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Abstract

Threats to sustainable food production are accelerating due to climate change,
depletion of natural capital, and global financial instability. This causes significant risks
to farmers, consumers, and financial and policy institutions. Understanding agro-
ecosystems, and how varying management styles impact long-term local and global
risks, is critical to future wellbeing. To better understand and forecast alternative
futures for agricultural production, we have developed a dynamic simulation model
that accounts for the core natural capital components of agro-ecosystems, including
climate, soil, carbon, water, nitrogen, phosphorus, microorganisms, erosion, crops,
grazing, and trees. Dynamic Agro-Ecosystem Simulation (DAESim) model can be
used to simulate dynamics of soil health and project it into the future to assess
vulnerabilities and resilience. This knowledge can inform and guide investment
decisions by financial institutions, insurance companies, farmers, and government
agencies. Here, we describe the basic model structure, sensitivity, and calibration
results. We then run a few scenarios to highlight the model’s ability to analyze the

results of alternative agro-ecosystem management options.

Keywords: Integrated modelling, modularity, ecosystem services, carbon sequestration,

farming practices, regenerative agriculture.



1. Introduction

In a world of increasing population and consumption, changing climate, and decreasing
availability of arable land, there is an urgent need to improve and preserve the quality of agro-
ecosystems. Agriculture has always been particularly vulnerable to extreme weather patterns
and other environmental hazards. With mounting pressures from climate variability, soil loss,
and with many uncertainties in associated parameters and processes, threats to sustainable
food production are increasing in frequency and intensity (IPCC Climate Change 2014; Shukla
et al. 2019). These pose significant risks to farmers, consumers, and the financial and policy
institutions supporting agro-ecosystems and concerned with food security. Risk and resilience
are crucial factors in the management of farming systems (Meuwissen et al. 2019; Rotz &
Fraser 2015). The growing risks are a strong incentive for the development of analytical and
predictive methods to enable better-informed farm management. In addition to conventional
ecological modelling, we should account for social drivers and mechanisms, which could
potentially reward farmers for carbon sequestration and provision of other ecosystem services,
which can offer new incentives for their sustainable production. The United Nations, Food
Systems Summit 2021 (von Braun et al. 2021) is a recent compendium of studies about

building food system resilience to vulnerabilities, shocks and stresses.

Agro-ecosystems are complex, dynamic systems that operate on local and regional scales
influenced by local, national, and global economic frameworks. In these systems causal
relationships between system variables are not simple — they are affected by contextual and
exogenous factors and by positive and negative feedback loops, time delays, and non-linear
dynamics (Sterman 2002). Moreover, they are embedded in hierarchical social systems, which
come with their additional uncertainties and drivers. Complex dynamic systems modelling is

one approach capable of incorporating these features.

A number of models have been developed to assess agricultural management decisions.
For example, in the context of Australian farming, the Australian Bureau of Agricultural and
Resource Economics and Sciences developed the Global Trade and Environment model
(Pant et al. 2002). This is a general equilibrium model that takes the inter-linkages of the
economy into account, among which supplies, access and transportation costs, taxes, investor
and household behaviors are most important. It also includes two extension modules that
appraise the costs and benefits of multiple scenarios. However, they have not considered

recently marketed ecosystem services (e.g. carbon sequestration) and only focus on elements
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that relate directly to the traditional market economy. In addition, their environment module
only considers the effects of management decisions on greenhouse gas emissions, without
key crop and environment specific features. Another example is the Investment Framework
for Environmental Resources model (INFFER) (Pannell et al. 2012; Pannell et al. 2009), which
was developed to assess and improve conservation and other types of environmental projects.
It calculates the impacts and opportunities for policymakers and businesses in order to clarify
investment opportunities. However, it does not consider agricultural land management in its
framework. As a third example, the Australian Stocks and Flows model, assesses the
sustainability of the grains industry and food security under different scenarios of climate
change, but does not include the broader contributions of ecosystem services to agricultural
productivity and societal wellbeing (Dunlop et al. 2004). FARMSIM (Richardson & Bizimana
2017) is another simulation model designed to inform decision-makers about the economic
and nutritional impacts of various farming systems. Though it can provide estimates of
empirical probability distributions for net income for crops and/or livestock, and nutrient intake
by the farm family, there is no information provided about ecosystem services and the health

of land.

