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1. Introduction
Harvesting useful products from biomass and renewable feedstocks is a crucial component of the transition
from a petroleum-based to a sustainable chemical industry [1–3]. In this regard, furfural (Ff) is an important
precursor in the production of biofuels and many chemical intermediates [4,5]. Produced from the xylan
contained in lignocellulose via hydrolysis and dehydration [6,7], hydrogenation of Ff gives intermediate
chemicals with wide applications [8,9]. One such example is furfuryl alcohol (FA), which is produced
from selective hydrogenation of Ff, and has a broad spectrum of applications, including the manufacture
of resins, adhesives, fibres [10] and fuel derivatives, such as 1,5-pentanediols [11]. Moreover, it can
undergo further hydrogenation to give tetrahydro-FA (THFA), an environmentally friendly solvent used
in the automotive and agricultural industries [12,13]. Other intermediates produced from the
hydrogenation of Ff include 5-hydroxymethylfurfural, 2-methyl furan and 2-methyltetrahydrofuran (see
scheme 1) [1–3,14]. These intermediates are parent molecules for various useful chemicals such as
caprolactone, 2,5-dimethylfuran, 2,5-furandicarboxylic acid, etc [15–17].

The nature and distribution of these intermediates is dependent on their affinity for different metal
catalysts and preferential adsorption onto catalytic sites (e.g. step edges and kinks) [18,19]. A good
metal catalyst should be highly active under mild conditions, withstand multiple cycles before
deactivation, use economical materials and have a high selectivity for the desired product. The
industrial process of gas phase hydrogenation of Ff using Cu on asbestos was first reported in 1929,
and later, Du Pont de Nemours patented the use of copper chromite [20,21]. It is further reported that
the Quaker Oats Company then used Cu supported on Na2O · SiO2 to achieve yields of 99% of FA,
which set the precedent for many other catalytic systems based on Cu and other metals to be used in
this process, providing an alternative to the use of chromites [22].

A wide range of catalysts have now been studied for the hydrogenation of Ff, with Cu-, Ni-, Ru-, Pt-
and Pd-based systems being popular. Ni catalysts have been found to favour adsorption of Ff over FA,
with the turn over frequency (TOF) almost constant for different average sizes of Ni metal particles,
whereas in the conversion of FA to THFA, the smaller Ni particles gave higher TOF values [18].
Pushkarev et al. [23] reported the influence of the size of Pt nanoparticle catalysts on the production
of furan and FA, where an increase of Pt nanoparticle size to 7 nm increases selectivity towards
hydrogenation of Ff into FA from 1% to 66%. By contrast, the decrease of nanoparticle size was found
to favour decarbonylation of Ff to furan, with 1.5 nm producing the highest selectivity (96%).
Hydrogenation with SiO2-supported Pd-Ir bimetallic catalysts has been found to give increased TOF
values with further addition of Ir as compared with Pd/SiO2, probably owing to the promoting effect
of Ir on the adsorption at the carbonyl (C=O) site, whereas the Pd surface was found to strongly
interact with the furan ring [24]. At high temperatures, a flat orientation through the furan ring and
carbonyl functionality gives decarboxylation of Ff to produce furan and tetrahydrofuran [25].

Selectivity can be controlled by blocking specific sites on the catalyst surface to guide distribution, for
example by using thiolates or polymers [26,27]. The use of thiolate self-assembled monolayers was
found to strongly suppress Ff decarboxylation with increasing sulfur density [27]. Pang et al. [27]
demonstrated the use of thiolates as blocking agents, leaving particle edges/corners exposed. Rogers
et al. [26] demonstrated the use of poly(vinyl alcohol) (PVA) to direct selectivity. The nature of the
PVA–Pd interactions and the relative proportion of available surface sites direct the reaction towards
the hydrogenation of Ff. Jeong et al. [28] reported the use of Ni nanoparticle catalysts capped with
organic molecules, wherein steric hinderance of the Ni surface induced by the organic layer gave
selective hydrogenation of Ff to FA, with a yield of 95%. Wang et al. [29] recorded the use of zeolite
crystals to control selectivity in the hydrogenation of Ff. The catalyst used combined the high activity
of Pd nanoparticles with the selectivity of zeolite micropores to give a furan selectivity as high as
98.7%. Xue et al. [30] found that the optimal adsorption configuration of Ff to be the top-Ni-top-Ni
site on a Ni/Pd(111) catalyst.

