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Abstract 

Background: DNA methylation is an epigenetic mechanism involved in human development. Numerous epige‑
nome‑wide association studies (EWAS) have investigated the associations of DNA methylation at single CpG sites with 
childhood outcomes. However, the overall contribution of DNA methylation across the genome (R2

Methylation) towards 
childhood phenotypes is unknown. An estimate of R2

Methylation would provide context regarding the importance of 
DNA methylation explaining variance in health outcomes. We therefore estimated the variance explained by epige‑
nome‑wide cord blood methylation (R2

Methylation) for five childhood phenotypes: gestational age, birth weight, and 
body mass index (BMI), IQ and ADHD symptoms at school age. We adapted a genome‑based restricted maximum 
likelihood (GREML) approach with cross‑validation (CV) to DNA methylation data and applied it in two population‑
based birth cohorts: ALSPAC (n = 775) and Generation R (n = 1382).

Results: Using information from > 470,000 autosomal probes we estimated that DNA methylation at birth explains 
32%  (SDCV = 0.06) of gestational age variance and 5%  (SDCV = 0.02) of birth weight variance. The R2

Methylation estimates 
for BMI, IQ and ADHD symptoms at school age estimates were near 0% across almost all cross‑validation iterations.

Conclusions: The results suggest that cord blood methylation explains a moderate degree of variance in gestational 
age and birth weight, in line with the success of previous EWAS in identifying numerous CpG sites associated with 
these phenotypes. In contrast, we could not obtain a reliable estimate for school‑age BMI, IQ and ADHD symptoms. 
This may reflect a null bias due to insufficient sample size to detect variance explained in more weakly associated 
phenotypes, although the true R2

Methylation for these phenotypes is likely below that of gestational age and birth 
weight when using DNA methylation at birth.
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Background
DNA methylation (DNAm) is an epigenetic process, 
which involves the attachment of a methyl group to cyto-
sine bases, typically in the context of a cytosine-phos-
phate-guanine dinucleotide (CpG) site. The methylation 
status of a CpG site can have an impact on gene expres-
sion and downstream phenotypes [1]. In turn, meth-
ylation levels are determined by genetics, environment 
and stochastic processes [2, 3]. DNAm could therefore 
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function as mediator of many genetic and environmen-
tal determinants of human development, functioning and 
pathology. A common research design to query the role 
of DNAm in these processes is an epigenome-wide asso-
ciation study (EWAS). As a large number of CpG sites are 
tested, to reliably identify relevant CpG sites, either large 
samples or big effect sizes are required, which for most 
traits or CpG sites are not available or unlikely [4].

However, analogous to lessons learned from genome-
wide association studies, no matter the number of 
genome-wide significant CpGs identified in an EWAS, 
whether it be 0 or thousands, there is always a possibility 
that more CpGs are associated with a predictor or out-
come, but did not reach significance due to lack of power. 
Since an EWAS estimates the associations of single CpG 
probes, no conclusions can be drawn about the overall 
contribution of genome-wide DNAm towards a phe-
notype. Such an overall estimate of variance explained 
by genome-wide DNAm (R2

Methylation) would be highly 
informative for several reasons: (1) R2

Methylation would 
provide a picture of how relevant DNAm levels are to an 
outcome, either as causal determinant or predictor. (2) 
R2

Methylation would provide an upper limit of how much 
the combined effects of CpG sites identified by an EWAS 
(e.g. poly-epigenetic score) can explain. While estimates 
of R2

Methylation would be clearly useful, the best approach 
to derive them is less clear. One option is to adapt the 
genomic restricted maximum likelihood (GREML) [5] 
approach used in genetics.