The available models generally only cover a subset of agro-ecosystem types (Turner et al.
2016). There are many crop production models (e.g., Agricultural Production Systems
sIMulator (APSIM) (Holzworth et al. 2014)), financial risk models  (Katchova & Barry 2005;
Pannell et al. 2012), and farmer behavior models (Martin et al. 2011; Robert et al. 2016). What
is missing from the range of specialized models is integration. The category of natural capital
incorporates a variety of other ecosystem services that include global climate regulation (via
carbon sequestration), water supply, nutrient cycling, soil creation, pollination, recreation, and
others. While these ecosystem services are vital to local and global populations (Assessment
2001; Costanza et al. 2014b; Reid et al. 2005), their dynamics and value are not fully
recognized in most ecological models and conventional economic measures of wealth and
productivity (Bateman et al. 2013; Costanza et al. 2014a; Dasgupta 2008). Accurate
assessment of wellbeing requires analysis of a far more inclusive set of indicators beyond
income level and economic productivity (Farley & Costanza 2010). This highlights the
necessity for developing models that can encompass the natural and social capital
considerations underlying individual and societal wellbeing. Furthermore, farmers, bankers,
and government agencies need to know the value of farm assets, particularly natural capital
in addition to built capital. They also need to include responses to future climate projections,

along with individual performance and industry trends.



So far, no analytical models have been developed to assess natural capital on farms in
collaboration with farmers and governments to maximize sustainable wellbeing (Turner et al.
2016). Besides, none of the existing models can assist major landowners, banks, and large
corporations to make decisions about shifting from commercial exploitation to investment in
sustainability targets (e.g., carbon sequestration and biodiversity). These gaps give rise to the
need to build a comprehensive model to help understand the complex connections between
natural, social, built, and human capital, ecosystem functions, and services; and forecast

factors affecting farm seasonality, sustainability and resiliency.

As a first step in this process, we used STELLA modelling software to develop a dynamic
simulation model of the natural capital component in farm agro-ecosystems. To create this
model, we synthesised, extended and integrated components from several existing models of
farm productivity (e.g., LHEM (Voinov et al. 2004), Century (Parton et al. 1994), DayCent
(Parton et al. 1998), APSIM (Holzworth et al. 2014), etc.). We used data from an Australian
agro-ecosystem to calibrate and test the model performance. Historical data on biophysical
and environmental conditions were collected from publicly available geo-spatial databases
including SoilGrid and Digital Agriculture Services. These data include climate, soil
characteristics, erosion rates, groundcover, water quality, chemical inputs and other variables.
We incorporated the effects of both fast variables (i.e., rainfall, fertilizer application rates, and
short-term management decisions) and slow but changing variables (i.e., soil conditions,
climate change, long-term farming practices and groundwater) on the indicators of soil

function/health (e.g., water holding capacity/bulk density).

The rest of the paper is organized as follows: Section 2 describes the model framework and
method as well as the details of our case study. Section 3 presents calibration and validation
results, uncertainty analysis, and findings from the model. Finally, Section 4 reports the results
of alternative, progressive management scenarios and Section 5 derives conclusions, some

practical and managerial perspectives, and future directions for the model and its applications.

2. Materials and methods

Our Dynamic Agro-Ecosystem Simulation (DAESim) model has eight interconnected
modules that are grouped in the following three broad categories: (1) Climate and
management; (2) Natural Capital; and (3) Outputs. This modular approach allows for easy
integration of additional modules in the future, namely human, social, and built capital. It is
designed to explicitly account for ecosystem goods and services and factor them directly into

the process of global economic production and human welfare development. In Figure 1, we



graphically show the structure of the model, and the interactions among the modules. We also
color coded the diagrams such as green variables demonstrating inputs and orange filled ones
indicating the empirical dynamic data. Access to the model is available here at
https://www.comses.net/codebase-release/a18a26d6-5a1d-4327-a7ec-31367939bc78/.
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Figure 1. A graphical representation of the modules in DAESim illustrating the interactions among the
ecosystem functions.

2.1. Climate

This module does not have any state variables. It is designed primarily to simplify data pre-
processing. It encompasses variables that describe the climatic factors, such as precipitation,
temperature, humidity, wind speed, solar radiation as well as day length, elevation, and Julian
days (Figure 2). Appendix A1 provides further details about data sources and unit conversions
in the climate module. In this model, macro climate variations are considered representing

climates from different locations.
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Figure 2. STELLA diagram of climate module.

2.2. Management

Agricultural management practices considered in this study are presented in Figure 3. They
drive short and long term variability in soil properties and processes related to water retention,

crop growth dynamics, sediment and nutrient loss, etc.
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Figure 3. STELLA diagram of management module.

