced this sequence of mouse images: ‘left-right-left-left-right’, the 403 

analysed conditions would be ‘different-different-same’.  404 
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We found that beta oscillations (i.e raw beta power) responded to local conflict, generating a 405 

significant difference between ‘same’ and ‘different’ cues (cue ‘i’ in Figure 3B left panel) 406 

starting around 100ms after cue onset. Beta also showed a significant difference in the 407 

subsequent cue (i+1), with ‘different’ cues showing an increase in beta power, thus 408 

conflicting information on cue i results in increased beta power on cue i+1 (see Figure 3C), a 409 

pattern of activity that is consistent with response inhibition. Significant time clusters: 100-410 

450ms (p=0.022, d=1.74), 750-1100ms (p=0.014, d=1.73), 1300-1600ms (p=0.012, d=2.40). 411 

These effects were greatly reduced in the theta band, with an effect of condition only briefly 412 

detectable during cue ‘i+1’ (Figure 3B-C, right panel). 413 

Cortical activity reflects rapid but non-persistent local conflict detection 414 

We investigated sensor-level MEG signals from controls in response to local conflict 415 

detection within the sequence. As with the STN, widespread activity over central sensors 416 

was found to signal local conflict – with an initial dip followed by an increase in beta power 417 

on ‘different’ trials (Figure 4A). The dip and increase in beta power were associated with 418 

different clusters of electrodes. The first cluster showed a significant decrease to different 419 

cues in the beta band across central, and predominantly right occipital, parietal and temporal 420 

sensors (inset in Figure 4A, 0-450ms, 8-35Hz, p=0.002, Cohen’s d=1.22;). A subsequent 421 

second cluster, more restricted to central sensors, showed an increase in beta power to 422 

different cues (550-800ms, 9-25Hz, p= 0.008, Cohen’s d=1.35). 423 

Interestingly, the time-course of the cortical effect was quicker than that of the STN (Figure 424 

4B vs 3B), with conflicting information only lasting until the onset of the next cue in the 425 

sequence. 426 

Coherence is increased between STN and frontal cortex during local conflict 427 

We used beamforming in a combined sample of patients and controls to localize the source 428 

of the ‘same-different’ effect (cluster 1: averaged over: 200-400ms [to exclude the time the 429 

stimulus was displayed on the screen], 10-30Hz; cluster 2: averaged over 600-800ms, 10-430 

20Hz). In cluster 1 we found  3 right-hemisphere lateralized peaks (Figure 4C): occipital pole 431 

(2 peaks: MNI 19, -98, -14; 35, -89, -16), ventral temporal cortex (2 peaks: MNI 59, -53, -21; 432 

52, -51, -21) and lateral premotor cortex (BA6, 2 peaks: MNI 52, -7, 44; 51, 3, 40). Cluster 2 433 

was localized to left superior parietal lobe (SPL/BA7, MNI -23, -61, 52), left posterior 434 

cingulate cortex (PCC/BA23, MNI -14, -47, 31), right dorsal premotor area (dorsal/medial 435 

BA6, MNI 7, 2, 69) and right primary somatosensory cortex (BA1, MNI 61, -18, 31). Note, at 436 

an uncorrected threshold (p<0.001) we also found the lateral premotor cortex, occipital pole 437 

and temporal cortex as in cluster 1, which is expected given the overlapping topography of 438 

sensors in the two clusters.   439 

Next, we measured in patients the coherence between these cortical vertices and both the 440 

left and right STN-LFPs, separately. The coherence spectra were averaged over adjacent 441 

vertices resulting in three cortical sources for cluster 1 and four sources for cluster 2. We 442 
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found a significant increase in coherence between the right dorsal premotor cortex and the 443 

right STN (510-900ms, 10-13Hz, p=0.03, Cohen’s d=1.71; 900-1240ms, 18-24Hz, p=0.01, 444 