In genetics, the analogous measure of R2
Methylation is 

the single nucleotide polymorphism heritability (SNP 
h2), i.e. the variance explained by all measured SNPs. 
A popular method to estimate SNP h2 is through a 
GREML analysis which consists of two steps: (1) The 
estimation of genetic relatedness values between par-
ticipant pairs inferred from their similarity in measured 
SNP genotypes. (2) Estimating how well genetic relat-
edness predicts phenotypic similarity between par-
ticipant pairs. While the GREML approach has been 
developed for genetic data, the analysis can be applied 
to any high dimensional data, such as genome-wide 
methylation data. First papers are now being published 
using GREML and alternative methods to estimate the 
variance explained by genome-wide DNAm. An early 
example is a study by Vazquez et  al. [6], who used a 
Bayesian variant of a GREML model to predict breast 
cancer survival. The authors found that genome-wide 
DNAm is more predictive than the structural genome 
or traditional covariates alone, explaining 16.2% of vari-
ance. More recently, Zhang et  al. [7] tested the valid-
ity of the GREML approach in methylation data using 
simulations and real data in a sample of adults. The 
authors estimated that concurrent blood DNAm levels 

explained 6.5% of the variance in BMI but were not 
associated with height, when controlling for genetic 
effects. In contrast, using a Bayesian approach not rely-
ing on similarity matrices, Banos et al. [8] estimated the 
proportion of BMI variance explained by concurrent 
DNAm to be 75.7% in adulthood. The CpG-level effects 
estimated by this model explained up to 30.8% in adult 
replications cohorts, but only 3.3%, 2.05% and 9.65% 
at birth, age 7 and age 15 respectively, with BMI and 
DNAm measured at the same time-points. The results 
suggest highly age specific effects depending on when 
both BMI and DNAm were measured.

As previous studies focused on DNAm and outcomes 
in adults, the variance of childhood outcomes explained 
by cord blood DNAm is unknown. In this study we aimed 
to use cord blood DNAm to estimate the R2

Methylation of 
five child outcomes, previously addressed in EWAS stud-
ies: gestational age and birth weight, as well as BMI, IQ 
and ADHD symptoms at school age. These outcomes 
were chosen because they represent childhood outcomes 
in different areas (general health, cognition and psycho-
pathology). In addition, all of these have been studied 
in multi-center population-based EWAS before, allow-
ing for a comparison between R2

Methylation measures and 
EWAS findings. Two of the phenotypes most robustly 
associated with DNAm in EWAS studies are gestational 
age and birth weight. For gestational age, 8899 CpGs have 
been found to be significantly associated in a previous 
EWAS at genome-wide significance [9]. Prediction mod-
els based on these CpGs were able to explain 50–80% of 
the gestational age variance in an independent sample 
[10, 11]. In the case of birth weight, 914 sites were associ-
ated based on an EWAS meta-analysis in 8,825 children 
[12]. Cord blood has also the potential to predict later 
development, e.g. nine CpG sites were associated with 
ADHD symptoms in school-age according to a recent 
EWAS in 2,477 children [13] and one CpG site predicted 
BMI in late childhood (n = 4133) [14]. In contrast, no 
genome-wide significant sites in cord blood were identi-
fied for BMI in early childhood [14] nor IQ in school-age 
(n = 3798) [15]. While the variance explained by specific 
sets of CpGs is known for some childhood outcomes, the 
genome-wide contribution has not been studied before. 
The aim of this study is to estimate the genome-wide 
contribution of cord blood DNA to various childhood 
outcomes.

We adapted the GREML approach to DNA methyla-
tion data to obtain R2

Methylation estimates. To maximize 
generalizability of results, we applied this method to two 
population-based birth cohorts: ALSPAC (n = 775) [16, 
17] and Generation R (n = 1382) [18]. In addition, we 
applied a Monte-Carlo cross-validation within cohorts, 
using a 90/10 training/validation split [19]. Results from 
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cross-validation were pooled to provide a joint estimate 
of R2

Methylation.

Results
Results are based on the analyses of the ALSPAC and 
Generation R cohorts. For ALSPAC, 775 children were 
included, who were born in the former English county 
Avon between 1991 and 1992. For Generation R, 1382 
children, who were born in the Dutch city of Rotterdam 
between 2002 and 2006, were included in the analysis. 
Both cohorts are population-based studies with mostly 
comparable participant characteristics, with the excep-
tion of maternal education, which was higher for Genera-
tion R (Table 1).

DNAm explained 0 to 46% of the tested outcomes’ vari-
ances. See Table 2 for full results and Figs. 1, 2, 3 and 4 
for a graphical representation of the estimate distribution 
across cross-validations.

Gestational age had the highest R2 with 45.8% of the 
variance in gestational variance explained by DNAm in 
cord blood independent of sex and batch. We further 
tested the independent contribution of DNA methyla-
tion additionally controlling for maternal age, maternal 
smoking, maternal education and cell type proportions. 

