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As a powerful mesoscale approach, the lattice Boltzmann method (LBM) has been widely used for the
numerical study of complex multiphase flows. Recently, Luo et al. [Philos. Trans. R. Soc. A: Math. Phys.
Eng. Sci. 379, 20200397 (2021)] proposed a unified lattice Boltzmann method (ULBM) to integrate the widely
used lattice Boltzmann collision operators into a unified framework. In this study, we incorporate additional
features into this ULBM in order to simulate multiphase flow under realistic conditions. A nonorthogonal
moment set [Fei et al., Phys. Rev. E 97, 053309 (2018)] and the entropic-multi-relaxation-time (KBC) lattice
Boltzmann model are used to construct the collision operator. An extended combined pseudopotential model is
proposed to realize multiphase flow simulation at high-density ratio with tunable surface tension over a wide
range. The numerical results indicate that the improved ULBM can significantly decrease the spurious velocities
and adjust the surface tension without appreciably changing the density ratio. The ULBM is validated through
reproducing various droplet dynamics experiments, such as binary droplet collision and droplet impingement
on superhydrophobic surfaces. Finally, the extended ULBM is applied to complex droplet dynamics, including
droplet pancake bouncing and droplet splashing. The maximum Weber number and Reynolds number in the
simulation reach 800 and 7200, respectively, at a density ratio of 1000. The study demonstrates the generality
and versatility of ULBM for incorporating schemes to tackle challenging multiphase problems.
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I. INTRODUCTION

The breakup, merging, and deformation of the liquid
droplet are ubiquitous multiphase phenomena in engineering,
material science, and medical science [1]. Gaining a thor-
ough understanding of droplet dynamics could benefit a wide
range of applications, such as the anti-icing of the turbine
blade [2,3], inkjet printing [4,5], and spray cooling [6]. How-
ever, the multiphase interface dynamics is a typical nonlinear,
nonequilibrium, and multiscale phenomenon, which is further
complicated by coupling with heat transfer and phase-change
process. For such a process, it is often challenging for exper-
imental techniques to quantify the key dynamic parameters,
hampering the detailed analysis of mechanisms behind. Thus,
advanced numerical research methods are needed to comple-
ment the analysis [7].

Conventional numerical methods for multiphase flows
are based on numerical solutions of the continuum-based
macroscopic governing equations, supplemented by inter-
face capturing schemes such as the volume of fluid and the
level-set method. In contrast, the lattice Boltzmann method
(LBM) solves a set of discrete Boltzmann equations for dis-
tribution functions, which recovers the Navier-Stokes (N-S)
equations in the macroscopic limit [8,9]. The LBM is advan-
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tageous for the study of multiphase flows, mainly because
its kinetic nature allows natural incorporation of microscale
and mesoscale physics such as the phase interface breakup,
merging, and deformation [9–11]. Consequently, the LBM
has achieved remarkable success in simulating various com-
plex multiphase (multicomponent) flows and phase-change
phenomena [9,12–14].

Numerous multiphase LB models have been proposed in
the past three decades [15–18], among which the pseudopo-
tential LBM has become one of the most popular models
mainly owing to its conceptual simplicity and computational
efficiency [7,11]. The key component of the pseudopoten-
tial model is the forcing term describing the interaction
force between different phases. However, the classical pseu-
dopotential model [18], implemented with a single-relaxation
time (SRT) collision operator and the “velocity-shift” forcing
model, has several drawbacks, such as high spurious velocities
[19], thermodynamic inconsistency [20], and surface tension
dependence on the density ratio [21].

In the past decade, considerable efforts have been made
to overcome the above-mentioned drawbacks. The advances
made can be generally divided into two families: (i) Im-
proved collision operators, such as central-moment-based
algorithm (CLBM) [22,23], multiple-relaxation time (MRT)
LBM [24,25], and the entropic lattice Boltzmann (ELB)
method [26,27]; (ii) Improved forcing models, like the mul-
tirange pseudopotential model by Sbragaglia et al. [19], and
the exact-difference method to incorporate the forcing field by
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Kupershtokh et al. [28]. In addition, Li et al. [21,24] proposed
additional forcing terms to tune surface tension and restore
the thermodynamic consistency. Furthermore, a high-order
forcing scheme was proposed by Lycett-Brown and Luo [29]
for the simulation of multiphase flow with large density ratio
and tunable surface tension. With optimized choices of colli-
sion operators and forcing models, the pseudopotential LBM
has been successfully applied to investigate droplet dynamics
under a variety of conditions [12,30]. In practice, however,
making a choice and switching between models are not easy,
without a unified modeling framework. To this aim, Luo et al.
[31] proposed a unified lattice Boltzmann model (ULBM),
which integrates the widely used collision operators into a
unified framework, with the most popular forcing models
implemented. The ULBM allows the straightforward switch
between different collision operators and/or forcing schemes.
Developed LB models can also be easily incorporated into the
general framework of ULBM.

To study droplet dynamics over a wide range of physi-
cal parameters, in this study, the nonorthogonal moment set
[32] and KBC-ELB model [27] are combined to construct a
collision operator. Besides, based on the recent development
by Kharmiani et al. [33], we propose an extended combined
pseudopotential (ECP) multiphase model to achieve large
density ratio as well as independent surface tension adjust-
ment. These developments are seamlessly integrated into the
ULBM framework. Finally, we test the capability of the ex-
tended ULBM in modeling the complex droplet dynamics,
such as droplet pancake bouncing and droplet collision splash-
ing, against experimental and other numerical results. The rest
of the paper is structured as follows: Sec. II provides details of
the ULBM and model developments. Section III presents the
assessment of the proposed models and conducts comprehen-
sive model validations against various experimental results. It
is demonstrated that the present enriched ULBM is capable
of simulating droplet dynamics over a wide range of realistic
physical parameters with complex boundary conditions. The
conclusions of this study are given in Sec. IV.

II. METHODOLOGY

A. ULBM with KBC-ELB collision operator

The LB evolution equation in the ULBM framework with
forcing term can be written as

fi(x + ei�t, t + �t ) ≡ f ∗
i (x, t )

= M−1N−1(I − S)NM fi(x, t ) + M−1N−1SNM f eq
i (x, t )

+ M−1N−1(I − S/2)NM�t |Ri〉, (1)

where fi and f ∗
i indicate the precollision and postcollision

discrete distribution functions, respectively. f eq
i is the equi-

librium distribution function and |Ri〉 is the discrete forcing
term. ei and �t = 1 are the discrete velocity and the time
step, respectively. In this study, we focus on three-dimensional
(3D) simulations and the D3Q27 discrete velocity model (ei =
[|eix〉, |eiy〉, |eiz〉]) is used [34]:

|eix〉 = [0, 1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,

− 1, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1]T,

|eiy〉 = [0, 0, 0, 1,−1, 0, 0, 1, 1,−1,−1, 0, 0, 0, 0, 1,

− 1, 1,−1, 1, 1,−1,−1, 1, 1,−1,−1]T,

|eiz〉 = [0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 1, 1,−1,−1, 1, 1,

− 1,−1, 1, 1, 1, 1,−1,−1,−1,−1]T,

where i = 0 . . . 27 and |·〉 donates a 27-column vector, and
the superscript T is the transposition symbol. In Eq. (1), I is
the unit matrix, and S represents the relaxation matrix that
contains the relaxation parameters for various moments. In
addition, the transformation matrix M is adopted to transform
the distribution functions ( fi) to their raw moments (Ti). The
shift matrix N is used to shift the raw moments into the central
moments (T̃i), and the transformation/shift can be expressed as

| fi〉 = M−1|Ti〉 = M−1N−1|T̃i〉. (2)