Periodic density functional theory (DFT) calculations have been used to explore further the optimal
mechanism of Ff conversion. Ren et al. [31] reported the hydrodeoxygenation and decarbonylation
mechanisms of Ff to proceed on the Ni(111) surface via adsorption of both the carbonyl group and
the furanic ring. Despite numerous studies on the interaction of the Ff molecule on transition metal
catalysts, there are considerable uncertainties on the chemical bonding and charge transfer behaviour
between Ff and metal catalysts, which can be crucial in designing novel catalysts. Further to this, in
one of our recent studies, we have shown the dual site hydrogenation mechanism in which the
hydrogen dissociation takes place on the metal nanoparticles, and after spillover of the adsorbed
hydrogen on the support material, hydrogenation of the Ff molecule takes place to yield THFA [32].



Scheme 1. Chemical routes for furfural valorization.
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Therefore, it is important to clarify how the Ff molecule interacts with the pristine metal surfaces to
optimize the catalyst. In this study, we report experimental catalytic studies, which motivated the DFT
based theoretical studies with dispersion corrections to investigate the geometries, energetics and the
electronic properties of the Ff molecule adsorbed on the low index Ni, Pd and Pt catalyst surfaces.
2. Methodologies
2.1. Experimental

2.1.1. Catalyst preparation

Pd catalyst: solid Na2PdCl4 (0.051 mmol) (Sigma-Aldrich, purity greater than 99.9%) and 1 ml of a PVA
solution (1 wt%) were added to 100 ml of H2O (Pd/PVA 1/0.5 wt/wt %). After 3 min, a 0.1 M of NaBH4

solution (Pd/NaBH4 1/8 mol mol−1) was added to the solution under vigorous magnetic stirring. Within
a few minutes of their generation, the colloids (acidified at pH 2, by sulfuric acid) were immobilized by
adding the support (TiO2, Degussa P25) to the vigorously stirring solution. The amount of the support
was controlled, in order to obtain a final Pd loading of 1 wt% (on the basis of quantitative loading of the
metal on the support). The catalysts were filtered and washed several times and dried at 100°C for 2 h.

Pt catalyst: solid K2PtCl4 (0.051 mmol) (Sigma-Aldrich, purity greater than 99.9%) and 1 ml of a PVA
solution (1 wt%) were added to 100 ml of H2O (Pt/PVA 1/0.5 wt/wt %). After 3 min, a 0.1 M of NaBH4

solution (Pd/NaBH4 1/8 mol mol−1) was added to the solution under vigorous magnetic stirring. Within
a few minutes of their generation, the colloids (acidified at pH 2, by sulfuric acid) were immobilized by
adding the support (TiO2, Degussa P25) to the vigorously stirring solution. The amount of the support
was controlled in order to obtain a final Pt loading of 1 wt% (on the basis of quantitative loading of the
metal on the support). The catalysts were filtered and washed several times and dried at 100°C for 2 h.

Ni catalyst: Ni(NO3)2 · 6H2O (5 × 10−4M) and urea (urea/Ni 10:1 mol mol−1) were dissolved in 200 ml
of water under magnetic stirring in the presence of TiO2 (Degussa P25). The amount of the support was
controlled in order to obtain a final Ni loading of 1 wt% (on the basis of quantitative loading of the metal
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on the support). The solution was kept under stirring for 6 h at 80°C. The solid was separated from the
solution by filtration and washed several times. The powder was dried at 60°C for 12 h and then calcined
at 300°C for 3 h. Successively the catalyst was reduced under H2 at 300°C for 3 h.
 lsocietypublishing.org/journal/rsos
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2.1.2. Catalytic activity

As noted, Ni-, Pd- and Pt-based catalysts were prepared using TiO2 (P25, 50 m2 g−1) as support with a
loading of 1 wt%. The metal loading was confirmed by atomic absorption spectroscopy. Pd/TiO2 and
Pt/TiO2 were prepared employing an established sol-immobilization method using PVA as protective
agent and NaBH4 as reducer. Ni/TiO2 was prepared using a method involving the precipitation of
Ni(OH)2 in aqueous solution, with subsequent calcination at 300 h followed by a reduction step at
300°C. Transmission electron microscopy analysis showed that Pd/TiO2, Pt/TiO2 and Ni/TiO2

catalysts have particle sizes of 2.7, 3.6 and 5.3 nm, respectively [32,33].
Ff (purity 99%, Sigma-Aldrich) hydrogenation was performed at 323 K, using a stainless-steel reactor

(30 ml capacity), equipped with heater, mechanical stirrer, gas supply system and thermometer. Ff
solution (15 ml; 0.3 M in 2-propanol) was added into the reactor, and the desired amount of catalyst
(F/metal ratio = 500 wt/wt) was suspended in the solution. The pressure of the hydrogen was 5 bar.