In this fully adjusted model 32.3%  (SDCV = 0.057) of vari-
ance was explained by DNAm. Notably, the ΔR2

Methylation 
was twice as large in GenR (ΔR2

Methylation = 51.7%, 
 SDCV = 0.102) compared to ALSPAC (ΔR2

Methylation = 
23.4%,  SDCV = 0.069). Across both cohorts 95% of cross-
validation results ranged from 12.7 to 63.2% (Fig. 2). The 
ranges of the Generation R and ALSPAC estimate distri-
butions overlapped to a substantial degree, with 54.3% of 
estimates lying between the Generation R smallest value 
and ALSPAC’s biggest.

For birth weight, the variance explained was esti-
mated at 12.9%  (SDCV = 0.047) with basic adjustment 
and 4.9%  (SDCV = 0.021) with full covariate adjust-
ment. Again, the estimate was much larger in Genera-
tion R (ΔR2

Methylation = 16.9%,  SDCV = 0.055) compared to 
ALSPAC (ΔR2

Methylation = 2.8%,  SDCV = 0.023). In the fully 
adjusted model, 95% of estimates were between −  0.1% 
and 25.0% with a minority of estimates overlapping 
between these two cohorts (31.8%) (Fig. 2).

DNAm in cord blood did not explain variance in any of 
the childhood outcomes at school age (BMI, ADHD and 
IQ). This result was consistent in both cohorts, in which 
all cross-validation estimates were very close to 0, with 
the vast majority (97.5%) of estimates being below 4% in 

Table 1 Participant characteristics

Characteristic ALSPAC Generation R

nobserved Mean (SD)/proportion nobserved Mean (SD)/proportion

Girls 775 51.2% 1382 49.3%

Maternal age in years 775 29.76 (4.4) 1382 31.7 (4.2)

Maternal education

Primary education 1362 1.9%

Secondary education 775 79.1% 1362 33.0%

Higher education 775 20.9% 1362 65.1%

Smoking

Continued smoking during pregnancy 767 12.5% 1378 13.4%

Quit smoking during pregnancy 1378 9.1%

Cell type composition

CD8 T cells 775 7.0% (3.0%) 1382 5.7% (2.4%)

Natural killer cells 775 8.4% (2.7%) 1382 7.9% (2.7%)

CD4 T cells 775 6.4% (5.9%) 1382 10.6% (6.0%)

B cells 775 7.5% (2.5%) 1382 6.1% (2.2%)

Granulocytes 775 52.0% (9.8%) 1382 50.7% (9.1%)

Monocytes 775 7.4% (2.7%) 1382 8.5% (2.4%)

Nucleated red blood cells 775 19.1% (6.2%) 1382 16.5% (8.0%)

Outcomes

Gestational age in weeks 775 39.6 (1.5) 1382 40.1 (1.5)

Birth weight in g 766 3490 (476) 1381 3545 (510)

BMI in kg/m2 772 16.19 (2.0) 1183 15.9 (1.4)

ADHD 773 0.52 (0.90) 1060 7.5 (6.6)

IQ 747 102.6 (17.0) 1094 106.2 (14.3)
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both basic and fully adjusted model. Correspondingly, 
the cross-validation standard deviations were below 
0.1%, suggesting that no matter which participants were 
randomly assigned to training or validation, the esti-
mated effect was always near 0 (Figs. 3, 4).

CpG sites show varying degrees of correlation with 
neighboring sites. To assess, whether these correlated 
patterns may bias results, we performed further sensitiv-
ity analyses. Specifically, we averaged DNA methylation 
levels across correlated CpG sites (methylation correlated 
blocks (MCB)). This resulted in a set of independent 
CpGs and MCBs. DNAm, as defined by these independ-
ent features, explained slightly more variance in the birth 
outcomes compared to the main analysis (Table 3). Most 
notably, the independent set explained 3.6% more vari-
ance in gestational age and 2.4% in birth weight.

Discussion
This study is the first to report the extent to which child-
hood outcomes are explained by cord blood genome-
wide DNAm. We observed that methylation patterns 
explained moderate variance for gestational age and birth 
weight, but no variance explained for prospective asso-
ciations with BMI, IQ or ADHD symptoms at school-age.

