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Abstract: The GBA gene encodes for the lysosomal enzyme glucocerebrosidase (GCase), which
maintains glycosphingolipid homeostasis. Approximately 5–15% of PD patients have mutations in
the GBA gene, making it numerically the most important genetic risk factor for Parkinson disease
(PD). Clinically, GBA-associated PD is identical to sporadic PD, aside from the earlier age at onset
(AAO), more frequent cognitive impairment and more rapid progression. Mutations in GBA can
be associated with loss- and gain-of-function mechanisms. A key hallmark of PD is the presence
of intraneuronal proteinaceous inclusions named Lewy bodies, which are made up primarily of
alpha-synuclein. Mutations in the GBA gene may lead to loss of GCase activity and lysosomal dys-
function, which may impair alpha-synuclein metabolism. Models of GCase deficiency demonstrate
dysfunction of the autophagic-lysosomal pathway and subsequent accumulation of alpha-synuclein.
This dysfunction can also lead to aberrant lipid metabolism, including the accumulation of gly-
cosphingolipids, glucosylceramide and glucosylsphingosine. Certain mutations cause GCase to be
misfolded and retained in the endoplasmic reticulum (ER), activating stress responses including
the unfolded protein response (UPR), which may contribute to neurodegeneration. In addition to
these mechanisms, a GCase deficiency has also been associated with mitochondrial dysfunction and
neuroinflammation, which have been implicated in the pathogenesis of PD. This review discusses
the pathways associated with GBA-PD and highlights potential treatments which may act to target
GCase and prevent neurodegeneration.

Keywords: Parkinson disease; GBA; alpha-synuclein; autophagy; unfolded protein response; lipids

1. Introduction

Parkinson disease (PD) is the second most common neurodegenerative disorder, af-
fecting over 3% of the population aged over 65 years. The disease is characterised by the
progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and
the presence of intraneuronal proteinaceous inclusions, named Lewy bodies [1]. Towards
the end of the 20th century, reports began to emerge associating the lysosomal storage
disorder Gaucher disease (GD) with PD [2,3]. GD is an inherited disorder caused by
homozygous mutations in the GBA gene, which encodes glucocerebrosidase (GCase), a
lysosomal hydrolase enzyme which catalyses the catabolism of glucosylceramide (GlcCer)
and glucosylsphingosine (GlcSph) [4]. Since then, several large cohort studies have further
investigated the link between GBA mutations and the risk of developing PD [5–8]. Ap-
proximately 5–15% of PD patients have GBA mutations, making them the most important
genetic risk factor for PD, occurring more frequently than other genes associated with
familial PD including LRRK2, SNCA and PARK2 [7].

Over 300 pathogenic GBA mutations have been identified [9,10]. These have been
associated with loss- and gain-of-function mechanisms. A persistent lack of GCase activity
may influence the autophagic-lysosomal pathway (ALP) and has been associated with
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aggregation of alpha-synuclein. The presence of mutant GCase protein can exert toxic
gain-of-function pathways including endoplasmic reticulum (ER) stress and the unfolded
protein response (UPR). Dysfunction of mitochondria, the inflammatory pathway and lipid
homeostasis have also been implicated in GBA-associated PD (GBA-PD) and can contribute
to the pathogenic accumulation of alpha-synuclein [11].

In this review, we discuss how GBA mutations are associated with PD and outline
the possible mechanisms involved in the pathogenesis of the disease. Advances in the
understanding and identification of the underlying pathways leading to alpha-synuclein
accumulation and subsequent neurodegeneration in GBA-PD will provide new avenues to
be targeted for the development of more efficacious therapies for patients.

2. Parkinson Disease

PD is a common neurodegenerative disorder associated with motor and non-motor
symptoms. PD patients exhibit a classic triad of motor symptoms including bradykinesia,
rigidity and resting tremor. A spectrum of clinically significant non-motor symptoms has
also been described. These include cognitive decline, sleep disturbances, hyposmia and
psychiatric symptoms [12,13]. It is suggested that at the onset of motor symptoms and PD
diagnosis, dopamine neurons in the SNpc are reduced up to 60% [14].

A key feature of PD is the presence of aggregated protein inclusions, Lewy bodies.
Lewy bodies are composed of more than 300 proteins, with alpha-synuclein reported
to be the most abundant [15–17]. Braak et al. proposed a sequential model of Lewy
body formation and deposition of alpha-synuclein [18]. This starts at the dorsal motor
nucleus of the glossopharyngeal and vagal nerves and anterior olfactory nucleus and then
spreads progressively to involve the brain stem and the cortex [18]. The processes by
which Lewy body pathology arises and their role in neurodegeneration remain elusive. The
leading hypothesis suggests that the pathway of intraneuronal alpha-synuclein aggregation
begins with the accumulation of unfolded monomeric species, which can transform into
early folded aggregate intermediates and assemble into later-stage β-sheet-rich oligomers,
protofibrils and, finally, mature amyloid-like fibrils [19]. It is these fibrils that are the basis of
Lewy body formation [20]. Fibrils have long been considered the most toxic alpha-synuclein
species, exerting toxicity through several mechanisms including membrane permeability,
altered autophagy and mitochondrial dysfunction [21]. However, mounting evidence now
indicates that pre-fibrillar forms of alpha-synuclein, such as oligomers, are more critical
in the toxicity of alpha-synuclein. Alpha-synuclein oligomers are thought to be the most
bioactive and cytotoxic form, causing neuronal dysfunction and death [19,21].