The mixture was heated to the reaction temperature, 423 K, and mechanically stirred (1250 rpm). At
the end of the reaction, the autoclave was cooled down. Samples were removed periodically (0.2 ml) for a
HP 7820A gas chromatograph equipped with a capillary column HP-5 30 m × 0.32 mm, 0.25 µm Film, by
Agilent Technologies. Identification of products was performed using a Thermo Scientific Trace ISQ QD
Single Quadrupole GC-MS equipped with a capillary column HP-5 30 m × 0.32 mm, 0.25 µm Film, by
Agilent Technologies. Authentic samples were also analysed to determine separation times.
Quantitative analyses with external standard method (n-octanol) were used.

2.2. Computational details
The Vienna Ab-initio Simulation package (VASP) is used to perform all the DFT-based calculations
[34,35]. We used the projector augmented wave method, with the plane wave cut off of 550 eV for the
expansion of the wave functions, which provided bulk total energies converged to within 10−5 eV [36].
For the structural optimizations, we chose a convergence criterion of 0.01 eVA−1. For the exchange
correlation functional, we used the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation
[37]. A 3 × 3 × 1 Monkhurst-Pack grid was used. The ideal M(h,k,l ) surfaces (M =Ni, Pd, Pt and h,k,l
are 0 or 1) were modelled by seven atomic layers slab with a (4 × 4) periodicity. The slabs were
constructed using the optimized lattice constants of 3.50 Å (Exp.: 3.50 Å), 3.86 Å (Exp.: 3.89 Å) and
3.93 Å (Exp.: 3.91 Å) for Ni, Pd and Pt, respectively [38]. During the optimization, the top three
atomic layers were relaxed, and the bottom four layers were fixed to their respective bulk positions.
Along the surface normal direction, a vacuum of approximately 15 Å was inserted, which is sufficient
to eliminate spurious interactions with the neighbouring image slabs. The Ff molecule was adsorbed
on one side of the slab. The dipole moment due to the adsorbed species was accounted for by using
the methods of Neugebauer et al. [39,40]. In this study, we also employed Grimme’s dispersion
correction (DFT +D3), as dispersion forces might be significant for adsorption of organic molecules [41].

For the calculations of adsorption energies (Ead) of Ff on the M(h,k,l ) surface, we used the following
equation

Ead ¼ EFf=M � EM � EEf, ð2:1Þ
where EFf/M is the total energy of the Ff adsorbed on the metal surface, EM is the total energy of the relaxed
pristine surface and EFf is the total energy of the Ff molecule in the gas phase. To obtain EFf/M, the
adsorption of Ff was allowed on various sites on the M(h,k,l ) surface i.e. the on-top site, in between the
on-top sites and on the hollow site with respect to the O-atom of the furan ring of the Ff molecule. On
the M(110) surface, the Ff molecule was allowed to adsorb along the ridges and perpendicular to ridges.
The atomic charges were calculated using the Bader charge analysis as implemented by Henkelman and
coworkers [42]. The VESTA package was used for visualization of the optimized structures and to
measure the interatomic distances, bond angles and dihedral angles [43,44].

In addition to the periodic DFT calculations, we also use ORCA on the Ff molecule to obtain the
characteristics of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular
orbital (LUMO) [45]. All the calculations were performed using the PBE functional with Grimme’s D3
dispersion correction and def-2-TZVP basis set. Further to this, partial density of states (PDOS) onto the



Table 1. Furfural hydrogenation in 2 propanol.

catalysta activityb

selectivity (%)

furfuryl
alcohol

tetrahydrofurfuryl
alcohol

2-methyl
furan

tetra
hydro
methyl
furan

isopropyl
furfuryl
ether

isopropyl
tetrahydro
furfuryl ether

Ni/TiO2 261 14 81 1 — — 3

Pd/TiO2 981 69 24 — — 4 1

Pt/TiO2 1018 85 8 — — 6 —
aReaction conditions: furfural = 0.3 M; F/metal ratio = 500 wt/wt, 323 K, 5 bar H2.
bMol of furfural converted per hour per surface atoms of metal, calculated after 15 min of reaction.

