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1 | INTRODUCTION

Abstract

The International League Against Epilepsy (ILAE) Task Force on Nosology and
Definitions proposes a classification and definition of epilepsy syndromes in the
neonate and infant with seizure onset up to 2 years of age. The incidence of epi-
lepsy is high in this age group and epilepsy is frequently associated with significant
comorbidities and mortality. The licensing of syndrome specific antiseizure medi-
cations following randomized controlled trials and the development of precision,
gene-related therapies are two of the drivers defining the electroclinical pheno-
types of syndromes with onset in infancy. The principal aim of this proposal, con-
sistent with the 2017 ILAE Classification of the Epilepsies, is to support epilepsy
diagnosis and emphasize the importance of classifying epilepsy in an individual
both by syndrome and etiology. For each syndrome, we report epidemiology, clini-
cal course, seizure types, electroencephalography (EEG), neuroimaging, genetics,
and differential diagnosis. Syndromes are separated into self-limited syndromes,
where there is likely to be spontaneous remission and developmental and epilep-
tic encephalopathies, diseases where there is developmental impairment related to
both the underlying etiology independent of epileptiform activity and the epilep-
tic encephalopathy. The emerging class of etiology-specific epilepsy syndromes,
where there is a specific etiology for the epilepsy that is associated with a clearly
defined, relatively uniform, and distinct clinical phenotype in most affected in-
dividuals as well as consistent EEG, neuroimaging, and/or genetic correlates, is
presented. The number of etiology-defined syndromes will continue to increase,
and these newly described syndromes will in time be incorporated into this clas-
sification. The tables summarize mandatory features, cautionary alerts, and exclu-
sionary features for the common syndromes. Guidance is given on the criteria for
syndrome diagnosis in resource-limited regions where laboratory confirmation,

including EEG, MRI, and genetic testing, might not be available.

KEYWORDS

developmental and epileptic encephalopathy, Dravet syndrome, epilepsy of infancy with
migrating focal seizures, infantile spasms, self-limited epilepsies

for well-established electroclinically defined epilepsy syn-

The International League Against Epilepsy (ILAE) Task
Force on Nosology and Definitions proposes a framework
for classification and definitions of epilepsy syndromes
with onset in the neonatal period and infancy. This group
includes infants from birth, whether premature or term,
up to 2 years of age. The Task Force proposes definitions

dromes. Furthermore, we introduce the concept of epi-
lepsy syndromes determined primarily by etiology. This
group includes syndromes for which there is a specific
etiology for the epilepsy that is associated with a clearly
defined, relatively uniform, and distinct clinical pheno-
type in most affected individuals as well as consistent
electroencephalography (EEG), neuroimaging, and/or
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Key Points

« This paper presents International League
Against Epilepsy (ILAE) definitions of elec-
troclinically defined epilepsy syndromes with
onset in neonates and infants.

« We divided syndromes in two groups: self-
limited epilepsy syndromes and developmental
and epileptic encephalopathies.

« We introduce the concept of epilepsy syn-
dromes determined primarily by etiology.

« We summarize for each syndrome mandatory,
alerts and exclusionary criteria to support an
easier use for clinicians.

genetic correlates." With all novel associations, the phe-
notypic spectrum will become better defined with time.
In common with all ILAE classifications, the focus of our
Task Force was to develop a document reflecting the latest
scientific knowledge that prepares the epilepsy commu-
nity for emerging developments in epilepsy diagnosis and
management.

A pure biological classification of the epilepsies is
not possible given current levels of scientific knowledge;
however, broadening the definition of epilepsy syndromes
to include etiology reflects the current reality of clinical
epilepsy diagnosis and management. Precision therapies
for genetically determined epilepsies, which may not
only attenuate or stop seizures but also address many of
the associated comorbidities, are in development. The
concepts presented in this proposal build on the work of
many ILAE Commissions and Task Forces over several
decades and further develop the 2017 ILAE Framework
for Classification of the Epilepsies and the 2021 modifi-
cation for seizures in the neonate, where etiology is con-
sidered at all levels of classification from seizure type, to
epilepsy type, and epilepsy syndrome.** The Task Force
proposes the new classification and definitions of epilepsy
syndromes as a hybrid combining electroclinical features
with etiology. There is a complex relationship between
etiology and clinical features in individuals with epilepsy,
where one etiology may relate to several different epilepsy
syndromes and where one syndrome may be associated
with different etiologies. More rarely, specific etiologies
are associated with a unique electroclinical syndrome in
most affected individuals. This requires that, in any indi-
vidual with epilepsy, both the electroclinical syndrome
and the etiology are considered together when developing
a management plan. In resource-limited regions where
such an approach is challenging due to limited access to
specialized investigations, carefully defining the epilepsy
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syndrome can often suggest the etiology and guide optimal
treatment. International collaborations through global
networks and the ILAE may enhance equity of care.

1.1 | Definition of an epilepsy syndrome
The Proposal for Classification of Epilepsies and Epileptic
Syndromes, published by the ILAE in 1985, defined an
epilepsy syndrome as “an epileptic disorder character-
ized by a cluster of signs and symptoms, customarily oc-
curring together”.* The most recent Classification of the
Epilepsies retained this definition, describing an epilepsy
syndrome as a cluster of features incorporating typical sei-
zure types, EEG, and imaging features that tend to occur
together, often with age-dependent features such as age at
onset and remission (where applicable), seizure triggers,
diurnal variation, sometimes prognosis, and distinctive
comorbidities such as intellectual and psychiatric dys-
function.? It was noted that syndromes may have etiologi-
cal, prognostic, and treatment implications.

Our Task Force proposes the following definition for an
epilepsy syndrome':

“a characteristic cluster of clinical and EEG
features, often supported by specific etiolog-
ical findings (structural, genetic, metabolic,
immune, and infectious).” The diagnosis of
a syndrome in an individual with epilepsy
frequently carries prognostic and treatment
implications. Syndromes often have age-
dependent presentations and a range of spe-
cific comorbidities.

1.2 | Epilepsy with onset in the neonatal
period and infancy

Epilepsy incidence is age dependent, with the highest in-
cidences (>60 per 100 000) found in individuals younger
than the age of 5 years and individual age 65 years or older.’
Several population-based studies have noted a much higher
incidence of epilepsy in the first year of life than in older
children (82.1-118 vs. 46 per 100 000 person-years)."® A
recent prospective, population-based study showed an inci-
dence of 75 per 100 000 live births prior to 6 months and 62
per 100 000 between 6 and 12 months, considerably higher
than previous estimates from retrospective studies.” These
population-based studies are from high-resource countries,
and it is noteworthy that acquired epilepsies have a higher
incidence in resource-limited populations.'***

Children presenting with epilepsy very early in life
experience a high burden of cognitive and behavioral
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comorbidity,"* and higher rates of drug resistance'* and
mortality,"> with up to 50% showing global developmental
delay 2 years after presentation.” Comorbidities are more
frequent among children who develop drug-resistant sei-
zures' and those with a high seizure burden.'®'’

Traditionally, syndromes have been defined primar-
ily by electroclinical features; however, in the last two
decades, gene discovery in the epilepsies has allowed co-
horts of cases with a shared genetic etiology to be studied.
Consistent electroclinical phenotypes have emerged, with
examples including CDKL5,'® MeCP2,"**° PCDH19,*™%
STXBP1,* and inv dup 15.2° Furthermore, some struc-
tural, metabolic, immune, and infectious etiologies also
have characteristic electroclinical phenotypes.' Therefore,
epilepsies due to specific genetic, structural, metabolic,
immune, or infectious etiologies may also meet criteria
for a syndrome, when they are associated with consistent
electroclinical features and have management and prog-
nostic implications. Epilepsies in children younger than
3-years-old can be classified by syndrome in 54% of pa-
tients and by etiology in 54%, when the latest neuroim-
aging, metabolic, and gene testing techniques are used.”’
In the group younger than 12 months, etiology could be
determined in 64%. By comparison, infants with severe
epilepsies beginning before 18 months can be classified
with an epilepsy syndrome at presentation in 64%, with
the etiology being determined in 67%.° %

The etiology-defined epilepsy syndromes are restricted
in this document to those with homogeneous electroclini-
cal features and which, although they are individually rare
diseases, are common enough to be seen in the practice of
pediatric epilepsy specialists. The number of recognizable
etiology-defined syndromes will increase, and further de-
velopment of associated precision therapies is anticipated.
We have not included response to therapy as part of the
epilepsy syndrome definition, although when there is
evidence for specificity of response to medication, either
reduction or exacerbation of seizure frequency, we have
discussed this in the text.

2 | METHODS

The methodology of syndrome classification and defini-
tion by our Task Force is described in a separate paper
“Methodology for classification and definition of epilepsy
syndromes with list of syndromes: report of the ILAE Task
Force on Nosology and Definitions.” The Task Force met
face-to-face at ILAE meetings and had online discus-
sions between 2018 and 2021. A working group consist-
ing of Task Force members with expertise in pediatrics
was convened. One member of the group was assigned to
draft a template for each proposed syndrome, using data

from a literature review through to July 2019, with the
most recent edition of “Epileptic Syndromes of Infancy,
Childhood and Adolescence”* and current criteria listed
on www.epilepsydiagnosis.org. The definitions presented
here were based on an iterative process within the Task
Force based on further input and clinical experience of
Task Force members, together with additional literature
searches.! A Delphi process incorporating two rounds of
comments and involving additional expert clinicians out-
side the authorship group helped build consensus for any
areas of disagreement. This revised version addresses the
reviewers’ comments and the comments posted on the
ILAE site on the first submission, and, where needed,
were based on a third Delphi round.

2.1 | Framework for classification

The goal of this paper is to address the specific clinical
and laboratory features of epilepsy syndromes with onset
in the neonatal and infantile period (up to age 2 years) and
to provide rationale for any significant nomenclature or
definitional changes. For each syndrome, we established
three groups of criteria':

- Mandatory: Criteria that must be present in order to
diagnose the syndrome. If a mandatory criterion is
absent, the syndrome cannot be diagnosed.

- Alerts: Criteria that are absent in the vast majority of
cases within a syndrome, but rarely can be seen. Alerts
alone would not exclude the syndrome but should
cause the clinician to rethink the diagnosis and under-
take further investigations to rule out other conditions.
The more alerts that are present, the less confident one
can be about diagnosis of a specific syndrome.

- Exclusionary: Criteria that must be absent in order to
diagnose the syndrome. If an exclusionary criterion is
present, the syndrome cannot be diagnosed.

2.2 | Syndromes
We have divided epilepsy syndromes with onset in neo-
nates and infants into two major groups: self-limited epi-
lepsy syndromes, where there is likely to be spontaneous
remission; and the developmental and epileptic encepha-
lopathies (DEEs), diseases where there is developmental
impairment related to both the underlying etiology inde-
pendent of epileptiform activity and the epileptic enceph-
alopathy (Figure 1). Most etiology-specific syndromes that
begin in the neonatal or infantile period are DEEs.
Within the group of self-limited epilepsies, there
are syndromes in which both de novo and inherited
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Self-limited epilepsies

«  Self-limited neonatal epilepsy (SeLNE)

¢ Self-limited familial neonatal-infantile
epilepsy (SeLFNIE)

* Self-limited infantile epilepsy (SeLIE)

¢ Genetic epilepsy with febrile seizures
plus (GEFS+)

¢ Mpyoclonic epilepsy in infancy (MEI)

Epilepsia-*

Developmental and epileptic
encephalopathies (DEE)

* Ealy infantile developmental and
epileptic encephalopathy (EIDEE)

* Epilepsy in infancy with migrating focal
seizures (EIMFS)

* Infantile epileptic spasms syndrome
(IESS)

¢ Dravet syndrome (DS)

FIGURE 1 Organization of epilepsy syndromes that begin in the neonates and infants. Syndromes are broadly divided into Self-Limited

Epilepsies (where there is likely to be spontaneous remission) and Developmental and Epileptic Encephalopathies (disorders where there is

developmental impairment related to both the underlying aetiology independent of epileptiform activity and the epileptic encephalopathy).

Etiology-specific epilepsy syndromes are due to specific genetic, structural, metabolic, immune or infectious etiologies, and have consistent

electroclinical features, management, and prognostic implications. Most etiology-specific syndromes that begin in the neonatal or infantile
period are DEEs. ALDH7A1, aldehyde dehydrogenase 7 family member A1l; CDKLS5, cyclin-dependent kinase-like 5; KCNQ2, potassium
voltage-gated channel subfamily Q member 2; PCDH19, protocadherin19; PNPO, Pyridoxamine 5'-Phosphate Oxidase

pathogenic variants produce broadly similar electroclin-
ical features in familial and nonfamilial cases. We have,
therefore, assigned a name for the syndrome and the in-
heritance as a secondary descriptor. The reasons for re-
placing the term “benign” in the epilepsy lexicon with
“self-limited” have been described previously.>* In the
self-limited epilepsy syndromes beginning under 2 years
of age, the seizures are typically drug responsive and the
syndromes are associated with normal cognition or minor
cognitive impairment.

The concept of the “developmental and epileptic en-
cephalopathy” (or DEE) recognizes that in infants present-
ing with severe early-onset epilepsy, neurodevelopmental
comorbidity may be attributable to both the underlying
cause and to the adverse effects of uncontrolled epileptic
activity.?

We have divided the DEEs into Early Infantile DEE
(EIDEE), with exclusive onset under 3 months of age, and
other syndromes that present usually after 3 months of
age or have a spectrum of age of onset that includes early
and late infantile periods. We discuss the typical age of
presentation for each syndrome. We have not sub-divided
EIDEE into neonatal onset and later onset conditions, as
presentation can occur at any time from birth to a few
months of age.

2.2.1 | Self-limited epilepsy syndromes
Self-limited (familial) neonatal epilepsy (SeLNE)
Self-limited neonatal epilepsy and self-limited familial ne-
onatal epilepsy have similar clinical and electrical features
but can be distinguished on the basis of family history
(Table 1).**! These entities have similar genetic etiolo-
gies, with de novo pathogenic gene variants responsible
for nonfamilial cases. A family history should be carefully
sought as it can support diagnosis and guide decisions on
investigation, treatment, and prognosis. The familial syn-
drome was known previously as benign familial neonatal
seizures or convulsions.

Seizures typically start between days 2 and 7 of life
and often have focal tonic or focal clonic features or may
progress to have sequential features.® Focal seizures may
alternate sides from seizure to seizure. Seizures can recur
over hours to days. Developmental milestones are usually
normal.*!

Epidemiology:

The estimated incidence of SeLNE is 5.3/100 000 live
births.”

Clinical context:

These syndromes present between days 2 and 7 of
life. ! If children are born prematurely, seizures may
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TABLE 1 Diagnostic criteria for self-limited (familial) neonatal epilepsy

Seizures

EEG

Age at onset

Mandatory

Seizures are characterized by focal tonic
features at onset, affecting the head,
face, and limbs. Focal clonic or tonic
seizures may alternate sides from
seizure to seizure, and may evolve to
bilateral tonic or clonic seizures

Alerts

Clinical history suggestive of in
utero seizures

Interictal: Mild background slowing

Development
at onset
Neurological Significant neurological
exam examination abnormalities,
excluding incidental findings
Imaging
Other studies Lack of pathogenic variant in gene
- genetics associated with this syndrome,
most commonly KCNQ2 or
KCNQ3 OR
Lack of family history suggesting
AD inheritance with incomplete
penetrance
Course of Mild neurodevelopmental delay
illness long-term

Lack of remission of epilepsy after
6 months of age
Drug-resistant epilepsy

Exclusionary

Epileptic spasms

Myoclonic seizures

Generalized tonic seizures
Generalized tonic-clonic seizures

Interictal: Persistent focal slowing or
moderate or greater background
slowing not limited to the postictal
period

Burst suppression pattern

Hypsarrhythmia

Ictal: Lack of EEG correlate with
clinical symptoms

Onset after first month of age

Any degree of encephalopathy

Neuroimaging documenting a causal
lesion for seizures

Other acute symptomatic cause of
seizures including intracranial
infection, ischemic or hemorrhagic
stroke, hypoxic-ischemic brain
injury, significant metabolic
disturbances

Moderate to severe
neurodevelopmental disability

Are MRI or ictal EEG required for diagnosis?
A nonlesional MRI is required to diagnose this syndrome
An ictal EEG is not required for diagnosis

Syndrome without laboratory confirmation: In resource-limited regions, SeLNE can be diagnosed without EEG and MRI in a neonate
with a family history suggestive of familial SeLNE who meets all other mandatory and exclusionary clinical criteria and has no

Alerts. However, the clinical history of affected family members should be consistent with the expected course for SeLNE, and careful

follow-up of the patient is required to ensure their course is also consistent with this syndrome

Abbreviations: EEG, electroencephalogram; MRI, magnetic resonance imaging; SeINE, self-limited neonatal epilepsy.

occur within days of the corrected gestational age of
40 weeks. Both sexes are affected equally.