Once aberrant alpha-synuclein accumulates inside a cell, it can either be degraded,
deposited in inclusions such as Lewy bodies or released into the extracellular space. These
processes may be related to the failure of the cell to properly degrade alpha-synuclein by
the ALP [22,23]. In human brains with sporadic PD, there is evidence of autophagic and
lysosomal dysfunction [24,25]. This may lead to improper clearance of alpha-synuclein and
its subsequent accumulation and aggregation. Another hypothesis arises from evidence of
the uptake of extracellular alpha-synuclein fibrils by cells [26,27], which may propagate
the spread of alpha-synuclein pathology and act as a template for misfolded, aggregated
alpha-synuclein species.

3. The GBA Gene

The GBA gene is located on chromosome 1 (1q21) and is made up of 11 exons. It
encodes for the lysosomal hydrolyse enzyme glucocerebrosidase (GCase) (IUBMB enzyme
nomenclature number EC 3.2.1.45). The role of GCase is to cleave glycosphingolipids (GSLs)
GlcCer and GlcSph into glucose and ceramide, and glucose and sphingosine, respectively.
Following its trafficking to the lysosome by the transporter protein LIMP2, GCase catalyses
at optimal activity upon interacting with Saposin C, a co-factor, and negatively charged
lipids [28,29].
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The mature GCase protein is composed of 497 residues and is between 59 and 69 kilo-
daltons depending on post-translational modifications [30]. It is made up of three non-
continuous domains: domain I is an antiparallel β-sheet, with two disulphide bridges
which may aid proper protein folding; domain II resembles an immunoglobulin fold made
up of eight β-sheets; and domain III is composed of a (β/α)8 triosephosphate isomerase
(TIM) barrel and houses the active site (Figure 1) [31,32].
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Figure 1. Crystal structure of glucocerebrosidase at pH 5.5 (PDB code 3GXI). Domain I is shown in
pink. Domain II is shown in green. Domain III is shown in blue. The active site catalytic residues
Glu 235 and Glu 340 are shown as ball-and-stick models. The five N-linked glycosylation sites (Asn
19, Asn 59, Asn 146, Asn 270 and Asn 462) are shown as purple spheres. The free cysteine residues
are shown as yellow spheres. The three most common GBA mutations, L444P, N370S and E326K,
are labelled as red spheres. Figure created using The PyMOL Molecular Graphics System, Version
1.2r3pre, Schrödinger, LLC .

Homozygous mutations in GBA cause Gaucher disease (GD), the most common
sphingolipidosis lysosomal storage disorder. GD is a rare, autosomal recessive disease
affecting approximately 1 in 800 live births within the Ashkenazi Jewish population [33,34].
Its incidence is lower in the non-Ashkenazi population. Clinically, GD presents as the
widespread accumulation of GlcCer and GlcSph within the lysosomes of many cell types,
particularly macrophages, across several tissues and organs. It is classified into three
subtypes based upon the involvement of the central nervous system (CNS). Type 1 GD
is the most common variant and can manifest at any age; this phenotype is normally
referred to as non-neuronopathic as it does not usually have any CNS involvement. Types
2 and 3 typically present a more severe clinical phenotype, with disease onset occurring
in early life and patients often dying young [35]. These subtypes are often referred to
as neuronopathic as they affect the CNS; however, there is a wide spectrum of clinical
manifestations across the entire GD subtypes, which suggests that there may be neurological
involvement across the whole disease [36]. Neuropathological analysis of type 2 GD patient
brains demonstrated neuronal cell loss and astrogliosis, which was absent in type 1 GD
patient brains. In the same study, four patients had type 1 GD with parkinsonism, and
intraneuronal alpha-synuclein inclusions were observed [37]. Co-cultures of astrocytes and
midbrain dopamine neurons from type 1 and type 2 GD patients revealed reduced GCase
activity and GlcCer and GlcSph accumulation, which were accompanied by increased
alpha-synuclein aggregates when treated with extracellular alpha-synuclein monomers and
fibrils, as well as inflammation [38]. These findings suggest a link between alpha-synuclein
and GBA.
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The treatments available for GD are enzyme replacement therapy (ERT) and substrate
reduction therapy (SRT). ERT replaces GCase through the administration of recombi-
nant GCase enzymes; these enzymes often have modifications to their terminal mannose
residues, allowing for better targeting to and uptake into macrophages. SRT prevents the
synthesis of GlcCer and GlcSph, helping to reduce substrate accumulation [39].

4. PD and the GBA Gene
4.1. The Link between GBA Mutations and PD

Interest in the GBA gene as a genetic risk factor for PD arose in the 1980s when
clinicians noticed a number of type 1 GD patients developed parkinsonism [2,3]. Since then,
several large cohort studies have further investigated the link between GBA mutations
and the risk of developing PD [5–8]. Further studies have indicated that approximately
5–15% of sporadic PD patients carry a GBA mutation, with an overall odds ratio of 5.4
(n = 7023) [7,40]. This makes GBA mutations numerically the most important genetic risk
factor for PD identified to date.

In the normal population, PD occurs in 3–4% of individuals. However, in type 1 GD
patients, this prevalence is increased. Interestingly, there does not seem to be a difference
between the risk associated with GD patients and heterozygous mutation carriers. It
has been estimated that GD patients have a 9.1% chance of developing PD before age
80 years (n = 504) [41], although other studies place this as high as 20–30%. Heterozygote
GBA mutation carriers are just as likely to develop PD before the age of 80, with a US
study estimating 7.7% of carriers will develop PD (n = 781) [42], while 15% was estimated
in a UK cohort (n = 220) [43]. In one study of postmortem brains of PD patients, GBA
mutations were present in 12 of the 57 samples (21%) [44]. These were both homozygous
and heterozygous mutations, further confirming that both types are associated with PD.