Table 2. The adsorption energy of furfural on the low index Ni, Pd and Pt surfaces.

configuration

adsorption energy (eV)

Ni Pd Pt

M(111)

1 −1.83 −1.55 −1.85
2 −1.68 −1.50 −2.03
3 −1.69 −1.55 −2.03
4 −1.70 −1.58 −2.05
M(110)

1 −2.72 −2.19 −1.69
2 −2.57 −2.01 −2.62
3 −2.72 −2.19 −2.89
4 −2.34 −2.17 −2.01
5 −2.53 −2.15 −2.57
6 −2.53 −2.17 −2.63
M(100)

1 −2.67 −2.11 −2.19
2 −2.19 −1.84 −2.21
3 −2.67 −2.11 −2.21
4 −2.67 −2.11 −2.53
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molecular orbitals and density of states weighted by the crystal orbital overlap population (COOP) were
calculated using the STATE package [46–50]. In the implementation of COOP in the STATE package, the
wave functions of the adsorption system are expanded in terms of the molecular orbital of the Ff
molecule and the substrate wave functions. This approach is appropriate and effective for characterizing
the bonding mechanism of the molecule, especially when the molecular orbitals are localized. These
calculations were performed using the geometry optimized using the VASP code, and no further
optimizations were performed. A Γ-centred 4 × 4 k-point set was used.
3. Results and discussion
In this section, we will present our results on the catalytic activity of Ni, Pd and Pt, the trends of the
calculated adsorption energies of the Ff molecule on the M(h,k,l ) surfaces (M =Ni, Pd and Pt),
followed by discussions on the geometrical and local electronic properties of these systems.
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Table 4. The average charge on all the metal atoms of the exposed surface (Msrf ), metal atoms on the exposed surface directly
interacting with the Ff molecule (Mint), adsorbed Ff molecule (furfural), furan ring, furan ring skeleton (without the H-atoms)
and the aldehyde group of the Ff molecule (CHO group).

furfural on
configuration
(table 2)

average charge (e) on

Msrf Mint furfural
furan
ring

furan ring
skeleton

CHO
group

Ni(111) 1 0.023 0.093 −0.063 −0.047 −0.153 −0.107
Ni(110) 3 0.040 0.158 −0.065 −0.046 −0.152 −0.115
Ni(100) 3 0.048 0.151 −0.074 −0.223 −0.404 0.332

Pd(111) 4 −0.006 0.075 −0.015 −0.007 −0.095 −0.039
Pd(110) 3 −0.007 0.091 −0.016 −0.012 −0.096 −0.046
Pd(100) 3 0.005 0.066 −0.026 −0.014 −0.093 −0.058
Pt(111) 3 −0.034 0.035 0.006 0.011 −0.066 −0.008
Pt(110) 3 −0.026 0.112 −0.007 0.004 −0.069 −0.039
Pt(100) 3 −0.040 0.059 0.006 0.009 −0.077 −0.002
furfural molecule

in gas phase

— — 0.000 0.005 0.174 −0.012

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:211516
7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

03
 M

ay
 2

02
2 
3.1. Catalytic activity
The catalysts were evaluated for the hydrogenation of Ff under mild conditions (table 1); Ff 0.3 M, Ff/
metal ratio 500 mol mol−1, 5 bar H2, 50°C and 2-propanol as solvent. To separate the effect of the nature
of the metal and particle size effect, the activity was calculated based on the superficial atoms using a
procedure reported previously (table 1) [33].

The catalytic activity demonstrated that the 1 wt% Pt/TiO2 catalyst (1018 h
−1) and Pd/TiO2 (981 h−1)

exhibited superior activity as compared to the Ni/TiO2 (261 h−1) catalyst. Notably, not only was there a
difference in activity, but there was also a pronounced change in the selectivity profile. The Ni/TiO2

catalyst had a preferential selectivity towards THFA (81%), whereas Pd/TiO2 and Pt/TiO2 favoured
FA (69% and 85%, respectively). This observation is consistent with studies that have already proved
that Ni is able to hydrogenate both the carbonyl group and furanic ring [32]. To understand the
reasons behind the observed catalytic activities of the Pt/TiO2, Pd/TiO2 and Ni/TiO2 catalyst, studies
on the adsorption of the Ff molecule on these catalysts followed by the mechanism of Ff
hydrogenation are required. As a first step towards addressing the detailed reaction mechanism, we
focus on theoretical understanding of the nature of the interaction between the Ff molecule and the
low index Ni, Pd and Pt surfaces in the following sections.

