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Abstract

Information may be the common currency of the universe, the stuff of creation.

As the physicist John Wheeler claimed, we get “it from bit” [213]. Measuring

information, however, is a hard problem. Knowing the meaning of information

is a hard problem. Directing the movement of information is a hard problem.

This hardness comes when our information about information is incomplete. Yet

we need to offer decision making guidance, to the computer or developer, when

facing this incompleteness. This work addresses this insufficiency within the

universe of software engineering.

This thesis addresses the first problem by demonstrating that obtaining the

relative magnitude of information flow is computationally less expensive than an

exact measurement. We propose ranked information flow, or RIF, where different

flows are ordered according to their FlowForward, a new measure designed for ease

of ordering. To demonstrate the utility of FlowForward, we introduce information

contour maps: heatmapped callgraphs of information flow within software. These

maps serve multiple engineering uses, such as security and refactoring.

By mixing a type system with RIF, we address the problem of meaning.

Information security is a common concern in software engineering. We present

OAST, the world’s first gradual security type system that replaces dynamic

monitoring with information theoretic risk assessment. OAST now contextualises
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FlowForward within a formally verified framework: secure program components

communicate over insecure channels ranked by how much information flows

through them. This context helps the developer interpret the flows and enables

security policy discovery, adaptation and refactoring.

Finally, we introduce SAFESTRINGS, a type-based system for controlling how

the information embedded within a string moves through a program. This takes

a structural approach, whereby a string subtype is a more precise, information

limited, subset of string, i.e. a string that contains an email address, rather than

anything else.
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Impact Statement

Type systems form an integral part of many programming languages. The power,

utility and importance of type systems is only underscored by the increasing

prevalence of type checkers for dynamically typed languages. These type check-

ers for dynamic languages accept partially type annotated programs: given this

incomplete information, they provide partial correctness guarantees. The ad-

vantage is they allow different degrees of precision during different parts of

development process.

The thesis proposes the use of information theory and context free gram-

mars to address the challenges of incomplete correctness guarantees for partially

statically checked programs.

The first part of the thesis shows how to use information theory as a program

analysis tool, unconstrained by types. Ranked Information Flow maps the risk

associated with formally verified elements of a program communicating over

potentially insecure channels. To show the generality of ranked information flow

as a tool not just for security, it proposes Information Contour Maps, a novel program

visualisation. It gives empirical evidence that information theoretic measures can

be efficiently calculated via ranking during program testing. The thesis describes

an open source prototype tool, RIFFLER, for producing information contour maps.

The tool can already benefit software engineers, and further development will
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further extend its power.

The next part of the thesis introduces a new optional type system. OAST

(Optional Security Typing) is the world’s first optional type system for security.

OAST replaces the complex, and costly, dynamic semantics of gradual security

type systems with information theoretic risk analysis. This approach solves the

refactoring problem of security type systems, which require policy to be in place

at all stages to ensure testing. Information theory replaces dynamic semantic

alternations in the language and can be used during the testing phase, not during

deployment. Security typed languages, while popular in research, have had no

impact on software development practice. OAST should change this situation due

to its great flexibility and its focus on Python, one of the world’s most popular

programming languages.

The final part of the thesis introduces a novel form of typing for strings,

SAFESTRINGS. These permit a flexible subtype relation over strings. Strings are a

common avenue for attack in software systems, as a string is unbounded in the

information it can contain: SAFESTRINGS close this avenue. The use of subtypes

constrains the entropy of a string, making programming with SAFESTRING a

simpler task and constraining the possible error space. A prototype SAFESTRING

library is available that can already improve the security of existing Java software.

SAFESTRINGS have already had a real world impact, having been incorporated in

the BOSQUE programming language from MICROSOFT. SAFESTRINGS have also

been used to improve testing efficiency with EVOSUITE, and improved fuzzing of

RESTful APIs with RESTLER.
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Chapter 1

Introduction

Any software artefact that has either input or output exposes itself to security

risks, just as a house with a door has a point weaker than other points. What

comes out of the door may be a security concern, and what comes in the door may

be an integrity concern. Just as a house without a door is difficult to use, software

without I/O exists only in rare circumstances.

One approach to securing the information in a system is to measure the

amount of information coming in and out of that system. This is akin to inter-

rogating anyone entering or exiting our metaphorical house. This is a powerful

method, as we can learn exactly what everyone knows. This gives the greatest

flexibility to a software developer. Just like with interrogation, however, it is

difficult and slow to conduct so thorough an investigation. This approach fails to

scale when many people are coming in and out of the house, or communicating

within the house. The solution is to spend more time with those people who look

suspicious or whose behaviour is unusual, and less time with those who appear

innocent. This technique is explored in Chapter 3.

Another approach to protecting the confidentiality and integrity of informa-

tion is based on security typed languages, in which type systems are extended to
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express security and integrity policies for programs and the data those programs

manipulate. The compiler checks the policy before running the program and

detects potentially insecure programs before they have a chance to do damage in

deployment. Security-typed languages can enforce information flow polices, thus

protecting data in a program. To continue the metaphor, while someone may come

into the house, they cannot go wherever they like. Likewise, someone coming

out of the house cannot come from just any room, nor even look at certain things

or in certain rooms on the way out. Everybody in the house must wear a label

that precisely dictates where they can go and what they can do. Not everyone

wants to wear a label, and there might not even be enough labels for everybody.

Addressing this problem motivates Chapter 4.

Developers want to track and limit the movement of certain forms of informa-

tion within the program. This is what traditional, non security, type systems do:

they prevent “cross contamination” of data by limiting the way certain types, say

string and number, interact. Most type systems have an information black hole in

the shape of the string type. An integer type can only hold an integer, but a string

can contain anything: they are a universal encoding mechanism given “a free pass”

by the compiler. To model the complexity of strings with a traditional IFC lan-

guage would be clumsy at best. The security lattice (Chapter 2) required is liable

to explosion. Usefully, many strings can be modelled, filtered, and labelled, with

context free grammars. Just as with traditional IFC systems, these labelled strings

can be mapped, tracked and traced. As their base type remains string, similar

techniques for type system gradualisation can be applied to them (Section 5.3.5).

If strings are an embedded calculus within a programming language, then that

calculus alone can be gradualised inside a non-gradual type system. This is as

an extremely flexible labelling mechanism, used instead of, or in addition to, any
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existing IFC typing.

1.1 Challenges

Work on provably enforcing confidentiality and integrity policies in computer

systems using security-typed languages is not wanting [141, 36, 182]. Many

developers are familiar with at least the basic concepts of type systems. It is

curious then, that one cannot find any security-typed languages used in industry.

Researchers [13, 114] link this lack to usability problems. Some propose gradual

type systems for information security (Chapter 2). Gradual security type systems

allow partial disclosure of information policy. At runtime, such languages attempt

to reconstruct an enforceable security policy. To conclude the house metaphor,

some people in the house wear labels, whereas others do not. The problem is

to solve the question of what the missing labels ought to be. Such an approach

has a problem: the incompleteness of the typing information leads to inference

problems.

To demonstrate this, consider the code in Listing 1.1 which might be suitable

for a company’s human resources software. It has partial security information:

salaryIncrease is a public function, as indicated by the subscript l (low) on

the function name. Assuming the existing labels are correct, salaryIncrease is

a public channel that processes public variables. We calculate the return type

of salaryIncrease to be Numl . If we try to write the program salaryIncrease(

salary), we should have a static type error. Now, assume that g is some additional

functionality that we wish to include. The program salaryIncrease(g(salary))

now passes the static type checker. Of course, it is not ‘correct’: g has laundered

the confidential information. A sound gradual system detects this laundering and

behaves accordingly by producing a runtime type error.
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/* calculate a salary increase */

salaryIncreasel : Numl → Num

salaryIncrease x = x + (mod x 5)

/* a public method still under development */

g : Num →l Num

g(x) = x

salary : Numh

salary = 35433

Listing 1.1: If we remove the annotation on salary, there is insufficient

information to infer the intended security policy, making development and testing

more difficult. Should salary be confidential or public?

A simple alteration makes resolving the policy in Listing 1.1 much more

difficult. Neither optional nor gradual systems should require type annotations.

Removing the annotation on salary should not introduce ambiguity. In this case,

the removal does introduce ambiguity. Should salaryIncrease(g(salary)) type

check? Does it violate policy? The only way to solve this problem is to know the

security label of salary. A gradual type system, enforcing a security policy at

runtime, must make a decision about salary. Such a type checker can guarantee

that a policy is enforced, but it cannot guarantee that the developer’s policy is

enforced: if the checker defaults to h, the program errors. If it defaults to l, then

the runtime decides that salary becomes public. The utility of this approach to

the software engineer is dubious; making strict guesses in the face of incomplete

information risks false positives and is unlikely to be welcomed by the software

engineering community. The problem is only likely to be exacerbated during the

development stage, where frequent code changes and churn are likely to mean
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the security policy is highly underspecified.

Intended policy cannot be reliably inferred in all cases. Even highly sophisti-

cated IFC systems do not have complete type inference. JIF, an expressive security

language built on Java [141] only supports inference for local variables and local

parameters. Formal parameters for methods must always be annotated. In a

partially annotated program, there is a family of inferable policies, only a subset

of which model the intended policy. This thesis proposes an alternative method,

where a partially annotated program is imagined instead as secure modules com-

municating via potentially insecure channels: these channels are assessed using

the novel information theoretic technique of ranked information flow, also proposed

in this thesis for the first time as a technique not just for security, but for general

software engineering.

Listing 1.1 is a simple example where the security levels are just l ⊑ h. Con-

sider instead a program which tracks the integrity of public inputs. Such a

program is likely to offer a public API. RESTful APIs are a good example. These

are string dominated entry points to a program. Labelling all inputs via this API as

of low integrity is too broad, as some may be harmless, whereas others may have

carefully crafted attacks, such as arbitrary code execution or Denial of Service (DoS)

attacks. Many strings may simply be ill-formed. Type systems are ill-equipped

to deal with this situation, hence the large number of ad hoc solutions to string

filtering and sanitation. This thesis shows how strings can be gradually typed in

an existing language to flexibly track the integrity of strings within a program.

1.2 Basic Concepts

Some terms have already been used in the proceeding material, without definition.

While the intuitive meaning of most of them may be easily grasped, this section
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rectifies that lack and defines the most basic terms and concepts as used through-

out this thesis. Programs consume inputs and produce outputs. In software

testing, the standard term for a program that is undergoing testing is Software

Under Test (SUT). An input to a program may be a string, a numeric value, a

file or any appropriate stream or object in memory. For generality, we consider

programs that do not take an explicit input as taking a null input. We do not

consider the case of a partially applied program. Every program and subprogram

is assumed to have all of its inputs. In this sense, when the term program is used,

it always refers to a closed λ -expression, or something which may be transformed

into an equivalent closed λ -expression.