Farm management practices directly influence different processes related to nutrient
availability, crop growth, soil health, and water retention. There are two general categories of
farming practices: conventional and ecological. In general, conventional farming practices
focus on near term yields and inputs. Whereas, ecological farming has a focus on also

regenerating natural capital to balance long term food production with ecosystem health. The
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potential benefits for ecological practices are not only limited to carbon sequestrations and
biodiversity preservation, but also building farming community well-being as well as improving
farming livelihoods and the social reproduction of culture. More details on the convergence
and divergence of agriculture practices and definitions are provided by Schreefel et al. (2020).
Regeneration International summarises a list of practices that are supposed to be important
in establishing a truly ecological and climate-resilient farm'. Read more about Regeneration
International here. In DAESIM, we specifically consider a set of management practices
such as reduced tillage, cover crops and plant residues and their impact on the health of
ecosystem services. The values for these control parameters vary between 0 and 1 indicating
the fraction of land with conventional/conservation/no till, intensity of crop residue inputs to the
soil, and intensity of cover crop adoption. This module allows the user to control other
management practices in agriculture including planting, harvesting, fertilizing (including
chemical fertilizer and manure compost) and irrigation, grazing and potential manure

application.

2.3. Natural capital

2.3.1. Water module

In line with the LHEM (Voinov et al. 2004) hydrologic module, the water module of DAESIim
has three state variables to mimic the vertical movement of water: surface water, unsaturated
groundwater of soil, and saturated groundwater storage. It calculates the associated fluxes
related to physical (such as evaporation, runoff, and percolation into groundwater storage)
and biological (interception, infiltration into soil water, plant transpiration) processes to
simulate the water exchange between the state variables (Figure 4). Water plays a crucial role
in regulating most of the ecosystem functions, and as such, the outputs of this module are
used as inputs in all the other modules. It is these multiple water process features that
distinguish DAESim from other common plant growth models (e.g. DAYCENT). The main
function of water is to enhance plant growth, but also to aid decomposition by microbes and

trigger the nutrient and mineral cycles to sustain plant life.
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Figure 4. STELLA diagram of water cycle.
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Infiltration is the process by which water on the ground surface enters the soil. We used an
established empirical model for predicting the infiltration rate based on soil properties
(percentage of sand, silt, clay and organic matter as reported in the erosion module) and
moisture content (Patle et al. 2019). Additionally, the infiltration rate can be modified by the
habitat type (ground cover as defined in the management module), vegetation type, and root
system. Vegetation has a positive influence on infiltration by increasing the rate of water
penetration into the soil. This is a key feedback that many farmers know, as establishing good
plant ground cover leads to a virtuous cycle by holding more runoff, which aids plant growth.
Conversely, overgrazing and loss of ground cover increases runoff, erosion, and loss of plant
growth. Our model captures these particular benefits in reducing soil erosion by protecting the
soil surface so water tends to infiltrate instead of running off. In addition, relying on the findings
of Xie et al. (2020), the model considers the direct impact of the crop root system on the

infiltration rate.

The bulk density of a soil sample is estimated as the mass of the sample divided by the
volume of the sample. When dealing with soil samples, the average bulk density of soil is 2
g/cm”3 (but ranges from 1-3g/cm”3 from topsoil to subsoil). This is a key value that is
unfortunately not measured often enough and lacks depth and spatial resolution, especially
as soil bulk density changes with management (Gajda et al. 2016). Here bulk density is
assumed to be the initial bulk density of soil samples unless otherwise specified. To monitor
the changes of the bulk density over time, we refer to the study of Yue et al. (2017) to estimate
the dynamics of bulk density based on soil pH and the percentage of organic matter, which
states how bulk density goes down and organic matter goes up. This dynamic bulk density
feedback is also a key addition in DAESim that would show accelerating positive or negative

multi-year effects on plant growth.

Field capacity - the proportion of total soil volume capable of holding water - is important for
measuring the dynamics of water storage over time. The value of field capacity changes in
time depending on the specific yield (referring to the wilting point water) and porosity (referring
to the total soil volume that is taken up by the pore space) (Rab et al. 2011). See Appendix

A2 for equations and further explanation.

2.3.2. Plant growth module

We developed the DAESIm crop growth module using similar assumptions and processes
to those in the LHEM plant module (Voinov et al. 2004) and APSIM (Holzworth et al. 2014),
including net primary production in photosynthetic tissue, translocation to non-photosynthetic

tissue, and decomposition (refer to Figure 5). Photosynthetic (leaves) and non-photosynthetic
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biomass (stems and roots) are the main components of plant biomass and translocation
moves carbon sugars from leaves to stems and roots. Water and nutrients are translocated
from the roots and stems to the leaves. The module imports driving variables (solar radiation,
day length, and min/max temperature, humidity data) from the climate module, nutrient
availability from the nitrogen and phosphorus modules, and water availability from the water
module to simulate the plant growth. Recent studies suggest that a greater allocation to root
mass provides a greater rooting depth later in the season leading to drought tolerance and
increased yield under water-limiting conditions (McNally et al. 2015). To consider this effect,
we allow two genetic states with more or less the root biomass allocations affecting root depth

equations. The plant module data sources are available in Appendix A3.
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2.3.3. Soil module