Cohen’s d=1.44; see Figure 5), suggesting that ipsilateral cortical-subthalamic coherence is 445 

increased in the face of local conflict in the right hemisphere. Furthermore, it seems there 446 

are two separate points of coherence over the course of the cue, one after the onset of the 447 

conflict cue and one that extends into the processing of the next cue in the sequence, this 448 

latter effect is in the mid-high beta band, possibly reflecting response inhibition.  No other 449 

sources, nor the left STN showed any significant effects. For completeness based on 450 

previous reports, we also investigated coherence with the inferior frontal gyrus (which was 451 

present as a source in patients at an uncorrected threshold), and found that it did not show 452 

any significant coherence with the STN. We also used debiased weighted phase lag index 453 

as an alternative measure and found the same effects, albeit with reduced significance 454 

(cluster 1: 690-910ms,10-13Hz, p=0.043; cluster 2: 860-1150ms, 20-24Hz p=0.056). 455 

Discussion 456 

In this experiment we present novel evidence pertaining to the role of the STN and cortico-457 

subthalamic communication during sequential decision making, using a task in which 458 

participants had to integrate evidence over discrete time periods, with no constraints on how 459 

many samples they could observe before making a decision. We find evidence for persistent 460 

local conflict representation in the STN via beta oscillations, and increased coherence with 461 

frontal cortex. We also observed modulation of beta power in STN by evidence accumulation 462 

and number of cues presented so far in a trial. 463 

 464 

Representation of Conflict in the STN 465 

We found that activity in the beta band carried information about local conflict, i.e. a 466 

difference between the current cue and the preceding one, but not about global conflict i.e. a 467 

surprise by the current cue given all previous cues. Although we established that beta power 468 

varies depending on whether the current cue differs from a previous one in a sequence – an 469 

event to which we refer as a local conflict – it is less clear from our data what the function of 470 

this activity is, and what fundamental variable it encodes.  471 

It is possible that the observed changes in beta power are connected with motor inhibition. 472 

Beta power was initially lower for cues that were ‘different’ to the one immediately before and 473 

continued to increase across the next cue in the sequence. Activity in the beta band has 474 

been shown to carry conflict information across trials (Zavala et al., 2018), but we also show 475 

this effect within a trial, as conflict arises within the sequence of evidence. Hence, one can 476 

interpret the increase of beta power as a stop signal, or a break on motor output (Alegre et 477 

al., 2013) inhibiting a response after an inconsistent cue. Moreover, the majority of trials 478 

ended on a ‘same’ cue (Table 1), which is in line with an overall increase in beta 479 

synchronization after ‘different’ cues and lower probability of responding.  480 

The response to different cues could also be interpreted as encoding of expectancy 481 

valuation, uncertainty or surprise. Beta power increases have been reported when a 482 
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‘surprise’ stimulus is presented (Wessel et al., 2016), and STN activity measured with fMRI 483 

has been shown to increase when there is increased uncertainty which option is correct 484 

arising due to too much choice (Keuken et al., 2015). However, in our study we found no 485 

evidence that the STN encodes the Shannon’s surprise term. 486 

 487 

Interaction between STN and Cortex  488 

Interestingly, the ‘same’-‘different’ effect on average peaked earlier in the cortex, and also 489 

did not carry over to the next cue in the sequence (Figure 4A). A possible interpretation is 490 

that the cortex signalled the immediate local conflict to STN, dovetailing with recent evidence 491 

suggesting the cortical conflict signal precedes the STN (Chen et al., 2020), which then 492 

maintains a more persistent activity to inhibit responses (Brittain et al., 2012; Fife et al., 493 

2017).  494 

When we localized the sources of the ‘same’-‘different’ effect, we found the local conflict 495 

signal in widespread areas of the cortex. Only one frontal source, located in dorsal premotor 496 

cortex/supplementary motor area (dPM/BA6) showed a significant coherence modulation 497 

with the ipsilateral STN only, namely an increase in alpha/low-beta coherence shortly after 498 

the offset of a ‘different’, or conflict, cue, and an increase in beta coherence that carried over 499 

to the next cue in the sequence (Figure 5). The right BA6, specifically dorsal BA6 (Mattia et 500 

al., 2012; Mirabella, 2014),  is well-established as a cortical region involved in response-501 

inhibition/initiation and cognitive control (Chambers et al., 2007; Simmonds et al., 2008; 502 

Aron, 2011).  503 

While it is well-established that the cortex communicates with the STN via two anatomically 504 

defined pathways, the indirect and the hyperdirect pathways (Albin et al., 1989; DeLong, 505 