One possible definition for a Type System is “a tractable syntactic method for

proving the absence of certain program behaviours by classifying phrases to the

kinds of values they compute” [153]. It is assumed that every term in a language

has a type, either known via an annotation, or computable via some inference

mechanism. Broadly speaking, there are two major branches to the study of type

systems. These are the more practical, making type systems for programming

languages, and the more abstract, which focuses on systems for various forms of

typed lambda calculi. This thesis uses both approaches, with an emphasis on the

practical.

A common distinction for type systems is between static and dynamic. A

static type system relies on annotations and inference to determine the types

of terms and check that there exists a typing derivation for the program with

respect to a finite set of typing rules. A static type system does not have a

dynamic checking element: indeed many languages erase typing information at

runtime. A dynamic language performs type compatibility checks at runtime.

The terms strong and weak are often applied to type systems. These terms
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do not have agreed definitions. All type systems discussed in the thesis are

informally described as strong: a term’s type cannot be silently coerced statically

or dynamically via the typing rules. Explicit casting, by the developer, at runtime

is allowed.

A Gradual Type System allows for the types of terms to be only partially

known statically. A gradual type system is a hybrid system, merging, to some

degree, both static and dynamic typing. For those terms with statically unknown

types, their types are resolved via dynamic methods during runtime. This thesis

distinguishes between gradual type systems and Optional Type Systems by

observing that an optional type system allows for partial static type checking,

but does not introduce changes to the language semantics: an optional system

is a one-sided gradual system. The terminological distinction between gradual

and optional systems, while clear, is infrequently observed in actual systems,

publications and discussions. Optional systems with no runtime component, such

as those of TYPESCRIPT and PYTHON, are termed gradual. This is an unnecessary

confusion.

An Information Flow Control (IFC) programming language is a language

equipped with a type system intended to monitor the security and integrity of

data. Data security means not allowing the influence of private data on a compu-

tation to be inferable from the public behaviour of the computation. Integrity is

the dual of this: it controls the influence that possibly untrusted data can have

on the behaviour of a program. Static type systems are the main approach to in-

formation flow control in programming language research. Gradual information

flow control languages are a more recent edition to the research agenda.

Information flows come in two forms: implicit and explicit. An explicit flow

is the result of assigning a secret value to a public variable. This is in violation
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l := h;

Figure 1.1: The simplest explicit flow. The secret value is directly assigned to

a publicly observable variable. In general, such flows are easier to detect than

implicit flows.

if h = 1

then l := 0

else l := 1

Figure 1.2: An implicit flow through a conditional statement. The output is

determined by the value of h, so its value can be inferred by looking at the result

of evaluating the expression.

of the no write down principle of information flow [24]: data can only be written

to memory at, or higher than, the security level of the data to be written. If we

assume a policy that labels data as either ⊤ for secret or ⊥ for public, with the

partial ordering ⊥⊑⊤ then writing from ⊤ to ⊥ sends confidential information

to a public location.

Implicit flows arise in control flow statements in a program (Figure 1.1 and

Figure 1.2). It is worth noting that implicit flows always exist in control flow

statements by necessity, but can be either licit or illicit, depending on policy.

Implicit flows are preventable by disallowing a ⊤ guard in a conditional or while

statement from effecting low data in the body of the conditional.

Flows move through information channels. These channels can take diverse
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forms, such as termination channels and power channels. These flows are also implicit

but are more rarely considered in the security type literature. This is doubtless

due to the additional complexity involved in modelling the semantics in a type

theoretic manner. If we consider a side channel, such as resource exhaustion, where

information leaks via the exhaustion of a finite system resource, then this should

be amenable to policing with a type system.

Information Theory was introduced by Claude Shannon [172] in 1948. Infor-

mation theory provides a formal definition of information and a means to quantify

it. The essential elements are the Shannon Information, or surprisal: a quantity

derived from the probability of a particular event occurring in a random variable;

and entropy: how much surprisal a random variable has on average. This thesis

uses information theory to explore software and to address the shortcomings

of optional type systems. One of the central techniques used in this endeavour

is entropy estimation. Information theory is an extremely powerful framework

for analysis, but has limitations due to the expense of providing high quality

estimates. As the entropy calculation relies on knowing perfectly the distribution

over a random variable, X , it may be clear that a perfect entropy calculation is

almost impossible for any real world software. Knowing the input distribution

for a program is rare, so much be approximated through testing.

1.3 Contributions and Outline

This thesis investigates the problem of incomplete information within software

systems. The constraints on incompleteness increase as the thesis proceeds. Each

chapter moves through an increasingly precise forms of analysis, starting with

exploratory methods using information theory, and ending with a specialised

embedded type system for strings. Chapter 2 introduces the lattice-model of
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information-flow policies and all the notation used in this thesis. This chapter

defines noninterference; the means by which a security-typed language protects

the information inside a program. This chapter also defines both gradual and

optional typing and how both are treated in the remainder of the thesis. This

chapter also introduces sufficient information theory for the remainder of the

thesis. This chapter is largely based on the existing work of other researchers and

programming language technology designed to enforce information-flow policies

and ensure that programs handle strings in a secure fashion.

In Chapter 3, the thesis addresses the problem of scaling information theoretic

measures to handle full program analysis. This chapter shows new uses for

information theory beyond merely security, including refactoring and testing

adequacy. No existing research explores the problem of scaling information

theory to software engineering, nor does it consider information theory from any

perspective other than security. This chapter shows that there are multiple uses

in software engineering for incomplete or uncertain information. It is the first

work to explore the utility of ranking information theoretic measures rather than

relying on producing tight bounds on information theoretic estimates.

Chapter 4 builds on the approach of Chapter 3 by incorporating ranked

information flow into a type system for information security. This is entirely novel

and without precedent in the literature. The cost of casting and asserting that

one pays in a gradual type system transfers to testing instead. RIF provides the

flexibility to refactor and rank risk in partially annotated programs, something

which no existing type system is capable of doing. This system, OAST, is explored

through a simple lambda calculus. Chapter 4 so that such an approach allows

fully typed programs to have a formal proof of correctness, while assessing the

risks in under-annotated programs.
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Chapter 5 introduces a novel approach to more flexible and detailed typing

for strings. It embeds a sound gradual typing system, with runtime checks,

into the string type of an object-oriented language, in this case Java. Such an

embedding is performed without any changes to the language, relying instead

on a program transformation and support library. These can be used solely

during the testing phase if so desired. By not gradualising every type, with

the potential of any type to be any other type, SAFESTRINGS avoid much of

the complexity of the dynamic component of gradually typed programming

languages. SAFESTRINGS provide fluid subtyping for strings than allows the

user to go up, or down in typing precision. SAFESTRINGS have already been

incorporated as a native element into the BOSQUE programming language from

MICROSOFT.

The main contributions of this thesis are:

• The first investigation in ranked information flow; a means to reduce the

cost associated with sampling-based estimation of information theoretic

measures. It introduces a new information theoretic metric, FlowForward,

which is more ranked more meaningfully than Shannon measures.

• The introduction of Information Contour Maps (ICMs), heat-mapped call-

graphs which visualise the movement of information through the SUT. A

tool, RIFFLER, is introduced, that provides the necessary information to build

an ICM from a Python program. Various uses for an ICM are detailed, along

with a means to build them via fuzzing, thus requiring no extra testing

resources. ICMs use a new information theoretic measure, FlowForward,

interpreted as an asymmetrical form of mutual information. This measure

is easier to rank meaningfully than existing information theoretic measures.
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• The introduction of optional information security, OAST. OAST is the first

optional type system for IFC. It incorporates testing into its decision proce-

dure by using RIF, to rank areas most at risk of high information flow. By

replacing the strict requirements of dynamic gradual typing, OAST solves

the refactoring dilemma. OAST builds on the work of Chapter 3 by pro-

viding a new stopping condition for the RIF algorithm. This new stopping

condition harnesses the fact that the Bayesian estimator used by RIFFLER

returns a distribution. In any system which has more than one observation

point (and therefore can be ranked), then the standard deviation of the

distribution, and the Wasserstein distance between the distributions can

be used to provide an arbitrary degree of confidence in the quality of the

ranking.

• SAFESTRINGS are a new means to increase type safety for strings. They

provide a novel means to build a subtype relation under the string type.

This is achieved without creating any new typing extensions to a program-

ming language. They can be embedded as a testability transformation

into any existing OOP language. We evaluate SAFESTRINGS through case

study, annotation burden, and efficiency. We introduce a programming

language from MICROSOFT, BOSQUE [128], which has built-in support for

SAFESTRINGS.

Finally, Chapter 6 concludes with a summary of the contributions and some

future directions. This thesis introduces ranked information flow to software

engineering, as a means to explore, not just security policies, but also to suggest

changes and improvements to the software and its environment. It also introduces

the theory of improving guarantees for optional type systems, specifically with

respect to information security and string-manipulating programs. In addition to
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the work in this thesis, the author has two papers under preparation, as co-author,

on the effects of SAFESTRINGS on testing efficiency.
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Chapter 2

Background and Literature Review

This chapter introduces the lattice model for specifying levels of confiden-

tiality and integrity for data in programs. It introduces the definitions and basic

theory of gradual typing, with special reference to gradual typing for secure infor-

mation flow languages. As this thesis takes a hybrid approach to gradualisation,

this chapter also introduces the required elements of information theory. Finally,

we introduce the concept of locally gradual typing, and how it can be applied to

string manipulating programs.

2.1 Information Flow Control Background

Security typed languages provide a means to add annotations to language terms.

These annotations specify the confidentiality and integrity of the term. For exam-

ple, the declaration secret : int h indicates that secret is an integer value with

confidentiality level h.

Following work on multilevel security [25] and the work of Denning [68, 67]

on program analysis, the security levels available via annotation should form a

14



lattice.

Definition 2.1.1 (Lattice). A lattice L is a pair 〈L,⊑〉 where L is a set of elements

and⊑ is a reflexive, transitive and anti-symmetric binary relation on L. In addition,

for any subset X of L, there must exist both a least upper and greatest lower bound

w.r.t the partial order ⊑.

An upper bound for a subset X of L is an element ℓ ∈ L such that, for all x ∈ L,

x⊑ ℓ. The least upper bound or join in X is an upper bound ℓ such that, for any

other upper bound z ∈ X , ℓ⊑ z. The notation x1⊔ x2 is used to denote the join of

two elements x1 and x2.