In this study, we adopt the nonorthogonal moments pro-
posed by Fei et al. [32,35] to construct the collision operator.
Compared with the traditional orthogonal moments, the
nonorthogonal moments lead to computational cost reduction
while retaining the algorithm robustness [12,36]. We first de-
fine the raw moment as

kpqn = ∑
fie

p
ixeq

iyen
iz, p, q, n ∈ {0, 1, 2}, (3)

and the central moment as

k̃pqn =
∑

fi(eix − ux )p(eiy − uy)q(eiz − uz )n,

p, q, n ∈ {0, 1, 2}, (4)

where ux, uy, and uz are the velocity components in x, y, and
z directions, respectively. The nonorthogonal raw moment set
can be written as follows, where the subscript of moments is
in ascending order of (p + q + n):

|Ti〉 = M fi[k000, k100, k010, k001, k110, k101, k011, k200

+ k020 + k002, k200 − k020, k200 − k002, k120,

k102, k210, k201, k012, k021, k111, k220, k202, k022, k211,

k121, k112, k122,k212, k221 , k222]T, (5)

The corresponding central moment set is

|T̃i〉 = NM fi = [k̃000, k̃100, k̃010, k̃001, k̃110, k̃101, k̃011, k̃200

+ k̃020 + k̃002, k̃200 − k̃020, k̃200 − k̃002, k̃120, k̃102,

k̃210, k̃201, k̃012, k̃021, k̃111, k̃220, k̃202, k̃022, k̃211,

k̃121, k̃112, k̃122, k̃212, k̃221, k̃222]T. (6)

Different from the original nonorthogonal moment set
in Ref. [32], we keep the trace of the stress tensor
(k200 + k020 + k002) and the normal stress differences at
unit density (k200 − k020, k200 − k002) for the ease of in-
corporation of KBC collision operator. The corresponding
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transformation matrix M can be obtained by Eqs. (3) and (5):

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 1 −1 −1 1 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1 −1 1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 1 1 −1 −1 −1 −1 1 1
0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
0 1 1 −1 −1 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0
0 1 1 0 0 −1 −1 1 1 1 1 0 0 0 0 −1 −1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 −1 1 1 −1
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The shift matrix N for this nonorthogonal moment set is calculated by the same approach in Ref. [32]. The explicit expressions
of M, N, M−1, N−1 for the D3Q19 and D3Q27 nonorthogonal moment set can be found in the Supplemental Material [37].

Following the choices in CLBM [23,32,38,39], the discrete equilibrium central moments are set equal to the integral central
moments of the continuous Maxwell-Boltzmann distribution, i.e.,

k̃eq
pqn =

∑
f eq
i (eix − ux )p(eiy − uy)q(eiz − uz )n

=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
fM (ζx − ux )p(ζy − uy)q(ζz − uz )ndζxdζydζz, (7)

where fM is the Maxwell-Boltzmann distribution in the continuous velocity space ζ = [ζx, ζy, ζz]:

fM (ρ, u, ζ ) = ρ

2πC2
S

exp

[
− (ζ − u)2

2C2
S

]
, (8)

Substituting Eqs. (7) and (8) into the definition in Eq. (6), we can obtain:∣∣T̃eq
i

〉 = NM f eq
i = [

ρ, 0, 0, 0, 0, 0, 0, 3ρC2
S , 0, 0, 0, 0, 0, 0, 0, 0, 0, ρC4

S , ρC4
S , ρC4

S , 0, 0, 0, 0, 0, 0, ρC6
S

]T
. (9)

Consistently, the discrete forcing terms in the central moment space are defined as the integral of the forcing effect in the
Boltzmann equation [32,39]:

Ci =
∑

Ri(eix − ux )p(eiy − uy)q(eiz − uz )n=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
RM (ζx − ux )p(ζy − uy)q(ζz − uz )ndζxdζydζz, (10)

where the forcing effect in the Boltzmann equation is given
approximatively by He et al. [40]:

RM = (ζ − u) · F
ρC2

S

fM . (11)

Substituting Eqs. (10) and (11), the forcing terms in central
moment space (|Ci〉) can be written as:

|Ci〉 = NM|Ri〉
= [

0, Fx, Fy, Fz, 0, 0, 0, 0, 0, 0, FxC
2
S , FxC

2
S , FyC

2
S ,

FzC
2
S , FyC

2
S , FzC

2
S , 0, 0, 0, 0, 0, 0, 0, FxC

4
S ,

FyC
4
S , FyC

4
S , 0

]T
. (12)

where F = [Fx, Fy, Fz] represents the forcing field, and CS =√
1/3 is the lattice sound speed. In the recent work of Fei

et al. [35], they used the same nonorthogonal moment set in
an MRT framework, which is equivalent to a ULBM version
[Eq. (1)] with a unit shift matrix N. And, the relaxation matrix
in their work is set as

S = diag(0, 1, 1, 1, sv, sv, sv, sb, sv, sv, s3, s3, s3, s3, s3, s3,

s3b, s4, s4, s4, s4b, s4b, s4b, s5, s5, s5, s6). (13)

where sv and sb are the relaxation parameters for the
second-order moments, whose values depend on the fluid
kinematic and bulk viscosities [ν = (1/sv − 0.5)C2

S �t , ξ =
2/3(1/sb − 0.5)C2

S �t , where ν and ξ are the fluid kine-
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TABLE I. The relaxation matrix for various collision operators in the ULBM framework.

Collison operators Relaxation matrix (S)

SRT [31]
S = diag(0, 1, 1, 1, sv, sv, sv, sv, sv, sv, sv, sv, sv, sv, sv, sv, sv,

sv, sv, sv, sv, sv, sv, sv, sv, sv, sv ).

KBC [41]
S = diag(0, 1, 1, 1, sv, sv, sv, svγ , sv, sv,

svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ ).

Standard regularized LB(RLB) [48]
S = diag(0, 1, 1, 1, sv, sv, sv, sv, sv, sv, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

CLBM [32]
S = diag(0, 1, 1, 1, sv, sv, sv, sb, sv, sv, s3, s3, s3, s3, s3, s3, s3b,

s4, s4, s4, s4b, s4b, s4b, s5, s5, s5, s6).

ELBM [66]
S = diag(0, 1, 1, 1, svγ , svγ , svγ , svγ , svγ , svγ ,

svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ ).

matic and bulk viscosities, respectively]. The other relax-
ation parameters for higher-order moments can be chosen
freely.