1990; Nambu et al., 2002), recent evidence suggests the existence of two separate coherent 506 

beta oscillatory networks between the cortex and the STN (Oswal et al., 2016a). Here we 507 

find evidence for two different bands of oscillatory connectivity between the STN and dorsal 508 

premotor cortex, which may have implications for understanding the involvement of various 509 

pathways in sequential evidence accumulation. Interestingly, a recent study showed 510 

evidence of a hyperdirect pathway from inferior frontal gyrus (IFG) to the STN operating in 511 

the 13-30Hz range (Chen et al., 2020), which points to a more ventral portion of the frontal 512 

cortex than presented here. In fact, many studies in stop-signal/go-nogo tasks point to the 513 

IFG (Aron et al., 2014), however in these tasks conflict is not part of an evidence 514 

accumulation process, hence we may expect differences depending on the type of decision 515 

being made, (Erika-Florence et al., 2014; Hampshire, 2015; Mosley et al., 2020).  516 

Due to the evoked-activity as a result of the ongoing cue presentation, we were unable to 517 

reliably estimate the directionality of coherence, but previous reports on resting-state data 518 

have shown cortex to drive STN activity (Litvak et al., 2011a), which is in line with the finding 519 

here that the ‘same’-‘different’ effect seems to peak earlier in the cortical signal. However, 520 

recent data has also suggested that during processing of incongruent stimuli, STN to primary 521 
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motor effective connectivity is increased in the beta band (Wessel et al., 2019), suggesting 522 

that the directionality of communication may be different across task and non-task contexts.  523 

 524 

Where is the theta conflict signal? 525 

The predominant theory of STN function, and also that of the cortex during conflict detection, 526 

is the involvement of theta oscillations (Cavanagh and Frank, 2014). A large portion of 527 

empirical findings on the STN shows that it carries conflict information via the theta band 528 

(Cavanagh et al., 2011; Bastin et al., 2014; Zavala et al., 2015, 2016, 2017, 2018; Herz et 529 

al., 2016). Yet in our task we only found a weak effect of theta modulation, in the cue 530 

following a local conflict (cue i+1). This effect was present only in the STN, and no theta 531 

effects were found in the cortex. Moreover, this manifested as reduced theta synchronization 532 

to ‘different’ cues, which is the opposite of the standard reported theta increase during 533 

conflict. One explanation may be the task design, as it differs from previous paradigms: there 534 

are no long intervals over which to examine slow oscillations, such as theta. Our results, 535 

therefore, though focussed on theta power, may be dominated by evoked potentials, as cues 536 

were presented in a fixed, relatively short duration sequence. Additionally, here conflict is 537 

defined over the course of multiple cues, not on a singular trial in isolation. Thus, the 538 

integration of conflict over time may in fact be driven by different signals – beta may 539 

represent a more consistent inhibition. Nevertheless, others have also reported a lack of 540 

theta effects in the STN during a stop-signal task (Bastin et al., 2014).  541 

Updating models of the STN 542 

An influential model of the role of the STN in decision making proposed by Frank (2006) 543 

suggests that in situations of conflict between competing responses an increased activity of 544 

STN postpones action initiation (Frank, 2006). This model proposes that STN is essential for 545 

decision making since it ensures that an action is only selected when it has high evidence, 546 

relative to the other options. Another model proposed by Bogacz & Gurney (2007) suggests 547 

that the basal ganglia compute the reward probabilities for selecting different actions 548 

according to Bayesian decision theory (Bogacz et al., 2007; Bogacz and Larsen, 2011). 549 

While in our task we did not find conclusive evidence that the STN is encoding Bayesian 550 

normalization (Figure 2B), it is important to remember that, despite being on medication, 551 

these experiments were performed in patients whose neural circuitry has been affected by 552 

advanced Parkinson’s disease.  Thus, one cannot rule out the possibility that the Bayesian 553 

normalization is encoded by the STN of healthy individuals, but testing this hypothesis would 554 

require a different experimental technique (e.g. recording of STN neural activity from animals 555 

during an analogous decision making task, such as in  Brunton, Botvinick, & Brody, 2013). 556 