A lower bound for a subset X of L is an element ℓ ∈ L such that, for all x ∈ L,

ℓ ⊑ x. The greatest lower bound or meet in X is a lower bound ℓ such that, for

any other lower bound z ∈ X , z⊑ ℓ. The notation x1⊓x2 is used to denote the meet

of two elements x1 and x2.

As a lattice is required to have a join for all subsets of L, there must be a join

for L itself, which is the greatest element; this is denoted ⊤ and called the top

element. Likewise, there must exist a least, or bottom element, denoted ⊥.

2.1.1 Noninterference

Noninterference, NI, has its origins in the work of Goguen and Meseguer [95],

which itself builds on the secure information flow models of Denning [68]. The in-

tuition for NI is relatively simple, but it has taken on a vast number of forms which

results in many difficult choices for anyone attempting a practical implementation

of IFC [167, 94, 123, 30, 198, 59]. Much IFC research concerned with type-system

enforcement has focused on termination-insensitive noninterference (Termination

Insensitive Noninterference). Termination Insensitive Noninterference guarantees NI

up to correct program termination. If a program terminates in an error condition,
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or fails to terminate at all, then Termination Insensitive Noninterference makes no

claims about leakage of sensitive information.

To formalise this intuitive presentation of Termination Insensitive Noninterfer-

ence it is necessary to assume a simple security lattice, where high, H, is secret data

and low, L, is publicly readable. The only disallowed flow in this simple lattice

is from H to L. Then Termination Insensitive Noninterference for a deterministic

program is formulated by Volpano et al. [209] as:

Definition 2.1.1 (Noninterference). Program c satisfies noninterference if, for any

memories µ and v that agree on low variables, the memories produced by running

c on µ and on v also agree on low variables (provided that both runs terminate

successfully).

Note that this definition only compares memories before and after a successful

execution run. Other details of execution are ignored. We might be able to learn

something about program c by measuring how long a computation takes (thus

learning something about µ and v) or via some other side channel. Termination In-

sensitive Noninterference does not account for this possibility. Termination-sensitive

noninterference, on the other hand, guarantees that even if the program fails to

terminate properly no sensitive information leaks. Termination Insensitive Non-

interference is weaker than this, but it is therefore easier to write a program that

satisfies its conditions. One might consider the price of Termination Insensitive

Noninterference with respect to termination-sensitive NI to be too high: exactly

how much information can leak under Termination Insensitive Noninterference in

the event of divergence has been studied by Askarov et al. [12]. They show that

Termination Insensitive Noninterference, traditionally thought of, without justifica-

tion, as leaking only one bit of information (in the information theoretic sense of

bit), can in fact leak all of its secrets. This is not a terrible as it seems: they also
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prove that an attacker would need to mount a brute-force attack in order to gather

any sizeable body of information. This ultimately makes this potential channel a

largely impractical form of attack, as the attacker cannot reliably learn a secret in

time polynomial in the length of that secret.

Sabelfeld and Myers, in their excellent survey [165], give a more general

formalism of noninterference, not Termination Insensitive Noninterference specific:

Definition 2.1.2 (NI: Sabelfeld and Myers). A program C can be considered non-

interferent iff

∀s1,s2 ∈ S.s1 =L s2⇒ JCKs1 ≈L JCKs2

Two possible initial states, s1 and s2 which have equivalent low initial values,

are noninterferent if their behaviours, as defined by the language semantics, are

indistinguishable to an attacker. The low-view relation ≈L offers the flexibility to

define what behaviours are being compared for distinguishability and says that

the two states, S1 and 2 are indistinguishable to an observer up to the limits set by

the relation.

Statically enforced type systems, such as that proposed by Volpano et al. [209]

(Section 2.1.2) can enforce Termination Insensitive Noninterference, but are so re-

strictive that they have seen negligible real world use [13]. Work has been done

to alleviate some of these restrictions [185] but again, they have seen little prac-

tical use in any mainstream language. The relative lack of uptake in industry,

despite the prevalence of security leaks and bugs, strongly argues for a new ap-

proach to the implementation mechanisms of IFC, rather than a new approach to

noninterference.
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2.1.2 Security Typing

Now that we have sufficient understanding of the problem we are trying to solve,

we move on to various solutions mediated through the prism of type systems:

either static, dynamic and hybrid.

Secure type systems are an instance of information flow analysis. Data are

given security labels, which dictate their legal interactions with other labelled data.

Security labels should form a complete lattice L . We shall call such a complete

lattice a security lattice. If ℓ and ℓ′ are points in the lattice, then ℓ ⊑ ℓ′ indicates

that the label ℓ′ is at least as restrictive as the security label ℓ. Data dependent on

sources with labels ℓ and ℓ′ must have a security label at least as restrictive as the

join of ℓ and ℓ′, ℓ⊔ ℓ′. The literature, for the sake of simplicity, usually presents

only two security labels, H and L, for high (secret) and low (public) respectively.

In such a lattice the only disallowed flow is from H to L. This can be generalised

to any complete lattice without loss of generality.

Figure 2.1 details a type system as presented by Sabelfeld and Myers [165]

that is equivalent to Volpano et al. [209]. Security labels form the simple L ⊑ H

security lattice. The label pc in Figure 2.1 refers to the program counter. This is a

standard technique for controlling implicit flows. It indicates the security context

in which the computation occurs. Programming in this framework is unforgiving:

it is not intended to be used as a real-world language. It is, rather, a translation of

Denning’s certification conditions [68] into type inference rules. Volpano et al. use

the proof of soundness of their system as a novel validation of Denning’s lattice

model.

The simple type system in Figure 2.1 does not protect against termination

channels. A program with a high guard in a conditional expression (or in a while

loop) can reveal information that guard in the event that the program fails to ter-
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⊢ exp : high
h /∈ Vars(exp)

⊢ exp
[E1–2]

[pc] ⊢ skip [pc] ⊢ h := exp
⊢ exp : low

[low] ⊢ l := exp
[C1–3]

[pc] ⊢C1 [pc] ⊢C2

[pc] ⊢C1;C2

⊢ exp : pc [pc] ⊢C

[pc] ⊢while exp do C

[C4–5]

⊢ exp : pc [pc] ⊢C1 [pc] ⊢C2

[pc] ⊢ if exp then C1 else C2

[high] ⊢C

[low] ⊢C

[C6–7]

Figure 2.1: A simple security type system for a while language. The pc is the

program counter, the security context in which a sub-expression is evaluated. There

are two types of rule, expression rules and command rules. Some commands

are typable in any context (C1 and C2), while others are context dependent.

Assignment, l := exp, only succeeds when exp is low.

minate successfully. It guarantees Termination Insensitive Noninterference. Although

Volpano and Smith [210] address this shortcoming by forbidding high guards in

loops and conditionals, most subsequent work in type-based security has been

variations on a theme of Termination Insensitive Noninterference. Smith [186] gives

an excellent overview of how a type system can ensure noninterference properties.

This simple type system controls information flow, but does not allow for flow

sensitivity or the declassification: the down-casting of private data (Section 2.1.3).

The inability to declassify or reduce the classification level of information makes it
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impossible to write something as simple, and necessary, as a password-checking

program. A failed login attempt reveals some information about the password,

though admittedly it is likely to be very small. One would expect a password

application to be one of the natural homes of IFC applications, but such a program

necessarily leaks information.

Flow-sensitivity is related to, but separate from the question of declassifica-

tion. Flow-sensitivity allows locally insecure computations in a context where the

overall flow is secure. Declassification is the deliberate (partial) release of confiden-

tial information. In the Volpano system, a security label for a variable remained

as initially declared throughout the execution of the program. Recognition of this

problem has led to the development of flow-based security labels [108], where

the value of a label can change given the control flow of the program’s execution.

See Section 2.1.3 for a fuller discussion. In Volpano’s system data can only become

more classified during execution. This problem has attracted the name label-creep.

The important area of declassification has been much researched, and there is

a good survey (up to 2009) of the field by Sabelfeld and Sands [167]. They discuss

declassification along four different axes: what information is releasable, who has

the authority to release the information, where the information is released, and

when it is released. Declassification is usually implemented in a type system by

the inclusion of a declassification primitive in the language. This has the power to

coerce labels in either direction. The problem with such a language feature then

becomes how to police access to the primitive. From the point of view of logic,

such a primitive allows us to prove any flow satisfies noninterference: it injects

inconsistency into the logic which can then be exploded.

Controlling declassification has lead to various suggestions: relaxed nonin-

terference of Li and Zdancewic [123], robust declassification [224] and, perhaps
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most importantly, to the decentralised label model (DLM) of Myers and Liskov [140].

DLM is especially interesting in that it forms the basis for the Jif compiler [141]. Jif

is an information flow control dialect of Java. It provides extremely fine-grained

control of information flow without the need to explicitly create a security lattice.

The lattice arises naturally from the interaction of labels, owners and readers. In

this model a principal claims ownership of an element in a program. In effect it

allows a programmer to label an element of the system with an owner (or owners)

which can dictate how the element’s data may be declassified, and by what. This is

extremely expressive, as policies may be delegated to other principals in an acts-for

relationship. A label in Jif is in fact a construct of a reader policy and a writer policy.

The reader restricts how information may flow from a principal, and the writer

restricts how information from other principals is treated. This expressiveness

has its downside in the form of substantial complexity (cf. Section 3.1).

Several mainstream languages already have information-flow analysis di-

alects, most notably Jif [141] for Java, as we have seen, and FlowCaml [182, 183] for

OCaml. Neither of these dialects however can be described as being mainstream

in the sense of being actively used by the programming community at large. Case

studies of programming with Jif [106, 13] highlight certain problems, and suggest

solutions, for programming with IFC types. As far as we are aware, Askarov and

Sabelfeld’s work on an online poker game [13] still remains the largest and most

detailed case study of IFC programming in Jif. They found that while Jif was

able to identify many potential security problems with security-critical code, it

also required time to master and decreased developer productivity. Given more

experience and appropriate IFC design patterns, productivity might move back

in the direction of the baseline development time. This hypothesis is untested

however. Addressing the different forms of declassification proved to be the
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most challenging area of Jif programming, as its treatment of declassification was

insufficiently flexible to account for the different axes of declassification. It is hard

to imagine what a gradual version of the DLM might look like. Even though Jif

has polymorphic labelling, which helps somewhat to reduce the annotation tax, it

does not reduce the stringent requirements of noninterference. A type checker

with added functionality for sound gradual security would be a complicated enter-

prise, and it is likely that type checking in the presence of only partial information

might be an undecidable problem.

