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Abstract 
The nature of English diphthongs has been much disputed. By 
now, the most influential account argues that diphthongs are 
phoneme entities rather than vowel combinations. However, 
mixed results have been reported regarding whether the rate of 
formant transition is the most reliable attribute in the perception 
and production of diphthongs. Here, we used computational 
modelling to explore the underlying forms of diphthongs. We 
tested the assumption that diphthongs have dynamic 
articulatory targets by training an articulatory synthesiser with 
a three-dimensional (3D) vocal tract model to learn English 
words. An automatic phoneme recogniser was constructed to 
guide the learning of the diphthongs. Listening experiments by 
native listeners indicated that the model succeeded in learning 
highly intelligible diphthongs, providing support for the 
dynamic target assumption. The modelling approach paves a 
new way for validating hypotheses of speech perception and 
production. 
Index Terms: diphthongs, computational modelling, 
articulatory synthesis, American English 

1. Introduction 
Diphthongs, a special class of vowels, are characterised by 
transitional formant movements along a path between spectral 
spaces belonging to two different vowels [1], [2]. Early studies 
have treated diphthongs as combinations of two vowels, or 
sometimes vowel-semivowel sequences [3]. However, 
empirical evidence from a comprehensive work by Gay [4] 
suggests that English diphthongs are more likely to be distinct 
phonetic units, based on the observation that listeners were 
more sensitive to the second formant (F2) movement of the 
synthetic diphthongs than the onset and offset formant. These 
results are consistent with more recent findings that the most 
salient perceptual cue of synthetic diphthongs in noise or 
reverberation is the intensity of F2 transitions [5]. On the other 
hand, some studies suggest that the crucial cue in the 
identification of manipulated diphthongs is the endpoint rather 
than the transitional trajectory [6]. Another line of studies 
sought to use a classifier to investigate reliable perceptual cues 
of diphthongs in a speech corpus, and found that rather than F1-
F2 onsets and slopes, classification accuracy was the highest 
when both F1-F2 onsets and offsets were included [7]. A similar 
approach was adopted in [8], which reported that incorporating 
F1–F3 onset, offset and transition rates led to the best 
classification results. 

Not only does the debate about the auditorily relevant 
formant cues of diphthongs continue, contradictory 
observations have been made regarding the production of 
diphthongs. Gay [9] investigated the acoustic properties of five 
American English diphthongs spoken in three different speech 
rates from slow to fast. The beginning and terminating vowel 
formants as well as the rate of F2 movement remained the same 
across different speaking rates. Further, the final portion of the 
vowel could be eliminated in fast speech. The unfluctuating 
formant slopes also accords with more recent acoustic evidence 
from careful and conversational speech  [10], as well as loud 
speech [11]. As far as articulation is concerned, the tongue body 
exhibits invariant velocity during the production of diphthongs 
[12]. Recent X-ray data also show that the tongue flesh points 
undergo minimal changes in different speaking rates [10]. More 
importantly, the tongue movements and formant transitions of 
diphthongs are highly correlated, despite some exceptions  [13].  

By contrast, some researchers found that spectral changes 
of diphthongs were lowered in clear speech with prosodic 
prominence [14]. Unlike previous studies that mainly focus on 
F2, the measurement of spectral transition is based on the slopes 
of the first three formants (F1, F2 and F3). They first fitted 
linear regression lines to the formant slopes and the changes 
were measured by the root mean-square error of the fitted slopes 
in different linguistic environments. The inconsistency is 
probably due to the V-shaped F3 contours of diphthongs [15]. 
If the gliding movement rather than the onset and offset is the 
most reliable feature of diphthongs, then one may conclude that 
diphthongs are distinct phonemes. However, to date there has 
been little agreement in either perception or production studies.  

Here, we used computational modelling to test the 
assumption that diphthongs have dynamic articulatory targets. 
We trained an articulatory synthesiser with a 3D vocal tract 
model to learn real words containing American English 
diphthongs, following the simulation approach in [16]–[18]. 
The learning is guided by a phoneme recogniser, comprising a 
long short-term memory (LSTM) based recurrent neural 
network to encode a speaker-normalised perceptual space for 
classifying consonant-to-vowel (CV) sequences. The 
performance of the articulatory targets are evaluated for the 
intelligibility of the learned speech in a listening experiment 
and in terms of the plausibility of the learned articulatory 
kinematics. 