3.2. Adsorption energies
The calculated adsorption energies of the Ff molecule on the low index Ni, Pd and Pt surfaces are
summarized in table 2. For uniformity, similar initial configurations of the Ff molecule on all these
surfaces were generated, and the adsorption energies are calculated on the fully relaxed Ff/M(h,k,l )
systems. Previously, we have shown that the parallel configuration of Ff on the catalyst surface is
more stable as compared to the perpendicular configuration [26]. Therefore, only the parallel
configurations at different positions on the M(h,k,l) surfaces are considered in this study. For clarity,
all the optimized structures of various configurations used for this study are presented in figures 1–3
and the coordinates are provided in the electronic supplementary materials.

On the M(111) surface, the adsorption energy of Ff is greatest (most negative) on the Pt(111) surface,
followed by the Ni(111) and the Pd(111) surface (table 2). We also see that the difference between the
highest and lowest adsorption energies is only 0.08 eV on the Pd(111) surface, while it is 0.15 and
0.20 eV for the Ni(111) and the Pt(111) surfaces, respectively, that is, the adsorption energies on
different adsorption sites are comparable for Pd (111), while the differences of the adsorption energies
on different sites are more significant for Ni(111) and the Pt(111). On the fully relaxed (110) surfaces,
the adsorption energy of the Ff molecule follows a similar trend to the (111) surfaces, i.e. adsorption is
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Figure 1. The fully optimized structures of the four configurations of the Ff molecule on the (a) Ni(111), (b) Pd(111) and (c) Pt(111)
surfaces. For clarity, the exposed surface including the adsorbed molecule is shown in ball and stick form, and the rest of the model
is represented in the CPK form.
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most exothermic on the Pt(110) surface, followed by Ni(110) and Pd(110). It is interesting to note that
unlike the (111) surfaces, adsorption energies for Pt(110) and Ni(110) are comparable. For the (100)
surfaces, however, the Ff molecule is adsorbed most strongly on the Ni surface, which is followed by
Pt and Pd. To clearly understand the probable reasons for the differences in the adsorption energies,
we explore the geometrical and the local electronic properties of the Ff/M(h,k,l ) systems.

3.3. Geometrical properties
In this subsection,we present a comparison of the geometries of the adsorbed Ffmoleculewith respect to the
gas phase Ffmolecule. For clarity,wewill only consider themost stable structures of the Ff/M(h,k,l ) systems.
In table 3, the interatomicdistances and thedihedral angles of the fully relaxedFfmolecules are summarized.
Upon adsorption, the Ff molecule is distorted: the interatomic distances increase and the planarity
(measured by the dihedral angles) of the molecules change significantly. However, there is no clear
correlation between the overall molecular distortion and the calculated adsorption energies. For example,
on the Ni(111) and Pd(111), both carbon atoms of the furan ring and the O-atom of the -CHO group
directly interact with the surfaces (see figure 1). However, on the Pt(111) surface, the Ff molecule interacts
via the C-atoms of the furan ring only, which consistent with previous studies [31,51]. Similarly, on the
M(110) and M(100), the Ff molecule adsorbs via both the C-atoms of the furan ring and the O-atom of the
-CHO group (see figure 2). On the (100) surfaces, the adsorption of Ff follows the same trend as on the
M(111) surfaces (see figure 3). The distances between the Ff molecule and the surface are also comparable
for all the systems. Based on these analyses, we conclude that the geometry of the Ff molecule may
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Figure 2. The fully relaxed structures of the six different configurations of the Ff molecule on the (a) Ni(110), (b) Pd(110) and (c)
Pt(110) surfaces. For clarity, the exposed surface including the adsorbed molecule is shown in ball and stick form, and the rest of the
model is represented in the CPK form.
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change significantly, and the mode of adsorption also varies with the metal catalysts. For example, on the
most stable Ff/Ni(111) system, all the C-atoms of the furan ring and the atoms of the -CHO group are
close to the Ni(111) surface (unlike the most stable Ff/Pd(111) and Ff/Pt(111) systems), which may
indicate the reason for preferential selectivity of Ni towards THFA as reported in the experimental section
above. However, to understand the underlying reasons for different stability of the Ff molecule on these
metal surfaces, a more detailed investigation on the electronic properties is required.