Evidence also suggests that subdivisions within the STN may be responsible for different 557 

types of inhibition, with prepotent response inhibition to cues (go-no-go task) being more 558 

dependent on the ventral portion of the STN  (Hershey et al., 2010). Given that the majority 559 
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of our recording sites were well within the dorsal (‘motor’) region of the STN, we cannot rule 560 

out the contribution of more ventral sites to these computations.  561 

We conclude that contrary to the emphasis on theta signals in the context of immediate 562 

conflict, here we find a prominent role for beta oscillations in signalling local conflict in a 563 

sequence of evidence. We find that both frontal cortex and the STN carry this signal, and 564 

show increased coherence in the beta band that carries over to the next cue in the 565 

sequence. Thus, we show increased communication in these areas may reduce the 566 

probability of responding in the face of incoming conflicting information. 567 

 568 

Data availability 569 

The full MEG dataset for controls is available in BIDS format on 570 

https://openneuro.org/datasets/ds002908 and LFP and source data for patients is available 571 

on https://data.mrc.ox.ac.uk/data-set/human-lfp-recordings-stn-during-sequential-conflict-572 

task. Code and analysis pipeline at https://github.com/zits69/MOUSE_LFPMEG. 573 
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 806 

Figure 1: Expanded Judgement Task. Participants performed a version of an evidence 807 

integration task, with two key elements: 1. the cues were presented sequentially within the 808 
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trial rather than simultaneously, which allowed us to examine evidence accumulation over 809 

time, and 2. the trial duration, i.e. number of cues sampled, was up to the participants, who 810 

responded when they felt they had received enough information to make a decision. 811 

Participants were required to guess the likely direction (left or right) the mouse ‘would run’ in. 812 

Each cue was 70% valid, i.e. they represented the correct direction 70% of the time if they 813 

were to be treated in isolation. 814 

Table 1: Behavioural results showing mean and standard deviations for each group. RT: 815 

Reaction time; ACC: accuracy. The analytical probability of a ‘same’ pair at the end of the 816 

sequence would be 58% if participants chose the moment of response randomly. Both 817 

patients and controls responded significantly more often after a ‘same’ pair (both groups 818 

p<0.001). 819 

Figure 2: STN activity encodes local conflict and variables related to accumulation of 820 

evidence via beta oscillations.  A) Example sequence of cues, with each regressor value 821 

shown below. For example, evidence for the ‘right’ facing mouse goes up during the first two 822 

cues, but then the appearance of a ‘left’ mouse reduces the evidence for a right response. 823 

B) Results of the combined GLM. A linear regression of beta power in the STN revealed that 824 

a clear signal was related to the identity of the cue (‘same’ or ‘different’, shaded in grey), 825 

absolute integrated evidence, and sample number in the sequence of cues in a trial (or 826 

‘urgency’, i.e. the number of stimuli presented so far that could influence a general tendency 827 

to make a choice or working-memory load). Horizontal lines represent significant times after 828 

cluster correction for multiple comparisons. There was no encoding of Bayesian 829 

normalization in the STN signal, as proposed previously (Bogacz et al., 2007, 2016). Note 830 

that although the regressors are presented separately for easier visualization, they were 831 

included in a combined GLM. All regressors were z-scored before entering the model. We 832 

did not find any effects when regressing theta band activity in the STN with the above 833 

regressors. C) Raw beta power plotted as a function of binned evidence (left) or cue number 834 

(right), as well as for cue identity (D), note this latter panel is identical to part of Figure 835 

3B.See Extended Data Table 2-1 Figure 2-1 for correlations performed to relate neural 836 

effects to behaviour. 837 

Figure 3: Beta signalled local conflict, and carried this effect over to the next cue in a 838 

sequence. A) Notation used in the paper. Let us consider an arbitrary cue i in a sequence, 839 

where i>1: If cue i-1 is the same as cue i, then we would call this the ‘same’ condition, and 840 