In this paper, we further incorporate the KBC model into
ULBM which is originally proposed in Ref. [27]. The key
idea of the KBC model is to relax the high-order moments
(including k200 + k020 + k002 and all the moments with p +
q + n � 3 in Eq. (6) in the present work) recurring to an
entropic stabilizer given by the maximum entropy condition.
More specifically, the relaxation parameters which correspond
to the high-order moments in Eq. (13) need to be modified
as svγ . And, the entropic stabilizer γ based on the entropic
stabilizing condition, is obtained by [27,41]

γ = 1

sv

−
(

1 − 1

sv

)∑
i

�si�hi

f eq
i

/ ∑
i

�hi�hi

f eq
i

, (14)

where si and hi are the shear part and high-order part of the
distribution function, respectively. �si = si − seq

i and �hi =
hi − heq

i are the deviations, and the superscript eq denotes
the equilibrium state. Usually, the shear part includes the
second-order moments. In this study, the shear-part moments
are chosen as the off-diagonal components (k̃110, k̃101, k̃011)
and the normal stress differences (k̃200 − k̃020, k̃200 − k̃200) in
central moments, which can be written as

|T̃si〉 = [0, 0, 0, 0, k̃110, k̃101, k̃011, 0, k̃200

− k̃020, k̃200 − k̃200, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0]T, (15)

and the corresponding high-order part moments are

|T̃hi〉 = [0, 0, 0, 0, 0, 0, 0, k̃200 + k̃020

+ k̃002, 0, 0, k̃120, k̃102, k̃210, k̃210, k̃012, k̃021, k̃111,

k̃220, k̃202, k̃022, k̃211, k̃121, k̃112, k̃122, k̃212, k̃221,

k̃222]T. (16)

For the KBC model, the relaxation parameters are modified
as

S = diag(0, 1, 1, 1, sv, sv, sv, svγ , sv, sv, svγ , svγ , svγ , svγ ,

svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ ,

svγ , svγ ). (17)

It is noted that for the current model, the relaxation pa-
rameters are all determined by the liquid viscosities and the
maximum entropy theory. One significant advance of the
present ULBM is that the optimized relaxation parameters are
self-adaptive at each lattice node at every time step rather than
being obtained by the trial and error method. This, however,
has slightly increased the computational cost due to the incor-
poration of the KBC-ELB. Fortunately, the ULBM framework
allows easy switch between collision operators via the relax-
ation matrix (S), so that the best choice can be made for a
specific application in terms of accuracy, stability, and compu-
tational cost. The corresponding collision operators and their
relaxation matrix can be found in Table I.

The shear part (si) can be calculated by si = M−1N−1 |T̃si〉,
according to the relation fi = M−1N−1|T̃i〉. Based on Eq. (9),
it is known the equilibrium central moments of the shear
part (|T̃eq

si 〉) is zero. The equilibrium state of the shear part is
also zero due to seq

i = M−1N−1|T̃eq
si 〉. Following Refs. [27,42],

the deviation of the high-order part is calculated by �hi =
hi − heq

i = fi − f eq
i − �si. It is also noted that the trace of the

stress tensor (k200 + k020 + k002) is included in the high-order
part; thus, the bulk viscosity becomes ξ = C2

S (1/svγ−0.5),
depending on sv and γ [41]. Remarkably, |T̃eq

i 〉 and |Ci〉 are
explicitly given by Eqs. (9) and (12), respectively. Thus, the
corresponding matrix manipulation (for the transformation
to central moments) is not needed in Eq. (1). Finally, by
substituting M−1, N−1, and S into Eq. (1), the postcollision
distribution functions can be calculated by

f ∗
i = M−1N−1(I − S)|T̃i〉 + M−1N−1S|T̃eq〉

+ M−1N−1(I − S/2)|Ci〉, (18)

With the Chapman-Enskog analysis, the above ULBM with
the KBC operator can reproduce the following macroscopic
N-S equations in the low-Mach number limit:

∂tρ + ∇ · (ρu) = 0,

∂t (ρu) + ∇ · (ρuu) = −∇(
ρc2

s

) + ∇ · [ρν(∇u + (∇u)T)

+ ρ(ξ − 2ν/3)(∇ · u)I] + F, (19)

and the macroscopic variables can be expressed as

ρ =
∑

i

fi, ρu =
∑

i

fiei + �tF
2

, (20)
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where ρ and u are density and macroscopic velocity of the
fluid, respectively. In addition to the above D3Q27 model,
a D3Q19 nonorthogonal moment-based KBC model is also
incorporated into ULBM for comparison, and the details can
be found in the Appendix.

B. An extended combined pseudopotential model

In this study, we use the pseudopotential LB model to
simulate the multiphase flow. In this model, the interaction
force between the liquid and gas phases can be described by a
local-neighbor (F int_L) form pseudopotential force [18]:

F int_L = −Gψ (x)
∑

i

w(|ei|2)ψ (x + ei )ei, (21)

where ψ is the density-dependent pseudopotential. Be-
sides, another neighbor-neighbor form pseudopotential force
(F int_N) which is only determined by the neighbor information
can be written as [43]

F int_N = −G
∑

i

w(|ei|2)ψ2(x + ei )ei, (22)

where G = −1 is the interaction strength, the weights
are w(|ei|2) = ω(|ei|2)/c2

s , and ω(0) = 8/27, ω(1) = 2/27,
ω(2) = 1/54, and ω(3) = 1/216 for the D3Q27 model. The
square-root form pseudopotential ψ is used in this work, i.e.,

ψ =
√

2
(
PEOS − ρc2

s

)
Gc2

, (23)

where c = 1 is the lattice constant and PEOS is the pressure
calculated by the equation of state (EOS). To realize large
density ratio in multiphase flow for isothermal condition, we
adopt the piecewise linear form EOS proposed in Ref. [44]:

PEOS(ρ) =

⎧⎪⎨
⎪⎩

ρθg, ρ < ρ1

ρ1θg + (ρ − ρ1)θm, ρ1 < ρ < ρ2

ρ1θg + (ρ2 − ρ1)θm + (ρ − ρ2)θm, ρ2 < ρ

,

(24)

where ρ1 and ρ2 are defined as the spinodal points, which can
be achieved by solving the following equations:∫ ρl

ρg

[(ρ1 − ρg)θg + (ρ2 − ρ1)θm + (ρl − ρ2)θl ] = 0,

∫ ρl

ρg

1

ρ
dP = log

(
ρ1

ρg

)
θg + log

(
ρ2

ρ1

)
θm + log

(
ρl

ρ2

)
θl = 0,

(25)

where ρl and ρg are the coexistence density of the liquid
phase and gas phase, respectively. The adjustable parameters
θg, θm, and θl are defined as the slopes in different phase
regions. The detailed discussion regarding the influence of
those adjustable parameters can be found in Ref. [45]. In the
following simulations, we set ρl = 1 and ρg = 0.001 to match
the realistic water-air density ratio. θg, θm, and θl are set as
1/6, −1/120, and 1/3, respectively. The corresponding densi-
ties are:ρ1 = 0.001 325 and ρ2 = 0.9758. This setup leads
to the interface thickness of approximately 5 lattice spacings
between the liquid phase and the gas phase.

Recently, an alternative pseudopotential lattice Boltzmann
model was proposed by Kharmiani et al. [33], which promises
to achieve large density ratio and independently adjustable
surface tension. In their model, two additional terms were
added to the pseudopotential force:

F ′
int = F int_L − k

Gc4

6
∇2ψ∇ψ + (k + λ)

Gc4

12
∇(|∇ψ |2),

(26)

where |∇ψ |2 = (∂ψ/∂x)2 + (∂ψ/∂y)2 + (∂ψ/∂z)2. The
first-order and second-order derivatives in Eq. (26) are
calculated by the lattice-based finite-difference scheme:

∂ψ

∂xα

=
∑

i

w(|ei|2)ψ (x + ei )ei,

∇2ψ = 2
∑

i

w(|ei|2)(ψ (x + ei ) − ψ (x)), (27)

As pointed out in Ref. [33], the second term on the right-
hand side of Eq. (26) is used to tune the surface tension. The
third term is adopted to adjust the thermodynamic consistency,
where the k-related part is for offsetting the additional high-
order effect by the second term. According to the pressure
tensor analysis, the thermodynamic consistency can be ad-
justed by the parameter λ and the surface tension is linearly
related to the parameter k. Because this model directly mod-
ifies the interaction force, it is more compatible with various
forcing schemes and collision operators compared with the
approaches of adding additional source terms to achieve ther-
modynamic consistency and tunable surface tension [21,24].
This flexibility makes the model very suitable for the ULBM.
However, one drawback of this model is that it needs informa-
tion at x + 2�x to calculate the last term in Eq. (26), which
leads to more complexity in boundary implementation [45]
and potentially reduced parallel efficiency. In this study, we
improve Kharmiani’s model by replacing the second layer-
dependent term on the right-hand side of Eq. (26) with a
modified combined-pseudopotential force:

F
′′
int = F̃ int − k

Gc4

6
∇2ψ∇ψ, (28)

where the modified combined pseudopotential force (F̃ int) is
written as

F̃ int = −
(

λ

2
− k

6

)
G

∑
i

w(|ei|2)ψ2(x + ei )ei

−
(

1 − λ + k

3

)
Gψ (x)

∑
i

w(|ei|2)ψ (x + ei )ei.