3.4. Bader charges
The calculated Bader charges are summarized in table 4. To understand fully the charge distribution on
the adsorbed Ff molecule, we begin with that in the gas phase. As shown in table 4, we not only consider
the total charge on the Ff molecule but also those on the furan ring, furan ring skeleton (without the
H-atoms) and the -CHO group, which is considered, as in most of the adsorbed configurations, the
C-atoms of the furan ring are close to the surface. From the charge analysis in the gas phase, we find
that the Ff molecule has both positive and negative regions i.e. the furan ring is slightly positive and
the -CHO group is slightly negative. Based on the charge redistribution in these regions, we aim to
understand the charge transfer phenomenon between the Ff molecule and the M(h,k,l ) surface.

3.4.1. Furfural on Ni surfaces

The investigation of the charges on the adsorbed Ff molecule on the Ni surfaces show that the overall
charge on the Ff molecule is in the range of −0.06 to −0.07 e. Similarly, the charge on the furan ring
and furan ring skeleton is also negative. Furthermore, when we analyse the charges of the surface
atom interacting directly with the Ff molecule, we find that it is slightly positive. Clearly, there is
charge transfer from the Ni surfaces to the Ff molecule (table 4). We note that in the Ff/Ni(100)
system, even though the overall charge on the Ff ring is comparable to the other two systems, the
charge on the furan ring, and the furan ring skeleton is more negative and the -CHO group is
positive, which is presumably related to the need to facilitate a stronger interaction between the Ff
molecule and the Ni(100) surface intra-molecular by a charge redistribution in the Ff molecule. From
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Figure 3. The fully optimized structures of the four configurations of the Ff molecule on the (a) Ni(100), (b) Pd(100) and (c) Pt(100)
surfaces. For clarity, the exposed surface including the adsorbed molecule is shown in ball and stick form, and the rest of the model
is represented in the CPK form.
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the charge analysis, it is clear that slightly positively charged Ni surfaces, and the slightly negatively
charged Ff molecule leads to favourable adsorption energies.
3.4.2. Furfural on Pd and Pt surfaces

In the Ff/Pd(h,k,l ) systems, the directly interacting Pd atoms are positively charged, and the Ff molecule
is negatively charged (table 4). Therefore, there is charge transfer from the Pd surface to the Ff molecule
and the Pd(h,k,l ).

On the Pt(h,k,l ) surfaces, we find an interesting distribution of the charges on the Pt surfaces i.e. the Pt
atoms bound to the Ff molecule are positively charged, and the average charge on the furan skeleton is
negative, clearly indicating that there is strong interaction between the Ff molecule and the Pt surfaces.
However, the average charge on the Pt surface is slightly negative which indicates net charge transfer
from the Ff molecule to the Pt surface (table 4). The negative charge on the furan ring skeleton and
overall, near neutrality of charge on the Ff molecule upon adsorption on the Pt surface may be owing to
charge compensation from the -CHO group. From the Bader charge analysis, we understand that on the
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Ni and Pd surfaces, there is charge transfer from the metal to the Ff molecule. On the other hand, on the Pt
surface, there may be charge transfer from the Ff molecule to the metal surface).

3.5. Charge density difference
In this section, we present the planar average charge density difference, which is defined by:

D�r(z) ¼ 1
A

ðð
dxdy Dr(r), ð3:1Þ

where A is the area of the surface unit cell under consideration and Dr(r) is the charge density difference
defined by:

Dr(r) ¼ rFf=M(r)� [rM(r)þ rFf(r)], ð3:2Þ

where, rFf=M(r) is the charge density of the total system, which includes the substrate and the adsorbate,
and rM(r) and rFf(r) are the charge densities of the pristine surface and the isolated molecule,
respectively. Figure 4 shows the fully relaxed Ff/Ni(111) system, along with the planar average charge
density. We can see the electron depletion on the surface and electron gain on the Ff molecule,
agreeing well with the Bader charge analysis in §3.4. We performed similar analysis on all the other
surfaces, and the results are compiled in figure 5, and for clarity, the exposed metal surface and the
average molecular surfaces are denoted by red and green lines, respectively. As expected, our analysis
shows electron depletion on all the exposed surfaces of Ni and Pd. The D�r(z) for the Pt surfaces also
display electron depletion even though the exposed surfaces have traces of negative charge on it
(table 4). This can be explained by the fact that the directly interacting Pt atoms just below the Ff
molecule in the Ff/Pt(h,k,l ) system are positively charged. In addition, it also shows that there is a
strong chemical bonding between the Ff molecule and M(h,k,l) surfaces, which agrees with the
calculated adsorption energies which are in the range of −1.50 to −2.89 eV. While our study on Bader
charges and planar average charge density difference provide important information on charge
transfer and chemical bonding, they do not clarify the reasons for the trends in the calculated
adsorption energy in the Ff/Ni(h,k,l ) systems. Therefore, in the next step, we investigate the PDOS to
understand the probable reasons for varying stability of the Ff molecule on the M(h,k,l ) surfaces.

3.6. Partial density of states and chemical bonding
In this section, we systematically explore the PDOS to understand the trends of the calculated stabilities of the
Ff molecules on the metal surfaces. Before presenting the detailed results, we note that in all the Ff/M(h,k,l )
systems, one of the carbon atoms next to the O-atom (COxygen) of the furan ring has the shortest interatomic
distance from the M(h,k,l ) surface, which is related to the fact that owing to the higher electronegativity of
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royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:211516
13

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

03
 M

ay
 2

02
2 
theO-atom, there is electrondepletionon this site favouringbond formationwith themetal atomsunderneath.
In some of the systems, the O-atom of the -CHO group (OCHO) is also close to themetal surface. Therefore, in
our PDOS analysis, we consider the PDOS of these atoms with the nearest metal atoms.

3.6.1. Stability of furfural on the M(111) surfaces

First, we consider the interaction of the COxygen atom with the nearest metal atom for the Ni(111), the
Pd(111) and the Pt(111) surfaces. As shown in figure 6a–c, we find that upon adsorption of the Ff
molecule, the C p-states overlap with the surface metal d-orbitals at the lower energy levels. For
clarity, this feature is shown using a dotted rectangular box in figure 6a–c. To understand further this
effect, we closely monitored this area (as shown in figure 6d–f ). In the Ff/Pt(111) system, the
overlapping region between the C p- and Pt d-orbitals is in the region between −9.00 and −5.91 eV. In
the case of the Ff/Ni(111) and the Ff/Pd(111) system, the major overlapping region is between −9.62
and −5.31 eV and −9.31 to −5.18 eV respectively. To capture a clear picture of the overlapping region,
we calculated the number of states of metal d-orbitals, which hybridize with the C p-orbital [52]. As
shown in table 5, the number of states for the corresponding Pt d-states is 0.23, which is larger than
those in the Ff/Ni(111) and the Ff/Pd(111) systems, suggesting that the chemical bonding between the
Ff molecule and the Pt(111) surface is stronger than those for the other systems, leading to the most
negative adsorption energy of the Ff/Pt(111) system and hence higher stability.

We further saw that the number of states for the d-orbitals which hybridize with the C p-orbitals for
Ff/Pd(111) systems is larger than the Ff/Ni(111), which, however, does not explain the trend of the
calculated adsorption energy. As we mentioned earlier, the Ff molecule in the Ni(111) and the Pd(111)



Table 5. The area under C p and O p orbitals (in number of states) in the major overlapping region.
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systems interact via the O of the -CHO group as well. Therefore, as shown in figure 7, the consideration of
the number of states for the metal d-orbitals which hybridize with the O p-orbitals is also required. As
summarized in table 5, the number of states for the metal d-orbitals which hybridize with the O p-
orbitals for the Ni(111) system is larger than that for the Pd(111) system. From this analysis, we
conclude that the atoms with higher electronegativity (in this case, O as compared to C) play a key
role in determining higher stability of the interacting systems.