Pregnancy and birth history are unremarkable.
Infants appear otherwise developmentally appropriate
for age. Head size and neurological examination are
normal.

Course of illness:

Seizures usually remit by 6 months of age, the major-
ity ceasing by 6 weeks of age. If antiseizure medication

has been commenced, it can often be stopped within
weeks. Developmental progress is usually normal, al-
though a minority of cases may have learning difficulties
or mild motor impairment. Studies report that up to one
third of individuals have seizures in later life.*® These in-
clude febrile seizures, clusters of focal seizures, isolated
generalized tonic-clonic seizures, and in a minority, self-
limited epilepsy with centrotemporal spikes.”**** Some
patients with specific pathogenic gene variants may have
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myokymia (continuous muscle activity causing stiff-
ness and subtle twitching), which may present later in
infancy.”

Seizures:

Seizures are characterized by focal tonic features at
onset, affecting the head, face, and limbs.?%3%3* These
may progress in a sequential pattern with tonic, clonic,
myoclonic, and autonomic features following each
other without a single predominant feature. There is
often changing lateralization within or between sei-
zures. Vocalization and/or automatisms may be seen.
Autonomic features such as apnea and cyanosis are
present in one third of seizures and may be the pre-
dominant manifestation. A recent paper comparing
the presenting features of genetic epilepsies and acute
provoked seizures in the neonate reports that seizures
in genetic epilepsies (primarily KCNQ2-related SeLNE)
tend to have later onset and be of shorter duration than
acute provoked seizures associated with stroke or hy-
poxic ischemic encephalopathy.®® Clusters of seizures
in self-limited neonatal epilepsy may occur over hours
or days, with the neonate behaving normally between
events.*® Clinical examination is normal between events
except in the immediate post-ictal period or if the infant
is sedated by medication.

EEG:

The EEG background may be normal or may show
minor nonspecific abnormalities.>* Focal interictal ep-
ileptiform abnormalities can be seen in approximately
two thirds of cases, most commonly in the central, cen-
trotemporal, or frontotemporal regions with a normal
background.**** During periods of more active sei-
zures, focal or widespread slowing may be seen; how-
ever, in contrast to KCNQ2-DEE, a burst-suppression
pattern, or more marked, persistent slowing is not
observed.

A typical ictal pattern has been described with an ini-
tial attenuation of the EEG lasting up to 20 s, followed
by repetitive spike discharges (mainly centrotemporal,
although other regions can be affected; Figure 2), which
are often bilateral but asynchronous and with shifting lat-
erality.>**” The topography can change from one seizure
to the next.

Imaging:

Neuroimaging does not show a causal lesion for the
epilepsy.

Genetics:

Autosomal dominant inheritance patterns are seen
within families (sometimes with incomplete penetrance).
SeLNE may be due to de novo pathogenic variants in the
same genes, KCNQ2 and KCNQ3, as self-limited familial
neonatal epilepsy. The KCNQ2 and KCNQ3 genes code
for potassium channel subunits, which come together to

Epilepsia-

form a heterotetrameric potassium ion channel (the M
channel).¥4

A family history of SeLNE is required for self-limited
familial neonatal epilepsy. There is often variability in
the duration of the epilepsy in affected family members.
In more than 90% of families, a pathogenic variant is
identified.*® Pathogenic variants in KCNQ2 are the most
common cause of the syndrome, being present in over
80%, and include stop codons, deletions, and frameshift
mutations resulting in haploinsufficiency, as well as cer-
tain missense variants that cause mild to moderate loss
of channel function.*"** KCNQ3 and SCN2A pathogenic
variants are much less frequent.

Differential diagnosis:

« Acute provoked seizures due to hypoxic ischemic en-
cephalopathy, metabolic etiologies, electrolyte distur-
bances, and stroke are more common than self-limited
neonatal epilepsy. Provoked seizures tend to have an
earlier onset on day 1 of life and be more prolonged. The
presence of an encephalopathy excludes self-limited
neonatal epilepsy.

« Focal structural causes present with stereotyped focal
clonic seizures.

« Benign neonatal sleep myoclonus should be readily dis-
tinguished due to the presence of myoclonus from sleep
in an otherwise well infant, which can change in fre-
quency, amplitude, and topography.

Self-limited familial neonatal-infantile epilepsy
(SeLFNIE)
SeLFNIE is an autosomal dominant syndrome with onset
in the neonatal or infantile period in different family mem-
bers (Table 2).** This disorder was identified in families
and found to be due to dominantly inherited SCN2A path-
ogenic variants.* In addition, rare families have KCNQ2
pathogenic variants.* De novo pathogenic gene variants
are likely to cause nonfamilial cases. This syndrome can
only be distinguished from the SeLNE or SeLIE if there
is a family history documenting onset of self-limited epi-
lepsy in some family members in the neonatal period, and
others in the infantile period. Seizures start between day
2 and 7 months of life and have a semiology that is simi-
lar to self-limited neonatal epilepsy, with focal clonic or
focal tonic features, often occurring in clusters. Seizures
can recur over hours to days. Developmental milestones
are typically normal.

Epidemiology:

The estimated incidence is unknown.

Clinical context:

SeLFNIE presents from 1 day to 23 months of life
(mean 11 weeks, median 13 weeks).*® Both sexes are af-
fected equally. Perinatal history is unremarkable. Infants
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Ictal EEG in a 15-day girl with SELNE related to a KCNQ2 de novo mutation. Ictal discharge is characterized by low-

voltage fast activity over the right central (red arrow, A) and posterior region; afterwards 6-second rhythmic theta waves are evident in

the same region (orange arrow), also involving the anterior vertex (green arrow) and right centrotemporal region. On the EMG channel,
focal repetitive jerks affecting the left deltoid are present (dark blue arrow, A), with an EEG counterpart characterized by spike-and-wave
complexes. After 20 s, similar jerks are evident also on right deltoid, which were synchronous or asynchronous with the contralateral upper
limb. At this stage, spike-and-wave complexes are evident in bilateral central and posterior regions bilaterally (black arrow, A). After around

70 s, the seizure ends spontaneously, and apnea is evident on the respiratory tracing (light blue arrows, B)

are developmentally appropriate for age with normal ex-
amination and head circumference. No other clinical fea-
tures are seen (such as movement disorders).

Course of illness:

Seizure frequency varies, with some infants having only
a few seizures and not requiring treatment, whereas others
have clusters of many seizures per day. Seizures cease by age
12-24 months, with no recurrences later in life. Seizures are
readily controlled with antiseizure medications.

Seizures:

Initially focal tonic features are observed with head and
eye deviation, followed by other tonic and clonic features.
Some have prominent apnea and staring. Seizures vary in
duration from 20 s to 4 min. Seizures with fever are rare.

EEG:

The EEG background is typically normal. During pe-
riods of more active seizures, focal discharges, which are
mainly in posterior regions, or widespread slowing may
be seen.”’

Imaging:

Neuroimaging does not show a causal lesion for the
epilepsy.

Genetics:

Autosomal dominant inheritance with high pene-
trance is seen with different family members showing a
mixture of neonatal and infantile onset. This syndrome
is associated primarily with pathogenic variants in the
sodium channel subunit gene: SCN2A. Some families
with self-limited seizures associated with KCNQ2 may
have individuals presenting outside the neonatal
period.***3

Differential diagnosis:

« SeLNE.

« SeLIE.

« Neonatal or infantile acute symptomatic seizures due to
hypoxic-ischemic injury, infection, stroke, or metabolic
etiologies.
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TABLE 2 Diagnostic criteria for self-limited familial neonatal-infantile epilepsy
Mandatory Alerts
Seizures Focal tonic seizures with head and eye ~ Sequential seizures
deviation, followed by other tonic
and clonic features and may evolve
to bilateral tonic clonic seizures
EEG

Age at onset 1 day to 23 months

Development
at onset

Neurological
exam

Imaging

Other studies
- genetics,
and so on

Course of
illness

Interictal: Mild background slowing

A history of prior acute
symptomatic seizures including
intracranial infection, ischemic
or hemorrhagic stroke, hypoxic-
ischemic brain injury, significant
metabolic disturbances

Significant neurological
examination abnormalities,
excluding incidental findings

Lack of pathogenic variant in genes
associated with this syndrome
(usually SCN2A)

Mild neurodevelopmental delay
long-term

Lack of remission of epilepsy by age
2 years

Drug-resistant epilepsy

Epilepsia

Exclusionary

Epileptic spasms
Myoclonic seizures

Interictal: Persistent focal slowing or
moderate or greater background
slowing not limited to the postictal
period

Burst suppression pattern

Hypsarrhythmia

Ictal: Lack of EEG correlate with
clinical symptoms

Encephalopathy

Neuroimaging documenting a causal
lesion for seizures

Moderate to severe
neurodevelopmental disability

Are MRI or ictal EEG required for diagnosis?
A nonlesional MRI is required to diagnose this syndrome
An ictal EEG is not required for diagnosis

Syndrome without laboratory confirmation: In resource-limited regions, self-limited neonatal-infantile (SeLFNIE) epilepsy can be
diagnosed without EEG and MRI in a neonate with a family history suggestive of familial self-limited neonatal-infantile epilepsy
who meets all other mandatory and exclusionary clinical criteria and has no Alerts. However, the clinical history of affected family
members should be consistent with the expected course for SeLNIE, and careful follow-up of the patient is required to ensure that

their course is also consistent with this syndrome

» Other focal structural causes should be considered in
infants with persistently focal stereotyped seizures.

Self-limited (familial) infantile epilepsy (SeLIE)

SeLIE, formerly called benign familial (and nonfamil-
ial) infantile seizures, is a syndrome characterized by
the onset of seizures in the infantile period (Table 3).
Seizures are often frequent and may be difficult to con-
trol at onset, but they resolve spontaneously. Children
have normal developmental progress. The syndrome was
first described in families with a dominant inheritance

of infantile seizures.*® Later, it was expanded to include
the familial syndrome of Infantile Convulsions Choreo-
Athetosis with a movement disorder of paroxysmal
kinesigenic dyskinesia/dystonia, with affected family
members having either seizures or movement disorder,
or both.*

De novo and familial SeLIE are clinically identical
except for the presence of a family history in the latter.
Pathogenic variants in PRRT2 are the most common ge-
netic etiology. Familial cases show autosomal dominant
inheritance, with incomplete penetrance.
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TABLE 3 Diagnostic criteria for self-limited (familial) infantile epilepsy

Seizures

EEG

Age at onset

Development at
onset

Neurological
exam

Imaging
Other studies -
genetic, etc

Mandatory

Focal seizures occur with behavioral
arrest, impaired awareness,

automatisms, head/eye version, and
clonic movements (often alternating

from one side to the other and
progressing to a hemiclonic or focal
to bilateral tonic-clonic seizure).
Seizures are usually brief (<3 min)

Alerts

Prolonged or focal clonic
(hemiclonic) seizures (>10 min)

Interictal: Mild background
slowing

Onset 18-36 months of age

Mild developmental delay

Significant neurological
examination abnormalities,
excluding incidental findings

Lack of pathogenic variants found
in PRRT2, SCN2A, KCNQ?2, or

Exclusionary

Epileptic spasms
Myoclonic seizures
Sequential seizures
Tonic seizures

Interictal:

Persistent focal slowing or moderate
or greater background slowing
not limited to the postictal period

Hypsarrhythmia

Age at onset <1 month or
>36 months

Moderate to profound delay
Neurocognitive regression

Causal lesion on brain MRI

KCNQ3 OR
Lack of family history suggesting
autosomal dominant inheritance

with incomplete penetrance

Course of
illness

Are MRI or ictal EEG required for diagnosis?
A nonlesional MRI is required to diagnose this syndrome
An ictal EEG is not required for diagnosis

Lack of remission by late childhood

Neurocognitive regression with
myoclonic seizures, ataxia,
spasticity

Syndrome without laboratory confirmation: In resource-limited regions, SeLIE can be diagnosed without EEG and MRI in an infant with
a family history suggestive of familial SeLIE who meets all other mandatory and exclusionary clinical criteria and has no Alerts.
However, the clinical history of affected family members should be consistent with the expected course for SeLIE, and careful
follow-up of the patient is required to ensure their course is also consistent with this syndrome

Epidemiology:

SeLIE is relatively common, accounting for 7%-9% of
all epilepsies beginning prior to 2 years of age.”® The inci-
dence is estimated at 14.2/100 000 live births.’

Clinical context:

Age at onset ranges from 3 to 20 months with a peak
of 6 months. The antenatal, birth, and neonatal history is
typically normal. Head size and neurological examination
are normal.

Course of illness:

Seizures may be frequent at onset but usually remit
within 1 year from onset. In untreated cases there can
be isolated or brief clusters of seizures within the period

from onset to remission.”* A minority of individuals may
have epilepsy persisting into later life.

Patients with proline rich transmembrane protein 2
(PRRT2) pathogenic variants may develop paroxysmal ki-
nesigenic dyskinesia/dystonia beginning from childhood
to adult life.>>>®> Symptoms of the movement disorder
should be sought for specifically as the events are very
brief, lasting seconds, and the diagnosis is often missed.

Seizures:

Focal seizures are mandatory for diagnosis, and occur
with behavioral arrest, cyanosis, staring with impaired
awareness, automatisms, head/eye version, and clonic
movements. Focal clonic seizures may alternate from one



ZUBERI ET AL.

side to the other and progress to a bilateral tonic-clonic
seizure but do not migrate from one side to another within
the same seizure. Seizures are brief (<3 min) but can be
frequent (eg, 5-10 per day over 1-3 days at onset). One
third of patients present with a single isolated seizure 10—
15 days before frequent seizures commence. Longer sei-
zures can occur but are rare. Seizures remit but recur after
1-3 months in a third of patients.>*

Epileptic spasms and/or myoclonic seizures are exclu-
sionary for this diagnosis.

EEG:

The background EEG is normal, although focal slow-
ing may occur postictally.” The interictal EEG is typically
normal, but a variant with midline spikes during slow
sleep has been described.”®™® If there is persistent focal
slowing in one area, a structural brain abnormality should
be considered. Diffuse, persistent slowing would suggest a
different syndrome.

The ictal recording is characterized by focal discharges,
which often have onset in the temporal or posterior head
regions, and which may spread to both hemispheres
(Figure 3).” The seizure onset may vary from lobe to lobe
or from hemisphere to hemisphere in different seizures
in the same patient. However, the ictal pattern within the
same seizure does not show a migrating pattern.

Imaging:

Neuroimaging does not show a causal lesion for the ep-
ilepsy. If the electroclinical diagnosis is clear and there is a
family history, and/or a PRRT2 pathogenic variant, neuro-
imaging is not mandatory.

Genetics:

PRRT2is the most commonly implicated gene.”*"* Other
genes rarely associated with this syndrome include SCN8A,
in which a movement disorder is also observed.” Infantile
onset is also seen in patients with pathogenic variants in
SCN2A (see above section on SeLFNIE). In familial cases, in-
heritance is autosomal dominant with high penetrance. A
genetic etiology can be identified in about 80% of cases.’

Differential diagnosis:

« SeLFNIE: the distinction is made largely on age at
presentation in affected family members (see above
section).

 Infantile seizures due to acute causes, for example,
bleeding, infection, hypoglycemia.

« Structural etiologies such as malformations of cortical
development or brain injury.

« Epilepsy of infancy with migrating focal seizures: neu-
rodevelopmental delay and a migrating pattern on EEG
within the same seizure is seen.