Various experimental languages have been developed, perhaps most notably

KLAIM [146], designed for use in distributed systems and Paragon [34], another

Java dialect. Spark, a dialect of Ada, uses a form of information flow analysis [42].

The SIF framework of Chong et al. [48] is another approach to a concrete appli-

cation of language based information-flow control. This aims at building secure

web applications, rather than as a generalised framework for secure program-

ming. It is built on top of Jif. As already mentioned, Jif uses the decentralised label

model of Myers and Liskov [140]. Thus it can naturally be used to model mutual

mistrust between processes, vital in web applications. Reader policies describe

confidentiality, and writer policies integrity. Integrity can be seen as the dual of

confidentiality, it is public input which carries the possibility of taint and therefore

has more restrictions placed on it. In this sense, low has become high.

Jif and SIF prevent the accidental or unintentional downgrading of infor-

mation, and any information that is downgraded needs the permission of all

principals involved. Chong et al. also develop Swift [47] for secure web appli-

cations. This too is built using Jif. Swift automatically partitions code between

JavaScript running in the browser, and secure Jif code on the server. Swift seeks

to make web applications which are ‘secure by construction’.
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Jif does not answer every question about policy management however.

Swamy et al. [192] present Rx, which permits security policies to be actively

updated during program execution. They achieve this by defining labels as roles.

A role is a set of principals, and its ordering in the security lattice is defined

by subset inclusion. Rx permits roles to be updated dynamically. To prevent

covert channels forming through the change of roles, Rx also uses metapolicies

which define which principals can view a role, and which principals trust a role’s

definition.

King et al. [114] have conducted work into the disconnect between practical

applications of IFC, such as taint checking in Perl and Ruby, and the more purely

theoretical work, focused on noninterference, which dominates the research lit-

erature. Focusing on Java (specifically Jif), they ask the question whether the

extra cognitive and programming effort to identify and control implicit flows is

efficacious. The conclusion they reach is that, with present systems, the number of

false positives (detection of implicit flow where there are none) is uncomfortably

high, and makes programming more difficult than at present. In the case of Jif, the

majority of false alarms, where the compiler incorrectly identifying a leak where

none exists, was due to the inability of Jif to prove the safety of null pointer access.

It is perhaps worth noting that the majority of criticisms that King et al. level are

aimed at languages which are predominantly imperative; they do not directly

address the case of purely functional languages, or those that are immutable by

default. They do suggest though that the absence of the null pointer from ML

might be a beneficial feature that could be applied to the underlying semantics of

the Java language. Better annotations can reduce the number of false positives

from the Jif compiler, but providing them all initially is a large cognitive effort.

Gradual typing, as we have seen in Section 2.2, given its focus on progressive
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and iterative refinement of type information, provides a solution to this upfront

cognitive cost.

2.1.3 Flow Sensitive Type Systems

We have seen that Volpano-style typing is inflexible in its policy enforcement

and briefly described some real-world language implementations which seek

to find principled means to overcome these limitations. We shall now look at

some of these limitations and solutions in more detail, with a particular regard

for increased expressiveness and ease of use.

It would be nice to devolve IFC to some runtime checking system, thereby

absolving the programmer of the necessity for typing. Information flow is not,

however, a dynamic property: it is not usually possible to detect an implicit flow

simply by observing the behaviour of a running system. A dynamic monitor can

only ‘see’ the result of one execution run, whereas NI is a hyperproperty [59]: it

holds not over a single program trace, but a set of program traces. A program has

to be executed multiple times to have sound dynamic NI.

Monitoring IFC purely dynamically is hard, but then so is handling changes

to policy. Without some form of dynamic management, it would not be possible to

implement policy changes without taking a system entirely offline and rewriting

it to reflect the new policy. This is hardly a practical solution. Dynamic changes to

the security policy demand some form of dynamic management. Organisational

hierarchies are not static, so any IFC system, especially one with little or no

downtime, must be able to account for variations in access policy and whether the

data is trusted or untrusted at any given moment. In effect security labels must

be flexible, changing depending on context. We call such flexibility flow sensitivity

and there are a number of subtleties which must be handled to avoid introducing

new covert channels.

24



The impact of gradual typing on flow sensitivity has not been adequately stud-

ied (Section 2.3). Flow sensitivity and graduality together would add two levels

of ambiguity which need to be handled in a principled manner by a type checker.

It is highly likely that any approach which required end-to-end soundness at

runtime would have recourse to a dynamic monitor. This would necessarily have

implications for runtime efficiency (Section 2.2.5).

Hunt and Sands [108] give a good overview of flow-sensitive security types.

An important observation they make is that, at least as of 2006, most type systems

for IFC were flow-insensitive; i.e. the order in which events occur is ignored by the

IFC analysis. They give a nice example for intuition: an analysis is flow-insensitive

if the results of analysing C1; C2 is the same as that for C2; C1. For a program

to be secure within a flow-insensitive analysis every subprogram must also be

secure. The program secret; secret=0; l:= secret; is secure in terms of its

information flow as the final assignment of l does not reveal anything about the

initial value of secret, but would be rejected by Volpano as the high security label

associated with secret cannot be altered, even though it has been overwritten with

the public constant 0. Type systems similar to that of Figure 2.1 would reject this

as not well-typed. It is hard to imagine a useful application for flow insensitive

IFC in industrial use. In practice, we ought to consider only type systems which

allow for flow sensitivity and by extension declassification.

Figure 2.2 details a simple flow-sensitive type system for a while language,

as given by Russo and Sabelfeld [162, p. 4]. The key detail to take from the type

system is that of assignment. Assignment always type checks (cf. the Volpano

system, where this is not the case). However the security level of the variable now

changes to the join of the security level of the expression and that of the program

context pc.
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pc ⊢ Γ {skip} Γ
Γ ⊢ e : t

pc ⊢ Γ{x := e} Γ[x→ pc⊔ t]

pc ⊢ Γ{C1}Γ
′ pc ⊢ Γ′{C2}Γ

′′

pc ⊢ Γ{C1;C2}Γ
′′

Γ ⊢ e : t pc⊔ t ⊢ Γ{ci}Γ
′ i = 1,2

pc ⊢ Γ{if e then c1 else c2}Γ
′

Γ ⊢ e : t pc⊔ t ⊢ Γ{e}

pc ⊢ Γ{while e do c}Γ

Γ ⊢ e : t pc⊔ t ⊑ ℓ

pc ⊢ Γ{outputℓ(e)}Γ

Figure 2.2: A flow-sensitive type system similar to that in Hunt and Sands [108]

but extended with and output operation. The most salient difference from Fig-

ure 2.1 is the handling of assignment (Rule 2). Assignment always type checks, but

the security level of the variable is now the join of the program counter, pc, and the

level of t.

Hunt and Sands also describe a family of flow-sensitive type systems for

a simple while language [108]. They allow relabelling data to the join of the

original label and a new label. This has to effect of increasing the classification of a

datum. To move in the opposite direction, they introduce fresh variables into the

context with a copy of the secret value now stored at a public level. This note the

similarity of their method to Static Single Assignment. They show that their system

is equivalent to Amtoft and Banergee’s Hoare-style independence logic [9]. They

further demonstrate that for any program typeable in a flow-sensitive system,
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var x = false;

if xh then y = true;

return true;

Listing 2.1: No sensitive upgrade is a simple method for dynamic IFC enforcement,

but it rejects this secure program.

it is possible to construct an equivalent program which is typeable in a simple

flow-insensitive system through the expedient of introducing extra variables.

They present a code transformation algorithm that can automatically move a

flow-sensitively typed program to an equivalent flow-insensitive program. Such

a transformation must happen at compile time [162]. This might have utility in a

gradual setting, as reducing the number of cast insertions into the code would

have a beneficial outcome on performance. However, they also present a worst

case scenario for the translation which would, if utilised naively, result in inefficient

code. Hunt and Sands do not discuss how to check that a declassification is valid

w.r.t policy, but apply their methods on the assumption that such relabelling in

acceptable.

Many methods have been proposed to allow for purely dynamic floating-

label IFC enforcement. Austin and Flanagan [15, 17, 19] have done a lot of

work looking at purely dynamic information flow analysis. One of their key

observations is that security labels, especially in a browser setting, exhibit label

locality, where the majority of labels in a data structure have the same security

level. This allows them to propose a sparse labelling semantics which leaves

labels implicit whenever possible. There is a potential overlap here with gradual

security typing where labels can be left implicit rather than explicitly annotated.

This coarse granularity (Section 2.2.7) of IFC in certain settings has a relationship
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with the modular gradual typing of Typed Racket. Exploiting sparse labelling

semantics can greatly reduce the number of cast insertions into code, by treating

modules as having one security label. Computation within a module could then

be treated as essentially label-less (everything having to same label, or at least in

a permissive flow-sensitive setting) and inter-module computation could then be

handled, at least in the simple case, with a flow-insensitive type system. Fennell

and Thiemann indeed propose something along these lines for gradual Java

security [78, 79], as detailed in Section 2.3.

Zdancewic [223] considers a method called no-sensitive-upgrade, or NSU (List-

ing 2.1). Implicit flows are handled by prohibiting the leakage of data in a ter-

mination insensitive manner: in effect the runtime monitor halts execution of a

program and throws an exception in the event that a high variable has an effect

on a low variable. As it acts in instances where an information leak might happen,

without reference to context, this method can be overstrict and reject too many

secure programs. To address this problem, Austin and Flanagan [17] propose a

permissive-upgrade strategy. In effect, this permits partial information leakage, but

labelled appropriately and subsequently tracked throughout the program execu-

tion. Partially leaked data, labelled P, needs to be reclassified with a privatisation

operation before reusing it in a conditional test. The effect is that it accepts more

programs as secure and guarantee termination-insensitive noninterference, and

this in a purely dynamic manner.

The use of dynamic labels can open up a new covert attack channel, the

flow-sensitive attack. Buiras et al. [37] provide a simple example of the dangers

of arbitrary label change, even if that change is to a more restrictive point on the

security lattice. Consider the code sample in Figure 2.3, where variables are either

l or h for low or high respectively, as marked by subscripts.
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ll := True

tmpl := False

if h then (tmph := True) else skip

if ¬tmp then (l := False) else skip

Figure 2.3: A flow-sensitive channel. Inspection of the value of the public variable

l at the end of the computation reveals the value of the secret boolean h.

If the secret value contained in h is True then tmp is promoted to a high

variable and has its value set as True. If however the value of h is False then tmp is

not reassigned and relabelled, and l takes on the value of False. The security label

of l does not change in either case, but in the latter the value of h has now been

leaked into the public variable l.