The frequency of GBA mutations varies among different ethnic groups. In the Euro-
pean non-Ashkenazi Jewish population, the frequency is 2.9–12%, whereas in the European
Ashkenazi Jewish population, it is 10–31% (n = 5691). This is much higher than in the
general population, where <1% of healthy individuals are GBA mutation carriers [7]. In the
Asian population, 1.8–8.7% of people have GBA mutations (n = 8836), and 2.9–8% of North
and South Americans have GBA mutations (n = 2371) [45,46].

It must be noted, however, that only a minority of GD patients or GBA mutation carriers
will develop PD. Mutations in the GBA gene do not cause a Mendelian form of PD; they
are a genetic risk factor and increase the risk of developing PD 5–30-fold, depending on
age, ethnicity and mutations included in analysis [7,45,47]. Currently, studies are underway
to assess prodromal symptoms of PD in large cohorts of GBA mutation carriers to aid in
earlier diagnosis and potentially allow researchers to predict who will go on to develop
PD [48]. Furthermore, GBA mutations have been associated with dementia with Lewy bodies,
providing further evidence for a link between GBA and alpha-synucleinopathies [40,49].

4.2. Presentation of GBA-PD

GBA-PD is clinically non-distinguishable from sporadic PD, aside from an earlier age
at onset and more cognitive dysfunction [7,47,50,51]. On average, the onset of GBA-PD is
5 years earlier than sporadic PD [7,46,52,53].

Much like sporadic PD, GBA-PD exhibits the triad of cardinal motor symptoms [54],
although progression is more rapid [55,56]. Non-motor symptoms have been reported to be
more common and severe in GBA-PD compared to non-carriers, with patients often having
more advanced clinical decline, with a greater risk for earlier and more prevalent cognitive
impairment [7,43,46,50,53,55–58]. Non-motor symptoms can include reduced cognition,
depression, sleep disturbances and anosmia [6,43,59].

The pathology of GBA-PD is identical to that of sporadic PD with nigrostriatal
dopamine loss and the presence of deposits of aggregated alpha-synuclein in the form
of Lewy bodies in the brainstem and cortex [37,46,49,60–62]. Some reports suggest that
brains from PD patients with GBA mutations exhibit a more diffuse pattern of Lewy body
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distribution throughout the brain, compared to non-carriers [63]; however, other studies
demonstrated no difference [64].

Further confirmation of a link between PD and the GBA gene arose from a 2020
genome-wide association study. Analysis of the alpha-synuclein gene, SNCA, identified a
polymorphism that was associated with an increased likelihood of developing PD in GBA
carriers [65]. The same polymorphism was associated with accelerated motor decline in
GBA-PD patients, suggesting a role for alpha-synuclein in disease severity [66]. Interestingly,
when brain samples from GBA mutation carriers who had a diagnosis of PD or Lewy body
dementia were analysed, GCase was present in 32–90% of Lewy bodies, compared to
non-mutation carriers, where less than 10% of Lewy bodies were GCase-positive [67]. This
suggests there may be a direct interaction occurring between GCase and alpha-synuclein.

5. Mutations in the GBA Gene

To date, approximately 300 pathogenic mutations in the GBA gene have been identi-
fied [9,10]. These include substitutions, insertions, deletions and complex alleles. The most
prevalent mutations are missense mutations, with the point mutations c.1226A > G (N370S)
and c.1448T > C (L444P) most commonly associated with GD. Some GBA mutations arise
from genetic rearrangements and deletions between the functional GBA gene and a highly
homologous pseudogene (GBAP) [7,9,68,69].

The degree of PD pathogenicity associated with each individual GBA mutation differs.
Some mutations have been stratified into mild or severe. The severity of a GBA mutation is
based upon the phenotype it presents when homozygous in those with GD. It is thought
that mutation severity inversely correlates with GCase activity [70]. Severe mutations are
associated with an earlier age of onset and a greater odds ratio for developing PD compared
to mild mutations [6,46,47] and may be associated with a higher burden of symptoms,
greater cognitive decline and risk of dementia [57,71]. PD odds ratios range between 2.84
and 4.94 for mild mutations and 9.92 and 21.29 for severe GBA mutations [6].

The proximity of mutations to the active site is not a reliable predictor of disease
severity as disease-causing mutations have been found throughout the entire protein
(Figure 1) [72]. For example, the L444P mutation is generally a severe GBA mutation
although it is located far from the active site. Interestingly, some GBA variants, such as
E326K, are referred to as risk variants due to the observation that they do not present
any clinical features of GD when homozygous, yet increase the risk for developing PD
in both homozygous and heterozygous forms [73–75]. Along with the severe L444P and
mild N370S mutations, the E326K variant is believed to be one of the most prevalent GBA
variants in PD patients [76–78], and patients harbouring this variant have been associated
with a severe PD phenotype [79–82]. This observation suggests that the mechanisms
underlying GBA-PD may be separate from those leading to GD. A summary of the effects
of the N370S, L444P and E326K mutations can be found in Table 1.

Table 1. Summary of the most common GBA-PD mutations.

Mutation Penetrance of
Mutation

Location of
Mutation Effect on GCase GD GBA-PD References

N370S 0.08–71.8% Interface of
domains II and III

Loss of GCase activity
Activation of the UPR

Alpha-synuclein
pathology

Generally mild,
non-

neuronopathic
GD

Lower disease
penetrance and a

milder clinical
phenotype

[5–7,40,47,52,73,
80,83–93]

L444P 0.06–18.8% Domain II

Loss of GCase activity
Activation of the UPR

Alpha-synuclein
pathology

Generally severe,
neuronopathic

GD

Higher disease
penetrance and a

worse clinical
phenotype

[5–
7,40,47,52,73,80,
83,87–92,94–96]

E326K 2.8–3.88% Surface of
domain III

Reduces GCase activity to
a lesser extent than

GD-causing mutations

No clinical
manifestation

Worse clinical
phenotype

[44,73–
75,79,80,93,97–

104]
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6. GBA Activity and PD

Mutations in the GBA gene affect GCase activity differently, with some mutations caus-
ing abolition of enzyme activity and others retaining some residual activity [87,88,99,105].
Several mutations occur in and around the active site, which commonly cause GD, and
ultimately destabilise the active site to affect GCase activity.

