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ABSTRACT: 

Computer vision, understanded as the area of science that trains computer to interpret 

digital images through both artificial intelligence (AI) and classical algorithms, has 

significantly advanced the analysis and interpretation of optical coherence tomography 

(OCT) in retina research. Its development to assist uveitis diagnosis and prognosis is still 

undergoing, but important efforts have been made in the field. The automatising of image 

processing in uveitis could be fundamental to establish objective and standardised 

outcomes for future clinical trials . In addition, it could help to better understand the 

disease and its progression. The aim of this review is to summarise the recent advances 

of computer vision in imaging processing in uveitis, with a particular focus in optical 

coherence tomography images. 
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1. INTRODUCTION 

The concept of Artificial Intelligence (AI) has always fascinated researchers since the 

development of initial computers. The proper definition of AI has been part of many 

discussions.1 Its origin dates from 1936, when a mathematician, Alan Turing, published 

his well-known article about “computable numbers”. This article mentioned for the first 

time the concept of “algorithm”, which establishes the basis of theorical computer science 

and computers themselves.2, 3 Later on, in 1950, he wrote the article titled “Computing 

Machinery and Intelligence” that explains “The Turing Test” which supposedly could 

determine whether or not a machine is intelligent.4 

Some years later, in 1956, John McCarthy, recognized as the father of AI, defined it as 

“the science and engineering of making intelligent machines”.5 It is currently defined by 

the Oxford dictionary “as the theory and development of computer systems able to 

perform tasks normally requiring human intelligence, such as visual perception, speech 

recognition, decision-making, and translation between languages”.6 

One of the applications of AI that is increasingly being explored in medicine is machine 

learning, in particular deep learning. Deep learning techniques permit algorithms, which 

are organized in multiple processing layers, to “learn” data to provide a particular 

outcome.7 These techniques have revolutionized the field of image processing in 

ophthalmology.8 Its use is widespread in the retina research with new applications being 

developed particularly in diabetic retinopathy, age related macular degeneration and 

optical coherence tomography (OCT) segmentation.8-10 Although these techniques are 

still relegate to research domain, they potentially could aid to detect pathology without 

medical supervision or predict an outcome in a particular patient. 

The use of AI techniques is not always necessary to develop algorithms of signal 

processing and classical algorithms could also be used. In that sense, we could use a 
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broader term: “computer vision”, that can use either AI or classical algorithms to observe, 

analyse, process, and identify patterns from visual data with high speed and accuracy.11 

In other words, “computer vision” is the scientific area that deals with how computers 

can get high-level understanding from digital images and videos. The aim of this paper is 

to review the use of AI computer vision in the automatic image processing of uveitides. 

Those papers referring to the use of the software contained within any commercial device 

have not been included in this review. 

 

2. IMAGE PROCESSING IN ANTERIOR SEGMENT OCT. 

The current gold-standard method for quantifying anterior chamber (AC) inflammation 

involves the subjective counting of cells and flare grading through the clinical 

examination with a slit lamp.12 Different initiatives have tried to overcome that challenge 

trying to automatise the AC inflammation score by the OCT imaging processing. 

In that sense, several efforts have demonstrated the correlation of the SUN 

(Standardization of Uveitis Nomenclature) working group AC cells score with the 

automatic grading using the Image J Particle Analysis algorithm 

(http://imagej.net/Particle_Analysis) in single b-scans of swept-source (SS) OCT,13 or 

ImageIQ (Cleveland, OH, USA) combined with ImagePro Plus (Media Cybernetics, 

Rockville, MD, USA) platform in B-scans and 3D reconstructions in spectral-domain 

(SD) OCT,14 or MATLAB (Mathworks, Natick, MA, USA) in high speed (HS) OCT.15 

Apart from clinical cells grading, Invernizzi et al. correlated the aqueous signal intensity 

using the in-built software of the SS-OCT device, with the laser flare photometry 

measurements. It showed a positive correlation in active uveitis patients, but no 

correlation was found in the case of inactive uveitis patients.16 Lu et al. also added the 
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smoothness of the posterior corneal surface to Invernizzi et al.’s analysis, for which they 

used an algorithm implemented in MATLAB to calculate the tangent angle of each point 

of the posterior surface of the cornea, disclosing that the maximum posterior corneal 

surface smoothness was the best indicator for the diagnosis of uveitis involving the 

anterior segment according to ROC curve analysis.17 

Additionally, Kang et al. showed that there was a statistically significant difference in the 

eccentricity of the anterior chamber cells calculated by an automatic algorithm 

implemented in Python (Python Software Foundation) among the diagnosis of uveitis, 

post-surgical inflammation and vitreous haemorrhage, being higher in the latter.18 