 
 

2. Method 

2.1. Speech material 

Five diphthongs, /aɪ, eɪ, əʊ, aʊ, ɔɪ/, were embedded in real 
English words with bilabial, alveolar and velar onset 
consonants, as listed in Table 1. The use of these minimal pairs 
is to ensure that perception experiments can be carried out 
naturally by native speakers. Because the two target words 
‘bow’ are homographs, we added hints to distinguish the two 
words, as indicated in brackets. The same hints were also given 
to the participants during the listening experiment. 

Table 1: Vocal tract parameters in the model. 

Diphthongs /bV/ /dV/ /gV/ 
aɪ buy  die guy 
eɪ bay day gay 
əʊ bow (and arrows) dough go 
aʊ (to) bow   
ɔɪ boy   

 

2.2. Learning process 

We trained a vocal tract model to learn the speech material by 
an analysis-by-synthesis paradigm as illustrated in Fig. 1. The 
learning model consists of a production and a perception 
system. The model begins with exploration of a set of 
articulatory targets within the parameter range (Fig. 1A). The 
kinematic trajectories that approach the articulatory targets are 
based on the timing relations specified by a coarticulation 
model, which simulates context-sensitive realisation of 
consonants and vowels (Fig. 1B). The time-varying vocal tract 
shapes are then converted to cross-sectional area functions for 
acoustic simulation (Fig. 1C). The synthetic speech is evaluated 
by a LSTM recurrent neural network that encodes a contrastive 
phoneme space (Fig. 1D). The model explores the articulatory 
parameters iteratively, guided by the auditory feedback from 
the perception system. 

 
Figure 1: Overview of the learning process. 

2.3. Vocal tract model 

The articulatory synthesiser used in the study is VocalTractLab 
2.3 (www.vocaltractlab.de), with a geometrical 3D vocal tract 
model (Fig. 1A). The vocal tract model was adapted from MRI 
data of a German male speaker. The synthesiser generates one-
dimensional aerodynamic-acoustic simulations based on cross-
sectional area functions. The current simulation involved 
sixteen free vocal tract parameters (Table 2). The vocal folds 
were set to be fully adducted with moderate tension for the 
diphthong targets, while the glottis parameters of the consonant 
targets including the distance between vocal cords, chink area 
and relative amplitude were free parameters. A falling 
intonation was added to the synthetic words during the 
optimisation. 

Table 2: Free vocal tract parameters in the 
simulation. 

Parameter Description 
HX, HY Horiz. and vert. hyoid positions  
JX, JA Horiz. jaw position and jaw angle 
LP, LD Lip protrusion and vert. lip distance 
TTX, TTY Horiz. and vert. tongue tip positions 
TBX, TBY Horiz. and vert. tongue blade positions 
TCX, TCY Horiz. and vert. tongue body centre positions 
VS Velum shape 
TS1 – TS3 Tongue side elevation from the anterior to the 

posterior part of the tongue 
 

2.4. Articulatory dynamics 

The temporal and spatial movements of the articulators were 
simulated by a coarticulation model, synchronised dimension-
specific sequential target approximation model [16], [19], [20]. 
In this framework, consonant and vowel articulations are fully 
synchronised at syllable onset, and despite the consonant-to-
vowel (CV) overlap, at the level of individual articulator 
dimensions, the execution of the articulatory target is 
sequential. Quantitatively, each articulatory target is 
represented by height (i.e., positions of the articulators), slope 
and strength. Unlike monophthongs simulated in [16] with no 
target slope, the slopes of diphthong targets are free parameters. 
The coarticulation model generates dynamic trajectories of 
vocal tract parameters (Fig. 1B) and then the time-series 
articulatory trajectories will be passed to the articulatory 
synthesiser for acoustic simulation (Fig 1C). 