(29)

It is noted that the modified combined pseudopotential
force (F̃ int) is achieved by combining the local-neighbor
and neighbor-neighbor form pseudopotential forces, inspired
by Kupershtokh et al. [28]. The prefactor A in the original
combined pseudopotential force (e.g., in Refs. [28,46]) has
been modified as λ−k/3. In other words, in this study, we
extend the traditional combined pseudopotential model to an
extended combined pseudopotential (ECP, Eq. (28)) model
by adding an additional term to achieve the tunable surface
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tension. Following Shan’s approach [47], the discrete form
pressure tensor for the pseudopotential force can be written as∫

(∇ · P)d� =
∫

∇ · (
ρC2

S I
)
d� −

∫
Fd�, (30)

where d� represents the finite volume. The discrete form
pressure tensor for the modified combined-pseudopotential
force [Eq. (29)] has been analyzed in Ref. [46] and can be
written as

P̃ =
(

ρc2
s + Gc2

2
ψ2+ Gc4

12
ψ∇2ψ+

(
λ− k

3

)
Gc4

12
|∇ψ |2

)
I

+ Gc4

6
ψ∇∇ψ +

(
λ − k

3

)
Gc4

6
∇ψ∇ψ. (31)

Since ∇2ψ∇ψ = ∇(∇ψ∇ψ ) − ∇|∇ψ |2/2, by expand-
ing the last term of Eq. (28) into pressure tensor [Eq. (31)]
by Shan’s approach, the discrete form pressure tensor for the
ECP model [Eq. (31)] can be written as

P′′ =
(

ρc2
s + Gc2

2
ψ2 + Gc4

12
ψ∇2ψ

+
(

λ − 4k

3

)
Gc4

12
|∇ψ |2

)
I + Gc4

6
ψ∇∇ψ

+
(

λ + 2k

3

)
Gc4

6
∇ψ∇ψ. (32)

It should be mentioned that the surface tension relates
to the term ∇ψ∇ψ and the thermodynamic consistency is
influenced by the term |∇ψ |2, which indicates the parameters
λ and k can be used to adjust the thermodynamic consistency
and the surface tension, respectively. Next, a one-dimensional
analysis is conducted to clarify the effects of those two pa-
rameters. For the one-dimensional flat interface, the normal
pressure tensor can be generally written as

Pn = ρc2
s + Gc2

2
ψ2 + Gc4

12

[
a

(
dψ

dn

)2

+ bψ
d2ψ

dn2

]
, (33)

where n represents the normal direction, and the prefactors a
and b depend on the discrete gradient operator in the pseu-
dopotential force. To satisfy the thermodynamic consistency,
the liquid and gas densities should follow the relation [24]∫ ρl

ρg

(
P0 − ρC2

S − Gc2

2
ψ2

)
ψ ′

ψ1+ε
dρ = 0, (34)

where ε = −2a/b. It is noted that the thermodynamic consis-
tency is determined by the parameter ε, and it has been pointed
out that ε is given by ε = 0 for the local-neighbor pseudopo-
tential force in Eq. (21) and ε = 1 for the neighbor-neighbor
pseudopotential force in Eq. (23) [20,46]. Usually, the solu-
tion given by the thermodynamic consistency is limited to ε ∈
(1, 2) [20]. By expanding Eq. (32) for the one-dimensional
flat interface, the normal pressure tensor can be written as

P
′′
n = ρc2

s + Gc2

2
ψ2 + Gc4

12

[
3λ

(
dψ

dn

)2

+ 3ψ
d2ψ

dn2

]
.

(35)

Thus, in our model, ε = −2a/b = −2λ. It is noted that the
thermodynamic consistency is only related to the parameter
λ. In other words, the parameter k will not change the ther-
modynamic consistency and therefore our model can tune the
surface tension independently of density ratio. Considering
the flat interface normal to the x direction, the pressure tensor
components in the normal direction (P

′′
xx) and parallel direc-

tion (P
′′
yy) can be written as

P
′′
xx = ρc2

s + Gc2

2
ψ2 + Gc4

12

[
(3λ)

(
dψ

dx

)2

+ 3ψ
d2ψ

dx2

]
,

P
′′
yy = ρc2

s + Gc2

2
ψ2 + Gc4

12

[(
λ − 4k

3

)(
dψ

dx

)2

+ ψ
d2ψ

dx2

]
.

(36)

Thus, the surface tension can be expressed as

σ =
∫ +∞

−∞
(P

′′
xx − P

′′
yy)dx

= Gc4

6

∫ +∞

−∞

[(
λ + 2k

3

)(
dψ

dx

)2

+ ψ
d2ψ

dx2

]
dx. (37)

Substituting the relation
∫ +∞
−∞ ψ

d2ψ

dx2 dx = ψ
dψ

dx |+∞
−∞ −∫ +∞

−∞
dψ

dx dψ , dψ

dx = 0 at ±∞, and dψ

dx = dψ

dρ

dρ

dx = ψ ′ dρ

dx ,
Eq. (37) can be simplified as

σ = −
(

1 − λ − 2k

3

)
Gc4

6

∫ +∞

−∞
(ψ ′)2 dρ

dx
dρ. (38)

According to Eq. (38), as long as λ is fixed, the surface ten-
sion decreases linearly with the increase of k. The theoretical
surface tension ratio is determined by

σ (k)

σ (0)
=

(
1 − λ − 2k

3

)
1 − λ

. (39)

We will validate this relation in the following section. The
above ULBM has been implemented in the in-house software
suite UCLBM (Unified Cascaded Lattice Boltzmann Method).
The following results are obtained by running the UCLBM on
the UK national supercomputer ARCHER2.

III. RESULTS AND DISCUSSION

A. Model validation and assessment

The spurious velocity is usually regarded as the main factor
that affects the numerical stability for the pseudopotential lat-
tice Boltzmann model. In this section, we use a static droplet
test to evaluate the spurious velocities of the current models.
Firstly, a spherical droplet of the initial radius R0 = 40 is
located at the center of a 4R0 × 4R0 × 4R0 box. The initial
density profile can be described by the following function:

ρ(r) = ρl + ρg

2
+ ρl − ρg

2
tanh

[
2(r − R0)

W

]
, (40)

where W = 5 is the approximate interface thickness by
adopting the setup in Sec. II B, and r represents the dis-
tance to the droplet center. Additionally, we set the kinematic
viscosity ratio between the gas phase (νg) and liquid phase
(νl ) as 10, which leads to the dynamic viscosity ratio
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FIG. 1. (a) The maximum spurious velocities in the gas phase as a function of the liquid kinematic viscosities, at density ratio of 1000
and dynamic viscosity ratio of 100. (b) The evolution of the simulated liquid density (solid symbols) and gas density (hollow symbols) as a
function of liquid viscosities. Results are for the D3Q27 ULBM (SRT+ECP), D3Q19 ULBM (KBC+ECP), and D3Q27 ULBM (KBC+ECP).
The solid line and dashed line represent the theoretical liquid and gas density, respectively.