We developed the soil module based on the Millennial, APSIM, and LHEM models. It
encompasses both organic matter decomposition process and soil erosion by water (Figure
6). The decomposition process includes four state variables related to stable detritus, labile
detritus, minerals, and microbial biomass. The inclusion of microbes serves predominantly to
close the nutrient and mineral cycles in the system. Compared to the existing models, our
model adds the manure/detritus decomposition process, calculates CO2 emissions from soil,
explores the dynamics of microbial activities, and estimates nutrient loss due to water erosion.
We modify the inflows of soil organic matter (SOM) to the stable and labile pools of carbon by
adding manure/compost as a source of SOM. This also adds to the nitrogen pool. For example,
when the biomass decomposes and/or is consumed by an animal and released as manure,
part of the biomass turns into stable detritus and part is released as CO2. For estimating the
initial amount of organic matter stock, we incorporated an equation using total carbon stock,
proportion of carbon in different pools (Srivastava et al. 2016), and the conversion factor for

estimating organic matter from soil organic carbon  (Edwards 2021)

Ecological/conservation agriculture seeks to regenerate and build organic matter stocks in
soil to sequester carbon from the atmosphere (Schreefel et al. 2020). Increased soil organic
matter aids water holding capacity and cation exchange capacity. Decomposition of biomass
via active microbes is key to nutrient cycling. This natural decomposition process provides
nutrients but also releases CO2 and other greenhouse gases. Microbial abundance and type
can accelerate soil nutrient cycles and soil organic matter regeneration (Wang et al. 2011).
The decomposition processes of stable and labile detritus are defined with nonlinear functions
to account for the influence of microbes, humidity, and temperature. The level of soil moisture
(from the water module) should be suitable for the microbes to continue to accelerate the
biological decomposition process. The soil temperature for microbial activities is calculated

based on the average daily temperature.

Microbes consume a proportion of plant matter for growth and release organic matter when
they break them down, shifting carbon from the labial to the stable pool. Various microbe types
have different growth rates, consumption rates, decomposition rates and survival rates in
times of stress. In this model, however, due to the unavailability of empirical data, we simplify
the process and consider microbes as one aggregate group. So, we assume these rates to be
identical for all soil microbes. This is a reasonable assumption since soil microorganisms can
decompose organic matter, cycle nutrients and fertilize the soil only as part of the microbial

community (Johns 2017).
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Stable and labile detritus can be lost through the process of oxidation to CO2 and leaching
as dissolved organic carbon. The amount of litter and detritus returned to the soil depends on
the leaf biomass and amount harvested with the rate of decomposition influenced by
mechanical incorporation and tillage. Selection of farming methods can influence the rate of
oxidation process. In conventional farming, losing carbon-rich organic matter from soils can
happen at a higher rate, releasing the carbon captured by photosynthesis. The loss of stubble
also results in increased evaporation. This effect is reflected in the soil oxidation rates in the
model. We used the Universal Soil Loss Equation (USLE) (Wischmeier & Smith 1978), one of
the most widely used models for estimating daily soil erosion in cropland. This model uses
four factors, including: Soil Erodibility Factor (K), Slope Length and Steepness Factor (LS),
Cover Management Factor (C), and the Support Practice Factor (P), for predicting soil loss
(See Figure 6). In the original model, these factors are assumed to be constant in time.
However, as farming practices and land management decisions can indirectly affect the values

of K and C, we modify USLE to account for these effects.

Soil erodibility factor, K, represents runoff rate and soil susceptibility to erosion events. To
account for the dynamics of K, we use the findings of Wischmeier and Smith (1978) and
Renard and De Marsily (1997) about the influence of SOM, bulk density, and permeability on
the soil erodibility factor. Regarding the C factor dynamics, we include the influence of land
use and management on reducing the soil loss rate. The loss of topsoil due to erosion events
is reflected in the model. Further explanations about the soil module are available in Appendix
A4.
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Figure 6. STELLA diagram of soil module including the decomposition process and water erosion.
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2.3.4. Nutrient module

We incorporated the nutrient cycle defined in GEM (Panagos et al. 2014) to simulate the
dynamics of nitrogen (Figure 7) and phosphorus in topsoil (Figure 7). We considered four
major sources of nitrogen in the system, including atmospheric deposition, fertilizer
application, natural decomposition of organic material, and manure. N is provided via the
manure decomposition process but soluble N is also lost to denitrification. N fixation by
legumes or free living N fixing microbes eating detritus is included. Nitrogen fixation is the
amount of atmospheric nitrogen that is converted to soluble forms such as ammonia by
enzymes to be ready for plant uptake. Denitrification is the process that converts nitrate to
nitrogen gas (N2, N20O and NO2), thus removing bioavailable nitrogen and returning it to the
atmosphere. We use the study of Holzworth et al. (2014) for defining the nitrification process.
In DAESim, the incoming fluxes of phosphorus are the same as nitrogen fluxes except for the

nitrogen fixation and denitrification processes.