2.5. Automatic phoneme recogniser 

Previously, we have attempted to use distance metrics with 
conventional acoustic features such as Mel-frequency cepstral 
coefficients (MFCCs) [21] to evaluate the synthesised audio 
and use this to train the vocal tract model but the results were 
not satisfactory due to difficulties with speaker 
normalisation [22]. Consequently, we trained a neural network-
based phoneme recognition system that learns a speaker-
normalised representation (Fig. 1D). We extracted CV 
sequences with 23 consonants, 11 vowels and 5 diphthongs 
from the LibriSpeech corpus [23]. To assure that the diphthongs 
were fully realised, we extracted only CV segments that 
preceded silences. This resulted with a training set of some 44k 
segments with a total duration of 4.7h. We applied pre-
emphasis (coefficient = 0.97)	and calculated the log Mel 



 
 

spectrogram (25 ms Hamming window, 5ms overlap) with 26 
Mel filters (with a maximum frequency of 10 kHz).	The log Mel 
spectrograms were pre-padded to a length of 140 frames 
(spanning 700 ms). An LSTM recurrent neural network was 
trained to learn a mapping from the Log Mel spectrograms to a 
39-dimensional vector one-hot encoding the CV categories 
(Fig. 1D). The recogniser had an average of 59% and 95% 
accuracy in identifying the target consonants and diphthongs 
respectively for the training set within the CV combinations 
used in our analysis.  
 

2.6. Optimisation 

We use simulated annealing [22] to optimise the vocal tract 
and glottis parameters. It is a stochastic algorithm that seeks an 
optimal solution through a coarse-to-fine criterion. This 
algorithm can heuristically optimise models with many degrees 
of freedom, such as the speech production system. The learning 
process started with a neutral position (schwa) followed by 
adjustments of the vocal tract parameters and gradually 
converged to a solution. We initiated 20 processes in parallel 
for each target word, each with 2k iterations. Finally, we 
manually selected 3 items for each target word to be evaluated 
in a listening experiment. 

2.7. Listening experiment 

15 American English native speakers (female: 12; mean age: 
35) were invited and screened via Prolific (prolific.co). The 
learned speech was randomised and presented to the 
participants via Gorilla, an online experiment tool (gorilla.sc). 
Before the experiment, the participants filled a brief 
questionnaire for demographic and language background 
information. To verify their accents, participants were asked to 
read the first two sentences of the story “The North Wind and 
the Sun”, a well-established text recommended by the IPA for 
eliciting English phonetic contrast. In the experiment, 
participants were instructed to listen to the audio carefully and 
choose the word that they heard from the word list. They were 
allowed to listen to the sounds up to five times. Listeners were 
asked to undertake the tasks on a computer in a quiet 
environment without noise or other distractions. Before the 
identification task, a headphone screening was conducted [23] 
and five practice trials were presented. The experiment lasted 
around 12 minutes. 

3. Results 
Our model learned highly intelligible words containing 
diphthongs. A demonstration video and learned synthetic 
samples can be found in 
https://gitlab.com/Anqi_Xu/dynamic_diphthongs. We 
calculated the phoneme accuracy based on the response by the 
native listeners. The phoneme accuracy of the learned 
consonants and diphthongs across target words is shown in Fig. 
2. Error bars show standard errors. The average accuracy was 
81.4% and 80.8%, for the consonants and diphthongs, 
respectively. Bilabial stops had the highest accuracy, followed 
by alveolar stops and velar stops. With regard to the diphthongs, 
the ones in ‘day’ and ‘gay’ were perfectly identified and ‘bay’ 
was also highly intelligible. /aɪ/ had fairly high accuracy in 
‘buy’, but the intelligibility was lowered in ‘die’ and ‘guy’. The 
mean identification accuracy of the diphthongs in all the target 

words is summarised in Table 3. The learning of all the 
diphthongs was fairly successful except /ɔɪ/. 

 
Figure 2: Phoneme accuracy of learned speech in the 

listening experiment. 

Table 3: Mean identification accuracy of diphthongs 

/aɪ/ /eɪ/ /əʊ/ /aʊ/ /ɔɪ/ 
70.4% 94.1% 83.0% 80.0%  66.7% 

 
How listeners classify the synthetic words is shown in Fig. 

3. Overall, most of the words were correctly classified. Bilabial 
stops and alveolar stops were correctly identified most of the 
time, whereas there was more confusion on the velar stops. For 
example, ‘gay’ was identified as ‘bay’ and ‘day’ in some cases. 
With respect to the diphthongs, /aɪ/ and /eɪ/ were often 
confusing to the listeners. ‘bay’ was sometimes identified as 
‘buy’, and ‘die’ as ‘day’. There were a few cases where ‘bow’ 
(/bəʊ/) was heard as ‘boy’.  

 
Figure 3: Confusion matrix of the target and identified 
words in the listening experiment. 