μl /μv = (ρlνl )/(ρvνg) ≈ 100. λ equals −0.695, and ε ≈ 1.4.
The following interpolation is used for calculating the kine-
matic viscosity at the liquid-gas interface:

ν = νg + (νl − νg)
ρ − ρg

ρl − ρg
. (41)

To evaluate the spurious velocities, we fix k = 0 and
change the kinematic viscosity of the liquid phase from 0.003
to 0.025, while keeping all the other parameters the same.
In order to eliminate the influence of the bulk viscosity and
free parameters, four different collision operators without free
parameters are tested within the same ULBM framework, that
is, D3Q27 ULBM (SRT+ECP), D3Q27 ULBM (RLB+ECP)
model, D3Q27 ULBM (KBC+ECP) model and D3Q19
ULBM (KBC+ECP). Figure 1(a) presents the maximum
spurious velocities (Ug,max) versus various liquid kinematic
viscosities. As indicated in the figure, the D3Q27 ULBM
(KBC+ECP) model and the D3Q19 ULBM (KBC+ECP)
model possess similar numerical stability and outperform the
ULBM (SRT+ECP) by producing 2 to 3 times lower Ug,max.
It is also found that the standard regularized LB (RLB) model
[48] is less stable than the ULBM (SRT+ECP) model, which
leads to numerical divergency when νl < 0.0125. This finding
agrees with the results in the study of the single-phase KBC
model [41]. So, we exclude the ULBM (RLB+ECP) model
in the following simulation. The results show that the present
ECP model makes all the collision operators, including SRT,
stable at a low liquid kinematic viscosity (∼3 × 10–3), even
though the advantage of KBC over SRT models in terms of
reduced spurious velocities is still significant.

The measured densities in the liquid and gas phases versus
different νl are shown in Fig. 1(b). The simulated coexistence
densities almost coincide (solid symbols stand for the liquid-
phase densities and hollow symbols indicate the gas-phase
densities) with the theoretical coexistence densities (ρl = 1
by the solid line and ρg = 0.001 by the dashed line). When

νl varies from 0.003 to 0.025, for all three collision operators
with the ECP model, the maximum discrepancy between the
measured and theoretical densities is 7%, (at the νl = 0.025)
for the ULBM (SRT+ECP), and lower than 4% for the ULBM
(KBC+ECP). The present results show that the ECP model is
able to simulate the large density ratio (∼1000) multiphase
flow, implying a good thermodynamic consistency. It should
also be mentioned that the D3Q27 ULBM (KBC+ECP) only
costs around 19% additional computational time than the
D3Q27 ULBM (SRT+ECP) model, which is due to the calcu-
lation of the entropic stabilizer. In contrast, the D3Q19 ULBM
(KBC+ECP) spends 28% less computational time than the
D3Q27 ULBM (SRT+ECP) model. It is noticed that the addi-
tional computational cost for the current ULBM (KBC+ECP)
model is far less than the traditional KBC model (∼2 times of
computational time compared with SRT [41]). This is because
the nonorthogonal moment set used in this work produces less
nonzero terms in the transformation matrix M and its inverse
matrix M−1, leading to better numerical efficiency [35].

The density contour and velocity vectors (with a fixed
scale to the velocity magnitude) on the symmetry plane for
selected cases are shown in Figs. 2(a)–2(d). It can be seen that,
compared with the D3Q27 ULBM (SRT+ECP), the D3Q27
ULBM (KBC+ECP) considerably decreases the spurious ve-
locities in the gas phase [see Figs. 2(a) and 2(b)]. Besides,
the spurious velocities are significantly increased when νg is
decreased [see Figs. 2(c) and 2(d)] However, the decrease of νl

just slightly influences the spurious velocities [see Figs. 2(a)
and 2(c)]. The distribution of the entropic stabilizer (γ ) in
the gas phase on the symmetry plane is shown in Fig. 2(e). It
can be seen that γ self-adapts around the liquid-gas interface
to stabilize the simulation, which is similar to the results in
Ref. [49].

Another comparison is conducted between the ECP model
and the previous force model proposed by Li et al. [24] for
large density ratio and thermodynamic consistency. The same
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FIG. 2. (a)–(d) Density contour and velocity vectors on the symmetry plane of the simulation domain; (e) 3D droplet interface and the
entropic stabilizer distribution on the symmetry plane.

static droplet is simulated. In this simulation, the ULBM
(SRT) collision operator is used, and ε ≈ 1.4, μl/μv =
ρl/ρv ≈ 1000 for both models. The kinematic viscosity is

varied from 0.018 to 0.25; the simulation results for the ECP
model and Li et al.’s model are shown in Table II. The ECP
model leads to a lower Ug,max for a wide range of values
for the kinematic viscosity compared with Li et al.’s model.
Also, the ECP model significantly decreases the discrepan-
cies from the theoretical coexistence density in gas phase
(egas) when νg > 0.15. Considering the present ECP model
equals to the original combined pseudopotential force model
in Refs. [28,46] when k = 0, this finding also agrees with the
result in Ref. [46].

We then conduct a test of the surface tension adjustment
capability. Similarly, a static droplet is fixed at the center of
a 4R0 × 4R0 × 4R0 box, νl is kept at 0.01, and the dynamic
viscosity ratio between the liquid and gas phases is 100 at the
density ratio of 1000. To verify the accuracy of the theoretical
prediction in Eq. (39), we simulate a static droplet with an

initial radius R0 = 40, λ = −0.695 and increase k from 0 to
2.4 by using the D3Q27 ULBM (KBC-ECP), D3Q19 ULBM
(KBC-ECP), and D3Q27 ULBM (SRT-ECP) collision opera-
tors. The surface tension is calculated by Laplace’s law �P =
Pliquid − Pvapour = 2σ/R0, and the results are compared with
the theoretical prediction in Eq. (39). As shown in Fig. 3(a),
the simulation results obtained by various collision operators
are consistent with the theoretical equation. The maximum
relative error between the theoretical equation and measured
results is around 5%, occurring at k = 2.4 (σ ≈ 0.001), where
σ (k) has been reduced to 5% of its original value (k = 0,
σ ≈ 0.02). The simulation results prove the correctness of the
theoretical analysis in Sec. II B and show our ECP model
can adjust the surface tension independently of the collision
operator.

We further verify Laplace’s law by changing 1/R0 from
0.02 to 0.04 with three different tunable parameters, k =
[0, 1.5, 2.4], by using D3Q27 ULBM (KBC) collision op-
erator, with all other setups being kept the same. As indicated

TABLE II. Comparison of the present ECP model and Li et al.’s model in a static droplet test using ULBM (SRT).

Li et al.’s model [24] ECP model

νg ρvsim . egas (%) Ug,max ρvsim . egas (%) Ug,max

0.25 0.000 829 20.63 0.114 994 0.000 932 7.32 0.044 457
0.15 0.000 929 7.64 0.046 111 0.000 982 1.85 0.018 453
0.05 0.000 994 0.60 0.069 355 0.001 015 1.45 0.070 567
0.025 0.001 005 0.50 0.128 453 0.001 016 1.57 0.114 487
0.018 0.001 012 1.14 0.172 087 0.001 018 1.76 0.132 782
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FIG. 3. (a) The evolution of the surface tension ratio for various k. The different symbols represent the various models, and the dashed
line indicates the theoretical prediction in Eq. (39). (b) The Laplace law verification for a static droplet, where the different symbols stand for
different k and the dashed lines are the best-fitted lines.

in Fig. 3(b), the measured pressure differences between the
liquid and gas phases (�P) linearly increase with 1/R0,
which concurs with Laplace’s law. The maximum deviation
between the measured pressure difference and its theoretical
prediction is 7%, which occurs at the case with the low-
est surface tension and the largest curvature (k = 2.4 and
1/R0 = 0.04). For all the other cases, the differences are lower
than 5.5%.