In GD, GCase activity is normally 10–20% of controls, whereas carriers can retain up
to 50% [45]. In human brains from GBA-PD patients, GCase activity is specifically reduced,
with the greatest reduction observed in the SNpc [106]. A reduction in enzyme activity has
also been observed in dried blood spots from patients harbouring GBA mutations [100],
with heterozygotes retaining more activity compared to homozygotes and compound
heterozygotes. To date, there is no evidence of a correlation between GCase activity and
GBA-PD risk.

A link between GCase activity and alpha-synuclein may underlie the relationship
between GBA mutations and PD. An inverse correlation has been observed between GCase
activity and alpha-synuclein accumulation in GBA-PD and sporadic PD brains [107,108].
The same has been observed in GCase-deficient mouse, fly and cell models [109–118].
Recently, midbrain-like organoids deficient in GCase and over-expressing wild-type alpha-
synuclein accumulated Lewy body-like pathology, which was absent in organoids with
GCase deficiency or SNCA triplication alone, suggesting that impaired GCase function
promotes alpha-synuclein pathology [119].

Further supporting evidence for a loss-of-function relationship between GCase and
alpha-synuclein arises from the observation that enhancing GCase activity can rescue alpha-
synuclein pathology [109,120,121]. It has been proposed that there may be a reciprocal
relationship between GCase and alpha-synuclein as over-expression of alpha-synuclein
results in decreased GCase activity in cell models [122,123]. One study also suggested that
pathogenic fibrillar forms of alpha-synuclein may induce a time-dependent reduction in
GCase activity in primary neurons and transgenic mice treated with the GCase inhibitor
conduritol-b-epoxide (CBE) [124].

Although these studies provide a link between reduced GCase activity and alpha-
synuclein pathology, other studies in cell and animal models have failed to demonstrate
such a link [109,111,125]. In iPSC-derived dopamine neurons carrying homozygote or
heterozygote GBA mutations, alpha-synuclein pathology was similar, although GCase
activity was significantly lower in homozygotes [92]. Interestingly, in primary neurons and
transgenic mouse models treated with CBE, GCase inhibition did not lead to an increase in
total alpha-synuclein or the formation of alpha-synuclein pathology but did enhance pre-
existing alpha-synuclein pathology, leading to an elevation in pathogenic phosphorylated
alpha-synuclein (p-S129-alpha-synuclein) [124]. This finding was not neuron-specific.

Considering that GBA mutation carriers are as likely to develop PD as homozygotes
even though they retain more activity [43,84,100], and that most GD patients do not develop
PD [83] even though GCase activity is very low, it seems likely that loss of activity is not
solely responsible for PD onset.

In addition to GBA-PD, GCase activity has been reported to be reduced in brains of
sporadic PD patients [106,108,126–129]. A similar reduction has also been observed in
the CSF, dried blood spots and monocytes of PD patients with and without GBA muta-
tions [100,130,131]. The reports linking a reduction in GCase activity and protein level to
sporadic PD confirm the relevance of GCase and its function to the wider PD population.

7. Mechanism Underlying GBA-PD

An overview of the possible mechanisms underlying the link between GCase, alpha-
synuclein and PD can be found in Figure 2.
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results in lysosomal dysfunction and subsequent impairment of the autophagic-lysosomal path-
way. This leads to the accumulation of lipid substrates, GlcCer and GlcSph, and alpha-synuclein. 
This accumulation can block the trafficking of newly synthesised GCase from the ER/Golgi to the 
lysosome and further exacerbates lysosomal dysfunction. Impaired degradation of alpha-
synuclein through defective lysosomal and autophagic machinery can also lead to an increase in 
the exosome-mediated release of alpha-synuclein. This mechanism allows alpha-synuclein pathol-
ogy to propagate through the brain. (C) A deficiency in GCase activity at the lysosome can lead to 
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Figure 2. Possible mechanisms underlying the link between GCase, alpha-synuclein and PD. (A) GBA
mutations result in misfolded GCase protein, which is retained in the ER, not trafficked to the lyso-
some, and activates ER stress pathways such as the UPR. (B) Reduced GCase in the lysosome results in
lysosomal dysfunction and subsequent impairment of the autophagic-lysosomal pathway. This leads
to the accumulation of lipid substrates, GlcCer and GlcSph, and alpha-synuclein. This accumulation
can block the trafficking of newly synthesised GCase from the ER/Golgi to the lysosome and further
exacerbates lysosomal dysfunction. Impaired degradation of alpha-synuclein through defective
lysosomal and autophagic machinery can also lead to an increase in the exosome-mediated release of
alpha-synuclein. This mechanism allows alpha-synuclein pathology to propagate through the brain.
(C) A deficiency in GCase activity at the lysosome can lead to the accumulation of glycosphingolipids,
as well as other lipid forms. Aberrant lipid accumulation can affect lipid membrane composition
and may enhance the aggregation of alpha-synuclein. (D) Defective clearance of mitochondria may
occur as a consequence of a GCase deficiency and reduced ALP function. This can lead to the
accumulation of defective mitochondria. A GCase deficiency has also been associated with oxidative
stress, reduced ATP production and abnormal mitochondrial morphology. (E) A GCase deficiency
has been linked to neuroinflammation. An accumulation of lipids or alpha-synuclein may activate
microglia. Alpha-synuclein released into the extracellular space may also directly bind and active
microglia. Created with BioRender.com (accessed on 4 March 2022).