The nutrient cycle outflows are based on the hydrologic fluxes calculated in the water module
as well as net primary productivity defined by the plant module. For estimating the nutrient
levels, GEM and LHEM closely follow the water fluxes and measure plant available nutrients
on the surface, in the unsaturated storage, and the saturated layer. Our model currently
focuses only on the nitrogen and phosphorus stored in the upper soil layer that is available for
plant uptake. Thus, the vertical transportation of nutrients, as well as the sorption process, are
excluded from the model analysis and replaced by two equations. The first one measures the
amount of nutrients that can be carried away in moving water. The second equation refers to
nutrient leaching, the downward movement of dissolved nutrients in the soil profile with
percolating water. The nutrients in the surface storage are assumed to be available for plant
uptake when there is water in surface soil or when the water is available to the plant root
system to dissolve them. This assumption allows us to monitor the availability of nutrients for

plant growth. Further details for the nutrient module can be found in Appendix A5.
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2.3.5. Livestock module

At present, this module predominantly feeds into the nutrient and soil modules in the system,
but does not go into all the details of livestock rotations (such as animal movement), the
economic (e.g., profitability for farmers) and social (e.g., food security) considerations.
Demographic composition and the availability of feed and water are important determinants
for analyzing and understanding the dynamics of livestock populations. We consider the
seasonal fluctuations in the number of births (Birth) and deaths (Death) of animals, depending
on the population and gender, while the influence of animal age on the dynamics of the

population is excluded.
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Figure 8. STELLA diagram of livestock dynamics.

Factors such as the availability of feed? and water can influence the fertility rate. Regarding
the risk factors associated with animal mortality (mortalityRate), we only consider the influence
of drought and ignore the role of other factors such as disease and age . Note that we did
not consider the different nutrient aspects of feedstock. The trade of livestock depends on
whether there is enough feed and water available, and the minimum number of animals on

the farm. Manure® is an inevitable by-product of livestock production. The word manure used
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in this context refers to animal waste. It is a valuable material that can be used as a source of
organic material and fertilizer for crops and pasture. We define the composition of manure as
excreted material from the animal faeces and urine only and exclude the amount of bedding
used for manure collection. In our case, the quantity of manure depends on the animal's
weight. It is to be noted that the livestock module takes inputs from the plant growth and water
modules. The impacts of different grazing techniques and their pressures on land were not
the focus of this study and were left out of this module. Further details are available in
Appendix A6.

2.4. Assessment

Soil health assessment is defined by measuring the biological, physical and chemical
functionalities of soil as a living system to inform land management decisions and ensure
nutrition security, environmental quality, as well as climate change resilience (Maikhuri & Rao
2012). In this module, we aim to introduce a set of measurable soil parameters to indicate the
effectiveness of farming management practices and quantify their efficiency (Figure 9). A
comprehensive list of indicators, their definitions and references is provided in the study of
Bennett et al. (2010) and Karlen et al. (2019). The selected soil health indicators for this study

include the following factors.
The importance of soil structure and fertility is presented in

e Carbon stock: the total carbon in soil, mineral, labile and stable detritus (linked to the
soil module);

e Soil organic carbon: the percentage of organic carbon in soil (linked to the soil and
erosion modules);

e Soil erosion potential: the amount of soil eroded (linked to the erosion module);

e Crop yield: farm production (linked to plant module);
Microbial activity and potentials of nutrients to support plant development are reflected in

e [Fungal microbes: the microbial biomass (linked to the soil module);

e Phosphorous: The total amount of phosphorus in the topsoil (linked to the phosphorous
and erosion modules);

e Nitrogen: The total amount of nitrogen in the topsoil (linked to the nitrogen and erosion

modules).

The water retention, moisture to support plant growth and pollutants are measured in
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e Water quality: total nitrogen concentration in surface water to indicate potential water

pollution (linked to the water and nitrogen modules);

e Water quantity: the total amount of water a soil can hold at field capacity (linked to the

water modules).

The main objective is to maximize the ecosystem health, which can be only achieved through
finding a balance between soil water, nutrients, structure, and production. Finding the
optimality in this case is a challenging task as, for example, an increase in the amount of
nutrients (e.g., nitrogen and phosphorus indicators) can cause water pollution problems (in

conflict with the water quality indicator).
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Figure 9. STELLA diagram of farm health assessment.