Finally, we test the evolutions of the measured density
versus the reduced surface tension [σ (k)/σ (0)]. The same
cases in Fig. 3(a) are considered. Besides, we also test the
density evolution by using Li et al.’s models with D3Q27
ULBM (SRT) collision operator [21,24]. In the simulations,
ε is set as 1.4, and all other parameters are set the same for
all models. As shown in Fig. 4, both our model and Li et al.’s
model achieve a good degree of density ratio constancy for a
wide range of tunable surface tension. Also, our ECP model
with various collision operators presents a similar density
consistency. It should be pointed out that Li et al.’s model
becomes unstable when σ (k)/σ (0) is lower than 0.25 by using
the ULBM (SRT) collision operator. However, our model can
stay stable when σ (k)/σ (0) ≈ 0.1 for the same condition. The
discrepancies of the gas-phase densities from its coexistence
densities are lower than 5% for our ECP force model with all
the collision operators.

B. Implementation of contact angles

Droplet impingement on hydrophobic or hydrophilic sur-
faces is a ubiquitous multiphase phenomenon in engineering,
material science, and medical science [3]. In this section, we
adopt the D3Q27 ULBM (KBC+ECP) model to simulate
the droplet impingement phenomenon. We add the following
additional term into the forcing field (F = F

′′
int + Fads) to

achieve the tunable contact angle [50]:

Fads = −Gwψ (x)
∑

i

w(|ei|2)ψ (x)s(x + ei�t )ei, (42)

where Gw is the fluid-solid interaction strength to adjust the
droplet contact angle. s(x) is an indicator function which is
equal to 1 for solid and 0 for fluid, respectively. The effect
of the contact-angle hysteresis has been ignored owing to
the strong hydrophobic characteristic in the following sim-
ulations. The additional contact-angle treatment such as the
geometric formulation [51,52] should be considered when
the three-phase contact-line motion is dominant. It should be
pointed out that the local fluid density method is used to treat
the unknown interaction force between the boundary fluid and
solid wall. The density-dependent pseudopotential at the first
layer of the solid wall [see the red dots in Fig. 8(a)] is copied

FIG. 4. The evolution of the simulated liquid density (solid sym-
bols for ECP model and hollow symbols for Li et al.’s models)
and gas density (hollow symbols for ECP model and solid symbols
for Li et al.’s models) as a function of reduced surface tension, at
ρl /ρv ≈ 1000 and μl/μv = 100. Different symbols represent various
adopted models. The solid lines and dashed lines in the figures stand
for the theoretical coexistence densities in the liquid and gas phases,
respectively.
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FIG. 5. (a) The droplet static contact angle vs various liquid-solid interaction strengths (Gw). (b) The transient evolution of the normalized
contact line length for various static contact-angle cases (symbols); the lines in the figure indicate the fittings according to the theoretical
relation L/D0 ∼ t/τ 0.5.

from the pseudopotential of the boundary fluid nodes [ψ (X b),
e.g., see the white dots in Fig. 8(a)]. One major advantage
of this treatment is its simplicity in coding and dealing with
complex geometries, since it does not need to specify the
pseudopotential for the nodes at the solid wall. The interaction
force between the boundary fluid and the solid wall can be
written as

F int_solid = −
(

λ

2
− k

6

)
G

∑
i

w(|ei|2)ψ2(X b) ei

−
(

1 − λ + k

3

)
Gψ (X b)

∑
i

w(|ei|2)ψ (X b) ei,

(43)

The first verification for the contact angle is modeling the
dynamic wetting process of a water droplet with an initial
radius R0 = 30 and Gw is changed from −0.05 to 0.325.
Figure 5(a) represents the droplet static contact angle (θ ) as
a function of Gw. The static contact angle is calculated by
the relation tan(θ/2) = 2H/L, where H and L are, respec-
tively, the height of the spherical crown and the length of
the contact line with the plate when the droplet reaches the
steady state. We also record the evolution of the contact line
during the wetting process. Figure 5(b) shows the variation of
the contact line versus the dimensionless time [t∗ = t/τ, with
the inertia-capillarity time τ = (R0

3ρl/γ )0.5] for the cases at
θ = [67.4◦, 115.3◦, 136.2◦]. The data for all cases almost
follow a power law L/D0 ∼ t/τ 0.5, which is consistent with
the previous finding [53].

Further verifications are conducted by simulating a water
droplet impacting a flat superhydrophobic surface with var-
ious Weber numbers. The D3Q27 ULBM (KBC) collision
operator with the ECP model is used, and the kinematic
viscosity ratio of the liquid phase and gas phase is kept at
20 and the density ratio is 1000. Besides, R0 is 40 and νl

equals 0.005, leading to an Ohnesorge number of lower than
0.006 for all simulation cases, where the Ohnesorge number

is defined as Oh = (ρlνl )/
√

2R0ρlσ , which stands for the
relative importance of viscosity force to the mean of dynamic
force and capillary force. As a result, the viscous effect can
be ignored. In addition, Gw is fixed at 0.32 which implies
the static contact angle is over 155 °. We change the Weber
number (We = 2R0ρlU 2/σ , where U is the droplet initial
velocity) from 6.4 to 120, and the corresponding Reynolds
number (Re = 2R0U/νl ) varies from 640 to 1600. The sim-
ulation results are compared with the experimental results in
Refs. [54,55] as well as the simulation results conducted by
the traditional KBC model [49] and ELB model [30].

Figure 6(a) is the maximum spreading diameter of the
droplet as a function of impacting We. As indicated in the fig-
ure, our simulation results are in line with the previous results.
Additionally, the simulated maximum spreading diameter also
follows a dependency of ∼ We0.25, which was observed in the
previous study [54]. The nondimensionalized contact time is
defined as tcontact/τ, where the droplet contact time tcontact is
defined as the period between the droplet first touches the
solid phase and bounces from the solid phase. It has also
been recorded as a function of We and plotted in Fig. 6(b).
Our simulated results are compared with the experimental
results in Ref. [56] and simulation results of the traditional
ELB model [30]. As we can observe, our simulation results
are in line with previous experimental (simulation) results. In
addition, it is found that the nondimensionalized contact time
is almost constant with a tcontact/τ = 2.5 dependency for all
Weber numbers, which is in agreement with the finding in
Ref. [55]. The good agreement between our simulation results
and the theoretical results demonstrates the accuracy of the
implemented contact-angle model.

C. Simulation of realistic droplet dynamics

In this section, we adopt the D3Q27 ULBM (KBC+ECP)
model to simulate droplet dynamics under realistic conditions.
Benefitting from the stability of the model, the density ratio
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FIG. 6. A water droplet impacting a superhydrophobic plate with different We, at θ>155 °. (a) The normalized droplet maximum
deformation diameter compared with the previous simulation results in Ref. [49], experimental results in Ref. [54], and the power-law
dependency Dmax/D0 ∼ We0.25. (b) The nondimensionalized contact time, compared with the simulation data in Ref. [30], the experimental
data in Ref. [55], and the empirical relation tcontact/τ = 2.5.

of the liquid phase and gas phase is set as 1000, and the
kinematic viscosity of the liquid phase (νl ) is fixed at 0.004
to achieve the realistic physics parameters. We first model the
binary equal size droplet collision and compare the simula-
tion results with the experimental results in Ref. [57]. Two
cases are tested: (1) Head on droplet collision at the Weber
number of 40 (We = 2R0ρlV 2/σ , where V = 2U is the rela-
tive velocity of droplets). (2) Off center droplet collision at
We = 83, and the impact factor x = 0.4 (x = X/R0, where
X indicates the separation between the vertical center lines
of the droplets). For both simulations, the droplet radius and
kinematic viscosity ratio are fixed at 50 and 20, respectively.
k is kept at 0 and We is adjusted by changing the relative
velocity. This setup leads the Ohnesorge number to 0.004,
which is similar to the experimental parameter.