+ Dravet syndrome (DS): prolonged focal clonic (hemi-
clonic) seizures, rather than short seizures, should sug-
gest DS.

Epilepsia*

« Metabolic disorders: progressive encephalopathy and/
or other organ dysfunction should prompt consider-
ation of a metabolic disorder.

Genetic epilepsy with febrile seizures plus (GEFS+)
spectrum

GEFS+ wasdescribed initially as an autosomal dominant
familial epilepsy with variable penetrance.® GEFS+ in-
cludes a spectrum of epilepsy phenotypes including epi-
lepsy with myoclonic atonic seizures, DS,*! idiopathic
and other genetic generalized epilepsy syndromes,®
and focal epilepsies,®® with heterogeneous phenotypes,
usually present in the same family. Although febrile sei-
zures are the hallmark of GEFS+ and occur in many af-
fected family members, not all affected family members
have febrile seizures. GEFS+ has heterogeneous genetic
etiologies, with pathogenic variants in several genes
identified.

Although the most common phenotype in GEFS+ is
classical febrile seizures, the next most common pheno-
type is Febrile Seizures plus (FS+). Children with FS+ may
have several different presentations: the most frequent is
where typical febrile seizures continue beyond the age of
6 years, the typical age at which most febrile seizures stop.
In infancy, a strong family history of GEFS+ phenotypes
suggests this diagnosis, but more recently, cases with FS+
phenotypes have been identified without a family history
and a de novo pathogenic variant in a GEFS+ gene.*

Epidemiology:

GEFS+ is a common familial syndrome; however, epi-
demiological data on the incidence are lacking.

Clinical context:

The following describe the specific FS+ phenotype.
Specific syndromes are described elsewhere.

Febrile seizures in GEFS+ families may begin prior
to 6 months of age unlike typical febrile seizures (which
begin after age 6 months and mainly after 12 months) and
persist beyond 6 years of age.®*®® FS+ is the term used
to describe febrile seizures persisting after 6 years of age
and/or evolving to afebrile seizures. Other afebrile seizure
types may develop at various ages. Prolonged focal clonic
(hemiclonic) seizures with fever prior to 15 months, par-
ticularly if recurrent, should suggest DS. Neurological ex-
amination and cognitive abilities are usually normal.

Course of illness:

Seizures in FS+ are typically responsive to antiseizure
medications, although not all patients require prophylac-
tic treatment. Patients presenting with only FS+ usually
have a self-limited epilepsy with resolution of seizures by
puberty.®® The course of illness for individuals presenting
other epilepsy types or epilepsy syndromes within the
spectrum of GEFS+ depends on the type of epilepsy or
syndrome.
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Seizures:

Febrile seizures, which may be generalized or focal, are
mandatory for diagnosis. In addition, a variety of other gen-
eralized or focal afebrile seizures may be seen, 006636366

EEG:

The background EEG is normal. Occasionally focal or
generalized spike and wave may be seen. The ictal EEG
varies according to the seizure type.

Imaging:

Brain magnetic resonance imaging (MRI), if done,
does not show a causal etiology in patients with GEFS+
syndromes.

Genetics:

Inheritance is autosomal dominant, with variable pen-
etrance.’***> Members of the same family may present
with different types of seizures or epilepsy syndromes
that may or may not be associated with fever or febrile
seizures.**>6

Although SCN1B was the first gene identified,®’
it is not the most common gene associated with
GEFS+, with SCN1A pathogenic variants identified
in ~10% of GEFS+ families.®*® Other gene variants
encoding voltage-gated sodium, calcium, and potas-
sium channels, and ligand-gated ion channels in-
cluding nicotinic cholinergic receptor subunits, the
y-aminobutyric acid (GABA) A receptor subunits,
and syntaxin 1B (STXIB) have also been linked to
the syndrome.®®"°

Differential diagnosis:

« Familial febrile seizures without a family history sug-
gestive of GEFS+.

« Infantile seizures due to acute causes, for example, isch-
emia, infection, and hypoglycemia.

« Structural etiologies such as malformations of cortical
development or prior brain injury.

Moyoclonic epilepsy in infancy (MEI)

This syndrome presents with myoclonic seizures at
onset, which may be activated by sudden noise, star-
tle, or touch, and less commonly by photic stimulation
(Table 4). Some authors propose that the term “Reflex
Myoclonic Epilepsy in Infancy” should be used if myo-
clonic seizures are activated by triggering factors such
as sudden noise or startle, and they propose that chil-
dren with this syndrome have a slightly earlier age at
onset, better response to antiseizure medication, higher
remission rate, and more favourable cognitive out-
come.”! However, this syndrome could be considered
a subgroup of MEI. Seizures are self-limiting in most
cases. An EEG, ideally with video and electromyogra-
phy (EMG), is mandatory to confirm the epileptic na-
ture of the myoclonus and to exclude Infantile Epileptic

Epilepsia =

Spasms Syndrome (IESS), which is much more common
and severe than MEI.

Epidemiology:

METI is a rare disorder, accounting for less than 0.8%
of children with epilepsy treated at a specialty center.”?
It accounted for 1.1% of all epilepsy with onset prior to
36 months of age in a population-based cohort.’

Clinical context:

The syndrome begins between the ages of 4 months
and 3 years, with a peak age of 6-18 months. Males are
more commonly affected, with a M:F ratio of ~2:1.7
Development prior to seizure onset is usually normal.
However, mild cognitive or behavioral or motor diffi-
culties may coexist at onset and should not exclude the
diagnosis, as they might be incidental. Neurological exam-
ination is normal.

Course of illness:

Myoclonic seizures remit in nearly all cases, within
6 months to 5 years from onset, and most children can
discontinue antiseizure therapy. Rarely, generalized tonic-
clonic seizures may be seen in later life. Approximately
10% develop other epilepsies in late childhood or
adolescence—mostly juvenile myoclonic epilepsy.”
Patients with photosensitivity may have seizures that are
more difficult to control. At long-term follow-up, devel-
opmental outcome was normal in 63%-85% of cases.”*””’
Occasionally, mild intellectual disability, learning disor-
ders, or attention problems evolve over time. Rarely, mod-
erate to severe intellectual disability can be seen, and it is
not necessarily correlated with seizure frequency.

Seizures:

Myoclonic seizures are mandatory for diagnosis and
involve the head and the upper arms. They usually occur
multiple times per day, both in wakefulness and sleep.
They can occur in clusters and can lead to falls. Reflex-
induced myoclonic seizures are seen in about one third
of cases and are triggered by sudden noise, touch, or star-
tle.”> Febrile seizures are present in up to one third of
cases’? and may either precede or follow myoclonic sei-
zures. Epileptic spasms, tonic, absence, and focal seizures
are exclusionary. In addition, generalized tonic-clonic or
generalized clonic seizures present at epilepsy onset are
exclusionary.

EEG:

The EEG background in wakefulness is normal.
Interictally, generalized discharges in the form of spike-
and-wave, or less frequently, polyspike-and-wave, may
be seen, and are more common in the early stages of
sleep (Figure 4). Photic stimulation does not provoke
spike-wave discharge without concomitant myoclonus,
but a photoparoxysmal response can be seen after dis-
appearance of myoclonic seizures in a minority of pa-
tients. The ictal EEG shows brief bursts of generalized



* L Epilepsia

ZUBERI ET AL.

TABLE 4 Diagnostic criteria for myoclonic epilepsy in infancy

Mandatory Alerts Exclusionary
Seizures Myoclonic seizures Afebrile generalized tonic-clonic seizure ~ Any of the following seizure types:
(see text) or generalized clonic at time of « Absence seizures
epilepsy onset « Atonic seizures
« Epileptic spasms
« Focal impaired awareness seizures
« Focal clonic (hemiclonic) seizures
« Myoclonic-absence seizures
« Tonic seizures
EEG Normal background Interictal: Lack of generalized spike- Ictal: Recorded myoclonic event without
wave discharge on sleep recording EEG correlate
PPR at low frequency photic stimulation = Interictal:
(suggest CLN2 disease) Hypsarrhythmia
Generalized slow spike-wave (<2.5 Hz)
Age at onset Age at onset of myoclonic seizures
<4 months or >3 years
Development at Speech delay at time of diagnosis
onset Moderate to profound ID

Neurological exam

findings
Imaging
Other studies -

genetics, and
so on

Course of illness

Are MRI or ictal EEG required for diagnosis?
A nonlesional MRI is required for diagnosis

Significant neurological examination
abnormalities, excluding incidental

Dysmorphism or other congenital
anomalies (suggests chromosomal
disorder)

Significant neuroimaging abnormalities

Low CSF glucose or pathogenic SLC2A1
variants (Glut1DS)

Neurocognitive regression

An ictal EEG is not required for diagnosis but should be strongly considered if the interictal sleep recording does not show generalized

spike-wave to confirm that myoclonus is epileptic

Syndrome without laboratory confirmation: In resource-limited regions, at a minimum, a sleep EEG showing generalized spike-wave is

required to make this diagnosis

spike-and-wave, polyspike, and polyspike and wave at
~3 Hz during myoclonus. Myoclonic seizures are more
commonly recorded from sleep, and may be triggered
by sudden noise, touch, or startle, or occasionally by
intermittent photic stimulation.”*’® Concurrent EMG
recording facilitates diagnosis.

Imaging:

Brain MRI does not show a causal lesion for the epilepsy.

Genetics:

A family history of epilepsy or febrile seizures is re-
ported in ~10% of cases.”* No causal genes have been found.

Differential diagnosis:

Epileptic:

« Infantile epilepstic spasms syndrome (IESS) is distin-
guished by clusters of epileptic spasms, not myoclonic sei-
zures. Epileptic spasms are most commonly seen shortly
after waking, in comparison to myoclonus in MEI, which

may be seen both during wakefulness and sleep. Epileptic
spasms last longer than 1 s. The interictal EEG in IESS
is in most cases very abnormal, with hypsarrhythmia or
multifocal discharges. The ictal recording can also differ-
entiate epileptic spasms from myoclonia (Figure 8).

DS presents with prolonged seizures triggered by fever
and status epilepticus. Myoclonus typically presents
later.

Lennox-Gastaut syndrome is distinguished by promi-
nent atonic, tonic, and atypical absence seizures, which
are not seen in MEL

Epilepsy with myoclonic atonic seizures is distinguished
by myoclonic-atonic seizures, atypical absences, gener-
alized tonic-clonic seizures, and episodes of nonconvul-
sive status epilepticus, which are not seen in MEI, and
also present later in the preschool years.

Early-infantile DEE (EIDEE) is distinguished by multi-
ple seizure types in addition to myoclonus, marked de-
velopmental delay, and severely abnormal EEG.
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FIGURE 4 A 14 month-old boy with Myoclonic Epilepsy in Infancy. The EEG shows a generalized spike-wave discharge, with a clinical

myoclonic jerk identified with the EMG lead

« Various neurometabolic disorders including both small
molecule, mitochondrial, and storage disorders, may
present with myoclonic seizures in early life. These are
often associated with progressive neurological deterio-
ration and other organ dysfunctions.

 Glucose transporter-1 deficiency syndrome (Glut1DS) is
distinguished by slight to moderate microcephaly, other
seizure types in addition to myoclonus, by low cerebro-
spinal fluid (CSF) glucose and, a low CSF/plasma glu-
cose ratio in addition to a pathogenic variant in SLC2A1
when genetic testing is available.

« Progressive myoclonus epilepsies are distinguished
by the presence of significant language or motor re-
gression, frequent association with other seizure types
besides myoclonus, frequent atrophy on MRI, and pho-
toparoxysmal response to low photic frequencies (sug-
gesting CLN2 disease).

Non-epileptic:

« Benign myoclonus of infancy is distinguished by the
lack of EEG correlate to the myoclonic jerks.

« Hyperekplexia presents with pathological startle re-
sponses, which have no EEG correlate.

» Hypnic jerks are normal episodes of sleep myoclonus
seen most frequently in light sleep

« Shuddering attacks present with repetitive, quick shud-
ders, often provoked by excitement; there is no EEG
correlate.

2.2.2 | Developmental and epileptic
encephalopathies (DEEs)

Early-infantile developmental and epileptic
encephalopathy (EIDEE)
EIDEE is a syndrome characterized by (Table 5):

« Onset of epilepsy in the first 3 months of life with fre-
quent seizures that are typically drug resistant.

« Abnormal neurological examination findings, for exam-
ple, abnormalities of posture, tone, or movement.

« Moderate to profound developmental impairment evi-
dent with time.
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TABLE 5 Diagnostic criteria for early infantile developmental and epileptic encephalopathy
Mandatory Alerts Exclusionary
Seizures Tonic and/or myoclonic seizures
EEG Interictal:
Either burst suppression or multifocal
discharges
Diffuse slowing

Age at onset Birth to 3 months (adjusted for

prematurity)

Development at onset

Neurological exam at onset

Early Comorbidities

Developmental impairment is present

Normal development at onset, although
it is acknowledged that this can be
challenging to accurately assess
historically

Normal neurological examination,
although it is acknowledged that
this can be challenging to assess
historically or in an infant who has
had very frequent seizures and/or
received ASMs that may alter their
exam

prior to or shortly after seizure onset

Course of illness
intellectual disability

Are MRI or ictal EEG required for diagnosis?

Abnormal neurodevelopment including

An MRI is not required for diagnosis but is strongly recommended to exclude structural causes
An ictal EEG is not required in an infant with characteristic clinical features where the interictal EEG shows burst-suppression, multi-

focal discharges with diffuse slowing

Syndrome without laboratory confirmation: In resource-limited regions, this syndrome cannot be diagnosed without an interictal EEG

« Abnormal inter-ictal EEG, which may include a burst-
suppression pattern, diffuse slowing, or multi-focal
discharges.

« Neuroimaging, metabolic, and genetic testing allows
precise etiological classification in ~80% of cases.’*®

Predominant seizure types include focal tonic, general-
ized tonic, myoclonic, focal clonic, and epileptic spasms.
Sequentialseizuresmayoccur.>’ EIDEE includesneonates
and infants previously classified as Ohtahara syndrome
and Early Myoclonic Encephalopathy.”**® The syndrome
may have many and varied underlying etiologies includ-
ing genetic, metabolic, and structural. The electroclinical
descriptions of Ohtahara syndrome (predominantly burst
suppression EEG pattern and tonic seizures) and Early
Myoclonic Encephalopathy (predominantly myoclonic
seizures and either burst-suppression or other signifi-
cant EEG abnormalities) have been extremely valuable
in epilepsy classification.*"** This nomenclature allowed
clinicians and researchers to study the causes, outcomes,
and treatment of neonates and infants with severe early
onset epilepsy and provided families with crucial informa-
tion on prognosis. However, the electroclinical features of

these two syndromes have considerable overlap and fur-
thermore share similar underlying etiologies.****™®> The
Task Force proposed that separating EIDEE into individu-
als with Ohtahara vs. Early Myoclonic Encephalopathy no
longer provides valuable information for clinical decision-
making or determination of prognosis.

Epidemiology:

The incidence of EIDEE is estimated as 10/100 000 live
births.’

Clinical context:

This syndrome begins in the early infantile period
(range 0-3 months) and affects boys and girls equally.
The neurological examination is often severely abnor-
mal, with abnormalities of tone (most frequently central
hypotonia), posture, and motor behavior with cortical
visual impairment. Abnormal neurological behavior or
development often presents prior to onset of seizures but
may be challenging to recognize due to extremely early
onset (review of early videos can be helpful). Most chil-
dren have moderate to profound developmental impair-
ment. Family, pregnancy, and birth history are usually
normal. Head size varies dependant on etiology but may
be normal at birth.
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Course of illness:

The seizures are usually drug resistant unless meta-
bolic or genetic targets for precision therapy or structural
abnormalities amenable to surgery are identified.*®*” For
instance, patients with pathogenic variants in SCN2A or
SCN8A show seizure response to sodium channel agents,
often at high dose.***® EIDEE, regardless of whether ep-
ileptic spasms are a presenting seizure type, may evolve
into IESS with the burst-suppression or multi-focal EEG
abnormalities evolving in some cases to a hypsarrhythmia
pattern. In very young neonates and infants, the extent of
any developmental impairment may be difficult to assess;
however, almost all infants with EIDEE will have moderate
to profound intellectual disability. The exceptions include
some individuals with early effective treatment of the un-
derlying etiology, as may be the case in pyridoxine depen-
dant epilepsy or pyridox(am)ine 5-phosphate deficiency.”*

Infants with EIDEE often have comorbid move-
ment disorders including myoclonus, chorea, dystonia,
and tremor. These may present prior to seizure onset,
early in the evolution of the syndrome, or develop with
time. Differentiating paroxysmal movement disorders
from seizures can be challenging, particularly in the
context of a severely abnormal interictal EEG. In such
cases, prolonged video-EEG with EMG leads recordings
should be considered to confirm the type of the parox-
ysmal event.”’