A strength of the study was the use of two cohorts, 
which are among the largest samples of cord blood meth-
ylation currently available. Both cohorts are comparable 
in many ways, for instance they represent populations of 
European ancestries living in western European coun-
tries and similar outcome assessment ages. In addition, 
cord blood DNAm assessment was very similar, as both 
cohorts used the same methylation array and were nor-
malized jointly.

The general trend of results regarding ranking from 
highest to lowest explained outcomes agreed between the 
cohorts. The highest estimates across both cohorts were 
found for gestational age, which is consistent with previ-
ous studies. Bohlin et al. tested a prediction model based 
on 58-132 CpG sites in cord blood using similar covari-
ates (sex, maternal age, maternal smoking, cell com-
position) as in our study [10]. The authors were able to 
explain 50–65% of variance in a test sample of 685 partic-
ipants from the MoBa cohort. Since we modeled a much 
higher number of probes, we would expect at least equal 
prediction performance in our study. The previous find-
ings are consistent with the Generation R estimate of 52% 
variance explained and suggests that adding more probes 
from the Illumina 450 k array would not increase perfor-
mance of the prediction model.

Fig. 1 Variance explained in birth outcomes by cord blood DNA methylation (basic adjustment). Cross‑validation distribution of ΔR2
Methylation, the 

variance explained by genome‑wide DNA methylation minus variance explained by covariates (sex and batch) in ALSPAC (red) and Generation R 
(blue). Vertical lines indicate mean ΔR2

Methylation in ALSPAC (red), Generation R (blue) and a pooled estimate (black)
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However, the previous results are less consistent with 
the 23.4% estimate in ALSPAC, indicating either a higher 
variability in lower powered samples or a potential bias 
towards null effects in lower sample sizes, as we will dis-
cuss later. Another contributor to study heterogeneity 
may be the different methods used to estimate gestational 
age. Most gestational age estimates in ALSPAC were 
based on the last reported menstrual period, whereas in 
Generation R most estimates were based on ultrasound 
scans. The latter method is expected to have less meas-
urement error and thus higher variance explained assum-
ing constant methylation effects.

Genome-wide DNAm also explained variance in birth 
weight, albeit less so than for gestational age. Inter-
estingly, the estimate was again higher in GenR than 
ALSPAC. In contrast to gestational age, there was no 
apparent noteworthy difference in birth weight assess-
ment, yet the estimates differed even more between 
cohorts than for gestational age, so other potential causes 
for the observed study differences must be discussed. 
One cause could be higher sampling variance in lower 
sample sizes. The different estimates may hint that the 
ΔR2

Methylation values at sample sizes of around 1000 sam-
ples or lower may be highly variable, with lower sample 

sizes more likely to over or underestimate the true vari-
ance explained.

School-age outcomes showed a ΔR2
Methylation near 

zero for BMI, IQ and ADHD symptoms at age 6 in both 
cohorts. In contrast to gestational-age and birth weight, 
these analyses present prospective associations over at 
least 6 years and have resulted in fewer genome-wide sig-
nificant findings in previous EWAS [13–15]. This tempo-
ral component together with perhaps lower contribution 
of DNAm may weaken associations and result in lower 
variance explained estimates. While these factors lead to 
the expectation of a lower variance explained estimate in 
prospective estimates as opposed to cross-sectional anal-
yses, estimates of 0% appear nevertheless unlikely. For 
instance, for ADHD, 9 CpG sites have been identified in 
a meta-analysis, in which most participants were drawn 
from ASLPAC and GenR [13]. Both cohorts showed 
a high lambda in the EWAS, not accounted for by con-
founding, suggestive of a highly poly-epigenetic signal. 
Therefore, 0% variance explained estimates in a subset 
of the data is implausible. Besides a true lower variance 
explained for the school-age outcomes, a potential bias 
towards 0 values in underpowered samples may be at 
play as well.