As indicated in Fig. 7, our simulation results qualitatively
agree with the experimental results. For case (1) in Fig. 7(a),
a liquid disk forms after the droplet collision, and reflexive
separations of the two droplets are observed after the liq-
uid disk reaches the maximum deformation diameter. Then,
a liquid bridge can be observed between the two separated
satellite droplets. Finally, the neck of the liquid bridge breaks
up and the liquid bridge retracts to the third satellite droplet,
which finally leads to reflexive separation of three satellite
droplets. Regarding case (2) in Fig. 7(b), it is found that
a liquid bridge occurs after two droplets collide. With two
droplets continuously separating, the liquid bridge stretches
and breaks. Finally, a satellite droplet is formed owing to the
breakup of the liquid bridge, which finally exhibits stretching
separation of three satellite droplets.

Then, we simulate a water droplet impacting superhy-
drophobic curved surfaces and qualitatively compare the
results with the experimental results in Ref. [58]. In this
simulation, Gw is fixed as 0.35 and the static contact angle
is around 160 °. The impacting We is set as 20, which is
consistent with the experimental conditions. All the other

parameters are kept the same as the last simulation. Two dif-
ferent superhydrophobic surfaces with the normalized curve
radius Rc/R0 = 2.3 [Fig. 8(a)] and Rc/R0 = 0.4 [Fig. 8(b)]
are tested. As demonstrated in the figure, our simulation re-
sults (blue snapshots) agree well with the experimental data
(gray snapshots) qualitatively. Besides, unlike the pervious
LB simulation results for the same case [35,58], our present
model has reproduced detailed features observed in the ex-
periments, such as the satellite droplet in the last frame of
Fig. 8(b), thanks to the low viscosity and high density ratio
achieved.

D. Simulation of complex droplet dynamics

In this section, we further test the accuracy and robust-
ness of the improved ULBM by simulating complex droplet
dynamics. The cases of droplet pancake bouncing when
impacting the superhydrophobic pillar surfaces and droplet
collision splashing at large Weber number and Reynolds num-
ber are reproduced. In the following simulations, the D3Q27
ULBM (KBC) collision operator and the ECP model are
adopted.

1. Droplet pancake bouncing

Liu et al. [59] first found that a droplet experiences pancake
bouncing when impacting a superhydrophobic pillar-textured
surface under a moderate Weber number, and the contact time
of the droplet with the surface can be significantly decreased.
Some subsequent studies on this phenomenon have been
conducted experimentally and numerically in recent years
[30,60,61]. In the previous LBM simulation studies for this
case, the adopted density ratios were far less than the real
value and the viscosities were kept artificially high (νl >

0.05) to ensure the numerical stability [30,61]. Here we simu-
late this phenomenon by using realistic physical parameters
(ρl /ρv = 1000, Oh < 0.004 with νl = 0.004), and compare
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FIG. 7. A comparison of the simulation results with the experimental results for binary equal size droplet collision. The top column stands
for the experimental results in Ref. [57] and the bottom column represents the present simulation results. (a) Head-on droplet collision at
We = 40; (b) Off-center droplet collision at We = 84 and x = 0.34.

the simulation results with the experimental data in Ref. [60].
The cases at We = 26.6, θ ≈ 160◦ with various intervals be-
tween the pillars are considered.

In our simulation, the initial radius of the droplet (R0) is
65 in lattice units, and the simulation domain is a 6R0 ×
6R0 × 4R0 box. The half-way bounceback boundary scheme
is adopted in the solid surfaces as well as top and bottom
walls, and all the other boundaries are configurated as the
periodic boundary. Gw is 0.35 so that the static contact angle
is around 160 °. The impacting parameters for the simulations

are We ≈ 27 and Re ≈ 2000 for all cases. The height (HP) and
diameter (DP) of the pillars are 40 and 12 in lattice units, re-
spectively. The corresponding HP/R0 = 0.615 and DP/R0 =
0.18, which are the same as the experimental conditions. The
intervals (S) between the pillars are 20, 22, 24, and 28 in lattice
units, corresponding to the intervals of 0.2, 0.25, 0.3, and 0.4
mm in the experiment, respectively.

The qualitative comparison results for the cases with the
intervals of 0.2, 0.25, and 0.3 mm are shown in Figs. 9(a),
9(b) and 9(c), respectively. It can be seen that our simulation

FIG. 8. Comparison between the experimental snapshots (gray) [58] and the ULBM (KBC+ECP) simulation results (blue) of a water
droplet impacting curved superhydrophobic surfaces at We≈40, and θ>160 °. (a) Rc /R0 = 2.3 and (b) Rc /R0 = 0.4. The zoomed-in view in
(a) reveals the distribution of the nodes at the first layer of the solid wall (red dots) and the boundary fluid nodes (white dots), where the blue,
green, and red regions represent the solid, gas, and liquid phases, respectively.
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FIG. 9. Qualitative comparison between the experiment results
(gray) [60] and simulation results (blue) of a water droplet (R0 =
1.62 mm) impacting superhydrophobic textured surface at We =
26.6. The height of the pillars (HP) is 1 mm, the pillar diameter
(DP) equals 0.3 mm, and the intervals between the pillars are (a)
S = 0.2 mm, (b) 0.25 mm, and (c) 0.3 mm, respectively.

results (blue snapshots) have an excellent agreement with
the experimental results (gray snapshots). As observed, when
the droplet touches the pillar’s surface, the top part of the
droplet starts to spread above the pillars and the bottom part
of the droplet penetrates the gaps between the pillars. Owing
to the capillary resistance produced by the superhydrophobic
textured surface, the spreading of the droplet top part is faster
than the bottom part. In contrast, the retraction of the bottom
part is earlier than the top part. Thus, it can be observed that
the droplet top part is still spreading (retracting) when the
bottom part fully retracts and bounces off from the pillars.
Additionally, the smaller the intervals, the faster the retraction
of the droplet bottom part will be. As a result, we can find the
bounce-off diameter of the droplet decreases with the increase
of the pillar intervals, and the bounce-off time increases with
the pillar intervals.

The droplet contact time and its rebound diameter have also
been recorded and compared with the experimental results
quantitatively in Fig. 10. The contact time (tcontact, in left
axis) is defined as the instant when the droplet leaves the
pillar’s surface. The rebound spreading ratio Q (right axis)
is calculated by the droplet diameter when it bounces off
from the pillar surface divided by its initial value (D0). As
presented in Fig. 10, our simulation results are in line with the
experimental results qualitatively. The contact time decreases
with the pillar intervals; In contrast, the rebound spreading
ratio Q decreases with the increase of pillar intervals. The
small quantitative discrepancies between the simulation and
experimental results can be explained by the differences in
data recording.

FIG. 10. Quantitative comparison of the experiment results
(symbols with lines) [60] and simulation results (hollow symbols)
of the droplet contact time (left axis) and Q (right axis), for the cases
of a water droplet (R0 = 1.62 mm) impacting the superhydrophobic
pillars surface (HP = 1 mm, DP = 0.3 mm) with various pillar inter-
vals (S) at We ≈ 27.