Comorbidities associated with global neurological
disability including cortical visual impairment, motor
impairment, orthopaedic concerns, behavioral problems,
feeding difficulties, and early and increased mortality are
recognized associations with the syndrome.*>

Seizures:

Diagnosis of EIDEE requires one or more of the follow-
ing seizure types:

Tonic seizures.

Myoclonic seizures.

Epileptic spasms.

Sequential seizures, may include tonic, clonic, and/or
autonomic components, as well as automatisms with-
out a single predominant seizure type.

-

Tonic seizures are frequent and can occur in isolation
or in clusters with 10-20 clusters a day. If these occur
in clusters, distinguishing features from spasms include
(1) tonic seizures usually occur independent of the sleep
cycle, unlike epileptic spasms that are often appear upon
awakening; and (2) tonic seizures last longer than epi-
leptic spasms, which last <3 s. Tonic seizures are focal or
asymmetric in the neonatal period.

Focal or multifocal myoclonus may be the predominant
seizure type. The frequency of the myoclonus varies from
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occasional to almost continuous. Myoclonus can be er-
ratic or massive and bilateral. Erratic myoclonus is asyn-
chronous, asymmetric, and random. It can occur in the
face or extremities or may be restricted to only an eyebrow,
lip, or finger. It occurs during both wakefulness and sleep.
Erratic myoclonus is more commonly associated with a
metabolic etiology.

Epileptic spasms occur in some patients. They are more
frequently seen beyond the first month of life. They usu-
ally occur in clusters—often on awakening.

Sequential seizures are characterized by several seizure
manifestations occurring in sequence during a seizure.’
For example, an event may begin with focal tonic fea-
tures followed by focal clonic features and then epileptic
spasms without one predominant manifestation. In addi-
tion to the above seizure types, focal motor seizures may
also occur.

EEG:

Interictal: The background is abnormal and may show
burst-suppression, multifocal spikes/spike waves/sharp
waves with or without slowing, discontinuity and/or dif-
fuse slowing (Figure 5). The background abnormalities
may be scarce very early in the course in rare patients but
will deteriorate quickly with increasing seizure frequency.
The burst-suppression pattern consists of high-voltage
bursts (150-300uV) of mixed spikes, and sharp and slow
waves lasting 1-5 s, alternating with periods of marked
suppression (<5 pV) lasting 3-10 s; however, the dura-
tion might be influenced by concomitant medications. It
is usually seen both in wakefulness and sleep and is un-
responsive to stimulation. A burst- suppression pattern is
usually bilateral but can be asymmetric, asynchronous, or
even unilateral. Random focal attenuation can sometimes
be seen. In some children, an abnormal EEG background
pattern may be seen prior to seizures with the burst-
suppression pattern becoming obvious only postictally.
The burst-suppression pattern may disappear with age,
but the EEG will remain abnormal. For infants who evolve
to IESS, hypsarrhythmia may appear with age. If the eti-
ology is treatable (metabolic or structural lesion amenable
to surgery), the EEG may improve or even normalize.

Ictal: The pattern depends on seizure type. In the neo-
natal period, ictal patterns are focal or asymmetric. With
tonic seizures the burst-suppression pattern attenuates
with the emergence of low-voltage, high-frequency fast
activity. Myoclonus may have a spike/sharp wave cor-
relate. Erratic/fragmented myoclonus may not have an
ictal correlate. Focal seizures are associated with a focal
ictal recruiting rhythm. The ictal pattern in a sequential
seizure will change through the seizure as the clinical
manifestations change. Epileptic spasms are accompanied
by a high-voltage generalized or focal sharp or slow wave
followed by low-amplitude fast activity and attenuation.
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FIGURE 5 A 4-week-old boy with Early Infantile DEE. He presented on day 2 of life with sequential seizures with a prominent tonic
component and severe encephalopathy. The EEG (20 microvolt/mm, 30 mm/s) shows a burst-suppression pattern. Genetic testing showed a
KCNQ2 pathogenic variant. The patient showed a marked reduction in seizures with carbamazepine but remained profoundly delayed

Furthermore, ictal EEG patterns may be seen with or
without clinical seizures.

Imaging:

Structural brain abnormalities are an important and
frequent cause of EIDEE and should be sought in all chil-
dren. Where seizures are drug resistant and focal features
are prominent, further imaging modalities should be con-
sidered to exclude a surgically remediable lesion. For cer-
tain genetic etiologies, imaging is often normal initially
or may show reduced brain volume or evidence of white
matter hypo-/dysmyelination. Over time cerebral atrophy
may develop.

Genetics:

The following investigations should be considered:

O Chromosomal microarray, karyotype (eg, ring chro-
mosome 14).

O Gene panel, whole exome or genome sequencing—it
can be helpful for the quality of the resulting test report
to highlight phenotypic features consistent with spe-
cific genes, where present (see section below).

Causative pathogenic gene variants can be identified in
more than half of patients with EIDEE.”**

The seizure type(s) and EEG with other phenotypic
features may predict genotype:

« KCNQ2- DEE pathogenic variants are associated with
sequential seizures (with a tonic component mostly but
also with clonic, tonic, myoclonic, epileptic spasms, or
autonomic seizures) (see section below). This variant is
also seen with exclusively tonic seizures associated with
a burst-suppression or a multifocal EEG. Family history
may include individuals with self-limited familial infan-
tile epilepsy.® #*~%

« SCN2A-DEE pathogenic variants may include sequen-
tial seizures with predominantly tonic and autonomic
features.”**

« SCN8A-DEE pathogenic variants are associated with
focal seizures.'”

« STXBPI-DEE pathogenic variants are associated with
asymmetric tonic or sequential seizures (tonic, auto-
nomic, clonic, and epileptic spasms).'*1%2

« CDKL5-DEE is associated with tonic seizures.
Sequential seizures typically recur with a “hyperkinetic-
tonic-spasms” phenotype.'®1%3

« KCNTI-DEE pathogenic variants can present with focal
tonic seizures with autonomic symptoms.'®*
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« UBA5-DEE pathogenic variants can present with pre-
dominant myoclonic seizures.'®

Metabolic studies:

Metabolic studies should be strongly considered, par-
ticularly if a clear structural abnormality is not found
on imaging.®® Furthermore, imaging or EEG features
may suggest a specific metabolic etiology. Other sources
should guide detailed neurometabolic testing; however,
investigations should include urine organic and amino
acids (including s-sulfocysteine), urine alpha aminoad-
ipic semialdehyde, plasma amino acids, lactate, uric acid,
copper/ceruloplasmin, ammonia, acylcarnitine profile,
transferrin isoelectric focusing, very long-chain fatty
acids, and CSF glucose, lactate, pyruvate, amino acids,
and neurotransmitters.

Differential diagnosis

« Provoked seizures associated with hypoxic ischemic en-
cephalopathy, infection, acute reversible metabolic dis-
turbance, stroke, or intracranial haemorrhage may be
myoclonic, focal clonic, and focal tonic. There may be

a severe encephalopathy and a suppression-burst EEG.

Provoked seizures are much more common than those

associated with EIDEE, and relevant investigations to

exclude acute causes should be performed. However,
certain genetic causes of EIDEE including molybde-
num cofactor deficiency and sulfite oxidase deficiency
have imaging features that may mimic hypoxic brain

injury.

Epilepsy of infancy with migrating focal seizures
(EIMFS)

EIMES is a rare developmental and epileptic encephalop-
athy beginning with drug-resistant, focal seizures in the
first year of life, with associated severe encephalopathy
(Table 6). Focal seizures can arise in both hemispheres
and migrate from one cortical region to another within
a seizure. Seizures are often prolonged with episodes of
status epilepticus.'® The cause is mainly genetic with
KCNT1' as the major gene and more than 25 other genes
linked to this syndrome.'®” Prognosis is poor, with se-
vere neurological disability and reduced life expectancy,
which may be, in part, related to the specific genetic muta-
tion,'*>!% although a milder evolution has been reported
in a few children.

Epidemiology:

EIMFS has an estimated prevalence of ~0.11/100 000
children.'”

Clinical context:

This syndrome usually begins in the first 6 months
(mean 3 months), with rare cases beginning in the latter
half of the first year of life.'*>'°*!° Males and females are
equally affected. Head size and neurological examination
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are usually normal at onset. Most patients develop micro-
cephaly by 1 year of age.''>''! Development may be nor-
mal at onset; however, regression and subsequent severe
delay is typical.'®

Course of illness:

Prognosis is poor, with ongoing drug-resistant seizures,
severe neurological developmental and motor disability,
and reduced life expectancy,'®>'*” although a milder evo-
lution has been reported in a few children. Some patients
are also affected by severe gut dysmotility and may have a
movement disorder,'” as is common to many genetic de-
velopmental epileptic encephalopathies.

Seizures:

Focal motor clonic or tonic seizures are mandatory for
diagnosis. These are initially sporadic, but the frequency
rapidly increases in the weeks and months after seizure
onset. Seizures may also be more subtle, with behavioral
arrest with or without head and eye version, and promi-
nent autonomic features,'>!*2

Focal seizures show a migration pattern on EEG,
which might be missed if a prolonged video-EEG is not
performed.'®®!'*!3 Clinically, migration is characterized
by unilateral focal tonic or clonic activity at seizure onset,
which then evolves to contralateral focal tonic or clonic ac-
tivity over the course of the seizure. Status epilepticus is com-
mon."? Rare cases with a history of epileptic spasms have
been reported.'***¢ Myoclonic seizures are exclusionary.

EEG:

The EEG background can be normal at onset; how-
ever, diffuse slowing of the background occurs with
time.'9>!%12 Multifocal discharges appear with time
in all cases. The EEG abnormality is enhanced by sleep
deprivation and by sleep. Rarely hypsarrhythmia is
reported.'>

The ictal EEG correlates with clinical semiology, and
there is involvement of multiple independent cortical
regions consecutively in the same single seizure event
(Figure 6).12113 The ictal EEG is characterized by mo-
notonous activity in the 4-10 Hz band, beginning in the
temporo-occipital regions with a specific and pathogno-
monic pattern of propagation migration."'>'"* Recently,
two EEG markers have been developed to differentiate
EIMEFS seizures due to KCNTI from other focal seizures
seen in neonates and infants, with variance in time and
coherence of ictal rhythms of seizures.'"?

Imaging:

Neuroimaging is normal at the outset, with reports of
mild to moderate enlargement of subarachnoid and ven-
tricular spaces. Brain atrophy, predominantly in the cer-
ebellar region, has been reported on follow-up of some
cases. Delayed myelination with white matter hyperin-
tensity on MRI and decreased N-acetyl aspartate on MR
spectroscopy are often reported.'?®!%110
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TABLE 6 Diagnostic criteria for epilepsy of infancy with migrating focal seizures

Mandatory

Focal/multifocal tonic or clonic
seizures, with or without subtle
behavioral arrest and prominent
autonomic features

Seizures migrate from one hemisphere
or lobe to another clinically

Seizure frequency rapidly increases in
the first weeks and months, often
progressing to status epilepticus

Seizures

EEG Ictal recording shows a migrating
pattern (this might be missed
if a prolonged video EEG is not
performed)

Interictal: Multifocal discharges

Age at onset <12 months
Development at onset

Neurological exam

Comorbidities Developmental plateauing or

regression with frequent seizures

Imaging

Course of illness Neurodevelopmental delay

Is MRI or ictal EEG required for diagnosis?

Alerts Exclusionary

Myoclonic seizures

Interictal:

Suppression burst pattern prior to
medication

Single persistent epileptic focus on
EEG

Hypsarrhythmia

Onset 6-12 months
Severe delay prior to seizure onset

Significant abnormalities on
neurological examination prior
to seizure onset

Abnormal neuroimaging
with structural causal
lesion

Seizure freedom
Lack of brain atrophy on MRI

An MRI is required for diagnosis to exclude a causal structural etiology
An ictal EEG may not be required if clinical migration is observed. However, an ictal EEG is strongly recommended to document a

migrating pattern

Syndrome without laboratory confirmation: In resource-limited regions, EIMFS can be diagnosed on clinical observation of seizure
migration without EEG or MRI, provided all other clinical mandatory and exclusionary criteria are met

Genetics:

Familial inheritance is rare showing interfamilial
variability (mildly affected parents with infants with
EIMFS).""”"""® De novo gene abnormalities are most
commonly implicated. KCNT1 is the major gene and
is reported in almost half of cases.'®®'°”!® Other genes
associated with this syndrome include mainly SCN1A,
SCN2A, SLCI12A5, BRATI, and TBC1D24.""

Metabolic testing:

Some children presenting with EIMFS have been found
to have underlying congenital disorders of glycosylation.'*

Differential diagnosis:

« SeLNE, SeLFNIE, and SeLIE are distinguished by nor-
mal development and lack of a migrating pattern within
the same seizure on ictal EEG.

« Other focal, early-onset epilepsies due to a structural
etiology are distinguished by the presence of stereo-
typed seizures, often with a single constant focus with-
out a migrating pattern on EEG.

o Other EIDEE. These children may have multi-
focal and/or generalized seizures, with severe

FIGURE 6 Figure A to C show successive pages of an EEG recording in a 3-month-old girl with Epilepsy in Infancy with Migrating
Focal Seizures due to an SCN2A pathogenic variant. The EEG shows a prolonged seizure that began in the left temporal region (upwards

arrow, A) and migrated to the right temporal region (downwards arrow, A), and then to the central region (arrow, B) and terminated in
the right temporal region (C). During the seizure, the infant first had left head deviation, followed by bilateral tonic posturing, right head
deviation and then left head deviation, along with ictal tachycardia (see ECG lead)


https://nam01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.epilepsydiagnosis.org%2Faetiology%2Fgene-abnormalities-overview.html#TBC1D24&data=02%7C01%7C%7Cf3c33c12864f4c5bb5fe08d7cfc67966%7C84df9e7fe9f640afb435aaaaaaaaaaaa%7C1%7C0%7C637206323652855381&sdata=I4VAbaWJwZQblgXwdMcS2HnbcaailxfY26sJUoMNDFg%3D&reserved=0

lepsia-*

l:pi

) 7

ZUBERI ET AL.

s § {143 {Of[41 8.8 R BN XEry 3ser 22ey o Ly > T 3ET 2
4 -8 O shc i g g f5t 3
B H T s s e BT 38
TR e L S B B3 -
ISITmIIEIiiE e mEn R N :
R SISO AR At S
i IR B IR TSI TI N (12 0 2
IRHIHRiaE SRIBIEIIS RSN :
O SIS ATE I EiilE LY 3
THRNSIAL B R ERASHEIE
ISERTIRY =31 B 140 Q{1 0% il oogd
S BIRIIE IR R e R IR IR N E
LR SHEIS SEEIEEE §
SR I I NI I HEIIEIEIHIEIIE! o5 : iy FioH
e T e T S v
T iy gl it s
NI EINE :
SRIIIME MYy | ey
RS SRS SRR IR 18 (RS RIS iR s s 1R
QiU el IR e e e s d NI SEE < b
S SIS (A (1S A i 30t 218
miEia i s IR IR HIE ]




ZUBERI ET AL.

= LEpilepsia

neurodevelopmental delay but do not show the char-
acteristic migrating pattern within the same seizure on
EEG. Many of these children may also develop move-
ment disorders.

« Other inborn errors of metabolism.

» DS is distinguished by prolonged focal clonic (hemi-
clonic) seizures that alternate from side to side with dif-
ferent seizures. However, these patients do not show a
migratory pattern within the same seizure.