Fig. 2 Variance explained in birth outcomes by cord blood DNA methylation (full adjustment). Cross‑validation distribution of ΔR2
Methylation, the 

variance explained by genome‑wide DNA methylation minus variance explained by covariates (sex, maternal age, maternal smoking, maternal 
education, cell type proportions, batch, gestational age*, birth weight* (* not when outcome is gestational age or birth weight)) in ALSPAC (red) 
and Generation R (blue). Vertical lines indicate mean ΔR2

Methylation in ALSPAC (red), Generation R (blue) and a pooled estimate (black)
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Assuming a high uncertainty of ΔR2
Methylation, we would 

expect a large standard deviation in the cross-validation 
distribution, as some iterations will randomly show a 
variance explained that is much too high or too low. 
However, in our study all analyses with outcomes show-
ing a 0% ΔR2

Methylation, had an estimate near 0% in almost 
all cross-validation iterations. This resulted in very small 
cross-validation standard deviations, much smaller com-
pared to the gestational age or birth weight analysis. This 
is incompatible with a high estimate uncertainty due to 
low sample size. Hence, we suspect that a bias towards 
0 estimates is at play if outcomes, which are not very 
strongly associated with DNAm, are analyzed in small 
samples. Such a behavior has been previously noted 
by GCTA author Jian Yang in the context of GREML 
when applied to genetic data (http:// gcta. freef orums. 
net/ thread/ 204/ run- greml- analy sis- small- sample). We 
therefore speculate that the true ΔR2

Methylation values for 
the school-age outcomes are likely to be higher than 0% 
and below estimates found for gestational age and birth 
weight, which themselves did not display a bias towards 
0% estimates. Interestingly, early GCTA studies indicated 
no SNP heritability for child psychiatric phenotypes 
[19], but later larger multi-center GCTA [20], and LD-
score regression studies [21] have since then repeatedly 

demonstrated a SNP heritable component. Contrary 
to genetic studies, an additional source of variability in 
DNA methylation is the assessment time point. Estimates 
for the school-age outcomes are likely different for con-
current DNA methylation measures than cord blood, but 
sample size was not sufficient for these analyses in the 
current study.

A limitation of the current analyses is the coverage of 
the 450 k methylation array. The CpG sites measured by 
the array represent less than 2% of all CpG sites in the 
genome. While neighboring CpG sites tend to be cor-
related, CpG sites may also represent unmeasured CpG 
sites to a degree, but the correlations are not as stable 
or predictable as correlations between single nucleo-
tide polymorphisms in linkage disequilibrium. Thus, the 
variance explained by array DNAm is unlikely the maxi-
mum which can be explained by all DNAm variation in 
humans. That said, the estimates do in theory represent 
the maximum that can be explained by the effects found 
in an EWAS using the same array, as it represents the 
joint effect of all measured CpG sites.

This study adjusted for a number of potential con-
founders, such as maternal smoking and education, as 
well as cell type proportions. Nevertheless, the obser-
vational nature of the study design makes it unclear 

Fig. 3 Variance explained in childhood outcomes by cord blood DNA methylation (basic adjustment). Cross‑validation distribution of ΔR2
Methylation, 

the variance explained by genome‑wide DNA methylation minus variance explained by covariates (sex and batch) in ALSPAC (red) and Generation 
R (blue). Vertical lines indicate mean ΔR2

Methylation in ALSPAC (red), Generation R (blue) and a pooled estimate (black)

http://gcta.freeforums.net/thread/204/run-greml-analysis-small-sample
http://gcta.freeforums.net/thread/204/run-greml-analysis-small-sample
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whether the strong association between DNAm and 
gestational age represent direct effects of DNAm on ges-
tational age, the effects of gestational age on DNAm, or 
the effect of unmeasured confounding. Furthermore, we 
only measured DNAm in a single tissue (cord blood). 
As DNAm can be tissue-specific, other tissue may show 
higher associations with studied outcomes, e.g. adipose 
tissue and body weight.

Despite the current limitations due to sample size, 
the results of the gestational age analysis demonstrate 
that GREML methods are applicable to studies of DNA 
methylation. We expect that increases in sample size 
will make this analytical approach more reliable for out-
comes less strongly associated with DNAm. An increase 
in sample size would also allow for more complex ques-
tions to be answered. For example, as the method we 
utilized enables one to fit multiple similarity matrices, it 
is in principle possible to estimate ΔR2

Methylation adjusted 
for genetic effects or to estimate the genome-wide inter-
action between genetic and epigenetic effects. Answers 
to these questions would not only be helpful in further 
understanding of how DNAm relates to development and 
health, but would also inform the design of future EWAS. 
For instance, EWAS might need to model interactions 
between genetics and methylation levels, if interactions 

on a genome-wide level are substantial [22]. We also 
observed a slight increase in the variance explained, when 
aggregating methylation levels of correlated CpG sites 
into MCBs. It is unclear, whether this reflects a down-
ward bias when using a combination of independent and 
correlated CpG sites, or an increase in performance due 
the use of a simpler model based on fewer methylation 
features.