LeGuernic et al. [100] propose an automata based model for dynamically

monitoring the flow of information during the execution of a program. This

uses the results of a static analysis to accept or reject, at runtime, the execution

of a program. It achieves this by sending abstractions of the program state to

the automaton, which uses these abstractions to analysis the information flow

within the system. The monitoring mechanism alters the program in the event

that it infers an infringement of noninterference, thereby ensuring a Termination

Insensitive Noninterference execution. This is reminiscent of the AGT approach to

gradual typing (Section 2.2.3), where the results of a static analysis are used to

provide initial proofs of plausibility, which are then dynamically elaborated at

runtime in the form of a variation of unification.
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Russo and Sabelfeld [164] suggest a hybrid static-dynamic ground approach

by using a security type system and a monitor to reduce the number of false posi-

tives. Askarov and Sabelfeld [14] develop a hybrid policy framework which sup-

ports both termination-sensitive and insensitive noninterference policies. Other

approaches to flow-sensitivity include that of Broberg and Sands [35], who pro-

pose the use of flow locks, a system where users of a high security level always

have access to a given data, but users from a lower level can only access it when

that data is unlocked. This also goes some way to addressing the complexity issues

associated with the various types of declassification, especially that of the decen-

tralised label model. Building on their initial idea, Broberg et al. [36] elaborate the

concept of flow locks and propose paralocks. Paralocks is a language for creating

fine-grained, static IFC policies. It is a very powerful framework, subsuming the

earlier work on flow locks, but also allowing for the encoding of complex IFC

systems, such as the decentralised label model. Paralocks have actually been

used as the basis of a real language implementation, Paragon by Broberg et al. [34].

Paragon is a Java-based language which supports static information flow control

as a first class concept. One of the chief advantages of offering another Java

extension is that it allows a direct comparison with Jif. The main advantage of

Paragon over Jif, according to its creators, is the increased flexibility of the system.

Jif has the DLM ‘built-in’, allowing a single declassification construct, whereas

Paragon can provide different IFC methods for different needs: that which is

hard-wired in Jif is just a special case in Paragon. The authors say that they have

encoded the entirety of the DLM in the form of a Paragon library.
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2.2 Gradual Typing Background

Types are a lightweight tool used to verify certain aspects of a program. Lan-

guages often adopt either a static or dynamic type system to police undesirable

behaviours. Generally speaking, static type systems allow for early detection

of errors and can often result in a program which can be compiled to more effi-

cient machine code. However they can have a slow development cycle and the

inflexibility of a type system’s logic can sometimes lead to the inability to write

a program in a way that seems most natural to the programmer. Dynamic lan-

guages, on the other hand, foster a faster development cycle and a more flexible

approach to experimentation, with the cost that errors might not be revealed until

runtime. The nature of the error can often be opaque, and its origins specifically

as a type error obscured.

While gradual typing has been characterised as the discipline of taking a

static type system and conservatively extending it with an unknown, dynamic

resolved type, it has its intellectual origins in adding types to dynamic languages,

specifically Smalltalk and LISP. Strongtalk, by Bracha and Griswold [32], is a

notable early entry in the family tree. Bracha has subsequently developed this

idea into pluggable types [31]. The aim of gradual typing combines these two

goals: it combines the advantages of static and dynamic typing disciplines in a

principled fashion within a single language. Even though ‘gradual typing’ as a

term has only emerged since the mid-2000s, the notion of embedding dynamic

types within a static type system is far older. Abadi et al. [1] suggested the

embedding of dynamic typing within statically typed languages as early as 1989.

This suggestion was soon followed by Thatte’s ‘quasi-static’ typing [199], which

introduced a dynamic type mapped to the top (⊤) element in a type lattice and
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provided an accompanying algorithm to check that casts from ⊤ to a point lower

in the lattice were ‘plausible’.

Gradual typing did not emerge as a unified field and has failed to become

one. Its initial efforts as a distinct research topic came with the near-simultaneous

publication of two independent papers in 2006. The first, by Siek and Taha [176],

was inspired by problems they had found in the ‘quasi-static’ typing methodology.

Specifically, they describe gradual typing for a functional language with structural

types. The result is a simply-typed λ -calculus with a type system sound with

respect to fully-annotated terms. The second approach, by Tobin-Hochtstadt

and Felleisen [202] adds types at the module level and uses constraint solving to

decide when casts need to be inserted into unannotated code. The two methods

work at different levels of granularity.

Gradual typing, on both tracks, is making partial industrial inroads. Various

languages and language dialects already exist which incorporate some notion

of optional typing, such as Bigloo, a Scheme dialect from INRIA, but the work

of Siek and his students especially has been influential in the formalisation of

gradual typing and in defining the properties a gradually typed language should

have. Type systems going under the name ‘gradual’ have recently begun to enter

the mainstream, most notably with Microsoft’s TypeScript and both Flow [76]

and Hack [77] from Facebook. They are not gradual in the Siek sense, however.

To distinguish this we shall refer to systems such as Flow and Hack as having

optional typing. Gradually typed languages in the pure sense exist in research,

such as [29, 208, 99, 203].

Gradual typing, at least in Siek’s view [179], is an approach to type safety

characterised by progressive refinement. It achieves this by introducing a new
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primitive type, dynamic or ⋆ 1. The dynamic type is statically interpreted as a

type ‘wildcard’: one which is unknown at compile time. We shall call non-⋆ types

concrete types. At runtime the type of ⋆ is concretised via casting or other means.

Accompanying the dynamic type is the important notion of type consistency. This

tests the plausibility that ⋆ is of an appropriate concrete type. Unannotated

variables are usually assigned the value of ⋆. Figure 2.4 shows the inference rules

for a gradual simply typed λ -calculus. Siek and Taha’s system aims for full and

smooth interaction between typed and untyped code.

Gradual typing is about plausible reasoning in the face of partial or impre-

cise information, using what is available at compile time to statically reject or

optimistically accept a program, and performing additional checks at runtime to

concretise the unknown elements. For example, a gradual function type f : Int→ ⋆

is more informative than f ′ : ⋆→ ⋆ and provides enough information to reject

statically many ill-typed programs, such as f +1. Indeed f ′+1 can also be rejected

statically, as the ‘shape’ of f ′ is sufficient for rejection. It still accepts valid function

calls, such as f 1 [122]. f ′1 will be accepted statically, as will f ′“one′′. We shall call

this optimistic typing. An inappropriate return value should result in a runtime

type error2.

The simple gradually typed lambda calculus as originally presented by Siek et

al. [176] as Figure 2.4, where ⌊τ⌋ represents either the concrete type τ or ⊥, and ∼

is type consistency. Figure 2.5 shows the rules for type consistency as originally

presented. Intuitively, types are consistent when they agree on those parts which

are fully defined, or where one type can plausibly be the same or a subtype

of the other. The dynamic type is (statically) consistent with anything. Type

1Also presented as ? in the literature. We shall use ⋆, pronounced ‘star’ or ‘any’ throughout.
2Optionally typed languages, such as TypeScript, do not attempt to provide to provide runtime

type errors in this fashion, relying instead on JavaScript’s native error mechanisms.
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Γ ⊢G e : τ

Γx = ⌊τ⌋

Γ ⊢G x : τ
(GVAR)

∆c = τ

Γ ⊢G c : τ
(GCONST)

Γ(x 7→ σ) ⊢G e : τ

Γ ⊢G λx : σ . e : σ 7→ τ
(GLAM)

Γ ⊢G e1 : ⋆ Γ ⊢G e2 : τ2

Γ ⊢G e1 e2 : ⋆
(GAPP1)

Γ ⊢G e1τ → τ ′ Γ ⊢G e2 : τ2 τ ∼ τ

Γ ⊢G e1 e2 : τ ′
(GAPP2)

Figure 2.4: Original presentation of the static semantics of the GTLC. This has

subsequently been expanded to ever more complex type systems. Γ is a mapping

from variables to optional types. ∆ assigns types to constants. The interesting

cases are for application, GApp1 and GApp2. GApp1 handles the case where the

function type is unknown, whereas GApp2 deals with cases where the argument

type in unknown, but consistent with, the function’s parameter type.
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T ∼ T T ∼ ⋆ ⋆∼ T

T11 ∼ T21 T12 ∼ T22

T11→ T12 ∼ T21→ T22

Figure 2.5: Type consistency for the GTLC. T ranges over concrete types, such as

Int or Bool.

consistency therefore acts as a replacement for type equality in a gradual system.

For instance, the function type Int→ Bool is obviously consistent with itself, i.e.

(Int→ Bool) ∼ (Int→ Bool), but also with ⋆→ Bool and Int→ ⋆ and, of course,

⋆→ ⋆. It would not be consistent with ⋆ alone or Int→ ⋆→ Int. Any program

accepted, or rejected, by the underlying, non-gradual static type system must be

treated likewise by the gradual system.

Consistency extends type equality in a conservative manner, allowing the

static semantics to be more permissive in the presence of the dynamic type.

Applying consistency to increasingly complex static type systems has resulting in

its definition becoming more challenging. Consistency has not been consistent

since first proposed. In the original Siek system, it is aligned with the mathematics

of partial functions, i.e. two partial functions may be considered consistent when

every element in the domain of both functions is mapped to the same result.

Figure 2.6 shows a typical presentation of lifting function application in the

simply typed λ -calculus to its counterpart in the gradually typed λ -calculus. Note

that there are now two rules, rather than one, and type equality has been replaced

with type consistency. Subsequent work by Siek et al. [179] introduced a pattern

matching operator, ⊲, that ascertains whether the expression in function position
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Γ ⊢ e1 : τ → τ ′ Γ ⊢ e2 : τ

Γ ⊢ e1 e2 : τ ′

=⇒

Γ ⊢G e1 : ⋆ Γ ⊢ e2 : τ ′

Γ ⊢G e1 e2 : ⋆

Γ ⊢G e1 : τ → τ ′

Γ ⊢G e2 : τ2 τ ∼ τ2

Γ ⊢G e1 e2 : τ ′

Figure 2.6: Standard static semantics of function application in the simply typed

λ -calculus and its gradual counterpart. The gradual counterpart now has two

rules rather that one. This is to handle the case where either the expression in

function position or argument position is of the ⋆ type.

is of an appropriate shape.

The additional complexity of the semantics in Figure 2.6 is of interest. It

is more complex than either the statically typed language would be, or the dy-

namically typed. As pointed out by New and Ahmed [145], even for such as

small language as the STLC, the operational semantics are complicated. Typed

calculi have reduction rules for each elimination form; dynamic languages add

a partiality to these forms (the possibility of a type error). The semantics here

are not modular in the same fashion, and involve comparisons (made at runtime)

between arbitrary types. Such comparisons can be arbitrarily hard and have an

effect on performance, as discussed in Section 2.2.5.