Infantile epileptic spasms syndrome (IESS)

IESS is a term proposed to encompass both West syn-
drome as well as infants presenting with epileptic spasms
who do not fulfil all the criteria for West syndrome (Table
7). West syndrome classically referred to the triad of epi-
leptic spasms, hypsarrhythmia, and developmental stag-
nation or regression.121 However, infants with IESS often
lack one of these three criteria. For example, the devel-
opmental impact may not be apparent or typical hypsar-
rhythmia may not be present. This concern was previously
identified by the West Delphi group, who proposed the
term Infantile Spasms syndrome for all cases of infan-
tile spasms, regardless of EEG findings, and retained the
term West syndrome for cases in which hypsarrhythmia

TABLE 7 Diagnostic criteria for infantile epileptic spasms syndrome

was associated, regardless of developmental regression.'**
This change emphasizes the importance of early diagnosis
and therapy because shorter lag time to treatment is asso-
ciated with a better outcome.'* The addition of the term
“epileptic” to the name of the syndrome was done upon
the request of many pediatric neurology/epilepsy experts
in order to avoid any confusion with nonepileptic spasms
and to emphasize the epileptic nature of this syndrome.

IESS is characterized by the onset of epileptic spasms be-
tween 1 and 24 (peak 3 and 12) months of age, although later
onset may occur. Infants may have no antecedent history, or
the antecedent history may reflect the underlying cause, for
example, acquired structural brain or genetic abnormality.
In some cases, infants with EIDEE or other early onset epi-
lepsies (usually with focal seizures) may evolve to have clini-
cal and EEG features of IESS after 3-4 months of age.'**

Epidemiology:

The estimated incidence of IESS is 30/100 000 liveborn
infants, with some studies suggesting higher incidence
rates with higher geographic latitudes (Sweden, Finland,
Denmark).” 7 A population-based cohort showed
that IESS accounted for 10% of epilepsies that begin prior
to 36 months.”*' Both sexes are affected, with a higher in-
cidence in males.®**

Mandatory Alerts Exclusionary
Seizures Flexor, extensor or mixed epileptic
spasms which often occur in clusters
EEG Interictal: Interictal: Ictal:
Hypsarrhythmia, multifocal or focal Normal EEG Normal EEG during recorded clinical

epileptiform discharges
(that might be seen quickly after the
spasms onset)

Age at onset 1-24 months (while epileptic spasms
may begin later, this would not be

ISS)

Developmental slowing after spasms
onset but may be absent early in
the course (difficult to determine
in a child with existing significant
developmental disorders)

Is MRI or ictal EEG required for diagnosis?

Comorbidities

Suppression-burst pattern

events of suspected spasms

Age at onset 1-2 months

An MRI is not required for diagnosis but is highly recommended to evaluate for underlying cause.
An ictal EEG is not required for diagnosis provided the interictal study shows hypsarrhythmia or epileptiform abnormalities or
developmental delay. In the absence of hypsarrhythmia or epileptiform anomalies, an ictal recording is required

Possible evolving syndrome: Infants with preceding brain injury, developmental brain malformations, or specific genetic conditions,
including early-infantile DEE, who show significant interictal EEG abnormalities (high amplitude, background slowing, and/or
multifocal discharges) should be watched carefully for the development of clinical epileptic spasms. However, the syndrome of ISS

cannot be diagnosed prior to onset of the mandatory seizure type

Syndrome without laboratory confirmation: In resource-limited regions, an interictal EEG is highly recommended. However, if EEG is
unavailable, if clear clusters of typical epileptic spasms are witnessed by an experienced clinician (in person or on video recording),
with the other clinical mandatory and exclusionary criteria, ISS can be diagnosed
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Clinical context:

IESS has onset between 3 and 12 months, with a range
of 1-24 months. If onset occurs prior to 3 months, other
early-onset developmental and epileptic encephalopa-
thies should be considered. Prior to the onset of IESS the
development can be normal, but there is often a history
of preceding clear or suspected abnormal development.
Developmental slowing, arrest, or regression is seen with
the onset of spasms, although it may not be apparent
very early in the course. Parents may report isolated re-
gression in visual attention or altered social responsive-
ness in the days or weeks preceding the onset of spasms.
Developmental plateauing and regression usually worsen
without urgent and effective treatment. Although head
size and examination may be normal, careful neurological
examination may provide clues to the etiology, including
abnormal head size or neurological exam findings. In ad-
dition, dermatological exam (for stigmata suggestive of a
neurocutaneous disorder such as tuberous sclerosis com-
plex), ophthalmologic assessment, and examination for
dysmorphic features are important as they can suggest an
underlying cause.

Course of illness:

IESS frequently evolves to other epilepsy types or
syndromes, especially Lennox-Gastaut syndrome, or
drug-resistant focal epilepsies. Although there are no
precise data, it has been suggested that about 30% of
patients with IESS may evolve to Lennox-Gastaut syn-
drome.'*®%® Some infants may begin with focal epi-
lepsy that evolves to IESS, and then, as the child ages
or in response to therapy, revert back to focal epilepsy.
In such cases, focal features are often seen on EEG and
typical hypsarrhythmia may be absent. Coexisting focal
seizures, asymmetric epileptic spasms, and consistent
focal features on EEG should also raise the possibility of
a structural brain abnormality.

Epileptic spasms may persist in some cases, particu-
larly with some of the genetic or structural encephalop-
athies. In some individuals, they resolve with effective
therapy and subsequent epilepsy is not seen.

Developmentally, many infants are left with poor de-
velopmental outcome, regardless of seizure outcome. The
severity of developmental delay relates predominantly to
etiology and promptness of treatment. Prognosis is more
favorable for infants with preceding normal development,
no known cause, and prompt initiation of syndrome-
specific treatment,'**!%°

Seizures:

Epileptic spasms are mandatory for the diagnosis
of IESS, and consist of brief tonic contractions of axial
muscles, each typically lasting <3 s, which may be flexor,
extensor, or mixed. These usually occur in series or clus-
ters, with increasing prominence of the motor features

Epilepsia>

through the cluster, often over a period of minutes (al-
though clusters may last 30 min or longer) and are often
seen on awakening. These may be symmetric or asym-
metric and may be subtle, with minor head nods, or eye
or chin movements.

Focal seizures may also be seen and may co-occur in
an infant with spasms, particularly in the setting of a
structural etiology, for example, tuberous sclerosis or focal
cortical dysplasia. Focal seizures may occur either inde-
pendently of spasms or may precede, occur during, or fol-
low a cluster of epileptic spasms, or even occur throughout
the series of epileptic spasms. Tonic seizures at onset are
atypical and should raise concern for another early onset
developmental and epileptic encephalopathy.

EEG:

Interictally, hypsarrhythmia (chaotic, high amplitude,
excessive slowing, multifocal epileptiform discharges) is
often seen and the yield of detection is greatest if non-
REM (rapid eye movement) sleep is recorded (Figure 7A).
Some infants may have a very active multifocal epilepti-
form EEG without the chaotic background that typifies
hypsarrhythmia. A consistent focal epileptiform discharge
or focal fast activity should suggest an underlying struc-
tural abnormality. Very early in the course, or in older
children, hypsarrhythmia may also be absent. Clinicians
should not withhold standard therapy for children with
IESS who do not have hypsarrhythmia.

The ictal recording of an epileptic spasm is character-
ized by a high amplitude, generalized, sharp or slow wave
followed by low amplitude, fast activity, which may appear
as a brief electrodecrement (Figure 7B). Hypsarrhythmia
typically attenuates or stops during a series of epileptic
spasms. EMG helps to distinguish epileptic spasms from
myoclonic seizures and tonic seizures (see Figure 8)."*” A
burst-suppression pattern on EEG is suggestive of EIDEE.

Neuroimaging:

Neuroimaging is strongly recommended to clarify the
etiology, which may impact treatment decision-making.
Brain MRI is abnormal in one half to two thirds of chil-
dren with IESS,” 1*1% and can show either acquired or
congenital lesions that are focal, multifocal, or diffuse.
Early imaging should be repeated after 2 years of age when
myelination is likely to be complete, if there is a suspicion
of a focal structural lesion, or in infants with refractory
infantile spasms of unknown etiology. Optimized imaging
and analysis for the detection of subtle focal cortical dys-
plasia may be necessary, and modalities such as fluorode-
oxyglucose positron emission tomography or arterial spin
labeling can be useful to detect focal structural anomalies
in the presence of an apparently normal MRIL'***** Such
children should be referred early for epilepsy surgical as-
sessment. In addition, MRI abnormalities may point to
specific metabolic disorders.
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FIGURE 7 A and B show 7-month-old boy with Infantile Epileptic Spasm Syndrome. The interictal EEG (A) shows a hypsarrhythmia
pattern. The ictal recording (B) shows a high-amplitude sharp wave followed by a relative decrement with a muscle contraction on EMG.

Genetics:

Genetic studies should be considered if no etiology is
found after clinical examination and MRL.****" In addi-
tion, genetic testing should be considered for patients with
structural brain disorders known to be associated with a
genetic basis.

Pathogenic variants in many genes have been
associated with IESS and often are de novo in the

child. A genetic etiology can be defined in up to 41% of
cases.”*! Etiologies include Trisomy 21, ARX, CDKLS5,
STXBP1, IQSEC2, TSC1, TSC2, and many others.
A genetic mutation can be inherited from a parent with
mild symptoms or an unaffected parent. In addition, a
range of chromosomal abnormalities and copy number
variants have been associated with IESS, so chromosomal
microarray and routine karyotype should be considered.
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myoclonic jerk. B: A tonic seizure. C: A spasm, where the
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over the vertex regions.

FIGURE 8 Differentiation of Spasm from Myoclonic and Tonic Seizure.*” Both EMG and EEG channels are shown. Myoclonic jerk (A),

tonic seizure (B), epileptic spasm (C)

Metabolic and other lab studies:

Metabolic etiologies are a rare but important cause of
IESS. Metabolic testing should be considered if an etiology
is not found on clinical examination and no structural ab-
normalities are seen on MRI. In the absence of a known
etiology, pyridoxine dependency should be considered. If
laboratory studies are unavailable to rapidly exclude this di-
agnosis, infants should be considered for a trial of pyridox-
ine.'*® However, given the rarity of this disorder, such a trial
should be given at the same time as the first-line therapy.

Differential diagnosis:

Epileptic:

« EIDEE begins before 3 months of age. Although spasms
may be present, other seizure types including tonic, my-
oclonic, and sequential seizures coexist.

« MEI presents with myoclonic seizures, not epileptic
spasms. The EEG and EMG can distinguish myoclo-
nus from epileptic spasms. EEG shows a normal back-
ground with generalized spike wave discharges.

Nonepileptic:

 Benign sleep myoclonus: jerks in sleep are a normal
phenomenon.

+ Benign myoclonus of infancy presents with myoclonus
and a normal interictal and interictal EEG.

« Infantile colic presents with intermittent prolonged
bouts of crying and stiffening. The EEG is normal.

« Gastroesophageal reflux or Sandifer syndrome.

« Benign shuddering attacks of infancy.

« Benign infantile head drops: frequent head drops with
onset at 3-6 months of age. This entity is self-limited
and the EEG is normal.

« Hyperekplexia

Dravet syndrome (DS)

DS (previously known as Severe Myoclonic Epilepsy of
Infancy), presents in the first year of life in a normal child
with prolonged, febrile and afebrile, focal clonic (usually
hemiclonic), or generalized clonic seizures (Table 8).'*
Other seizure types including myoclonic and atypical ab-
sence seizures appear between the age of 1 and 4 years.
Seizures are usually intractable, and from the second year
of life children demonstrate cognitive and behavioral
impairments.'* Gait abnormalities including a charac-
teristic crouch gait are usually seen by late childhood.'*
The clinical diagnosis is supported by the identification of
pathogenic variants in the sodium channel gene SCN1A
(found in over 80% of cases).™!

Epidemiology:

DS affects ~6.5/100 000 live births.”*!1>?

Clinical context:

Onset of seizures is typically between 3 and 9 months,
with a mean and median age of 6 months.'***5!5* Rare
cases can present as early as 1 month of age, or as late
as 20 months of age in a few reported cases; however,
onset before 2 months or after 15 months should alert
the clinician to review the diagnosis and consider further
investigations to exclude other conditions. Development
appears normal at seizure onset.">*>> The neurological
examination is normal at seizure onset. Walking may be
slightly delayed (mean 16-18 months) and gait instabil-
ity may be present. Head size is normal during the first
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TABLE 8 Diagnostic criteria for Dravet syndrome

Mandatory

Recurrent focal clonic (hemiclonic)
febrile and afebrile seizures
(which often alternate sides
from seizure to seizure), focal
to bilateral tonic-clonic, and/or
generalized clonic seizures

Seizures

EEG

Age at onset 1-20 months

Development at onset
Neurological exam
Imaging

Other testing: ie, genetics,

and so on

Course of illness Drug-resistant epilepsy

Intellectual disability

Is MRI or ictal EEG required for diagnosis?

Alerts Exclusionary

No history of prolonged seizures
(>10 min)

Lack of fever sensitivity as a
seizure trigger

Epileptic spasms
Early infantile SCN1A DEE

Normal EEG background
without interictal discharges
after age 2 years

1-2 months or 15-20 months

Developmental delay at seizure
onset

Focal neurological findings
(other than Todd’s paresis)

MRI showing a causal focal
lesion

Lack of pathogenic SCN1A or
other causal variant

Good efficacy with prophylactic
sodium-channel agents
including carbamazepine,
oxcarbazepine, and
phenytoin

An MRI is not required for diagnosis but is highly recommended to exclude other causes.

An ictal EEG is not required for diagnosis

Possible evolving syndrome: In a child <12 months who presents with a prolonged hemiclonic or bilateral tonic-clonic seizure with fever,
and no other underlying cause, the possibility of Dravet syndrome should be considered. Further convulsive seizures (often with fever,
and if prolonged or hemiclonic) would allow more definitive diagnosis of Dravet syndrome. A diagnosis would be further supported

by the finding of a pathogenic SCN1A variant

Syndrome without laboratory confirmation: In resource-limited regions, Dravet syndrome can be diagnosed in children without Alerts
who meet all other clinical mandatory and exclusionary criteria, without EEG, MRI, and genetic testing

years. Significant developmental delay, neurological ex-
amination abnormalities, movement disorders, or micro-
cephaly at the time of seizure onset suggests an alternative
diagnosis.

Course of illness:

Seizures are drug resistant and present through life.
Episodes of status epilepticus are more frequent before
5 years of age. They can, however, occur later, even into
adult life, especially with an illness or fever.'>* By ado-
lescence/early adulthood, status epilepticus and atypical
absences are rare—seizures are predominantly brief, with
various types (focal with loss of awareness, clonic, gen-
eralized tonic-clonic, myoclonic, and atypical absences).
Nocturnal seizures tonic and tonic-clonic may appear at
this age and become the predominant seizure type.'>*>’
Over time, developmental progress slows and delay may
be evident from 12 to 60 months following onset of sei-
zures.>* % Speech delay is predominant. Most patients
manifest a degree of intellectual disability ranging from

mild to severe (50%)."°>'*® Many patients develop be-
havior disorders and some have inattention and hyper-
activity."**!%16! Developmental regression can be seen
following episodes of status epilepticus. In most patients,
however, the pattern is more of developmental slowing
and consequent intellectual impairment.”*® Over time,
most patients develop subtle pyramidal signs and gait dis-
order evolving to crouch gait, typically by late childhood
to adolescence.'*

Seizures:

Recurrent focal clonic seizures (hemiclonic seizures
affecting one side of the body) or generalized clonic sei-
zures at onset, which are often prolonged and frequently
triggered by fever, elevated environmental temperature, or
immunization, are mandatory for diagnosis.'**"** A pro-
longed, focal clonic (hemiclonic) seizure with fever (espe-
cially low- grade fever) prior to 12 months of age, in the
absence of an infection or a structural brain lesion, in a
previously normal infant, is highly suggestive of DS.'>* By
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1.5 to 5 years of age, additional seizures types can occur
(but are not always present)">>"'>*:

« Myoclonic seizures.