In summary, we showed that genome-wide DNAm 
in cord blood explains about a third of the variance in 
gestational age. DNAm was also associated to a lesser 
degree with birth weight. DNAm at birth, however, did 
not explain variance in child BMI, IQ and ADHD symp-
toms at school-age. The GREML approach holds prom-
ise for elucidating the relationship between genome-wide 
DNAm, child development and health outcomes, but 
increases in sample sizes are required to accurately esti-
mate outcomes that are less strongly associated with 
DNAm and to explore more complex models, which can 
integrate different highly dimensional data.

Methods
Participants
Participants for this study were drawn from two Euro-
pean population-based birth cohorts: The ALSPAC Study 

Fig. 4 Variance explained in childhood outcomes by cord blood DNA methylation (full adjustment). Cross‑validation distribution of ΔR2
Methylation, 

the variance explained by genome‑wide DNA methylation minus variance explained by covariates (sex, maternal age, maternal smoking, maternal 
education, cell type proportions, batch, gestational age, birth weight) in ALSPAC (red) and Generation R (blue). Vertical lines indicate mean 
ΔR2

Methylation in ALSPAC (red), Generation R (blue) and a pooled estimate (black)
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and the Generation R study. ALSPAC had recruited 
15,454 women with an expected delivery date between 
April 1991 and December 1992, who were living in the 
former English county Avon, resulting in 15,589 foetuses. 
Of these 14,901 were alive at 1 year of age. The develop-
ment of their children was subsequently studied at mul-
tiple assessment waves. Cord blood DNAm was assessed 
for 1018 children. To avoid potential biases arising from 
shared family environment or population stratification, 
only one sibling per family was included in the analyses 
sample, as well as only children whose parents reported 
white ethnicity (analysis n = 775). Full cohort descrip-
tions have been published previously [16, 17]. Please note 
that the study website contains details of all the data that 
is available through a fully searchable data dictionary and 
variable search tool (http:// www. brist ol. ac. uk/ alspac/ 
resea rchers/ our- data/). Ethical approval for the study was 
obtained from the ALSPAC Ethics and Law Committee 
and the Local Research Ethics Committees. Consent for 
biological samples has been collected in accordance with 
the Human Tissue Act (2004). Informed consent for the 
use of data collected via questionnaires and clinics was 
obtained from participants following the recommenda-
tions of the ALSPAC Ethics and Law Committee at the 
time.

Generation R invited all pregnant women living in the 
city of Rotterdam, the Netherlands, with an expected 
delivery date between April 2002 and January 2006 to 
participate in the study, of which 9,778 were enrolled. 
Cord blood DNA methylation was assessed in a sub-
group of 1396 children with parents of reported Euro-
pean national origin. After exclusion of siblings (one of 
each pair excluded), 1382 participants remained in the 
analysis. Full study descriptions have been published pre-
viously [18], see also https:// gener ationr. nl/ resea rchers/ 
for more information. All parents gave informed consent 
for their children’s participation. The Generation R Study 
is conducted in accordance with the Declaration of Hel-
sinki. Study protocols were approved by the Ethics Com-
mittee of Erasmus MC.

Measures
DNA methylation
DNAm was measured in cord blood at birth. Bisulfite 
conversion was performed with the EZ-96 DNAm kit 
(shallow) (Zymo Research Corporation, Irvine, USA). 
DNAm levels were then measured with the Illumina 
Infinium HumanMethylation450 BeadChip array (Illu-
mina Inc., San Diego, USA). Preprocessing in ALSPAC 
was performed with the meffil package [23]. Quality 
control check included on a sample levels mismatched 
genotypes, mismatched sex, incorrect relatedness and 
on a CpG level low concordance with other time points, 