 
 

Fig. 4 shows the dynamic changes of the spectrograms and 
the learned vocal tract shapes for bilabial-vowel sequences. The 
first graph in each row shows the vocal tract shape of the 
bilabial stops at the moment of maximal constriction. The 
second and the third graphs show the starting and the ending 
shapes of the diphthongs. At the syllable onset, although the lips 
are closed before the release for all the words, the tongue shapes 
are ready for the dynamic vowel. Take /aɪ/ in synthetic ‘buy’ 
for example, the initial tongue position is relatively low and 
later the tongue moves towards a higher position. For /eɪ/, the 
terminating tongue position is similar to /aɪ/ and /ɔɪ/, while the 
initial tongue shape seems to be appropriate for a mid vowel. 
Again, /əʊ/ and /aʊ/ have nearly identical terminating tongue 
shape, but the initial tongue position is rather different. /aʊ/ 
starts with a more open vowel shape than /əʊ/. There are also 
some similarities in the initial tongue positions of /aɪ/ and /aʊ/. 
Finally, in the case of /ɔɪ/ in ‘boy’, the tongue shape is retracted 
in the beginning and ends at a higher and more front position.  

 
 Figure 4: Midsagittal sections of the learned vocal 
tract shapes and the corresponding spectrograms. 

4. Discussion 

We have adopted a new approach to probe the nature of 
diphthongs via computational simulation. We tested the 
hypothesis that diphthongs are dynamic articulatory targets by 
training a vocal tract model to learn English diphthongs 
embedded in real words with the assistance of a phoneme 

recogniser. The model learned highly intelligible English 
words with a mean phoneme accuracy of 81.1% in a multiple 
choice listening experiment. The results show that the learned 
dynamic diphthong targets can generate highly intelligible 
speech. It offers new evidence that diphthongs are likely to be 
independent phonetic entities with underlying dynamic targets. 

The theoretical account of diphthongs as unit phonemes was 
originally proposed on the basis that formant transition stayed 
constant in varying speech rates [9], but counterevidence 
emerged subsequently [14]. We have used a new methodology 
to address the controversy by emulating the dynamic 
movement of diphthongs. The learned articulatory targets of 
diphthongs exhibited beginning and ending vocal tract shapes 
that resembled two different vowels (Fig. 4). /aʊ/ and /aɪ/ both 
start with a low and retracted tongue shape; /aɪ/, /eɪ/ and /ɔɪ/ all 
end with a high and fronted tongue shape; and the ending 
tongue position of /əʊ/ is similar to that of /aʊ/. The learned 
vocal tract shapes match well with the tongue positions 
observed in previous MRI studies [24]. These findings show 
that diphthongs may have underlying dynamic targets, 
supporting the proposal of Gay [9].  

Another innovation of this study is to use a phoneme recogniser 
to simulate perceptual guidance, which encodes sound 
contrasts in a speaker-normalised auditory space. The 
discrepancies in previous perception research could be 
attributed to cross-speaker differences in the acoustic 
realisation of diphthongs. Those studies have identified various 
auditory signatures of diphthongs, such as F2 transition rates 
[4], [5], diphthong endpoints [6] , F1-F2 onset and offset [7] 
and all of the above [8]. It is worth noting that some studies use 
synthetic or manipulated speech [4]–[6], while others are based 
on the classification results of speech corpus [7], [8]. The 
classification tasks are dealing with natural speech so the cross-
speaker variations may have played a role. The formant onset 
and offset of diphthongs can be influenced by the anatomical 
differences between individuals to a great extent [27] and thus 
they may provide anchoring points for speaker information in 
the classification tasks.  In fact, our pilot study using distance 
metrics of acoustic features that are not speaker-normalised did 
not lead to successful learning of diphthongs.  

One source of weakness in this study is that the speech data for 
training the phoneme recogniser is not balanced across all the 
CV sequences. Thus, the uneven learning performance of the 
diphthongs could be due to the varied identification accuracy of 
the recogniser. Moreover, the scope of this study was limited to 
English diphthongs. Given that there are noticeable cross-
linguistic differences in both the perception and production of 
diphthongs [28], [29], further research should be undertaken to 
explore how diphthongs in other languages should be modelled. 
Notwithstanding these limitations, the study directly 
contributes insights into the dynamic nature of English 
diphthongs. The computational approach opens a new path 
towards examining theoretical constructs in speech production 
and perception. 
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