« Focal impaired awareness seizures.

« Focal to bilateral tonic-clonic seizures.

+ Atypical absence seizures.

 Atonic seizures.

« Nonconvulsive status epilepticus (originally termed ob-
tundation status),

« tonic and tonic-clonic seizures mainly in sleep and in
clusters.

By this age, in addition to illness, seizures can also
be triggered by physical activity, change in environmen-
tal temperature, visual patterns (rarely), photic stimu-
lation (15% of patients), and excitement.'*****!* Tonic
and tonic-clonic seizures mainly in sleep and in clus-
ters, may appear later in the course of the disease, from
around age 4-5 years, and become more evident in adult
life.!>%157162 Epjleptic spasms are exclusionary. Seizures
are exacerbated with the use of sodium channel-blocking
drugs (this can be a clue to the diagnosis) such as carba-
mazepine, lamotrigine, oxcarbazepine, and phenytoin.'*
However, lamotrigine may rarely have a role in older pa-
tients as suggested in one small case series.'®®

EEG:

Background may be normal or slow prior to age 2 years.
Slowing is typical after 2 years of age.>*'>*'®* Interictal
discharges are often focal, multifocal, and generalized,
and appear after 2 years of age.'® In patients with sleep
clusters of seizures, interictal frontal discharges are often
seen.'®1%* A photoparoxysmal response occurs in 15% of
patients and is more frequent in younger children.'®* Ictal
recordings depend on seizure type.

Neuroimaging:

MRI is normal at seizure onset.'®> Over time, mild cere-
bral and cerebellar atrophy may evolve. A minority of pa-
tients have hippocampal sclerosis'®>'%®; however, epilepsy
surgery is not indicated.

Genetics:

Genetic testing is recommended at all ages, including
in adults in whom the diagnosis is suspected but details of
history in infancy may be difficult to access. A pathogenic
variant in SCN1A is present in more than 80%-85% of
cases.! Most are de novo; however, up to 10% of patients
who are thought to have a de novo mutation will have one
parent who is mosaic for the variant.'®” This carries impli-
cations for reproductive counseling. DS may occur in one
member of a family with GEFS+. SCN1A pathogenic vari-
ants may be found in other epilepsy syndromes such as
GEFS+ and early infantile SCNIA encephalopathy with
profound impairment. The diagnosis of DS requires the
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typical clinical features and cannot be made on the basis
of the genetic variant alone, and the absence of a gene
variant should not preclude a clinical diagnosis of the syn-
drome.'®' Treatment should not be delayed in the setting
of a clinical diagnosis.

Other genes have rarely been associated with DS in-
cluding dominant, pathogenic variants in GABRG2,
GABRA1, STXBP1, and rare recessive cases with SCN1B
variants.'®®

A family history of febrile seizures or other epilepsies
may be seen in 30%-50% of cases, and the semiology may
be suggestive of GEFS+.

Metabolic and other lab studies:

No consistent abnormalities found.

Differential diagnosis:

Epileptic:

« FS+: Although this condition also may present with
febrile seizures in early life, the presence of recurrent,
prolonged, focal clonic seizures (hemiclonic) in infancy
should suggest DS.

« Lennox-Gastaut syndrome: Lennox-Gastaut syndrome
can readily be distinguished from DS, as tonic seizures
are prominent early on, and prolonged focal clonic
(hemiclonic) seizures do not occur. Furthermore, the
EEG in Lennox-Gastaut shows a slow background, with
prominent, frontally predominant slow spike-wave
(<2.5 Hz) and paroxysmal fast activity in sleep.

« Epilepsy with myoclonic-atonic seizures: Epilepsy
with myoclonic-atonic seizures begins later than DS.
Although some cases may have a history of febrile sei-
zures, prolonged, focal clonic (hemiclonic) seizures and
other focal seizures are not seen. Myoclonic atonic sei-
zures are typical. Children may develop myoclonic non-
convulsive status epilepticus but recurrent convulsive
status epilepticus is also rare.

« Protocadherin 19 Clustering Epilepsy typically presents
with clusters of seizures, as opposed to prolonged focal
clonic (hemiclonic) seizures. However, similar to DS,
seizures occur mainly in infancy and are triggered by
fever. PCDH19 Clustering Epilepsy predominantly af-
fects females, and there is an X-linked mode of inheri-
tance that spares males.

« SCN1A-DEE is distinguished from DS by very early
onset (<3 months), preceding developmental delay and
prominent movement disorder. Some cases of early
onset SCN1A-EIDEE such as Thr226Met'® are linked
to gain-of-function variants, and thus responsive to so-
dium channel-blocking agents.'”

« Structural focal epilepsy may begin with prolonged focal
seizures triggered by fever; however, recurrent seizures
affect the same side or limb, as opposed to DS, which
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results in focal clonic (hemiclonic) seizures that often
alternate sides. Myoclonic and atypical absence seizures
are unusual. MRI often shows a causal lesion.

« Mitochondrial disorders: Children with mitochondrial
disorders may also present with multiple seizure types
early in life. However, there are other signs of mitochon-
drial disease, such as other organ dysfunction, elevated
lactate, and characteristic abnormalities on MRI.

Nonepileptic:

« Intracranial infection such as meningitis or encephalitis
must be excluded in the presence of a prolonged febrile
seizure.

2.2.3 | Etiology-specific syndromes

Increasingly, consistent electroclinical phenotypes are
being identified with strong associations to specific eti-
ologies. Some known syndromes have specific etiologies
(ie, SCN1A pathogenic variants in DS); however, for other
etiologies, novel characteristic phenotypes are associated.
In some cases, the etiology has just a single phenotype,
whereas in others, particularly certain genetic disorders,
the phenotype may vary depending on age and nature of
the variant. Etiology-specific syndromes can be identified,
where there is a specific etiology for the epilepsy that is
associated with a clearly defined, relatively uniform, and
distinct clinical phenotype in most affected individu-
als (clinical presentation, seizure types, comorbidities,
course of illness, and/or response to specific therapies),
as well as consistent EEG, neuroimaging, and/or genetic
correlates." Our Task Force did not aim to identify and

TABLE 9 Diagnostic criteria for KCNQ2-DEE

describe all Etiology-Specific Syndromes, but provided
definitions on a limited number, including the DEEs asso-
ciated with KCNQ2, CDKL5, PCDH19, SCL2A1, pyridox-
ine and pyridox(am)ine 5'-Phosphate-dependent epilepsy,
Sturge-Weber syndrome, and Gelastic Seizures with
Hypothalamic Hamartoma.

KCNQ2-DEE

KCNQ2-DEE causes a neonatal onset encephalopathy and
is due to de novo missense variants that produce a disorder
distinct from self-limited neonatal epilepsy. Seizures may
respond to sodium channel blockers (Table 9).

Epidemiology:

The incidence of KCNQ2-DEE is unknown.

Clinical context:

Seizure onset is within the first few days of life in the
context of a severe neonatal encephalopathy with abnor-
mal neurological examination and behavior.”> °7 171176
Seizures are typically not responsive to first-line medica-
tions such as phenobarbitone. Sodium channel-blocking
agents such as carbamazepine and phenytoin should be
considered early in this clinical context.®®

Course of illness:

Seizures may respond partially or completely to so-
dium channel blockers. Epilepsy frequently remits; how-
ever, developmental outcome is typically moderately to
severely impaired.'”* Over half of patients will become
seizure-free, varying from a few months of age to several
years.'”* As genetic testing becomes more readily avail-
able it is likely that more cases with intermediate outcome
between self-limited neonatal epilepsy and KCNQ2-DEE
will be identified. Milder phenotypes may be seen in cases
with mosaicism.

Mandatory Alerts Exclusionary
Seizures Tonic, myoclonic, and/or focal seizures
EEG Either burst suppression or multifocal

discharges; diffuse slowing

Age at onset < 3 months

Neurological exam

Comorbidities Neurodevelopmental slowing/

Onset beyond the first week of life
(corrected gestational age)

Normal neurological examination

encephalopathy is apparent at seizure

onset
Other testing: ie genetics etc Pathogenic variant in KCNQ2

Course of illness

Abnormal neurodevelopment, with

profound to moderate impairment

Is MRI or ictal EEG required for diagnosis?

An MRI is not required for diagnosis but is strongly recommended to exclude other causes

An ictal EEG is not required for diagnosis

Syndrome without laboratory confirmation: In resource-limited regions, KCNQ2-DEE cannot be diagnosed without genetic testing
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Seizures:

Focal tonic seizures are seen most frequently, al-
though other seizure types including focal clonic and
myoclonic may also be seen.’”!’>!'"* Autonomic fea-
tures, apnea, and ictal crying may be prominent during
seizures. Epileptic spasms have been recorded in some
individuals; however, the evolution to IESS is seen less
frequently in KCNQ2-DEE than in other severe EIDEEs.
The seizure semiology in neonates is similar to that
seen in SeLNE; however, seizure frequency, EEG back-
ground abnormalities, and abnormal neurological ex-
amination in KCNQ2-DEE allow the syndromes to be
distinguished.'™

EEG:

In more than 60% of cases the EEG shows a burst
suppression pattern, which may be asymmetric at times
(Figure 5).°®'7® In other cases, multifocal abnormalities
including spikes, sharp waves, and hemispheric suppres-
sion may be seen.

Neuroimaging:

MRI signal abnormalities may be seen in the basal
ganglia or thalamus during the neonatal period. In some
cases, hyperintensities seen on T1 sequences in the glo-
bus pallidus may disappear with time.”** Mild atrophy
of the frontal lobe and thin corpus callosum have been
reported.®*%

Genetics:

De novo missense variants in particular regions (hot
spots) of the KCNQ2 gene produce a dominant nega-
tive, more severe loss of channel function than is seen in
SeLNE.173’175’176

Pyridoxine-dependent (ALDH7A1)-DEE (PD-DEE) and
pyridox(AM)INE 5'-phosphate deficiency (PNPO)-DEE
(P5PD-DEE)

PDE-DEE and P5P-DEE are caused by genetic-metabolic
defects within the same lysine degradation pathway (Table
10)."”7 Seizure control can be achieved in almost all cases
with pharmacological doses of pyridoxine and pyridoxal-
5'-phosphate, respectively, emphasizing the importance of
early recognition. Some infants with P5PD-DEE respond
partially or completely to pyridoxine therapy.'”’

Epidemiology:

Estimates of incidence are available only for PD-DEE
due to pathogenic variants in ALDH7A1 and vary from
1 in 65 000 births, 1 in 273 000 births, to 1 in 783 000
births.'”** The incidence of P5P-DEE is unknown.

Clinical context:

Patients with PD-DEE and P5P-DEE present shortly
after birth with encephalopathy and seizures or with intra-
uterine convulsions. However, up to 25% of patients with
pyridoxine-dependent epilepsy may present outside the
newborn period, mainly in the first 3 years of life, although
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new onset of seizures has been reported at 17 years of
age.'®"'® patients with PSPD-DEE are often born prema-
turely, and those with either PD-DEE and P5PD-DEE may
show signs of neonatal distress, irritability, and vomiting
at times with acidosis and low Apgar scores, leading to a
misdiagnosis of neonatal hypoxic-ischemic encephalop-
athy.'®*!%3 There may be a family history of EIDEE, in-
fertility, and death in siblings."®* Seizures are resistant to
standard antiseizure medications.

Course of illness:

Evidence from small case series and observational stud-
ies suggests that lysine reduction therapies including a
lysine-restricted diet and L-arginine therapy may provide
additional benefit in terms of seizure control and cognitive
outcome.'*® Despite adequate seizure control, the major-
ity of people have varying degrees of intellectual disability
from mild to severe.'®>'® Later-seizure onset is associated
with better cognitive outcome; however, this can be nor-
mal for patients with onset at any age with both PD-DEE
and P5PD-DEE, emphasizing the importance of early and
adequate treatment.'®’ Seizure relapse may occur during
febrile illnesses, and treatment doses of pyridoxine may be
doubled at these times.'*® Withdrawal of pyridoxine leads
to a recurrence of seizures; therefore, treatment should be
lifelong with dose adjustments as needed. Chronic use of
pyridoxine may result in peripheral neuropathy, but this is
rare if doses do not exceed 200 mg/day and can be mon-
itored through testing of deep tendon reflexes and nerve
conduction studies.'® People with PSPD-DEE may be
exquisitely sensitive to dosing and timing of pyridoxal-5-
phosphate, with some benefiting from multiple doses per
day.

Cirrhosis of the liver has been reported in PSPD-DEE
and surveillance for this association is appropriate.'®

Seizures:

Seizures may manifest antenatally as excessive fetal
movements and typically present in the first hours to days
of life. Infants may be acidotic and hypotonic; however,
seizures may manifest as frequent, at times continuous,
multifocal myoclonus affecting limbs, trunk, eyes, and fa-
cial muscles. A variety of seizure types may occur includ-
ing focal seizures, spasms, and generalized tonic-clonic
seizures.'** The semiology of a hyperkinetic, seemingly
distressed and agitated infant with multifocal myoclonus
and spasms should alert the clinician to the possibility of
PD-DEE or P5PD-DEE. In older infants, presentation may
be with febrile or febrile generalized tonic-clonic seizures,
status epilepticus, or clusters of focal seizures. If doses of
pyridoxal-5-phosphate are missed or not tolerated during
vomiting illnesses, patients with P5PD-DEE may present
with semiology, suggesting occipital network involve-
ment, including colored lights, ictal blindness, and darting
eye movements. Presentation with infantile spasms later
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TABLE 10 Diagnostic criteria for early-onset vitamin-dependent (pyridoxine or pyridox(am)ine 5'-phosphate dependent) DEE

Seizures

EEG

Age at onset

Neurological exam

Other testing: ie genetics
etc

Course of illness

Mandatory

Variable seizure types, which may include:

« Focal/multifocal seizures

« Epileptic spasms

+ Generalized tonic seizures

+ Generalized clonic seizures

Seizures are drug resistant and frequent (often evolving to
status epilepticus) but rapidly respond to pyridoxine
(pyridoxine-dependent-DEE) or pyridoxal—5-phosphate
(pyridox(am)ine 5'-phosphate-DEE) supplementation

Interictal: Abnormal with slowing and focal/multifocal
discharges or burst suppression pattern

Laboratory testing providing confirmatory evidence, which
may include:

1. Metabolic features: Increased a-aminoadipic
semialdehyde and/or pipecolic acid in urine, plasma,
and/or CSF (pyridoxine-dependent-DEE) or low
pyridoxal—5-phosphate in CSF (pyridox(am)ine
5'-phosphate-DEE)

OR

2. Genetic features: pathogenic variants in ALDH7A1
or PLBP (pyridoxine dependent-DEE) or PNPO gene
(pyridox(am)ine 5'-phosphate-DEE)

Seizures that show sustained marked reduction
or cessation with lifelong pyridoxine or

Alerts Exclusionary

Age >3 years at onset
(there are rare,
later-onset forms of
pyridoxine-dependent
epilepsy)

Lack of encephalopathy
and irritability

Normal
neurodevelopmental

pyridoxal—5-phosphate.
Is MRI or ictal EEG required for diagnosis?

outcome

An MRI is not required for diagnosis but is strongly recommended to exclude other causes

An ictal EEG is not required for diagnosis

Syndrome without laboratory confirmation: In resource-limited regions, pyridoxine or pyridox(am)ine 5'-phosphate-DEE can be
diagnosed in children without Alerts who meet all other mandatory and exclusionary clinical criteria and whose seizures cease
with pyridoxine or P5P supplementation, recur when supplementation is stopped, and cease again with re-introduction of

supplementation

in infancy is rare but has been reported in PD-DEE.'*’ The
wide variety of seizure types at presentation necessitates
that PDE-DEE and P5PD-DEE be considered in all infants
with drug-resistant seizures in infancy. Some children
with PDE-DEE may be partially responsive to antiseizure
medications.