extreme dye bias, and poor probe detection. In Genera-
tion R, pre-processing was performed with the CPACOR 
workflow [24]. Quality control exclusion criteria included 
on a CpG level failed bisulfite conversion, hybridiza-
tion or extension, and on a sample level sex mismatches 
and call rate <  = 95%. Both cohorts were normalized 
using a combined dataset, using meffil functional nor-
malization with ten control probe principal components 
and slide included as a random effect, see Mulder et  al. 
[25] for further details. To lessen the influence of meth-
ylation outliers while retaining a consistent sample size, 
extreme values were winsorized. Per CpG site, DNAm 
levels exceeding three times the interquartile range 
above the third or below the first quartile (3*IQR crite-
rion) were replaced by the maximum or minimum value, 
respectively, of the sample below the exclusion criterion. 
Only autosomal probes were considered in this study for 
consistent interpretation of effects between sexes. This 
resulted in 470,870 and 473,864 CpG probes in ALSPAC 
and Generation R, respectively, which were used for the 
computation of the methylation similarity matrix.

Outcomes and covariates
Birth outcomes
In ALSPAC, birthweight was recorded by healthcare 
professionals at the time of birth and extracted from 
birth records [12]. Gestational age at delivery was also 
extracted from birth records. Obstetric practice and 
antenatal care at the time means that for most partici-
pants gestational age will have been estimated based on 
the last menstrual period, supplemented by ultrasound 
scans and paediatric/obstetric assessment of the new-
born at birth.

In GenR, midwife and hospital registries were used 
to obtain information on birth weight. Gestational age 
was based on ultrasound examinations for mothers who 
enrolled in early or mid pregnancy, but based on last 
menstrual period for late pregnancy [26].

Childhood outcomes
In ALSPAC, measurements of height and weight, with 
the participant in light clothing and without shoes, were 
obtained at clinic visits when the children were seven 
years of age to calculate BMI. Non-verbal IQ at age 
8 years was measured by the Wechsler Intelligence Scale 
for Children WISC-III UK [27]. ADHD symptomatol-
ogy was assessed via maternal ratings at age 7, with the 
Development and Well-Being Assessment interview 
(DAWBA) [28].

In Generation R, when children were 6.0 (SD = 0.15) 
years old, children’s height and weight were measured at 
the research center without shoes or heavy clothing and 
used for the calculation of BMI (kg/m2). Non-verbal IQ 

http://www.bristol.ac.uk/alspac/researchers/our-data/
http://www.bristol.ac.uk/alspac/researchers/our-data/
https://generationr.nl/researchers/
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was assessed at the same age using the Snijder-Oomen 
nonverbal intelligence test [29]. ADHD symptoms were 
rated by a primary caregiver (90% mothers) using the 
Conners’ Parent Rating Scale-Revised (CPRS-R) ques-
tionnaire at age 8.1 (SD = 0.15) [30].

Covariates
In ALSPAC, mothers were asked about their smoking 
during pregnancy, and these data were used to gener-
ate a binary variable of any smoking during pregnancy. 
Maternal education was collapsed into whether they had 
achieved a university degree or not. White cell propor-
tions were estimated with the Houseman method using 
a combination of four reference panels specific for cord 
blood [31]. In Generation R, maternal age was obtained 
at enrollment. Maternal smoking was defined as either 
“Never smoked”, “Quit smoking in early pregnancy”, 
“Continued smoking during pregnancy”. Maternal educa-
tion during pregnancy was categorized as “no education”, 
“primary education”, “secondary education first phase”, 
“secondary education second phase”, higher education 
first phase”, higher education second phase”. See Table 1 
for descriptive statistics of all variables.

Statistical analysis
We adapted the GREML approach to estimate R2

Meth-

ylation. The GREML procedure consists of two steps: (1) 
Compute a genetic relatedness matrix (i.e. how geneti-
cally similar two individuals are based on SNP data), (2) 
Regress the outcome similarity between participants on 
the genetic relatedness (i.e. to establish whether greater 
genetic similarity between individuals relates to greater 
phenotypic similarity).