8. ER Stress

Mutations in the GBA gene may lead to the production of a misfolded protein, which
can be retained in the ER to induce ER stress [86,91,93]. There is mounting evidence
from cell and animal models pointing towards a gain-of-function mechanism for GBA
mutations that involves ER retention and activation of the pathways associated with ER
stress, including ERAD and the UPR [86,90–92,132,133]. The extent of ER stress may
correlate with disease severity [93,94]. This may be due to more severe conformational
changes occurring, affecting protein stability.

In human dopamine neurons and Drosophila flies harbouring the L444P and N370S
mutations, the activation of ER stress pathways has been demonstrated, and in one study,

BioRender.com
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this was accompanied by increased alpha-synuclein release, providing a link between
ER stress and alpha-synuclein homeostasis [86,90,92]. Inhibition of GCase activity can
elicit an ER stress response in neuroblastoma cells, indicating that enzyme activity may
play a role independent of the presence of a pathogenic mutated protein [134,135]. This
suggests that ER stress may occur due to a combination of gain-of-function and loss-of-
function mechanisms.

A recent study has suggested that the initial accumulation of alpha-synuclein may
cause dysfunction of the ER, leading to the accumulation of misfolded and immature
GCase protein [136]. In midbrain neurons from PD patients with SNCA triplications, the
accumulation of alpha-synuclein led to ER fragmentation and compromised ER protein
folding capacity. Immature, misfolded GCase protein was retained in the ER and lacked
activity, likely due to the inability of the ER to activate the UPR. This may explain why
GCase activity is reduced in sporadic PD and highlights the possibility of both loss-of-
function and gain-of-function roles in GBA-PD.

The current literature surrounding GBA mutations and the ER suggests that early
intervention to alleviate ER stress may be an attractive therapeutic avenue to explore to
treat GBA-PD.

9. Autophagic-Lysosomal Pathway

Balance between the synthesis and degradation of molecules and organelles is critical
for cellular homeostasis and proper cell function. This is controlled by the ALP which
is the cells’ major mechanism of protein clearance and organelle turnover [137]. There
are three types of autophagic pathways including macroautophagy, microautophagy and
chaperone-mediated autophagy (CMA). There are several key acid hydrolases within the
lysosome to help with degradation, including GCase, and when there is defective function,
there is impaired clearance [60].

The proper function of the ALP is critical for the degradation of alpha-synuclein [22,23].
Defective ALP has been reported in GBA-PD patient brains [106] and neurons [86,92,138].
Several cell and animal models of GBA deficiency demonstrate ALP dysfunc-
tion [86,118,123,125,137,139–142]. Impaired autophagic and proteasomal pathways, as a
result of GCase deficiency, have also been reported to lead to the accumulation of dysfunc-
tional mitochondria [116,140].

Evidence points toward a correlation between defective ALP and alpha-synuclein
pathology in models of GCase deficiency [109,113,115,116,118,123,139]. Impaired ALP
mechanisms are evident in GBA-deficient neurons and brains [24,86,92,143,144] and accom-
panied by alpha-synuclein pathology. Furthermore, in cortical neurons from L444P/WT
mice, the half-life of alpha-synuclein was increased by more than 70% compared to cells
from WT/WT littermates [110], suggesting deficient turnover. A bidirectional loop has
been proposed to explain the relationship between GBA mutations, alpha-synuclein and the
lysosome [123], involving the accumulation of GSLs and alpha-synuclein and prevention
of lysosomal trafficking of newly synthesised GCase from the ER which further exacerbates
lysosomal dysfunction.

Another link between GCase, alpha-synuclein and CMA has recently been suggested,
which involves the mislocalisation of mutant GCase to the surface of lysosomes [145]. In
GBA-PD human brains, half of the mutant GCase in the lysosome was present on the
lysosome surface. This mislocalisation was dependent on a pentapeptide motif in GCase,
which is used to target cytosolic proteins for degradation by CMA. Therefore, the binding of
mutant GCase to the lysosome prevents CMA, causing the accumulation of CMA substrates
including alpha-synuclein. Further analysis in GBA-PD dopamine neurons and fibroblasts
confirmed defective CMA.

Mounting evidence now points toward the cell-to-cell transmission of alpha-synuclein
to propagate pathology around the brain [18]. If alpha-synuclein degradation is impaired,
it may be secreted out of the neuron in an exosome-mediated pathway in an attempt to
overcome its accumulation [146]. A GCase deficiency has been shown to increase the
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propagation of alpha-synuclein pathology through the cell-to-cell transmission of toxic
alpha-synuclein [147,148], possibly through extracellular vesicle release [149,150]. In N370S
dopamine neurons, this increase in alpha-synuclein secretion was coincident with ALP
defects [86]. Recently, GCase has been suggested to have a role in the secretion and spread
of protein aggregates, as in GBA-deficient Drosophila flies, protein aggregation was increased
through dysregulated extracellular vesicles, and wild-type GCase was able to be packaged
and trafficked between cells [151]. In another Drosophila study, knock-out of GBA resulted
in autophagic defects and an abundance of proteins associated with exosome release [152].
Further evidence arises from the analysis of wild-type and L444P/+ mouse brains following
a single injection of mouse alpha-synuclein pre-formed fibrils in the striatum. Enhanced
propagation of alpha-synuclein pre-formed fibrils was observed in the L444P/+ mouse
brain, compared to the control, with widespread alpha-synuclein deposits throughout the
brain, suggesting this mutation increases the formation and spread of alpha-synuclein
pathology [153].