Equally, Derda-Ozer et al. proposed that the iris pigment optical density measured at the 

pupillary margin of SD-OCT with ImageJ could be a marker of Fuchs’ heterochromic 

uveitis,19 while Zarei et al. suggested the iris “smoothness index”, which was defined as 

the ratio between the length of a straight line to the actual length of the boundaries also 

using Image J in SS-OCT, as a diagnostic feature of iris atrophy in Fuchs’ heterochromic 

uveitis.20 

 

3. IMAGE PROCESING IN RETINA AND VITREOUS OCT 

3.1 Quantification of vitreous inflammation 

Similarly, to the anterior chamber inflammation, the current gold-standard for scoring 

vitreous inflammation compromise the clinical examination with an indirect 

ophthalmoscope to compare vitreous haze against a set of standards photographs, being 

the scale proposed by the National Eye Institute in 1985, the one adopted by the SUN 

working group.21 A big effort has been done to try to validate more objective 

measurements of vitreous inflammation. An example of this effort is the vitreous haze 
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scale proposed by the University of Miami, that included 9 steps, 3 more than the one 

proposed by the National Eye Institute.22, 23 

Besides, all these “clinical” methods are also affected by the transparency of the lens and 

anterior segment of the eye, therefore they are not very reliable in those circumstances, 

and equally are not able to detect small changes in the vitreous inflammation. For 

overcoming these challenges, several authors have proposed to measure the vitreous 

intensity using macular OCT scans. 

To correct for lens or anterior segment opacities it was proposed to calculate the relative 

intensity of the vitreous cavity with the intensity of the retinal pigment epithelium 

(RPE).24 This study disclosed that the relative vitreous intensity was higher in uveitis eyes 

with clinical vitreous haze and also this parameter was positively correlated with visual 

acuity, AC cells clinical score, and AC flare.24 Later on, the same group proposed to use 

ratio between vitreous intensity and the mean values below the vitreous (segmenting the 

inner limiting membrane to use it like the boundary between those two regions) to avoid 

artefacts in the ratio caused by hyper-reflective areas in the retina that will cause a 

shadowing in the RPE, but will not affect vitreous reflectivity.25 This algorithm was 

initially validated by Montesano et al.26 Although this study failed to find a difference in 

vitreous haze between patients with multiple sclerosis and healthy controls, it should be 

noted that this study did not include patients with active vitreous inflammation at the time 

of OCT assessment.25 Initially the OCT image processing was semiautomated, but later 

on the same group presented a fully automated software named VITAN (from VITreous 

Analysis software).27 This software in uveitis patients showed a moderate correlation with 

clinical vitreous haze scores.27 Barbosa et al. replicated this approach using ImageJ and 

similarly obtained a moderate correlation with the clinical vitreous haze score.28 , 

Zarranz-Ventura et al. showed that the correlation of the OCT measurement with the 
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clinical score remained significant when adjusting by factors like AC cells, AC flare, and 

phakic or vitrectomy status.29 Terheyden et al. suggested that 3 OCT b-scans could be 

sufficient to obtain a reliable vitreous intensity automatic measurement, without needing 

to assess more b-scans.30 However, all these techniques could have important limitations 

when used in real world settings as other conditions such as vitreous haemorrhages could 

be mistaken by inflammation. 