In this study, we avoided indicator aggregation to provide users with the flexibility of selecting
indicators of interest to be included in their soil health assessment and land management
decision-making. In the future, we can use interactive multi criteria analysis methods to
aggregate all these indicators for a more general and understandable ecosystem service

assessment.
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3. Sensitivity, calibration and validation

e Sensitivity

To assess the model sensitivity, we use the one-factor-at-a-time (OFAT) method in which
each parameter is varied solely utilizing a range from minimum to maximum of the possible
value from the STELLA model, divided into 50 runs. For each value, the resulting absolute
change in the outputs is compared to the baseline. We categorize parameters as highly
sensitive, averagely sensitive, and low sensitive parameters. Overall, the soil module has the
highest sensitivity, whereas the phosphorus module has the lowest sensitivity (see Appendix
B1).

e Calibration

Calibration is a vital step in tuning the model to reproduce empirical data by tweaking the
VElES SRk WREhESERSiVETOaSIPEIAMSISISN T here is a set of data related to plant,

water, and erosion dynamics available in geospatial databases that can be used for this
purpose as described below. We selected the Woodstock (long season) wheat farm in New
South Wales, Australia (-33.715014, 149.071208) as the case study site. The data are
collected by the National Variety Trials (NVT) program on a yearly basis, to assist Australian
grain growers in varietal decision making. The trail sites are chosen in consultation with
stakeholders (agronomis, growers, etc.) to represent soil types, crop prevalence, and
environments within a region. Contracted providers sow, maintain and harvest the woodstock
trial site and assure that no limiting factors like nutrition or disease affect the result of
experiments. Complementary information about the NVT program can be found here. We
ran the model over the time period of Jan 2018 to Jan 2020. The list of DAESim input

parameters and their values is available in Appendix B2.

For the Plant module calibration, we collected dry matter productivity (DMP) data from the
Copernicus Global Land Service* for every 10 days and converted it to daily NPP data (using
DMP*0.45*0.1/1000) to match the model time step. Besides, LAl data are collected from the

same database and scaled (values are divided by 40) to be consistent with the model

parameter. Figure 10 shows that the simulated NPP and LAl are replicating the empirical data
quite closely. The spring and autumn growing seasons increase in leaf area and net
photosynthetic productivity, with decreases in dry summers and colder winters. This shows

the carbon capture and translocation potential of the plants to soil and to yield.
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Figure 10. Comparing the empirical data of NPP and LAl with those calculated by the model.

For calibrating the soil module, we focus on estimating different pools of carbon in soil - labile,

mineral and stable - and microbial biomass. According to (Srivastava et al. 2016) the SOM

consists approximately of 10% labile (active), 40-80% stable (slow) and 10-50% mineral

(passive) detritus, with differential turnover rate ranging from months to over several hundred

to thousands years. We multiplied these proportions in the amount of SOM collected from

SoilGrid®. Regarding microbial biomass, we rely on the empirical findings of Bastida et al.

(2021) to estimate the initial amount of microbes in the soil, as well as their reproduction and

death rates. Figure 11 compares the empirical and model generated dynamics of microbes.
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2018 2019 2020
Jan 2018- Jan 2020
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Figure 11. Comparing the microbial biomass dynamics calculated by the DAESim model and empirical
equation derived by Bastida et al. (2021).

We calibrate the evaporation and transpiration in the water model. The required data are
collected from the Australian Bureau of Meteorology website®. To be directly used for
calibration, we make the units of data consistent with the units of the model variables (the units
of evaporation and transpiration data are divided by 1000). Figure 12 demonstrates the model

can replicate the values and trends observed in the empirical data.
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Figure 12. Comparing the empirical data of evaporation with those calculated by the model.

We use the amount of nitrogen and phosphorus reported by  NVT  program’ to calibrate

the total nitrogen and phosphorus in the topsoil. In the erosion module, we tune the value of
soil permeability to make the calculated erodibility factor (K) as close as possible to the value
of K collected from the Maps of Australian soil loss by water erosion derived using the

RUSLE®. The difference between calculated and empirical K is less than 0.01.

6 http://www.bom.gov.au/water/landscape/#/qtot/Actual/day/-28.4/130.4/3/Point////2020/8/14/
7