3.6.2. Stability of furfural on the M(110) and the M(100) surfaces

In the case of the Ff/M(110) systems, both C- and O-atoms of the Ff molecule are within the bonding
regions of the metal surfaces. Therefore, as explained in the previous section, the number of states for
the metal d-orbitals which hybridize with the O p-orbitals is considered. The results show that the
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Figure 8. Density of states projected onto molecular orbitals (PDOS) and density of states weighted by crystal orbital overlap
population (COOP) for the Ff molecule adsorbed on Ni(110). (a) spin up, (b) spin down. Gaussian broadening with the width
of 0.01 eV was used. Origin of the energy is the Fermi level (EF).
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number of states for the Ff/Pt(110) system is larger than Ni(110), followed by Pd(110), indicating that the
Ff molecule is chemically bonded more strongly to the Pt(110) surface followed by Ni(110) and Pd(110),
in line with the calculated adsorption energies shown in table 2. Using the same approach for the Ff/
M(100) systems, we find that the Ff/Ni(100) system has the largest number of states for the
hybridizing d-orbitals (table 5), enabling the Ff molecule to bond strongly to the Ni(100) surface,
followed by Pt(100) and Pd(100) surfaces. Since there is no direct interaction between the O-atoms of
the Ff molecule with the Pt(100) surface, the number of d-orbitals hybridizing with the C p-orbitals is
considered. The PDOS analysis for the d-orbitals of the surface metal and p-orbitals of the interacting
C- and O-atoms allows a more detailed understanding of the trends in the calculated adsorption energy.

3.7. Crystal orbital overlap population
To gain further insight into the bonding mechanism of the adsorption of the Ff molecule on the metal
surfaces, we calculated PDOS onto molecular orbital and COOP using the STATE code. COOP
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characterizes the interaction between molecular orbital (MO) and the substrate states, and the positive
COOP indicates the bonding interaction between MO and substrate states, whereas the negative
COOP, an antibonding interaction. Figures 8–10, show PDOS and COOPs of the HOMO-1, HOMO,
LUMO and LUMO+1 for the Ff molecule adsorbed on metal (110) surface. Overall, we can see
significant hybridization of HOMO and HOMO-1 (figure 11) with the substrate states. At the same
time, antibonding parts of the HOMO and HOMO-1 derived states (negative COOP for HOMO and
HOMO-1) are partially occupied, indicating Pauli repulsion of HOMO and HOMO-1 with the
substrate states. We see that the HOMO hybridizes significantly, and the degree of hybridization
correlates with the adsorption strength. In the case of Pt(110), the HOMO derived states distribute
broadly (to approx. 7.0 eV below the Fermi level). Furthermore, LUMO and LUMO-1 (figure 10) are
partially occupied and hybridize with the substrate states as indicated by the corresponding COOPs,
which contributes to the stabilization of the Ff molecule on the surface and is a factor determining the
stability of the molecule.
4. Summary and conclusion
In this study, we reported that the Pt/TiO2 catalyst and Pd/TiO2 exhibited superior activity as compared
to the Ni/TiO2 catalyst. Furthermore, it was observed that there is a difference not only in their activity
but also in their selectivity profile. The Ni/TiO2 catalyst had a preferential selectivity towards THFA,
whereas Pd/TiO2 and Pt/TiO2 favoured FA. To understand the fundamental nature of the interaction
between the Ff molecule and the low index Ni, Pd and Pt surfaces, we performed DFT analyses and
found that the adsorption energy of the Ff molecule is the largest on the Pt(111) surface, followed by
those for the Ni(111) and the Pd(111) surface. On the (110) surfaces, the adsorption energy of the Ff
molecule follows a similar trend to the (111) surfaces. However, on the M(110) surface, the adsorption
energy of the Ff molecule is largest for the Ni surface, followed by those for the Pt and Pd surfaces.
To understand better the probable reasons for the calculated trends of the adsorption energies we
investigated the geometrical and the local electronic properties of the Ff/M(h,k,l ) surfaces. The
analyses of the geometrical properties show that depending on the metal surface the Ff molecule may
adopt a different configuration, which may lead to different preferential hydrogenation reactions. The
Bader charge analysis reveals electron transfer from metal to the Ff molecule on the Ni and Pd
surfaces, while a reverse process occurs on the Pt surface, which is indicated by the presence of a
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residual negative charge on its exposed surface. From the density of states analysis, we conclude that the
stability of the Ff molecule can be directly related to the metal d-states which hybridize with its nearest C
and O p-orbitals. Based on our DFT analyses, we further conclude that the interactions between atoms
with higher electronegativity and the metal d-states play a key role in determining the stabilities of the
Ff/M(h,k,l ) systems under investigation.
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