We refer to a methylation similarity matrix (M) as 
opposed to a genetic relatedness matrix (G). However, 
both M and G can be calculated with the same algorithm. 
First the methylation in beta values were z-score stand-
ardized. The resulting matrix (X) of methylation z-scores 
(columns: CpG sites, rows: participants) was then mul-
tiplied with the transpose resulting in XX’. XX’ was then 
standardized by dividing the matrix with the mean of the 
diagonal, resulting in an average value of 1 for the diag-
onal of M. We used the R package BGData 2.1.0 [32] to 
compute the similarity matrix.

The next step is to regress the outcomes on M and 
covariates using a mixed effects model fitted with REML. 
Fixed effects covariates included several variables known 
to be associated with DNAm levels: sex, maternal age, 
maternal smoking, maternal education, cell type pro-
portions, gestational age, birth weight (unless a variable 
was the outcome). M and batch were defined as random 
effects.

Multiple imputation was used to avoid potential bias 
due to missing data and to make analyses more compa-
rable between outcomes by including the same set of par-
ticipants. We used the covariate and outcome variables to 
predict missing variables in 10 imputations with 30 itera-
tions using MICE [33] in R.

According to power analyses with genetic data, to 
accurately estimate the variance explained using GREML 
methods, large sample sizes are necessary. Especially 
with less heritable traits sample sizes above 5000 partici-
pants are recommended [34]. Currently, studies that have 
measured DNAm and child outcomes in more than 1000 
participants are rare. While the power requirements for 
DNAm data are unclear, there is nevertheless a high risk 
of sampling variance, with results randomly changing 
heavily depending on a particular sample composition. 
We attempted to reduce these risks by estimating R2

Meth-

ylation in two independent cohorts, as well as by perform-
ing cross-validation within cohorts.

Cross-validation (CV) was applied in the following 
way: (1) M was estimated across all participants and 
stayed constant independent of later training and test 
assignment. (2) Ninety percent of the sample was ran-
domly chosen as training sample and the GREML model 
was fitted in this training sample. (3) Based on the results 
of the training sample the best linear unbiased predic-
tions (BLUP) were extracted for the test sample. The 
BLUP estimates are continuous values, which reflect the 
extent to which participants are predicted to have above 
or below average outcome values, based on their similar-
ity in genome-wide methylation to other participants. (4) 
The outcome is predicted based on M and the covariates 
in the test set. (5) The predictions are correlated with the 
actual observed outcome in the test set and squared to 
obtain the variance explained by the model. (6) The vari-
ance explained by a covariate only model is subtracted 
to obtain the variance explained by DNAm beyond the 
other tested variables (ΔR2

Methylation). (7) Step 1–6 are 
repeated to have results for 100 random training–test-
ing splits (Monte-Carlo cross-validation). (8) The mean 
estimate of ΔR2

Methylation, with standard deviation across 
the cross-validation splits are extracted. (9) Steps 1–8 
are repeated for each imputed dataset (n = 10) and then 
pooled using Rubin’s rule. (10) Results of both cohorts 
are averaged, weighted by the inverse of the cross-valida-
tion variance.

We reran all analyses with an M matrix based on inde-
pendent methylation features only. To construct such 
a matrix, we used EnMCB 1.7.3 to identify MCBs [35]. 
We aggregated neighboring CpG sites with r =  > 0.3 
correlation and maximum 1000  bp gap into MCBs. We 
then averaged the methylation betas of all CpGs within 
one MCB resulting in a single value, representing the 



Page 12 of 13Neumann et al. Clinical Epigenetics           (2022) 14:53 

methylation status of a MCB. The MCB methylation 
levels were then combined with independent CpG sites 
(r < 0.3) and used to compute an M matrix. ALSPAC used 
60,722 MCBs and 167,440 independent CpGs to produce 
an independent M matrix and Generation R used 71,175 
MCBs alongside 206,062 independent CpGs sites.

These analyses were run with the qgg package in R, 
which has implemented GREML models with cross-
validation [36]. We wrote additional functions, which 
can be found in the omicsR2 package: https:// github. 
com/ aneum ann- scien ce/ omics R2. The provided func-
tions simplify the process of comparing the predictive 
performance of DNA methylation compared to a covar-
iates-only baseline model and add support for multiply 
imputed data.

Abbreviations
EWAS: Epigenome‑wide association studies; BMI: Body mass index; CV: 
Cross‑validation; DNAm: DNA methylation; M: Methylation similarity matrix; G: 
Genetic relatedness matrix.
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