EEG:

EEG in PD-DEE and P5PD-DEE in neonates with
severe encephalopathy prior to treatment can show a
burst-suppression pattern. In other cases, focal or mul-
tifocal discharges may be seen against a background of
slow rhythms. If pyridoxine is given intravenously to

an encephalopathic patient (ideally this should be done
under EEG control), it must be done in a setting where the
child can be intubated for respiratory support should treat-
ment cause apnea. A burst-suppression EEG or EEG with
multifocal sharp or spike complexes can become diffusely
suppressed following pyridoxine administration and may
take many hours or days to return to show normal back-
ground rhythms. Hypsarrhythmia has been reported in 1
of 30 patients in one series."®"

Neuroimaging:

Neuroimaging may be normal, butin both PD-DEE and
P5PD-DEE, over half of patients have MRI abnormalities.
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These including white matter edema in severely encepha-
lopathic cases.'®"'®* Intraventricular hemorrhage, ventric-
ular dilatation, and corpus callosum hypoplasia can lead
to misdiagnosis of a structural etiology for the epilepsy.'®!

Genetics:

Most cases of PD-DEE are associated with biallelic
variants in ALDH7A1, also known as antiquitin, with a
minority associated with biallelic variants in PLBP (pre-
viously known as PROSC)."**186191 pyridox(am)ine 5'
phosphate deficiency is associated with biallelic variants
in the PNPO gene."! The disorder, previously termed
folinic acid responsive epilepsy, is a form of PD-DEE
associated with variants in ALDH7A1 and has a better
response to pyridoxine than folinic acid alone.” If a sin-
gle pathogenic variant is identified, in the appropriate
clinical context, then multiplex ligation probe amplifi-
cation and chromosomal microarray should be under-
taken to identify intragenic or whole gene deletions, or
duplications involving the relevant gene on the other
allele. If variants of uncertain significance are identi-
fied, metabolic investigations will help in assessment of
pathogenicity. Antenatal genetic testing and maternal
treatment with pyridoxine should be considered in sub-
sequent pregnancies.

TABLE 11 Diagnostic criteria for CDKL5-DEE

Mandatory

Seizures Seizures, which may include tonic

seizures, epileptic spasms, generalized
tonic-clonic seizures, and/or focal

seizures

Hyperkinetic-tonic-spasms sequence
seizures are characteristic but not

seen in all cases

EEG

Age at onset

Development at onset

Neurological exam

Other testing: ie genetics etc

males by 4:1)

Course of illness
Drug-resistant epilepsy

Is MRI or ictal EEG required for diagnosis?

Epilepsia

Metabolic testing

The biomarkers a-aminoadipic semialdehyde (a-
AASA) and pipecolic acid are elevated in urine, plasma,
and CSF.'® Ideally urine and plasma samples should
be taken prior to treatment with pyridoxine; however,
this should not delay therapy in suspected cases.'®®
Following treatment, these biomarkers may be reduced
but typically remain elevated. a-AASA is considered the
more reliable test. With the use of biomarkers and gene
testing, withdrawal of therapy as a diagnostic test is now
obsolete.

CDKL5-DEE

CDKL5-DEE, also known as CDKLS5 deficiency disorder, is
a DEE that is the result of pathogenic variants in the cyclin-
dependent kinase like 5 (CDKL5) gene. It is an important
cause of very early-onset epilepsy (median age 6 weeks)
with pronounced hypotonia (Table 11). The combination
of clusters of infantile spasms and tonic seizures in the
first few months of life is characteristic, but multiple sei-
zure types can occur. Seizures often have multiple phases,
with a classic sequential hypermotor (hyperkinetic)-tonic-
spasms seizure. Severe to profound global delay is present
in essentially all cases.

Alerts Exclusionary

Absence of epileptic spasms in the first
year of life

Normal EEG background without
interictal discharges after 4 months
of age

Onset of epilepsy >3 months

Normal development prior to seizure
onset

Normal tone
Lack of encephalopathy

Pathogenic variant in the CDKL5 gene
(X-linked but females outnumber

Profound to severe intellectual disability

An MRI is not required for diagnosis but is strongly recommended to exclude other causes

An ictal EEG is not required for diagnosis

Syndrome without laboratory confirmation: In resource-limited regions, CDKL5-DEE cannot be diagnosed without confirmatory genetic

testing
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Epidemiology:

CDKL5-DEE is rare, with estimated incidence of be-
tween 1/40 000 and 1/60 000 live births.*"'*>'** It is X-
linked and females outnumber males by a ratio of 4:1."9%1%

Clinical context:

The median age of seizure onset is 6 weeks, and 90% of
cases have onset before 3 months.'**'*” Developmental con-
cerns are present at the time of seizure onset but become
more pronounced with time. True regression is rare.'*
Neurological examination shows diffuse hypotonia but nor-
mal head circumference at onset."*'** Cortical visual im-
pairment, with poor eye contact and lack of visual tracking is
common.'** Subtle dysmorphic features with deep set eyes,
broad forehead, prominent lips, deep philtrum, and puffy
phalanges with tapered fingers have also been described.'**

Course of illness:

Epilepsy typically remains drug resistant and most pa-
tients are left with severe intellectual disability. Most pa-
tients continue to have daily seizures, although occasional
periods of seizure freedom up to 2 months or longer are
seen in less than half of cases.'* Independent walking and
ability to speak single words is achieved in less than one
quarter of cases.'** Movement disorders including choreo-
athetosis, akathisia, dystonia, and parkinsonism can affect
a minority of patients.'** Males are more severely affected.

Seizures:

The initial seizure type can vary, but most commonly
tonic seizures, spasms, generalized tonic-clonic seizures,
or focal seizures are seen.'”” Over time, other seizure types
can occur. The majority will have epileptic spasms and/
or tonic seizures. One characteristic seizure type, seen in
many but not all cases, is hypermotor(hyperkinetic)-tonic-
spasms sequence seizures.'”® The first part of this seizure
begins with a hypermotor phase with rocking, kicking,
and vocalization that lasts 10-60 s. This is followed by a
tonic phase, either with extension of all limbs or exten-
sion of the upper limbs and flexion of the lower limbs
lasting 20-45 s. The seizure evolves to a series of extensor
spasms, which lasts 1-15 minutes. Similar seizures that
involve multiple phases with clustering of tonic seizures
and spasms, but with variable order of seizures'’ types, are
common.'®> Autonomic features are commonly seen with
the above seizures, with facial flushing, pupillary dila-
tation, and irregular respirations. Myoclonic, clonic, ab-
sence, and atonic seizures may be seen with time.

Characteristically, the epilepsy associated with CDKL5-

DEE follows three successive stages'*’:

Stage 1: Early epilepsy onset with brief tonic
seizures, often with facial flushing.

Stage 2: Epileptic encephalopathy with tonic
seizures and infantile spasms.

Stage 3: Late multifocal and myoclonic ep-
ilepsy with tonic seizures, myoclonia, ab-
sences, or multifocal seizures.

EEG:

In Stage 1, the interictal EEG is normal but ictal re-
cordings show generalized attenuation followed by fast
activity in frontal or central head regions during the tonic
seizure.'® A burst-suppression pattern is not seen in this
stage. In Stage 2, the interictal EEG is severely abnormal,
showing bilateral or generalized slowing with spikes or
polyspikes.'” A burst-suppression pattern has rarely been
reported in this stage.””® In Stage 3, the interictal record-
ing shows diffuse, high-amplitude delta slowing with
pseudo-periodic bursts of spikes, polyspikes, and spike-
wave complexes that are maximal in the central, temporal,
or temporal-occipital regions.'*’

Genetics:

A pathogenic or likely pathogenic variant in the
CDKL5 gene is required to confirm the diagnosis of
CDKL5-DEE, and multiple variants have been reported in
affected individuals. There are limited data on genotype-
phenotype correlation; however, missense variants may
correlate with a slightly less-severe disorder than truncat-
ing variants.'**

PCDH19 clustering epilepsy

PCDH19 Clustering Epilepsy is an X-linked disease,
seen predominantly in females, caused by pathogenic
variants in the PCDH19 gene (Table 12). Few males are
reported. Epilepsy onset is often during the first year of
life (mostly during the first 3 years), and the most char-
acteristic feature is clusters of seizures often induced by
fever. Intellectual disability and psychiatric symptoms
are reported in about two thirds of cases. The severity
of the phenotype seems to be correlated with the age of
epilepsy onset.?2%!

Epidemiology:

Data on incidence are limited but one study reports
an estimated incidence of 1/42 000 live births.*' Large co-
horts of females with seizure clusters triggered by fever
show rates of PCDH19 pathogenic variants ranging from
2% to 20%.%

Clinical context:

Seizure onset is typically before 1 year of age, with a
mean age of 10 months (1.5-60 months in females).*"**?
Development and neurological examination are normal at
seizure onset. Head circumference is normal.

Course of illness:

Seizures occur in clusters, which are triggered by fever
and often drug resistant. After the first decade, a decrease
in the frequency of the seizure clusters generally occurs
regardless of the treatment, and remission of seizures may
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TABLE 12 Diagnostic criteria for PCDH19 clustering epilepsy
Mandatory
Seizures Focal seizures (fearful screaming typical) and
tonic-clonic seizures, in clusters; may be
triggered by fever
EEG

Age at seizure onset

Other testing: ie,
genetics, and so on

Is MRI or ictal EEG required for diagnosis?

Epilepsia>

Alerts Exclusionary

Prolonged focal clonic (hemiclonic)
seizures in infancy (consider Dravet)
No clustering

Absence of epileptiform discharges

(which is usually focal, but rarely may
be generalized)

1.5-60 months in females; 5-96 months in males

PCDH19 pathogenic variant: (see following text
for further detail on inheritance pattern)

An MRI is not required for diagnosis but is strongly recommended to exclude other causes

An ictal EEG is not required for diagnosis

Possible evolving syndrome: This syndrome should be considered in an infant girl who presents with a first cluster of febrile seizures

Syndrome without laboratory confirmation: In resource-limited regions, PCDH19 Clustering Epilepsy could be a provisionally diagnosed
without confirmatory genetic testing, specifically in the setting of a family history suggestive of X-linked dominant inheritance with

male sparing

occur in at least one quarter, usually in adolescence to
mid-adulthood.?!#%20%-204

Signs of intellectual disability and autism spectrum
disorder, affecting up to 70%, emerge during the second
year of life and often become the most relevant symp-
toms after the first decade. Behavioral disorders, with
prominent hyperactivity and possible psychosis in up to
25% of women, are often problematic in adolescence and
adults.*”

Seizures:

At onset, seizures are focal impaired aware with tonic
extension of the upper arms, deviation of head and eyes,
pallor of the face, expression of fear, and screaming re-
ported in half of the patients.*"*%*

Atypical absences may also be seen.”®* Seizures occur
in clusters, often related to fever, and status epilepticus
has been reported.**®

EEG:

Interictal EEG showed slow background activity with
rare focal spikes and slow waves that increase in frequency
during clusters. With age, background activity may nor-
malize. One third of patients show a photoparoxysmal re-
sponse and few patients had generalized bursts of spike
and waves.*!*%

Seizures recorded on ictal EEG often arise from tempo-
ral regions, but parieto-occipital, frontal, or central onset
may also be seen. In half of cases, seizures appear focal
but are not well lateralized or localized on EEG.*!

Neuroimaging:

MRI is typically normal at seizure onset.

Genetics:

PCDH19 pathogenic variants were initially recognized
in large pedigrees in which only females were affected by
epilepsy and intellectual disability (Epilepsy in Females

with Mental Retardation). Currently, approximately half
of reported cases are de novo.*

Although the PCDHI9 gene is located on Xq22, this
condition has an unusual X-linked mode of inheritance
sparing transmitting males. Only heterozygous female
and mosaic males are affected due to presumed cellu-
lar interference. Few affected males with a similar phe-
notype are reported to date (nine cases reported in the
literature).?%%7

SMC1A DEE can mimic PCDH19 Clustering Epilepsy
and can present with prolonged clusters of multiple focal
and generalized seizures resistant to antiseizure medica-
tion, sometimes lasting days. Infants with this disorder
have a severe developmental encephalopathy and mild
dysmorphic features.””®

Metabolic and other lab studies:

No consistent metabolic abnormalities are found.

Glucose transporter 1 deficiency syndrome (Glut1DS)
GlutlDS is a complex neurological disorder associated
with a range of neurological symptoms including infan-
tile onset epilepsy, movement disorders, and intellectual
disability (Table 13).2**'° Epilepsy is the most common
presenting feature of GlutlDS and is a drug-resistant un-
less treated with the ketogenic diet.*'*!* The syndrome is
associated with pathogenic variants in the SLC2AI gene
encoding the glucose transporter type 1, impairing glu-
cose transport across the blood-brain barrier.

Epidemiology:

The estimated incidence of Glut1DS presenting as ep-
ilepsy in infancy is 1/24 000 live births; however, the syn-
drome as a whole may be more common, as individuals
may present later in childhood and with symptoms other
than seizures.*!
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TABLE 13 Diagnostic criteria for GLUT1DS

Mandatory

Seizures Seizures, which may be focal or
generalized, including absence
seizures (often beginning before

3 years of age)

Neurological exam

Other testing: ie Pathogenic SLC2A1 variant
genetics etc OR
Low fasting CSF glucose and CSF/
plasma glucose ratio®

Course of illness Intellectual disability

Is MRI or ictal EEG required for diagnosis?

Alerts Exclusionary

Focal neurological findings (other than
Todd’s paresis)

Other documented
etiology for
hypoglycorrhachia

Seizures that are controlled with
medication

Lack of improvement in seizures with
ketogenic diet

Lack of movement disorders such as
ataxia, paroxysmal exercise-induced
dyskinesia, dystonia

An MRI is not required for diagnosis but is strongly recommended to exclude other causes

An ictal EEG is not required for diagnosis

Syndrome without laboratory confirmation: In resource-limited regions, GLUT1DS can be diagnosed without EEG, MRI, or genetic
studies in children without Alerts who meet all other mandatory and exclusionary clinical criteria. CSF studies are required for

diagnosis

CSF glucose may not be as low in later-onset epilepsies associated with GLUT1 deficiency syndrome.

Clinical context:

Infants may present with many different seizure
types but generalized-onset seizures are more common
than focal.***!* In any child presenting with epilepsy
and a movement disorder GlutlDS should be consid-
ered.”" A history of seizures associated with fasting or
in the early morning may be present. Other clues to di-
agnosis include eye-head gaze saccades (consisting of
rapid, multidirectional eye movements, accompanied
by head movements in the same direction) in early in-
fancy and microcephaly (present in 50% of cases) or
deceleration of head growth.?**'*2!¢ Diagnosis is con-
firmed by lumbar puncture identifying low CSF glucose
with normal or low CSF lactate after a 4-6 hour fast in
the context of a normal blood glucose.217 In GlutlDS,
CSF glucose fifth percentile values range from 1.8-
2.9 mmol/L, and CSF/plasma glucose ratio fifth per-
centile values range from 0.41-0.510. In the presence of
a highly typical phenotype with a pathogenic SLC2A1
variant, a lumbar puncture may not be necessary.’'?
In later-onset epilepsy associated with GLUT1DS, CSF
glucose levels may not be as low.*'*

Course of illness:

Seizures vary in frequency from multiple per day to only
a few per year and are resistant to antiseizure medications.
Seizure frequency tends to decline later in childhood and

adult life, where intellectual disability, movement disor-
ders, and migraine may be the predominant features.***"°
Ketogenic diet with adequate ketosis may completely con-
trol seizures. Although this therapy may ameliorate fur-
ther cognitive decline, many patients are still left with
variable degrees of intellectual disability.

Seizures:

Generalized seizures are typically myoclonic,
myoclonic-atonic, generalized tonic-clonic, or atypical
or early onset absences. Early onset absences (less than
age 4 years), often seen with a myoclonic component,
should be investigated by lumbar puncture and genetic
testing.220 In addition, this disorder should be consid-
ered in persons with epilepsy with myoclonic-atonic
seizures or drug-resistant absence epilepsy, particularly
if cognitive concerns are present. Epileptic spasms and
generalized tonic-clonic status epilepticus have also
been reported.*!

EEG:

Interictal EEG is often normal. There is some evi-
dence for age-specific changes, with focal or generalized
slowing of background rhythms in infancy with or with-
out intermittent focal or generalized spike and wave. In
children older than 2 years, generalized 2.5-4 Hz spike-
wave is seen.??! In some cases, pre-prandial EEG abnor-
malities may be improved during the recording by feeding
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as glucose crosses the blood-brain barrier and EEG back-
ground rhythms may be less abnormal on the ketogenic
diet.*?