8
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e Validation

After the model calibration with available data, the model delivers an overall assessment of
the soil health as presented in Figure 13. With regards to the microbe indicator, the estimated
microbial biomass (on average 25 g/m2) and its dynamics in time are consistent with the
microbial biomass (23 g/m2 in topsoil) reported by  Soil Quality Organization®. Looking into
NVT reports (2017-2019) for Woodstock, the predicted annual wheat yield (0.6-0.7 kg/m2),

total nitrogen (35 g/m3), and total phosphorus (25 g/m3), and percentage of soil organic

carbon (1.8%) are completely in line with the measured values in Woodstock (0.644-0.675
kg/m2 yield, 40-60 g/m3 nitrogen, 20-30 g/m3 phosphorus, and 1.2-1.9% organic carbon). The
estimated total carbon stock at around 48000 g/m2 is in agreement with the values reported
by SoilGrids at 46000 g/m2. Comparing the annual average of erosion rate (4 g/m3) with the
data collected from CSIRO Data Access Portal (Maps of Australian soil loss by water erosion)
(3 9/m3), we observe a high accuracy in the erosion predictions (estimation error less than
5%).
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Figure 13. Woodstock soil health as assessed by DAESim.
Beside, a comparison between the estimated root depth and the empirical data from the

literature (Thorup-Kristensen et al. 2009) shows that the simulation model can estimate the

depth of the wheat crop with high accuracy within the ranges (between 1 and 2 meters)

reported by Lilley and Kirkegaard (2016) and Kirkegaard and Lilley (2007). We also compare

the estimated and empirical values of soil moisture (from Copernicus Global Land Service) to

check the validity of the water module further. As shown in Figure 14, the simulation model

can estimate the dynamics of moisture level with high accuracy and indicate that in very wet

years, soil is saturated all the time and there is no benefit of irrigation.
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Figure 14. Comparing the empirical and simulated values of soil moisture over 2.8 years

4. Scenario analysis: alternative farming practices

e Scenario description

This subsection outlines the scenarios, from climate change to management options
regarding agriculture. Table 1 indicates the variables changing in each scenario and their
assumed values. For the purpose of this initial study, we only consider the scenario of
changing farming practices and exclude possible climate scenarios (it is not being treated in
this paper). In conventional farming, losing carbon-rich organic matter from soils can happen
at a higher rate, accelerating climate warming. But by regenerating, rehydrating, and
covering soils, farmers sequester more carbon underground. For conducting the model
experiments, we changed the variables of the management module assuming all the other
model parameters stayed the same. In scenario 1 (Run 1), the farmer uses recommended
fertilizer rates for the reference crop, and conventional management practices (conventional
tillage, low intensity cover crop, and low amount of crop residues) to achieve higher yield. In
scenario 2 (Run 2), the farmer applies the same fertilizer but switches to conservation
practices by applying conservation tillage, leaving higher residues on the land, and keeping

the land covered with all-season crops.

Table 1. The list of parameters and their values that change in each scenario.

Intensity of tillage Intensity of cover crop Intensity of residues

Scenario 1 5 1 1
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Scenario 2 3 3 3

e Scenario result

We run the model for 10 years and compare the scenarios. The results in Figure 15 show
that in the conservation farming scenario, all soil health indicators perform better than in the
conventional scenario; though compared to the conventional farming, the yield drops slightly
in the first few years, and it bounces back to the initial state in the later years. No-till farming
minimizes soil disturbance, while cover cropping, and residue adoption retain water and
rehydrate land. Hence, they are expected to build healthier, more structurally stable, and
resilient soil for plants. Changing tillage practices was shown to significantly increase levels of
soil organic carbon (from 1.4 to 1.6% in 10 years) and soil microbes (18 to 26 g/m2 in 10
years) over time. This is in line with other studies that have shown that a combination of
reduced tillage, cover  cropping, and stubble retention can increase soil organic carbon by
up to 10-20% after less than 10 years (Institute 2014)'. This result thus predicts the potential
of the conservation scenario, in which we observe a 14% increase in soil organic carbon, with

minimal yield losses.

10 https://rodaleinstitute.org/wp-content/uploads/Regenerative-Organic-Agriculture-White-Paper.pdf.
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Figure 15. A comparison between the influence of conventional (blue/solid-Run1) with conservation
(red/dotted-Run2) farming practices on soil health indicators. In the conventional scenario,t  here
are clear downward trends in the carbon stock, microbial biomass, and water holding capacity.

Another critical management factor in conservation farming is the strategic use of crop
rotation and cover cropping. It can effectively protect soil from erosion and preserve the
nutrient levels for successful plant growth (Bolinder et al. 2020). It also helps balance soll
nutrients (about 20% increase in topsoil nitrogen and phosphorus) and build a diverse SOM.
The other influential practice used to help maintain and support soil biology is residue mulching
and retention. Leaving plant residue evenly across the ground serves as mulch protecting the
soil and supporting the fungal relationships essential for nutrient uptake and carbon
sequestration. In this case, a higher level of soil moisture (5% more) was observed. From our
analysis, we conclude that a combination of conservation farming practices reduces the
risk of soil erodibility (from 3.2 to 1.2 g/m3 in 10 years) due to the reduction in C factor (-42%)
and increase in percentage of soil carbon. The changes observed in the C factors are in line
with Panagos et al. (2015) estimations of C factors decrease due to management practices in
a 10 year period. Hence, using soil conservation as the entry point can considerably contribute

to multiple ecosystem services.
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5. Discussion and conclusions