10. Lipid Homeostasis

Dysfunction of cellular lipid homeostasis may underlie PD pathology. Lipid home-
ostasis is necessary for synaptic plasticity and neuronal function [154]. The pathological
fibrilisation of alpha-synuclein is thought to be strongly mediated by physiological interac-
tions between alpha-synuclein and lipids. A previous study using solution-state nuclear
magnetic resonance (NMR) proposed that GCase can directly inhibit lipid-induced aggre-
gation by binding to the C terminal of alpha-synuclein, causing its dissociation from lipids
at the N terminal. The same mechanism was also shown to destabilise mature fibrils [155].
However, it remains debatable whether the binding of lipids to alpha-synuclein promotes
or prevents aggregation.

Lipid membrane fluidity is essential for the efficient binding of alpha-synuclein [156].
If aberrant lipid homeostasis occurs, this may alter the lipid membrane composition or flu-
idity and the binding of alpha-synuclein, leading to subsequent neurotoxicity [114,157,158].
Alterations in the lipid composition have been reported in PD brains, including changes
in levels of fatty acids and the lipid raft content [159]. Changes in membrane fluidity
could greatly affect alpha-synuclein degradation as membrane dynamics are required for
macroautophagy and CMA [11].

Alterations in lipid metabolism seem to play a role in GBA-PD neurodegeneration.
Accumulation of GCase substrates, GlcCer and GlcSph, is a key feature in animal models
of GBA deficiency [92,111,113,139,157,160–163]. In a GBA-PD mouse model, reducing
GSL levels improved cognitive symptoms [160]. Fibroblasts from WT/L444P PD patients
have also demonstrated a significant increase in GSLs compared to healthy controls and
sporadic PD patients, which correlated with decreased GCase activity [164]. Excess GSLs
can alter the lipid membrane composition, leading to changes in membrane fluidity and
curvature [165,166].

Currently, the presence of GSL accumulation is yet to be shown in GBA-PD brains [167,168].
However, there is evidence of GlcCer and GlcSph accumulation in PD and neuropathic GD
brains [126,127,162,169].

A direct link between GSL accumulation and alpha-synuclein fibrilisation has also been
suggested. The accumulation of GlcCer has been shown to stabilise toxic alpha-synuclein
oligomers and enhance its propagation in cell models of GBA deficiency [123,170–172].
Lipids extracted from WT/L444P fibroblasts, but not controls, were able to accelerate
the aggregation of recombinant alpha-synuclein, due to a higher content of short-chain
lipids [164]. A recent study has also demonstrated that over-expression of wild-type GCase
in mouse brains reduced the accumulation of lipid-rich alpha-synuclein aggregates, provid-
ing further evidence for a role of GCase in lipid and alpha-synuclein homeostasis [173].

A deficiency in GCase has not only been associated with increases in GSL levels, but
also with alterations in the composition of other lipid species including ceramide [60,174].
In the SNpc of PD brains [175] and brains from GD patients [176], the marker of lipid-
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induced stress, glycoprotein NMB (GPNMB), is selectively elevated. This presents further
evidence for a primary role for aberrant lipid metabolism in GBA-PD degeneration.

Experimental data suggest there may be specific cell types that present a selective vul-
nerability to lipid alterations. Studies using human brains contain a mixture of neurons and
glia, and it may be that substrate accumulation is cell-specific. This highlights the difficulty
of determining lipid alterations where small changes may be difficult to detect in certain
cell types. Furthermore, it could be that subtle changes in the subcellular localisation of the
substrate or alterations in the distribution of species affect alpha-synuclein metabolism.

11. Mitochondrial Dysfunction

Mitochondria play a central role in energy production by oxidative phosphorylation.
However, they are also heavily involved in other cellular processes including regulation of
calcium homeostasis, membrane potential, apoptosis and stress response [177]. Impairment
of mitochondrial function is thought to play a key role in PD pathogenesis [178–180], and
some studies have investigated the link between GCase and mitochondrial dysfunction.
In GCase-deficient cells, mice and flies, mitochondrial abnormalities have been observed
including oxidative stress, reduced ATP levels, reduced oxygen consumption and abnormal
mitochondrial morphology [112,116,140,181]. In GBA knock-out flies, these abnormalities
were accompanied by an increased sensitivity to oxidative stress, lysosomal dysfunction
and impaired autophagic flux.

Although the cause of mitochondrial dysfunction in PD remains unclear, impairment
of the ALP may contribute. Defective ALP-mediated clearance of damaged mitochondria
has been demonstrated in iPSC-derived dopamine neurons from GBA mutation carriers
and Drosophila fly models [182]. Furthermore, it has also been proposed that the pathogenic
accumulation of alpha-synuclein can render dopamine neurons more susceptible to mito-
chondrial dysfunction induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in
an L444P/WT mouse model [96], providing a link between GCase, alpha-synuclein and
mitochondrial function.

12. Neuroinflammation

Neuroinflammation may play an important role in the pathogenesis of PD [183].
High concentrations of inflammatory markers have been observed in the serum of GD
patients [184], highlighting a link between GBA mutations and inflammation. In animal
models of GCase deficiency, there is considerable neuroinflammation including activation
of microglia, upregulation of inflammatory cytokines and higher levels of immune markers
in the plasma [185–187].

It may be that neuroinflammation arises as a result of GlcCer, GlcSph or alpha-
synuclein accumulation within neurons, which can activate microglia [188–192]. Alpha-
synuclein may be secreted and able to bind directly to Toll-like receptors on the microglia
and activate them, resulting in neuroinflammation [193,194]. If an increase in the extracel-
lular release of alpha-synuclein occurs, possibly due to a GBA mutation, alpha-synuclein
can be taken up into the microglia and astrocytes for degradation [195,196]; however, if
these cells are GCase-deficient, then alpha-synuclein degradation may be defective through
improper ALP function and thus contribute to the spread of alpha-synuclein pathology.