In subsequent work on consistent subtyping in objects, Siek and Taha [173] re-

conceived consistency in terms of a restriction operator that states that two objects

can be regarded as consistent if their known parts are equivalent or consistent, i.e.

σ . τ ≡ σ |τ <: τ|σ .
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A gradual type system then is a superset of the static and dynamic. According

to Siek et al. [179], a gradually type λ -calculus (GTLC) should encompass both

the dynamically typed (DTLC) and statically typed (STLC) λ -calculi. They put

forward two theorems which require that the dynamic semantics of DTLC coincide

with the STLC when fully annotated. They define static as being the absence

of the unknown type. Let ⊢S be the typing judgement for STLC and ⇓S be the

evaluation function for the STLC.

Theorem 2.2.1 (Equivalence to the STLC for fully annotated terms.). Suppose e is a

term of DTLC.

1. ⊢S e : T if and only if ⊢ e : T

2. e ⇓S v if and only if e ⇓ v

The relationship between DTLC and GTLC is a little more nuanced. The

application of true to a function inc : Int→ Int is statically accepted by DTLC, as

the language may in fact be considered unityped [170], whereas it should fail to

type check in GTLC. Let ⇓D denote the evaluation function for DTLC.

Theorem 2.2.2 (Embedding of DTLC in GTLC.). Suppose that e is a term of DTLC.

1. ⊢ ⌈e⌉ : ⋆

2. e ⇓D v if and only if ⌈e⌉ ⇓ ⌈v⌉

where ⌈·⌉ lifts constants to the unknown type, thereby ‘obscuring’ type informa-

tion.

2.2.1 Cast Calculus

The dynamic type can safely be a ‘wildcard’ in the static semantics: it is a place-

holder which represents a plausible concrete type. We might legitimately co-opt a

term from Ahmed et al. [4] when they refer to the Jack-of-all-trades property of the
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⋆ type. This treatment of ⋆ cannot safely be transported to the dynamic semantics,

where we need concrete type information. A cast calculus is the most usual method

for achieving this runtime type safety. It is an intermediate language with explicit

type casts. When an expression e with a target typeτ , 〈τ〉e evaluates to a value v,

the cast checks that the type of v, τ ′ is consistent with τ , that is, τ ′ ∼ τ . If it is not,

then a error condition is produced. This error condition can come with additional

information in the form of blame. Figure 2.8.

The cast insertion judgement has the form Γ ⊢ e⇒ e′ : τ which may be read as

the expression e is castable to expression e′ of type τ in context Γ. Figure 2.7 shows

the cast insertions for function application. Rule CAPP1 handles the case where

the expression in function position, e1 is of the ⋆ type. The type of e1 is cast from ⋆

to τ2→ ⋆, τ2 being the type of its argument, ensuring that it is of a function type.

CAPP2 handles the case where e1 has a known (function) type, but its argument

is consistent with, but not the same as, its formal parameter. Finally, Rule CAPP3

is equivalent to the ‘standard’ elimination rule for the function type. The checking

for consistency between two types is a non-trivial operation for complex type

systems, its effect will be examined more closely in Section 2.2.5.

The Blame Calculus is an extension of the cast calculus to include a notion

of tracking responsibility for an error. Blame has its origins in the contracts of

Findler and Felleisen [82] and were first discussed in the context of gradual types

by Wadler and Findler [212]. Blame assignment is an active area of research in its

own right and is out of the scope of this paper. A gradual type system does not, of

necessity, have to have blame, but practical implementations often do. Reticulated

Python, of Vitousek et al. [208] is a gradual Python with a cast calculus and blame.

The gradual security type system of Disney and Flanagan [71], which we shall

examine in Section 2.3 also has blame. Blames labels attach to each cast. Blame
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Γ ⊢ e1⇒ e′1 : ⋆ Γ ⊢ e2⇒ e′2 : τ2

Γ ⊢ e1 e2⇒ (〈τ2→ ⋆〉e′1)e2 : ⋆
(CAPP1)

Γ ⊢ e1⇒ e′1 : τ → τ ′ Γ ⊢ e2⇒ e′2 : τ2 τ2 6= τ τ2 ∼ τ

Γ ⊢ e1 e2⇒ e′1(〈τ〉e
′
2) : τ ′

(CAPP2)

Γ ⊢ e1⇒ e′1 : τ → τ ′ Γ ⊢ e2⇒ e′2 : τ

Γ ⊢ e1e2⇒ e′1 e′2 : τ ′
(CAPP3)

Figure 2.7: Function application in the cast calculus for the STLC. Again, it is

simple to see the increase in complexity brought about by the sound inclusion of

a ⋆ type: what is one rule in STLC is here become three.

can be either positive or negative: positive blame results when the term within

the cast is at fault; negative blame occurs when the context containing the cast is

the problem. Figure 2.8 shows an example of a cast, in a refinement type system,

which fails with blame. The example comes from Wadler and Findler [212].

They prove the Blame Theorem, this states that well-typed terms cannot be the

cause of a type error: it characterises safe from unsafe casts. The language they

consider contains two forms of cast operation, one which makes type more precise

⋆⇒ A and those which make the type less precise A⇒ ⋆. The former cannot give

rise to negative blame: if there is an error, it is in the attempt to go some concrete

type A and not in the context. Alternatively, the latter cannot give rise to positive

blame: a cast to ⋆ never fails, so if there is an error, it must be in the context.
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〈N⇐ Z〉pn (−2)

−→

if −2≥ 0 then −2N else blame p

−→

blame p

Figure 2.8: A failed cast with positive blame. −2 cannot be cast from Z to N so

the result is the blame label p. This label can contain information useful to the

programmer for locating the exact origin of the error.

2.2.2 Gradual Guarantee

The point of all this development is a ‘smooth transition’, in either direction,

between static and dynamic typing.

It is difficult to measure the smoothness of a gradual system’s transitions

without a formal definition of smooth transition. In an attempt to capture this

notion of ‘smooth transition’, Siek et al. [180] propose the Gradual Guarantee. The

gradual guarantee has proved to be a popular foundation for measuring gradual

type systems, but it is not without its problems: it has proved to be very hard

to satisfy for complex type systems [110]. The gradual guarantee is a statement

of the fundamental intuition behind gradual typing: a developer should be able

to modify the type information of programs and have the semantics change in a

predictable way. In effect this means that making types more statically precise leads

to either more runtime type checking (until the program is completely statically

typed of course) or rejecting an ill-typed program; otherwise the program behaves

in exactly the same way.

40



τ ⊑ τ

τ ⊑ ⋆ B⊑ B

τ1 ⊑ τ3 τ2 ⊑ τ4

τ1→ τ2 τ3 ⊑ τ4

e⊑ e

k ⊑ k x⊑ x

τ1 ⊑ τ2 e1 ⊑ e2

λx : τ1.e1 ⊑ λx : τ2.e2

e1 ⊑ e2 e′1 ⊑ e′2

(e1 e′1)
ℓ ⊑ (e2 e′2)

ℓ

Figure 2.9: Type and Term Precision for GTLC. B ranges over base types. Type

precision is the same as the ‘naive’ subtyping of Wadler and Findler [212].

Given a type precision operator, ⊑, with increased precision to the left (i.e.

e⊑ e′ means that term e is more precisely typed than e′) and suitable definitions

for term and type precision (Figure 2.9):

Theorem 2.2.3. [Gradual Guarantee] Suppose e ⊑ e′ and ⊢ e : τ

(1) e′ : τ ′ and τ ⊑ τ ′.

(2) if e ⇓ v, then e′ ⇓ v′ and v⊑ v′.

if e ⇑ then e′ ⇑.

(3) if e′ ⇓ v′, then e ⇓ v where v⊑ v′, or e ⇓ blameT l.

if e′ ⇑, then e ⇓ blameT l.

where ⇓ indicates that the expression takes a reduction step in accordance

with the reduction rules and ⇑ indicates that evaluation diverges.
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A language which meets the requirements of the Gradual Guarantee allows

the user to safely vary the precision of type annotations without varying the

semantics of the program, modulo blame on the left-hand-side of the precision

operator. In other words, removing annotations should not make a poorly typed

program run properly, and adding annotations should not alter the behaviour of

the program unless the annotation itself is incorrect, in which case it will result in

a trapped type error, shown in Theorem 2.2.3 as blameT .

2.2.3 Abstracting Gradual Typing

We have already mentioned the two key modern approaches to sound gradual

typing: those inspired by Siek and alternatively by Felleisen. Neither gives

clear a indication on how to generate a sound gradual system from a static one.

‘Abstracting Gradual Typing’, or AGT, offers such a methodology.

Inspired by earlier work on gradual effects by Bañados et al. [169], Garcia et

al. [90] introduce AGT. This is an approach built upon methods derived from

abstract interpretation [61]. It relies on the observation that gradual typing can

be viewed as a theory of imprecise type information. Type systems themselves

have been recognised as an abstract interpretation of the runtime semantics of a

program for some time [60].

In AGT, the ⋆ type is given meaning through the two mappings of the Galois

connection, α and γ , where α is the abstraction function, mapping a point in the

concrete lattice to a point in the abstract lattice and its inverse, γ , mapping a

point in the abstract lattice to the concrete. The meaning of ⋆ is, therefore, the

set of static types which it can represent. In the case of AGT, the concrete lattice

is the powerset of all types, ordered by set inclusion, for example Figure 2.10.

Appropriate definitions of α and γ make it possible to derive systematically both

the static and dynamic semantics of a gradual language. AGT contrasts with the
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methodology of Cimini [52, 51], which presents an algorithm for automatically

deriving a gradually-typed system from an existing static system, which is proved

to satisfy the Gradual Guarantee (Section 2.2.2). This algorithm, the Gradualizer,

generates a gradual type system from an existing, well-formed, static type system

and also generates the compiler for the cast calculus (Section 2.2.1). The gradualizer

has so far only been tested on the simply typed λ -calculus and its extensions.

Whether the methodology can be extended to include type systems with such

features as parametric polymorphism is an interesting challenge and remains to

be seen.

A pleasing property of the AGT method is that any system so derived satisfies,

by construction, the first part of the gradual guarantee (Theorem 2.2.3). AGT also

shows that, at least for a simple functional language, such a method produces a

language which also satisfies the dynamic semantic components of the gradual

guarantee (parts 2 and 3).