 

3.2 Quantification of choroidal inflammation 

The choroidal thickness has been proposed as an important inflammatory biomarker in 

some forms of uveitis.31-34 However, the majority of articles referring to choroidal 

thickness in uveitis use manual segmentation to calculate the thickness.35-37 Apart from 

choroidal thickness, an effort has been made to measure the flow attenuation and the 

vascularity at the level of the choroid. Agrawal et al. proposed the Choroidal Vascularity 

index (CVI) as an important biomarker in uveitis, described as the ratio of vascular area 

to the total choroidal area in enhanced deep imaging (EDI)-OCT, for that they manually 

segmented the choroid with a custom software and after processed it with ImageJ.38 The 

CVI has been used as a marker of uveitis activity in different inflammatory choroidal 

diseases.39-41 

 

4. IMAGE PROCESSING IN OCT-ANGIOGRAPHY 

OCT-angiography (OCTA) has been helpful in establishing the pathophysiology of some 

uveitis entities, such as acute posterior multiple placoid pigment epitheliopathy 

(APMPPE) or multiple evanescent white dots syndrome (MEWDS) among others.42-51 

Although the current software of the OCTA devices allows the quantification of some 
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parameters, these tools are designed to characterise medical retina pathology and there is 

still an unmet need in image processing for uveitis entities. 

Wintergerst et al. using ImageJ (and Fiji its expanded version) calculated the vessel 

density, the skeleton density, vessel diameter and fractal dimension, while the 

choriocapillaris slabs were analysed for mean signal intensity and kurtosis of signal 

intensity distribution. This study showed that all the vascular retinal parameter were lower 

in patients with intermediate uveitis, regardless the presence of macular oedema, while 

the choriocapillaris showed a greater heterogeneity of perfusion in intermediate uveitis 

patients.52 Equally, Kim et al. showed that the vessel density, the skeleton density and 

fractal dimension of the parafoveal capillaries were lower in the whole uveitic population 

in comparison with normal subjects.53 

Regarding choroidal inflammation, Pakzad-Vaezi et al. designed a semiautomated 

method in MATLAB to segment and measure choriocapillaris flow deficit in serpiginous 

choroiditis.54 In addition, McKay et al. proposed an algorithm to automatically identify 

and measure choroidal inflammatory lesions, with an excellent agreement with 

experienced human graders.55 Chu et al. used a similar algorithm to automatically detect 

the number of choriocapillaris flow deficit/attenuation, and mean size and density of those 

lesions and showed that patients with posterior involvement uveitis have significant larger 

areas of flow deficit/attenuation that other uveitis patients without posterior involvement 

or healthy subjects.56 

 

5. IMAGE PROCESSING IN NON-OCT IMAGES 

Apart from OCT, other imaging modalities play an important role in uveitis and therefore 

AI and computer vision has also been applied to process these imaging modalities. 
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Several authors have proposed algorithms to quantify fluorescein angiography in uveitic 

patients. However, the majority of authors manually segmented the leakage and ischemic 

areas.57, 58 In that sense, Venkat et al. proposed an algorithm previously used in diabetic 

retinopathy to automatically quantify vascular leakage in ultra-wide-field fluorescein 

angiography in non-infectious posterior uveitis.59  

Also, Passaglia et al. proposed the image processing of colour fundus photos to 

automatically calculate the vitreous haze and compare it with the clinical grading of those 

pictures.60 Similarly, Parra et al. developed an AI system to screen for ocular 

toxoplasmosis in fundus pictures.61 

 

6. ARTIFICIAL INTELLIGENCE IN TABULAR DATA SETS 

AI has also been used in uveitis to process clinical data not directly obtained from images. 

One of the examples is the program named Uvemaster. Uvemaster is a mobile phone 

application that uses clinical data to obtain the most probable diagnosis.62 

Recently, the SUN working group used AI to define the criteria of 25 of the most common 

clinical uveitis diagnoses.63 The first step was to collect cases of each uveitic entity, the 

final database included a total of 5766 cases, with about 100-200 cases per entity.64 Those 

cases that obtained a 75% or greater consensus among the expert group to belong to a 

specific entity were selected for training the machine learning tool. The research team 

combined a training set of multiple approaches on a subset of the cases with a validation 

set of the performance of the criteria determined on a second subset of the cases. Overall, 

the AI system categorized over 90% within uveitic class.65, 66 The final criteria of the 25 

uveitic entity were later published. These 25 entities were: spondyloarthritis/HLA-B27-

associated anterior uveitis,67 juvenile idiopathic arthritis-associated chronic anterior 
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uveitis,68 Fuchs uveitis syndrome,69 varicella zoster virus anterior uveitis,70 herpes 

simplex anterior uveitis,71 cytomegalovirus anterior uveitis,72 pars planitis,73 multiple 

sclerosis-associated intermediate uveitis,74 intermediate uveitis non-pars planitis type,75 