13. GCase as a Therapeutic Target

The link between the GBA gene and PD has now opened a new avenue for therapies,
with GCase as a novel target. Although dopaminergic therapy and deep brain stimulation
(DBS) may be efficacious in alleviating symptoms in GBA-PD patients [46,197,198], research
is ongoing to develop GCase-targeted therapies to prevent neurodegeneration (Table 2).

Current promising therapies for GD include ERT and SRT. ERT works by administering
active, recombinant GCase protein to the cells to increase GCase protein and activity. SRT
works to reduce the accumulation of GCase substrates by inhibiting the biosynthesis
of GlcCer and GlcSph [199]. Both have shown great efficacy in improving the visceral
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symptoms of GD but are unable to cross the blood–brain barrier and thus are ineffective in
treating neuronopathic symptoms of GD or GBA-PD.

Alternative methods to improve the delivery of the recombinant GCase enzyme for
ERT are being investigated. These involve ligating a peptide to the GCase enzyme to
enhance its ability to cross the blood–brain barrier. The Tat peptide, derived from the trans-
activator protein of HIV, has been used as Tat-linked cargo proteins have demonstrated
increased uptake by micropinocytosis, independent of cell surface receptors [200,201]. Sim-
ilarly, peptides derived from Rabies virus have been shown to be promising in improving
the delivery of brain-targeted proteins [202,203]. When GCase is tagged with such peptides,
studies have demonstrated enhanced delivery into neuronal cells compared to untagged
GCase, with the ability to reduced lipid accumulation [204]. Preclinical research is also
ongoing for the transport-vehicle-modified recombinant GCase enzyme (ETV:GBA), which
is a transport vehicle platform technology to actively transport enzymes across the blood–
brain barrier through receptor-mediated transcytosis [205]. Further studies are required to
investigate the efficacy of these methods in treating GBA-PD.

Similar to ERT, novel brain-penetrant SRTs are currently under investigation to treat
GBA-PD. The inhibition of GSL synthesis may reduce alpha-synuclein aggregation and
neuronal cell death. Treatment with the SRT miglustat is able to reduce GSL accumulation in
dopamine neurons from GBA-PD patients, and when coupled with GCase over-expression,
this therapy was able to protect against alpha-synuclein toxicity; however, its efficacy is
limited as it cannot cross the blood–brain barrier [206]. A potent, brain-penetrant inhibitor
of GlcCer synthase, GZ667161 (venglustat), has demonstrated efficacy in reducing alpha-
synuclein and GSL accumulation, in addition to ameliorating cognitive dysfunction in
a GD synucleinopathy mouse model [160]. Although the initial results from a phase
I study of venglustat demonstrated target engagement with no serious adverse effects
(ClinicalTrials.gov Identifier: NCT01674036 and NCT01710826) [207], the recent phase II
clinical trial showed no benefit and was associated with a decline in motor function in GBA-
PD (ClinicalTrials.gov Identifier: NCT02906020), suggesting that this drug is ineffective in
treating GBA-PD. Further development of brain-penetrant SRTs remains a strategy for PD
disease modification.

Gene therapy is another method being explored to deliver active, recombinant GCase
protein to the brain. Adeno-associated virus (AAV) is a viral vector used for gene deliv-
ery into the brain and can deliver to the host cell nucleus without integration into the
host genome [208]. AAV-mediated expression of human recombinant GCase in the hip-
pocampus of a pre-symptomatic mouse model of GD has been shown to be effective in
reducing alpha-synuclein pathology [111]. Further studies in a symptomatic GD mouse
model and in a transgenic mouse model over-expressing alpha-synuclein showed that
when virus-encoding human recombinant GCase was injected into the CNS, there was
increased GCase expression and activity, which led to a reduction in the levels of GSLs
and alpha-synuclein aggregates [120]. The same was exhibited by an AAV-mediated in-
crease in GCase levels in rodent PD models [209]. In a recent study, an injection of viral
vectors containing recombinant GCase was sufficient to enhance GCase activity, reduce
the alpha-synuclein burden and prevent neuronal death in the SNpc in a synucleinopa-
thy mouse model [210]. Gene therapy targeting the GBA gene using an AAV-9 vector
(PR001A) for the treatment of GBA-PD is currently in phase I clinical trials (ClinicalTri-
als.gov Identifier: NCT04127578). The compound is also being tested in infants with type 2
GD (ClinicalTrials.gov Identifier: NCT04411654).
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Table 2. Potential therapies to target GCase to treat GBA-PD.

Treatment Therapeutic Strategy Drug Name Phase in Drug
Development Reference

Substrate reduction Reduce glycosphingolipid
accumulation in the CNS

GZ667161
Venglustat
Miglustat

Phase II completed for
venglustat [160,206,207]

Small molecule
chaperones

Refold mutant GCase in the ER
to improve trafficking to the

lysosome and increase activity
and stability while reducing

ER stress

Ambroxol
Isofagomine

Phase II completed for
ambroxol [39,90,138,211–224]

Gene therapy Replace GCase activity and
protein levels in the CNS

AAV-mediated
delivery of

recombinant GCase

Preclinical research
ongoing

Phase I/II ongoing for
PR001 gene therapy

(Prevail Therapeutics)

[111,120,205,209,210,
225]

GCase activator Increase GCase activity in the
brain

BIA
28-6156/LTI-291 Phase I completed [205,226]

Transport vehicle
modified

recombinant GCase

Replace GCase activity and
protein levels in the CNS ETV:GBA Preclinical research

ongoing [205]

Histone deacetylase
inhibitors

Replace GCase activity and
protein levels LB-205 Preclinical research

ongoing [227,228]

Other promising GCase-targeted therapies undergoing preclinical and clinical trials
include molecular chaperones. Since they have the potential to penetrate the blood–brain
barrier effectively, small molecular chaperones of GCase have gained much focus recently
for the treatment of PD. These compounds can bind misfolded, mutant GCase in the ER,
facilitate the correct folding and increase activity and stability whilst aiding in trafficking to
the lysosome [229]. Two types of molecular chaperones exist: inhibitory chaperones, which
bind to the active site of the GCase protein, and noninhibitory chaperones, which bind to
an alternate site of the GCase protein [229].