The static semantics of AGT-derived languages strongly resemble those of

Siek and others. Of greater note, however, are the dynamic semantics, which rely

on real time typing derivations on intrinsically typed terms [158] to enforce type

safety. There is no cast calculus in this method, just the evaluation of ‘evidence’

during execution. As far as known, there are no real world implementations of

gradual type systems based on the AGT method, so it is as yet impossible to assess

the performance characteristics of its intrinsically typed dynamic semantics. There

is no reason to assume that dynamic evidence evaluation should be substantially

more efficient than cast insertion. Runtime type errors signal themselves due

to the failure to combine evidences successfully. This is essentially a unification

problem.

Using AGT, Lehmann and Tanter [122] have systematically derived a gradual
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α(Int) = Int

α(Bool) = Bool

α(Ti1→ Ti2) = α(Ti1)→ α(Ti2)

α /0 = undefined

α(T̂ ) = ⋆ otherwise

γ(Int) = { Int }

γ(Bool) = { Bool }

γ(T̃1→ T̃2) = γ(T̃1) →̂ γ(T̃2)

γ(⋆) = TYPE

Figure 2.10: α and γ functions for STLC with Int, Bool and function application as

base types. The wide hat over a metavariable signifies the collecting semantics

on that metavariable. An imprecisely typed function such as f : Int→ ⋆ maps to

the set of all functions from Int to any type, whereas an Int in the abstract lattice

maps to the concrete Int.

refinement type counterpart to a static refinement type system. Creating a gradual

system for refinement types poses some unique challenges, not least is, converse

to normal practice in gradual systems, it is not desirable to have an unknown

formula stand for any arbitrary formula in the static semantics. If this were the

case the type checker would accept too many programs; anything can be proved

ex falso. Their type system is a conservative extension of a static type system

which preserves the typeability of less precise programs.

2.2.4 Extended Type Systems

Sergey and Clarke [171] explore the gradualisation of ownership types. Owner-

ship types in object-oriented programming can enforce some extremely useful

properties, such as effective memory management and confinement properties.

Gradual typing has also been extended to effects [168], generics [111] and session

types [200].
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Type inference for gradual typing has been explored by both Siek and Vach-

harajani [178] and Garcia and Cimini [89]. While they both take different ap-

proaches to the problem, they result in type checkers which accept the same

programs statically. Siek’s type inference algorithm, however, is special purpose,

and there is no obvious way to extend it to other type systems. This is similar to

the problems noted earlier on extending consistency. Gradual typing has been

applied, at least in part, to parametric polymorphism.

Igarashi et al. [110] present a gradualised System F. They prove the gradual

guarantee for the static semantics, but provide only an outline for an approach to

proving the dynamic element of the gradual guarantee. Ahmed et al. [5] take a

slightly different approach when they examine the polymorphic blame calculus

in a gradual setting. Gradual typing has even been extended, at least in part,

to the world of dependent types. Ou et al. [149] show how a form of dynamic

typing can be embedded within a dependently typed language, but consider only

a core language. Tanter and Tabareau [195] introduce a form of gradual typing

for Coq [196]. Their method is primarily concerned with the safe postponement of

proof terms, using user-inserted casts. Rather than gradualising elements of the

signature (the proposition), the proof is gradualised.

A theme running throughout research with respect to richer type systems is

the complexity of proving this second, dynamic, part of the gradual guarantee [145].

Moreover, there is very limited guidance on how to design a language which

satisfies this dynamic element of the guarantee. Chung et al. [50] observe that

various different approaches to gradual typing have different ideas about what

should constitute an error.

No language used in production, although going under the moniker of

gradual typing, satisfies the gradual guarantee; many do not have the properties
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of a sound type system. The most notable case of this is TYPESCRIPT. Swamy et

al. [191] propose T S⋆, a sound gradual type system and compiler, for a core of

JAVASCRIPT. T S⋆ is an interesting addition to the literature in that it attempts to

address the unsoundness of TYPESCRIPT’s type system, and also adds a security

mechanism in the form of a base type ‘un’ which is used to label potentially

malicious JAVASCRIPT code. The aim of this security mechanism is to prevent

certain classes of common attack; it is not intended to enforce noninterference

(Section 2.1.1). un is a first class type in T S⋆, it may be used anywhere in code,

including within records and in returned results. Wrappers ensure a strict memory

separation between un and the rest of T S⋆.

2.2.5 Gradual Typing Efficiency

As already noted in Section 3.1, sound gradual typing has seen less industry

adoption than optional typing. While no systematic study has been conducted to

explore why this might be the case, one obvious barrier is the relative inefficiency

of cast-based languages.

Some implementations have been examined and shown to suffer from perfor-

mance degradation at runtime [157, 208]. Takikawa et al. [193] claim that the cost

of Typed Racket’s soundness is not tolerable. Typed Racket is a sound gradual

scheme. Their experimental approach is to take an untyped program, measure

its performance characteristics, and then gradually type that program, creating

a lattice of programs ordered by type annotation precision and then measuring

their performance. They build a performance lattice which can then be used for

analysis of runtime characteristics.

In general, they found that fully typed code runs slightly faster than com-

pletely untyped code, but for all points in between, performance degradation is

notable, sometimes as much as 90 times slower than the untyped version. It is
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Language Performance

TypeScript -

StrongScript 1.1x

GradualTalk 5x

Typed Racket 121x

Reticulated Python

Transient 10x

Monotonic 27x

Guarded 21x

Table 2.1: Self-reported performance pathology as given in Chung et al. [50].

TYPESCRIPT, being an optionally typed language, does not suffer from runtime

performance degradation, but likewise does not offer runtime type safety.

unclear whether these performance costs are a necessary element of soundness

guarantees or are an artefact of Typed Racket’s implementation. Certainly, such a

performance cost is likely to mitigate again widespread adoption, as the gain from

extra type safety is unlikely to be sufficient compensation for the performance

loss. Even with few annotations, the slowdown in execution is surprising. Ta-

ble 2.1 gives a breakdown of some languages, both optional and gradual, with

self-reported performance degradation due to casting.

Obviously, if annotations are erased, as in TypeScript, then there is no perfor-

mance cost. Unfortunately, in the case of security labelling, dynamic monitoring

in the presence of gradual typing would be a necessity, as no existing, non-IFC,

language runtime engine has information of policy infringements. Potentially,

given that IFC is likely to be of importance in areas where speed is often a re-
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quirement (for example in online financial transactions), it is vital that the cost of

security is not paid for in performance.

Muehlboeck and Tate [139] argue that many of the performance problems

reported for sound gradual typing can be addressed via careful development of a

type system at the same time as its implementation. They present a nominally-

typed object-orientated language with minimal performance overhead. This work

of course does not help to address the problem of fitting existing languages with

efficient gradual typing. Bauman et al. [23] also address the problem of perfor-

mance, but instead focus on the use of just-in-time compilation to significantly

reduce performance overhead. They present Pycket, a Jit compiler for Racket.

This allows them to compare their results directly with the results presented for

Racket by Takikawa et al. [193]. They report results of 90% reduction in dynamic

overhead. Thus, with dedicated engineering effort and appropriate language

design, it might be possible to get the performance hit down even further.

Kuhlenschmidt et al. [120] use ahead of time compilation and space efficient co-

ercions [104, 175] to implement runtime casts. Furthermore they use the monotonic

references of Siek et al. [181] to reduce overhead in statically typed code (Table 2.1).

Monotonic reference semantics update the type of heap objects in place: replacing ⋆

with a more precise type. This update is then propagated recursively through the

heap. Casting can only cause a heap cell to become more precise.

2.2.6 Static and Dynamic IFC

We have seen that statically enforced type systems guarantee noninterference at

the expense of being highly restrictive: they reject too many secure programs [162].

An alternative to the static approach is to shift the burden of IFC enforcement to

purely dynamic methods. This has a great advantage of allowing for systems of

greater flexibility: Sabelfeld and Russo [166] prove that purely dynamic enforce-

48



ment is more permissive than static, at least in the case of flow-insensitivity. It is

logical to explore the benefits of hybrid approaches to IFC.

Malecha and Chong [127] develop an IFC type system for a core imperative

language which they call LimpL . They show it to be strictly more expressive than

the Jif system. The need for this increased expressivity is linked to the necessity

of rewriting existing Java code to work in Jif [58]. This post hoc typing of existing

code is an extremely important use case and is largely ignored by the research

literature. Again, gradual typing offers a logical means by which existing code

can be securely typed without necessarily breaking working projects. Malecha

and Chong provide an interesting example from Jif where the information flow is

secure but is still rejected by the compiler [127], as in Listing 2.2.

The two variables y and z have different security levels. The program ensures,

with a runtime check, that information is allowed to flow from level p to level q.

If this flow is allowed, and if y is greater than zero, an exception is thrown. The

exception handler then assigns the value of 1 to z. This is allowable, because the

runtime check has already ascertained that flow from level p to q is permitted.

This is rejected by Jif however because the assignment to z takes place outside of

the lexical scope of the dynamic security test p⊑ q. The compiler is not able to

keep track of the fact that the runtime check allows for the flow of information

from p to q.

The problems associated with dynamic IFC management are quite clear here.

It greatly increases implementation complexity and furthermore has an inevitable

effect on performance. Monitoring implicit flows is the most difficult aspect of

dynamic information flow control. Indeed it has been show that purely dynamic

mechanisms cannot precisely enforce noninterference [165]. Dynamic methods

can however approximate, in a safe manner, a permissive form of noninterference.
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int {*p} y = ...; /* y is protected by label p */

int {*q} z = 0; /* z is proteced by label q */

try {

if (p ⊑ q) {

/* information can flow from y to z */

if (y > 0) throw new Exception();

}

}

catch (Exception e) {

z = 1;

}

Listing 2.2: Secure information flow rejected by Jif: assignment to z is rejected,

even though there is no flow, because the compiler has ‘forgotten’ that flow

between p and q is permitted.

A sound gradual type system necessarily has recourse to a form of dynamic

monitor or cast calculus, so the problems associated with dynamic IFC will have

an effect on what can be described and controlled by a gradual IFC type system.

The thrust of recent research has been towards hybrid systems, mixing static

and dynamic enforcement. These can offer the greatest mix of soundness and

permissiveness. Russo and Sabelfeld [162] give a detailed discussion of the relative

merits of hybrid systems. Chandra and Franz [41] combine static and dynamic

techniques for IFC on the JVM, and report that, even for large applications,

the performance impact of dynamic monitoring was at worst a 2x slowdown

in execution. Austin and Flanagan [16] propose an efficient purely dynamic

information flow analysis. The majority of research into dynamic and static
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systems has focused on modelling languages in terms of the λ -calculus or while

languages. There is however a small body of work which explores modelling

IFC in terms of the π-calculus. Kobayashi [117] created a new type system form

IFC in the π-calculus. Hennessy [103] introduces a security-typed version of the

asynchronous π-calculus.