Behçet disease uveitis,76 sarcoidosis-associated uveitis,77 syphilitic uveitis,78 tubercular 

uveitis,79 serpiginous choroiditis,80 birdshot choriorretinitis,81 multifocal choroiditis with 

panuveitis,82 punctate inner choroiditis,83 sympathetic oftalmia,84 Vogt-Koyanagi-Harada 

disease,85 MEWDS,86 APMPPE,87 acute retinal necrosis syndrome,88 toxoplasmic 

retinitis,89 cytomegalovirus retinitis,90 and tubulointerstitial nephritis with uveitis 

syndrome.91 

 

7. IMAGE PROCESSING IN ANIMAL MODELS 

The use of animal models in uveitis has been fundamental to understand pathophysiology 

and evaluate new treatment strategies.92 AI and computer vision has also been used in the 

study of uveitis animal models. Researches also used algorithms to grade AC 

inflammation with OCT in the case of rat model.93, 94 Edmond et al. compared the OCT 

grading in a rabbit model with the clinical SUN score and aqueous cell density using a 

haemocytometer, showing that the correlation of the OCT score was better with the 

aqueous cell density than the clinical SUN score.95 We need to take into account the 

anatomical differences between animal models and humans in order to extrapolate this 

techniques to human. 

 

8. MEDICAL RETINA SEGMENTATION TOOLS AND UVEITIS APPLICATIONS 

Some of the algorithms developed for OCT analysis in medical retina research could have 

a potential utility in uveitis. For example, algorithms developed to detect macular 
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ischaemia in OCTA for diabetic retinopathy could be used for the assessment of macular 

ischaemia in retinal vasculitis.96 Equally algorithms to conduct automated detection, 

segmentation, and quantification of macular fluid across exudative macular diseases (age-

related macular degeneration, diabetic macular oedema, and/or retinal vein occlusions) 

could be equally applied to uveitic macular oedema.97-99 , choroidal segmentation has also 

been refined through AI in medical retina research as well, and as discussed above its use 

in uveitis could be fundamental in assessing activity of some uveitides.100, 101 

Nevertheless, uveitides have some particularities, like the presence of intraocular 

inflammation that could obscure retinal structures or reversibility (both functionally and 

structurally) of some of the lesions, that makes the translation of medical retina 

segmentation tools to uveitis challenging. 

 

9. COMPUTER VISION  IN THE REAL WORLD 

All these tools are mainly applied in the research setting. However, their influence on 

treatment and diagnosis needs to be evaluated as well as their impact on the optimisation 

of the clinical workflow. In fact, in the real world dataset algorithms for diabetic 

retinopathy have shown to have very good negative predictive values, but the sensibility 

can vary significantly among algorithms, reaching values close to 50% of sensitivity for 

some algorithms.102 Nowadays there are some initiatives to test AI tools in the routine 

clinical care, as the RAZORBILL study in neovascular age related macular 

degeneration.103 Additionally, an attempt to standardise the reporting for clinical trials of 

artificial intelligence interventions has been published: the SPIRIT AI and CONSORT-

AI guidelines.104 

 

Deleted: Furthermore

Deleted: s

Deleted: IN UVEITIS

Deleted: s

Deleted: Furthermore

Deleted:  



   
 

10. CONCLUSION  

Modern OCT devices incorporate their own image processing tools, and standardization 

of output metrics, such as central macular thickness. However, it is important to aggregate 

larger datasets and allow for longitudinal analysis. The use of image processing by 

computer vision will be fundamental in the development of objective and quantifiable 

scores of inflammation in uveitis, that could serve as more sensitive markers of disease 

activity than current SUN score and set more reliable outcomes for clinical trials in 

uveitides. However larger datasets and real-world experience of this techniques are 

warranted before its incorporation to the routine clinical care. 
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