A number of inhibitory small molecule chaperone candidates have been identified
as potential treatments for GBA-PD, including repurposed drugs such as ambroxol and
isofagomine [39,221]. In fibroblasts and neurons with GBA mutations, such chaperones
have demonstrated efficacy in increasing the GCase protein level and activity and aided
in the trafficking of mutant GCase to the lysosome [39,90,138,213,218,221,222,230]. Both
ambroxol and isofagomine have been shown to successfully reduce ER stress and improve
symptoms in GBA-mutant Drosophila flies [90,217,223]. Challenges arise when using in-
hibitory compounds, as GCase must out-compete the inhibitors in order to gain access to
the enzyme active site at the lysosome. This competition requires the drug dosage to be
carefully optimised to ensure the inhibitors act solely as a chaperone to successfully refold
and deliver GCase to the lysosome, and not as an inhibitor of GCase [231].

Ambroxol is a pH-dependent inhibitory chaperone of GCase [39] with the ability not
only to increase GCase activity, but also to reduce alpha-synuclein pathology [90,138,214–216].
Ambroxol exhibits its maximal inhibitory activity at the neutral pH of the ER, and when in
the acidic environment of the lysosome, it exhibits nondetectable inhibition [39]. Oral admin-
istration of ambroxol has demonstrated increased GCase activity in the brain of mice [216]
and non-human primates [215]. Trials investigating the safety and efficacy of ambroxol in
humans are now underway. In type 1 GD patients, ambroxol was safely tolerated and exerted
a positive effect on GCase (ClinicalTrials.gov Identifier: NCT03950050) [212]. In a recent
single-centre, open-label, noncontrolled clinical trial with GBA-PD and sporadic PD patients
treated with increasing doses of the drug, ambroxol was well tolerated and safe. It was found
that ambroxol successfully crosses the blood–brain barrier and enters the CSF where it alters
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GCase activity and protein levels (ClinicalTrials.gov Identifier: NCT02941822) [211]. This
suggests that there is successful target engagement of ambroxol with GCase. The next step is
to perform a larger trial and study the efficacy of ambroxol in treating GBA-PD and idiopathic
PD, and this study is currently planned to begin recruitment in late 2022.

To overcome the challenges associated with inhibitory chaperones, there is significant
interest in the development of novel noninhibitory small molecular chaperones for the treat-
ment of PD. Two noninhibitory small molecular modulators of GCase have been identified,
namely, NCGC758 and NCGC607 [218,222]. Treatment of iPSC-derived dopaminergic neu-
rons from GBA-PD patients with these compounds has demonstrated increased lysosomal
trafficking of GCase coupled with reduced GSL and alpha-synuclein accumulation [218,220].
Another noninhibitory small molecule is the GCase activator LTI-291, which has undergone
a phase I clinical trial and demonstrated safety and tolerability in participants, with the
ability to penetrate the brain (Trialregister.nl ID: NTR7299) [226].

An exciting avenue currently being explored is the use of small molecules to modulate
GCase via GCase-independent pathways. One example of this is RTB101, which is an
inhibitor of rapamycin complex 1 (TORC1). The role of mTORC1 is to regulate autophagy,
and inhibition has been shown to increase autophagy and prevent neuronal cell death in a
mouse model of Alzheimer’s disease [232] and improve motor function in parkinsonism
rats [233]. GCase can also be manipulated by the modulation of misfolded GCase through
small molecules targeting proteins that are involved in the refolding of mutant GCase in
times of stress. Such compounds include histone deacetylase inhibitors (HDACis), which
lead to aberrant acetylation of chaperones such as heat shock protein (Hsp) 90, preventing
Hsp90 binding to GCase and the subsequent ubiquitination and proteasomal degradation
of GCase, ultimately leading to increased GCase activity in GD fibroblast lines [227,228].
Additionally, compounds such as arimoclomol can activate Hsp70 to enhance the correct
folding and localisation of mutated GCase and have been shown to increase GCase activity
in L444P fibroblasts [234]. Future studies may involve identifying GCase-independent
pathways that are able to be manipulated to enhance GCase trafficking and activity, in
order to slow down disease progression in PD and alpha-synuclein models.

Significant progress has been made in the development of brain-penetrant GCase-
targeted therapies; however, it still remains unclear which therapeutic strategy is best
suited to treat GBA-PD in terms of efficacy, safety and reproducibility. A key challenge is
the limited understanding of the precise pathways by which individual GBA mutations
increase the risk of developing PD, and thus there may be vast differences between the
effectiveness of therapeutic strategies between patients.

14. Conclusions

The discovery of the link between GBA mutations and PD has provided invaluable
insight into the pathogenesis of the disease and novel perspectives for GCase-targeted
therapies to prevent neurodegeneration. There is growing evidence highlighting the in-
volvement of pathways including the ALP, lipid metabolism, the ER, mitochondria and
neuroinflammation in GBA-PD, and there seems to be a reciprocal relationship between
GCase and alpha-synuclein. However, much is yet to be understood regarding the molecu-
lar basis that underlies the increased risk for PD in GBA mutation carriers, why different
mutations are associated with differential risks and why gain- or loss-of-function pathways
are associated with individual mutations. Further, it is important to understand why some
GBA mutation carriers develop PD, while some do not. Improving our understanding
of how GBA mutations influence the predisposition to PD is imperative to facilitate the
development of novel and efficacious therapeutics to halt disease progression.
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