‘different’ otherwise. We also plot the subsequent cues (i+1, i+2) for carry-over effects, but 841 

these are collapsed across cue type, left or right. See Extended Data Figure 3-1 for more 842 

details. (B) Left panel: Beta carried information locally as well as over to the next cue, with 843 

increased beta power for the ‘different’ condition. Right panel: Theta only carried mismatch 844 

information at the next cue in the sequence. Significant time periods are highlighted with 845 

shaded grey bars. Vertical lines show onset of cues in the sequence. The shaded error bars 846 

show standard error of the mean. C) Difference waves of conditions (‘different’ minus ‘same’) 847 
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with 95% confidence intervals shown by the dotted lines. After an initial dip there is a clear 848 

increase in beta power following the conflicting cue (i) starting just before the onset of cue 849 

i+1. Significant time periods are highlighted with shaded grey bars copied from panel B for 850 

comparison. Note that the apparent onset of the effect before zero is due to limited time 851 

resolution of the time-frequency decomposition. 852 

Figure 4: Cortical activity to local conflict parallels STN but peaks earlier on average 853 

and has a shorter time course. A) Time-frequency plot showing significant times and 854 

frequencies when contrasting ‘different’ vs ‘same’ cues, averaged over all significant 855 

sensors. Significant sensors are shown as an inset, separately for the 2 clusters (cluster 1: 856 

0-450ms, 8-35Hz; cluster 2: 550-800ms, 9-25Hz,). B) Difference wave for the beta effects 857 

over clusters (13-30Hz) band, as represented in Figure 3B. The dotted lines indicate 95% 858 

confidence intervals. C) Left: Source localization in a combined sample of patients and 859 

controls revealed the source of cluster 1 in three right-lateralized areas: occipital pole, 860 

ventral temporal cortex and lateral premotor cortex (BA6). Right: Cluster 2 showed left 861 

lateralized superior parietal lobe (BA7), left posterior cingulate cortex (BA23), right primary 862 

sensory cortex and right dorsal premotor cortex/pre-supplementary motor area (dPM/BA6). 863 

Figure 5: Increased coherence between right frontal cortex and right STN during local 864 

conflict. A) Time-frequency plot of coherence between the right STN and the right dorsal 865 

premotor cortex (visualized on the left). Two coherent clusters emerged, with an alpha/low 866 

beta coherence increase after ‘different’ cues, and a later increase in beta coherence 867 

carrying over into the next cue in the sequence. Significant clusters are shown in black 868 

outline. Inset on top left shows the source of the cortical effect for reference. B) Time-869 

courses of coherence for both alpha/low and high beta plotted as a difference wave between 870 

conditions. The dotted lines indicate 95% confidence intervals. Significant timepoints are 871 

highlighted in grey. C) Frequency spectra of ‘same’ (black) and ‘different’ (blue) trials during 872 

the significant time period from A. Grey area highlights significant frequencies:10-13, 18-24 873 

Hz. 874 

Extended Data Table 2-1: Correlations between beta power (different – same), model 875 

regressors and behavioural measures  We correlated across participants the changes in 876 

beta power at each cue (cue ‘i’, ‘i+1’) with behavioural measures (accuracy, reaction time, 877 

the number of stimuli sampled, proportion of trials ending on a ‘same’ cue). When correlating 878 

trial-wise beta power with reaction time or the number of stimuli sampled at the single 879 

participant level, we did not find any significant effects. Other than raw power changes, we 880 

also included the full GLM regression values from Figure 2 as well as the coherence effects 881 

from Figure 5.  Note, the listed p-values are uncorrected, and thus the two correlations with 882 

p<0.05 would not survive the correction for multiple comparisons. *If outlier is taken out then 883 

correlation is no longer significant (r=0.47, p=0.12), see Figure 2-1 for reaction time (RT). 884 

Outlier detected as more than 1.5 interquartile range above the upper quartile or below the 885 

lower quartile, which is appropriate when data is not normally distributed. 886 
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Extended Data Figure 2-1: Correlation between cue identity regressor and reaction time, 887 

and between coherence and number of cues sampled Note the p-values associated with 888 

these correlations do not survive correction for multiple comparisons. 889 

Extended Data Figure 3-1: Effects from Figure 3, plotted with cue i+1 in detail – for 890 

example: ‘same’-‘different’ could be a cue sequence: ‘L-L-R’. Plotted is the response to the 891 

last cue of the triplet, ‘R’, in this example. Top: beta power. Bottom: theta power. 892 
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