2. Droplet collision splashing at large Weber number and
Reynolds number

Finally, we test the ULBM (KBC+ECP) model by sim-
ulating the splashing process of the binary droplet head-on
collision at large Weber number and Reynolds number.
The simulation starts with the impacting Weber number
(We = 2R0ρlV 2/σ , where V = 2U is the relative velocity of
droplets) and Reynolds number (Re = 2R0V/νl ) equal to 560
and 6000, respectively, by setting R0 = 60, k = 1.5, νl/νg =
20, νl = 0.004, and two droplets of equal diameter start with
an equivalent initial velocity U = 0.1. The simulation domain
is a 13R0 × 13R0 × 6R0 box with the periodic boundary in
all directions, leading to the final grid number of over 220
million. A small random oscillation was given to the droplet
initial velocity to break the symmetry. The simulation results
are shown as the blue snapshots in Fig. 11.

FIG. 11. Simulation of binary equal-size droplet collision at high
Weber number and Reynolds number. The blue snapshots stand for
the simulation results of ULBM (KBC+ECP) model. (a) We = 560,
Re = 6000 and (b) We = 800, Re = 7200.
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As shown in the figure, the ULBM (KBC+ECP) model is
able to reproduce the splashing processes of droplet head-on
collision at large Weber number and a Reynolds number. For
the case with We = 560 and Re = 6000, after the droplet
collision, a liquid disk forms and expands. During the liquid-
disk expansion, liquid rims start to tear off from the liquid
disk, which then continuously break up into many small satel-
lite droplets. Besides, the capillary wave can be observed on
the liquid disk [Fig. 11(a), from t/τ = 0.42 to t/τ = 0.66],
which concurs with the experimental findings by Kuan et al.
[62]. Then we increase the initial velocity to U = 0.12, while
all the other parameters are kept the same. This setup leads to
the final We = 800 and Re = 7200, respectively. The simula-
tion results are shown in Fig. 11(b). As shown in Fig. 11(b),
compared with the lower We case [Fig. 11(a)], the liquid
disk spreads faster. Quantitatively, the simulated splashing
processes are in line with the results reported in previous
experiments and simulations [62–64]. And, this splashing
simulation can prove the present LB model is capable of
reproducing the key features of complex droplet dynamics
at high Weber and Reynolds numbers. It should be noted
that the fingering between the disk and the rims [e.g., in
Fig. 11(b), from t/τ = 0.37 to t/τ = 0.49, occurs at the edge
of the liquid disk] is successfully reproduced, which was also
observed in the experiments (e.g., in Refs. [63,65]) when the
Weber number is large. Such a fingering phenomenon is less
obvious in the previous CLBM simulation [20] at We = 440
and Re = 6210.

IV. CONCLUSION

In this paper, a recently developed ULBM framework is
deployed to incorporate an improved collision operator and
an extended combined pseudopotential model for multiphase
flow simulation. Thanks to the enhanced stability, computa-
tional efficiency, and predictive capability, droplet dynamics
under realistic conditions at high Weber and Reynolds num-
bers are reproduced. The collision operator is constructed by
combining a nonorthogonal moment set with the KBC-ELB
model. The ECP model is shown to be capable of high den-
sity ratio and tunable surface tension. Moreover, the resulting

ULBM can reduce spurious velocities over a wide range of
viscosity, while achieving good thermodynamic consistency.
The extended ULBM is then applied to a variety of benchmark
droplet dynamic simulations, achieving excellent agreement
with the experiment data. Finally, we deploy the ULBM to
more challenging cases including droplet pancake bouncing
and collision splashing. Here is a summary of the key new
features of the ULBM:

(1) All high-order relaxation parameters are determined
by the maximum entropy condition, with no free model pa-
rameters in the collision operator.

(2) D3Q27 ULBM (KBC+ECP) and D3Q19 ULBM
(KBC+ECP) can produce 2 to 3 times lower spurious veloc-
ities compared with the D3Q27 ULBM (SRT+ECP) model.
The D3Q27 ULBM (KBC+ECP) consumes 19% additional
computational time than the D3Q27 ULBM (SRT+ECP)
model, while the D3Q19 ULBM (KBC+ECP) spends 28%
less computational time than the D3Q27 ULBM (SRT+ECP)
model.

(3) The ECP model is able to achieve thermodynamic con-
sistency and adjust the surface tension almost independently
of the density ratio; The variation of the gas-phase density
is lower than 5% when tuning the surface tension over a
wide range of values. The measured surface tension based on
Laplace’s law test agrees with the theoretical prediction in Eq.
(39).

(4) The improved ULBM can accurately reproduce com-
plex droplet dynamics such as droplet pancake bouncing and
droplet collision splashing at Weber and Reynolds numbers
up to We = 800, Re = 7200 at a density ratio of 1000.
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APPENDIX

The D3Q19 ULBM (KBC) collision operator is introduced in the Appendix. The discrete velocities of the D3Q19 lattice
model are

|eix〉 = [0, 1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1, 0, 0, 0, 0]T,

|eiy〉 = [0, 0, 0, 1,−1, 0, 0, 1, 1,−1,−1, 0, 0, 0, 0, 1,−1, 1,−1]T,

|eiz〉 = [0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 1, 1,−1,−1, 1, 1,−1,−1]T. (A1)

And, the D3Q19 nonorthogonal raw moment set (|Ti〉) can be written as

|Ti〉 = M fi = k000, k100, k010, k001, k110, k101, k011, k200 + k020 + k002, k200 − k020, k200

− k002, k120, k102, k210, k201, k012, k021, k220, k202, k022]T, (A2)
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Thus, the transformation matrix M is

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1
0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
0 1 1 −1 −1 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1
0 1 1 0 0 −1 −1 1 1 1 1 0 0 0 0 −1 −1 −1 −1
0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The corresponding central moment set (|T̃i〉) and its equilibria moment set (|T̃ eq
i 〉) can be written as

|T̃ 〉 = NM fi = [k̃000, k̃100, k̃010, k̃001, k̃110, k̃101, k̃011, k̃200 + k̃020 + k̃002, k̃200 − k̃020, k̃200

− k̃002, k̃120, k̃102, k̃210, k̃210, k̃012, k̃021, k̃220, k̃202, k̃022]T, (A3)

and ∣∣T̃ eq
i

〉 = [
ρ, 0, 0, 0, 0, 0, 0, 3ρC2

S , 0, 0, 0, 0, 0, 0, 0, 0, ρC4
S , ρC4

S , ρC4
S

]T
. (A4)

Additionally, the forcing terms in the central moment can be written as
|Ci〉 = NM|Ri〉 = [

0, Fx, Fy, Fz, 0, 0, 0, 0, 0, 0, FxC
2
S , FxC

2
S , FyC

2
S , FzC

2
S , FyC

2
S , FzC

2
S , 0, 0, 0

]T
. (A5)

To construct the D3Q19 ULBM (KBC) model, the shear-part moment set (|T̃si〉) and high-order moment set (|T̃hi〉) in central
space are

|T̃si〉 = [0, 0, 0, 0, k110, k101, k011, 0, k200 − k020, k200 − k002, 0, 0, 0, 0, 0, 0, 0, 0, 0]T. (A6)

And,

|T̃hi〉 = [0, 0, 0, 0, 0, 0, 0, k̃200 + k̃020 + k̃002, 0, 0, k120, k102, k210, k201, k012, k021, k220, k202, k022]T. (A7)

Finally, the relaxation parameters are

S = diag(0, 1, 1, 1, sv, sv, sv, svγ , sv, sv, svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ , svγ ). (A8)
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