Soil naturally stores carbon but if its carbon is exposed to oxygen in the atmosphere, it
transforms into carbon dioxide, and is lost from soil contributing to the greenhouse gas
emissions that warm the planet. Conservation farming is a set of practices that aims to
regenerate soils and at scale ultimately help to compensate for historical farming emissions
and reverse climate change by drawing more carbon from the atmosphere. We built an
integrated, dynamic simulation model of an agro-ecosystem that can be used to examine the
relationship between natural capital, resilience, and risk. The model includes a range of
variables potentially affecting the short and long-term behavior of natural capital. It is a
synthesis and expansion of several previous and ongoing agro-ecosystem modeling efforts
and is intended to be applicable worldwide. The model runs on a daily time step and has been

calibrated with historical data for a farm in New South Wales, Australia.

It is important to compare the structure of DAESim with other popular agriculture models. For
example, consider APSIM, which is a well-known modelling and simulation tool for farming
systems. It contains a set of modules including plant, animal, soil, and climate to simulate
systems for a diverse range of practices (Holzworth et al. 2014). Both DAESim and APSIM
explicitly simulate water, nitrogen, and soil cycles. Looking into the details of APSIM’s soil and
nitrogen modules, we note that soil microbes and their role in decomposing organic matter,
cycling nutrients and fertilizing the soil are not included. Despite the vital role of microbes in
carbon storage and land sustainability, little is known about their biodiversity, interactions
within an ecosystem, or factors affecting their growth/degrowth. As a result, they are also
rarely considered in simulation models. The Millennial model, developed by Abramoff et al.
(2018), is one of the very few models that incorporated microbial processes in soil organic
matter predictions. With regards to the soil modules, DAESim is conceptually different from
Millennial, and considers microbial pools as measurable entities in the soil, directly influencing

the decomposition rate.

DAESIm has important implications for both theory and practice. From a theoretical
perspective, it can significantly advance understanding and management of agro-ecosystems.
This model uses data from spatial databases, other online sources and literature. It can also
be used as part of an integrated mobile application that can be user-friendly and easily used
by stakeholders. This will improve resilience, long-term prosperity, and well-being for farmers,
bankers, and society as a whole. It incorporates social/conservation farming system scenarios
to evaluate and forecast potential outcomes. It addresses the soil and water science and

research priorities by providing a modelling framework across the soil-atmosphere-water
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system. It also enhances understanding of the sustainable limits for productive use of soil,
freshwater, river flows and water rights, and developing solutions for restoration and

remediation of soil and water.

This tool can also support financial institutions, insurance companies, and government
agencies for decision-making. It allows farmers, bankers, and land managers to improve the
value assessment of natural capital assets on farms and make more-informed investment
decisions. The model assists banks, development agencies, and investors in developing new
mechanisms that incorporate accurate natural capital measures by understanding and
quantifying its contribution to farm productivity and financial risk. It has the potential to help
banks better account for the risks incurred when providing loans to farmers. By improving the
ability of farmers to produce consistent financial performance and a more reliable source of
income, the model would generate a lower-risk profile and more dependable interest payments
on their loans. It addresses the Australian government’s priorities around low emissions
technologies - DISER 2020 (Government 2020) - by providing a carbon modeling framework
across the soil-atmosphere-water system. It also allows the governments to track their
international pledges and targets (Hohne et al. 2017) by understanding the carbon
sequestered and emitted by their soils. Additionally, it explores the influence of key levers for
transitioning to ecological agriculture including increasing financial investment in regenerative
farmers and reforming crop insurance to incentivize regenerative practices that regenerate

soil as natural capital.

6. Future Research

This study suggests several potential directions for future research. Firstly, the model is
generic enough to be used for soil health assessment of any arable land used for cultivating
wheat (which is also used as feed for livestock). With minor modifications, the model can be
easily adapted for other crops (such as barley, lentil, and pasture) as well as woodland-
grassland ecosystems (such as forest and tropical savannah). Secondly, the model validation
process was not straightforward and can certainly be improved in the future, as more field data
related to soluble nitrogen, and phosphorus becomes  available, and the model undergoes
further calibration, validation, and testing. Thirdly, the model can be implemented in a spatially
explicit way for investigating landscape scale dynamics (Costanza & Voinov 2003). Micro and
macro climate variation can be considered by varying the inputs either as a grid of related
climate vectors within a landscape or as a set of variables representing climates from different
locations, past and future conditions. Finally, the model can be used in future to explore the

influence of key levers for transitioning agriculture to regenerate soils including increasing
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financial investment in soil carbon. A multi-objective optimization model can help with the farm

management decisions under different climate conditions and environmental constraints.
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