Neuroimaging:

Approximately 25% of patients have neuroimaging
abnormalities including hyperintensity of subcortical U
fibers, prominence of perivascular Virchow spaces, prom-
inent ventricles, and delayed myelination for age 2%
18F-Deoxyglucose positron emission tomography may
show a specific imaging signature including reduced sig-
nal from cerebral cortex, cerebellum, and thalamus with
apparent increased glucose in the striatum.*?

Genetics and other investigations:

Gene sequence analysis identifies heterozygous and
less commonly recessive pathogenic variants in SLC2A1
in 81%-89% of cases.”” Another 11%-14% of cases with
deletions or duplications in the gene may be identified by
multiplex-ligation probe amplification and chromosomal
microarray.”” With a highly suspicious clinical pheno-
type, but nondiagnostic lumbar puncture and genetic
testing, other investigations including erythrocyte uptake
tests and measurement of glucose transporter type 1 on
the surface of red blood cells should be considered.*****

Sturge-Weber syndrome (SWS)

SWS is a congenital neurocutaneous syndrome defined by
the association of a facial capillary malformation referred

TABLE 14 Diagnostic criteria for Sturge-Weber syndrome

Mandatory
Seizures Focal motor or autonomic seizures with or
without impaired awareness, which may
evolve to bilateral tonic-clonic seizures
EEG

Neurological exam

Imaging MRI showing leptomeningeal enhancement
suggestive of leptomeningeal angioma,
with cortical calcification and focal

cerebral atrophy developing with time

Course of illness

Is MRI or ictal EEG required for diagnosis?

Epilepsia>

to as a port-wine stain birthmark with ipsilateral lep-
tomeningeal angioma and frequent ipsilateral glaucoma.
It is caused by somatic activating mutations in the gua-
nine nucleotide-binding protein alpha-q (GNAQ) gene
(Table 14).*” The prognosis of SWS is highly variable and
related to the potential complications that develop often
in early childhood, including epilepsy, focal neurological
deficits, and glaucoma.””® The diagnosis is confirmed by
brain imaging showing direct or indirect evidence of the
leptomeningeal angioma.

Epidemiology:

The estimated incidence of SWS is 1/20 000 to 1/50
000 live births. Patients with a facial port-wine stain on
the forehead and/or the upper eyelid have an estimated
risk of 20%-70% of developing SWS.?***%

Clinical context:

The diagnosis of SWS is suspected at birth in newborns
presenting a facial port-wine stain covering the forehead
and/or the upper eyelid. Careful examination under
the hairline is important to detect more subtle lesions.
Contrast-enhanced MRI can detect the leptomeningeal
angioma before 3 months of age.**' Rarely, the facial angi-
oma may be absent.**

Seizures are usually the first manifestation, affecting
75% to 85% of patients at a median age of 6 months.**?
Rare cases with onset of seizures in adulthood have also
been reported.”** In addition to epilepsy, 40% to 60% of

Alerts Exclusionary

Interictal:

Lack of asymmetrical background with
reduction in voltage and slowing over the
affected hemisphere

Lack of facial capillary hemangioma affecting
the V1 dermatome

Lack of abnormal neurological
examination—may be limited to visual
field deficit

Lack of intellectual disability ranging from
mild to profound

An MRI is required for diagnosis. Changes may be very subtle or absent on MRI done prior to 2 months of age

An ictal EEG is not required for diagnosis

Syndrome without laboratory confirmation: In resource-limited regions, Sturge-Weber syndrome can be presumptively diagnosed without
EEG or MRI in persons without Alerts who meet all other mandatory clinical criteria
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SWS patients will develop glaucoma with a risk of early
visual impairment.***

Course of illness:

Natural history is highly variable but is usually
marked by a progressive course with age-dependent neu-
rological manifestations. Early manifestations during
infancy include epilepsy, hemiparesis, psychomotor
delay, and stroke-like events. Later signs and symptoms
at school age include headaches, academic difficulties,
and behavioral problems. In adulthood, psychiatric dis-
orders including depression can be significant, and ep-
ilepsy and stroke-like events can continue throughout
life.

Early seizure onset (before age 12 months), high sei-
zure frequency, and drug resistance are the most reliable
predictors of poor outcome.”***** Extensive unilateral
or bilateral intracranial involvement is associated with
earlier onset of seizures and worse cognitive develop-
ment compared to unilateral leptomeningeal angioma.**
Presurgical evaluation should be considered in patients
with unilateral disease who are drug resistant.**°

Seizures:

The first seizures are usually focal motor.”*’ Focal
autonomic seizures with variable degrees of impaired
awareness are also frequent.”*® Seizures can be sub-
tle, and their prompt recognition is important because
prolonged seizures and status epilepticus can occur
frequently.”®” About 30% of cases may have onset of sei-
zures during febrile episodes and there is an increased
susceptibility of fever-induced seizures at any age.*’
Infantile spasms, myoclonic atonic seizures, and gelas-
tic seizures have also been reported.”* Seizure cluster-
ing following a prolonged period of seizure freedom is
common (40% of cases).***?%

Due to the high incidence of early-onset seizures and
their potential deleterious effects on the developing brain,
parental education in early seizure recognition and indi-
vidualized emergency plans including the use of rescue
benzodiazepine therapy is recommended.**’

EEG:

The EEG characteristically shows asymmetric reduc-
tion in voltage and slowing of the background over the
affected hemisphere (Figure 9).*' The background might
be normal, however, during the first year of life. Interictal
epileptiform abnormalities may appear later and consist
of focal sharp waves or frequent spike-wave bursts.?"!
Such interictal epileptiform abnormalities before seizure
onset might be a useful marker to identify patients with
SWS who are at risk of developing epilepsy.*** Ictal activ-
ity varies depending on seizure focus.

Neuroimaging:

Contrast-enhanced, cerebral MRI confirms the diagno-
sis of SWS by the direct visualization of leptomeningeal

enhancement (Figure 10). Detection can be challenging
in very young infants. Other imaging features such as ip-
silateral choroid plexus enlargement, enlarged transmed-
ullary veins, and T2 shortening of the white matter can
help establish the diagnosis.*' Cortical calcifications and
cerebral atrophy appear over time.

Genetics:

Isolated port-wine stain and SWS have a common ge-
netic etiology, with a somatic mosaic pathogenic variant
recently identified in the GNAQ gene.**’

Gelastic seizures with hypothalamic hamartoma
Hypothalamic hamartomas are very rare, congenital, non-
neoplastic lesions, which are characteristically associated
with gelastic (laughing episodes without mirth) or, less
commonly, dacrystic (crying) seizures that typically begin
in infancy or early childhood (Table 15). Other seizure
types including focal impaired awareness or various gen-
eralized seizures may evolve, and with time there is pro-
gressive cognitive plateauing or regression and progressive
behavioral abnormalities including impulsiveness and
aggression. Precocious puberty is present in some cases.
Seizures remain drug resistant but may improve signifi-
cantly with surgical intervention. Early surgical therapy
should be considered for seizure control and to prevent
progressive cognitive and behavioral decline.

Epidemiology:

A single study documented a prevalence of hypotha-
lamic hamartoma with gelastic seizures of 0.5/100,000 in
children <20 years of age.**

Clinical context:

Onset is in the first year of life in ~85% of cases.”** A mi-
nority of cases can begin in early to mid-childhood.?**%*3
There is no sex predisposition. Neurological examination
is normal; however, general physical examination may re-
veal features of precocious puberty.

Course of Illness:

Epilepsy due to hypothalamic hamartoma is drug re-
sistant. There is progression over time in most cases, with
development of focal impaired awareness and generalized
seizures.”****” Some patients may develop tonic, atonic, or
atypical absences suggestive of Lennox-Gastaut syndrome.
Surgical therapy targeting the hypothalamic hamartoma
can mitigate this unfavorable evolution. Cognition is typi-
cally normal at seizure onset, but over time, developmen-
tal plateauing or regression is usually seen. Children can
also develop progressive behavioral problems including
aggression, impulsivity, hyperactivity, and autism spec-
trum disorder.

Seizures:

Gelastic seizures are the distinctive seizure type and
mandatory for diagnosis. They are seen at epilepsy onset,
and are brief, typically lasting less than 1 minute. They
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(A)

FIGURE 9 EEG in a2 Y2-year-old child with Sturge-Weber syndrome, with leptomeningeal angioma affecting the left hemisphere.
Note the relative suppression throughout the left hemisphere (highlighted in gray) with decreased sleep spindles (A). There were frequent
subclinical seizures arising from the left posterior region (arrow) (B)
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FIGURE 10 MRIofa 12-month-old boy with Sturge-Weber syndrome showing a right hemispheric leptomeningeal angioma. The

T1 sequence (A) shows atrophy of the right cerebral hemisphere and possible enlargement of the choroid plexus (arrow). T1 sequence with
gadolinium (B) and fluid-attenuated inversion recovery (FLAIR) with gadolinium (Figure C) demonstrate right meningeal gadolinium
enhancement and the enlargement of the right plexus choroid (arrow)

TABLE 15 Diagnostic criteria for gelastic seizures with hypothalamic hamartoma

Mandatory Alerts Exclusionary

Seizures Gelastic seizures with mechanical, mirthless Seizure frequency less than daily
laughter, inappropriate to context

EEG Interictal: Generalized or focal background
slowing (excluding immediate postictal
period)

Ictal: Gelastic seizures may lack ictal EEG
correlate

Age at onset Onset >5 years of age

Development at Clear developmental delay at seizure onset

onset

Neurological exam Focal neurological findings (other than

Todd’s paresis) or generalized hypotonia

Imaging Hypothalamic hamartoma (may require thin
slices through the hypothalamic region to
confirm)
Course of illness Drug-resistant epilepsy Lack of behavioral problems including
aggression, impulsivity, and
hyperactivity

Is MRI or ictal EEG required for diagnosis?

An MRI is required for diagnosis

An ictal EEG is not required for diagnosis. Furthermore, gelastic seizures may lack ictal correlate on EEG

Syndrome without laboratory confirmation: In resource-limited regions, HH-GS cannot be diagnosed in the absence of an MRI, as gelastic
seizures may arise from other brain regions

consist of mechanical and mirthless laughter, inappropri- are not gelastic seizures. Dacrystic seizures, character-
ate to context. Awareness is often not impaired and postic- ized by stereotypic lacrimation, and sobbing, grimacing,
tal confusion is absent. Seizure frequency is high, typically or yelling, inappropriate to context may also be present.
multiple per day, and seizures may cluster. Seizures with ~ The combination of gelastic and dacrystic seizures in the
smiling alone, but without distinctive mirthless laughter, same patient is particularly suggestive of a hypothalamic
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hamartoma. Other seizure types that can occur include
focal seizures with frontal or temporal lobe semiology
and rarely, epileptic spasms. Later in childhood, tonic and
drop attacks, as well as atypical absences, may develop.

EEG:

The background is usually normal. Interictal discharges
typically appear after infancy and initially are most com-
monly seen in the temporal regions, although focal spikes
from any region may be present. Children with infantile
spasms may show a hypsarrhythmia pattern.**®

By later childhood, generalized slow spike-wave, or
generalized spike or spike-wave can occur, in addition to
focal or multifocal discharges.

Ictal recordings of gelastic seizures may show no
change, or alternatively may show subtle and nonspecific
changes, such as a decrease in amplitude, or reduction in
frequency of interictal spikes. On scalp recording, seizures
may appear to localize to the temporal or frontal region.
However, depth electrodes in the hamartoma will confirm
it as the focus of ictal onset,***** and thus surgery should
target the hamartoma, as opposed to focal temporal or
frontal resection. By later childhood, patients with gener-
alized seizure types will show generalized ictal onset.

Neuroimaging:

MRI shows a pedunculated or sessile lesion (Figure 11)
that lies between the infundibular stalk anteriorly and
the mammillary bodies posteriorly.>® The lesions are typ-
ically isointense to slightly hypointense to gray matter on
T1-weighted studies, and hyperintense on T2-weighted
studies. They usually do not enhance with contrast. In
cases of suspected gelastic seizures, thin slices through the
hypothalamic region should be obtained.

Epilepsia>

Genetics:

Most cases are sporadic. Approximately 5% of cases
have Pallister Hall syndrome with a GL13 pathogenic
variant.”!

Differential diagnosis:

« Gelastic seizures are not always associated with hypo-
thalamic hamartomas but may arise from other foci
(most commonly temporal and frontal). In patients
without hypothalamic hamartomas, an epilepsy proto-
col MRI should be obtained to evaluate for other struc-
tural lesions.

« Complex stereotypies.

« Infantile self-gratification.

3 | DISCUSSION
In defining epilepsy syndromes in neonates and infants,
we focus on the electroclinical picture, with careful de-
scriptions of seizure type(s), significant antecedent fac-
tors, neurological examination, associated comorbidities,
and the interictal and ictal EEG patterns. We hope that
this classification will be relevant to all clinicians, regard-
less of health care resources. Although the proportion of
infants with known etiologies is expanding, many are still
left with unknown cause, but still fulfill criteria for an epi-
lepsy syndrome, which provides physicians and families
guidance regarding optimal therapies, comorbidities, and
prognosis.

The Nosology Task Force wished to move away from
eponymous names, with some exceptions. We elected to

FIGURE 11 MRIT1 slices—axial (A)coronal (B), and sagittal (C) showing a hypothalamic hamartoma in a 6-year-old child with
gelastic seizures. The white arrow points to the pedunculated hamartoma that projects into the suprasellar cistern. The hamartoma signal

is isointense to slightly hypointense to gray matter on T1-weighted studies. The green lines on (C) are beams of the preparation for laser

ablation of the hamartoma
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maintain a few syndromes, including Dravet syndrome
(or DS), due to the ubiquitous use of this term in research,
ongoing precision clinical trials, and orphan drug designa-
tion and registration.

We propose using transparent terms that describe the
clinical condition, such as IESS. By defining the syn-
drome by the characteristic seizure type, our aim is to
enable early diagnosis and appropriate treatment. Many
infants do not fulfill the full triad of West syndrome, as
they may lack hypsarrhythmia or regression—thus we
propose the term IESS. There is electroclinical over-
lap between Ohtahara syndrome and Early Myoclonic
Encephalopathy, with both syndromes sharing genetic
and structural etiologies. In addition, many infants do
not meet criteria for either syndrome, highlighting the
broad spectrum of presentations within EIDEE. Thus,
our Task Force merged both entities into one syndrome
called EIDEE.

We aligned our nomenclature with previous classifica-
tion efforts.” Syndrome names that contained terminology
such as severe (severe myoclonic epilepsy in infancy), ma-
lignant (malignant migrating partial seizures in infancy),
and benign (benign neonatal seizures) were changed to
align with the most recent Classification.? Similarly, the
term “partial seizures” was replaced by “focal seizures.”
To avoid any confusion between seizure types and epilepsy
syndrome, we replaced the term “convulsions” with “epi-
lepsies” in some syndromes such as Self-Limited Neonatal
Epilepsy. Furthermore, because only family history differ-
entiates between Familial and Non-familial SeLNE and
SeLIE, we merged these together using the term “Self-
limited (Familial) Neonatal Epilepsy” and “Self-limited
(Familial) Infantile Epilepsy,” which allows the term “fa-
milial” to be used where appropriate.

Finally, we introduce the concept of Etiology-Specific
Syndromes for certain genetic and structural etiologies.
Gene discoveries have allowed delineation of new electro-
clinical syndromes, such as PCDH19 Clustering Epilepsy
and CDKLS5-DEE. Etiology-specific syndromes inform
rapid diagnosis and optimization of medical care, and
they ensure readiness for precision medicine trials. Given
the devastating consequences of many infantile epilepsies,
prompt etiological diagnosis offers the hope that novel
precision therapies will improve long-term prognosis.
Progress in this area relies not only on advances in genet-
ics, imaging, and immunology, but also requires clinicians
to carefully phenotype electroclinical and developmental
features and long-term outcome in children with early-life
epilepsies.
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