2.2.7 Granularity

Dynamic IFC systems can be divided between coarse-grained and fine-grained

approaches [189, 156]. Coarse-grained models associate security labels with entire

modules or objects, rather than at the level of the individual variable or function

as is the case in fine-grained IFC (cf. Section 2.1.3).

Course-grained IFC works by applying security labels to entire blocks of

code and then only monitoring the flow of information between the blocks. The

interiors of the blocks themselves are ‘black boxes’. This has seen most application

in the realm of IFC operating systems [155]. This has the benefit of increased sim-

plicity over the fine-grained approach used by most type system based solutions:

it is not necessary to give every variable and function a security label. This might

be an extremely useful property when gradually applying a security policy to a

program. Coarse guarantees could be progressively refined as necessary.

Stefan et al. [189, 190] propose a library-based system, LIO, for Haskell which

seeks to merge the course- and fine-grained approaches. As with the coarse-

grained approach, LIO associates a label with a current context, using a monad,

also called LIO, to restrict computations to a safe subset of Haskell. However LIO

also allows the user to associate labels with particular values. These labels are

typically created at runtime and are used to control dynamic information, such as

user input. LIO is a flow-sensitive system.
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2.2.8 Other Approaches to Information Security

Many other approaches to securing informationflow have been studied that

are not type-based. While this literature review is primarily concerned with

type-based IFC, it would be remiss not to mention the most important recent

contributions in this area. Joshi et al. [113] suggested a semantic approach to

secure information-flow, but this has seen relatively little uptake and is not the

basis of any practical implementation. Devriese et al. [69] propose a novel model,

based on secure multi-execution (SME), and demonstrate both its soundness and its

practicality for certain domains. DeGroef et al. [98, 97] have realised this idea and

developed a functional web browser, FlowFox, which uses SME.

SME relies on the observation that it is possible to run a program again and

again for each security level, substituting dummy values for the higher level data.

The program is also run at the highest level with the real confidential data, and

if all low output states are equivalent, then the program is necessarily secure.

FlowFox also allows for rewriting of programs under SME so that all programs

become noninterferent, with automatic program transformation in the event of

an infringement of IFC policy. They analyse the cost of this to be a substantially

greater use of memory and CPU, but with little, if any, time penalty. They even

show that in certain circumstances performance improves. This makes SME a

perfect fit for the browser, but would not be an obviously applicable method for

systems programming, where memory consumption and CPU cycles are managed

at a micro level.

Unfortunately, in the case where the web page is, for example, a mash-up, with

n principles corresponding to URL domains, SME may require up to 2n processes,

as Austin and Flanagan have pointed out [19]. This is expensive. They use

secure multi-execution as the basis for their faceted values, which simulate multiple
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yl = false;

if xh then yl = true;

Listing 2.3: Assignment within a conditional statement.

executions for different security levels. This approach has minimal overhead

and avoids the problems of stuck evaluation in previous dynamic approaches.

Consider the problem of implicit flows, such as assignment within a conditional,

as in Listing 2.3.

They argue that the correct value for y depends on the authority level of the

observer. If the observer has high authority, then y has the value true, otherwise

it should remain as false. Faceted values represent this duality with a triple, with

k as a principal and two values, Vh and Vl :

〈k ? Vh : Vl〉

This appears as Vh for viewers of high security, and Vl otherwise. A value

which is already public is represented simply by itself, as it has no alternative

faces to project to the world. A private value is represented as

〈k ? V : ⊥〉

They demonstrate the system by developing an idealised language, λfacet

which they equip with mutable reference cells, I/O and a mechanism for auto-

matically created faceted values.
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2.3 Gradual Information Flow

Now that we have examined both gradual typing and IFC mechanisms using

type systems, we can develop the central area of investigation of this survey:

gradual typing for information flow control. This is an area in its infancy, but

important work has already been done in proving that it is at least plausible. It is

not just a question of developing efficient semantics but new problems emerge

in the combination of IFC and gradual typing which do not yet have satisfactory

solutions.

2.3.1 Gradual Security Type Systems

Disney and Flanagan [71] produced the first paper on gradual security typing in

2011. They consider a simple λ -calculus, enriched with three base types, Int,

Bool and String, extended with a gradual IFC system, resulting in a core language

which they call λgif. In λgif every value and type has an associated security label,

which form a security lattice. Unlabelled values are assumed to have the ⊥ label,

making the value public. Conversely, they assume unlabelled types to have the ⊤

label, allowing it to describe values of any security level.

Figure 2.11 details the language syntax: ⇛ is the labelling or stamping opera-

tion, which labels data. 1:Int ⇛ IntH stamps the data as confidential, and⇒p

is the cast operator which checks that flow is permitted. The p superscript is a

blame label (Section 2.2.1). The dynamic semantics of λgif are formalised using

big-step semantics. Figure 2.12. At runtime λgif detects illegal down-casts in order

to guarantee termination-insensitive noninterference. The operational semantics

for the cast operation is supported by three rules, which check that a runtime label

is compatible with a specified static label. A blame label, p, is applied to signal

the part of the code which is at fault. They follow the usual distinction between
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i ::= Int | Bool | Str Base Types

a,b ::= i | A→ B Raw Types

A,B ::= ak Labelled Types

t,s ::= v | x | t s | op t | t : A ⇛ B | t : A⇒p B Terms

r ::= c | λx : A.t Raw Values

v,w ::= rk Labelled Values

k, l,m Labels

Γ ::= /0 | Γ,x : A Typing Environment

Figure 2.11: Syntax of λgif.

Figure 2.12: Some rules from λgif operational semantics, including cast insertion

rules and the blame calculus.

positive and negative. Positive blame, p means that the term within the cast is at

fault, while negative blame, p, means that the context of the cast is at fault.

As an example of the E-CAST-FN rule, they consider a function f : Intl →

Booll. If the codomain is strengthened, via cast, to f: Intl → Booll ⇒p Intl →

Boolh, then the new wrapper function created, f′, has type f′: Intl → Boolh. As

the original return value of f is public, it is always safe, from an IFC perspective,

to up-cast the result of f to that of f ′. This is directly comparable to the safety of

casting from a concrete type to ⋆ in a non-IFC gradual system: such a cast cannot

fail. Alternatively, if the domain of f is strengthened to f′ : Inth→ Booll then the

cast from x′ : Inth⇒p Intl, needed to pass the argument to the type expected by

f will fail when x′ is private.

λgif provides Termination Insensitive Noninterference. The use of blame however

can be another covert channel: a program which fails due to a blame assignment
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terminates in an error condition, satisfying Termination Insensitive Noninterference,

though potentially leaking information via the information in the blame label. λgif

is a sophisticated initial offering, but being initial it has a number of limitations.

Perhaps most obviously, there is no cast calculus for λgif, so a developer using

this system, or a system derived from it, would have to manually insert casts and

labelling operations, rather mitigating against the advantages of gradual typing.

From an IFC perspective, the type system is only a little more sophisticated than

that of Volpano (Section 2.1.2). There is no scope for declassification in this system,

nor is it flow-sensitive. The relationship of λgif to the gradual guarantee is also

unclear.

One finds another gradual security core language in the work of Garcia and

Tanter [92]. They gradualise Zdancewic’s λSEC [223] using their AGT method [90]

to produce a gradually typed security language, λ
S̃EC

. λ
S̃EC

is especially interesting

for being the only existing formalisation of a gradual security language that does

not require the manual insertion of casts into the source code to provide NI

guarantees. The language for which they do this however is very simple indeed,

a core calculus with booleans and function types only. This allows them to bypass

the problem of gradualising the base types at the same time as the security types.

Disney and Flanagan too ignore this problem, applying graduality only to the

security types and leaving the base types with a standard static system.

The static semantics for λ
S̃EC

are similar to other examples of gradual typing.

Of more note are the dynamic semantics. This relies on the notion of the interior

of a label. The interior of a label is a developing calculation which tests that a

security label is consistent with the requirements of the information flow. The

interior starts in the form of initial evidence, deriving from information obtained

during static type checking. For simple types the interior is easy to calculate,
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int max(int x, int y) where { x <= ret, y <= ret } {

if (x <= y) {x = y;} return x;

}

Listing 2.4: LJGS syntax with a security polymorphic type signature.

for example a bool falseH has the interior 〈H, H〉. Using a consistent transitivity

operator ◦< and a recursive meet operator ⊓, it is possible to reduce the evidence

provided by interiors during evaluation, thereby detecting an infringement of the

IFC policy without needing explicit casts.

The most mature presentation is Fennell and Thiemann [78], who propose

a gradual IFC type system for a core ML-like language. They prove NI for their

language, MLGS, using term erasure. They account for the use of flow-sensitive

attacks against languages which contain references [166]. Fennell and Thiemann

have also looked at gradual security typing for object orientated languages [79].

They develop a lightweight Java, LJGS. LJGS is a Java subset which excludes

threads, exceptions and reflection. Like most IFC systems, LJGS using the lattice

model to express permissible information flows. A variable must be labelled

either with a fixed security level or marked as to be dynamically checked. Local

variables are flow sensitive, whereas object field types are treated as flow insensitive,

in order to keep the system lightweight. LJGS is the first application of gradual

security types to something more than a core language. LJGS makes the reasonable

assumption that only the public part of the result and of the heap is observable

by an attacker. LJGS only gradualises the security component of the language,

primitive data types must still be fully declared as per ‘normal’ Java.

Listing 2.4 shows a simple function with a security-polymorphic type signature.

As the security levels of x and y are not bounded by fixed values, max may be
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int matMstDyn{Logger, log int x, int y} where { x <= ret, y <= ret

, log <= ⋆ } and { ⋆ } {

if (x <= y) { x = y; }

log.dbuf = "max was called"; return x;

}

Listing 2.5: Dynamic LJGS with the ⋆ type. This is checked via dynamic

monitoring. Note the complexity of the type signature even for this simple

function.

called under any program counter with arguments that satisfy the constraints. It

may even be called with two dynamic arguments. This polymorphism can also

be extended to include a dynamic type, ⋆, which relies on runtime information to

resolve, as in Listing 2.5. This polymorphic signature relies on dynamic IFC. Both

x and y can flow into ret but log has a dynamic security label.

The surface complexity of LJGS and Disney and Flanagan rather mitigates

against any advantage the graduality brings to the table for treating IFC typing.

Reducing the annotation burden is essential. There is no work at all into the

performance characteristics of sound gradual security typing. If its performance

characteristics are as bad as those reported for Typed Racket, it is difficult to

imagine that it will see much use, especially as those areas which are most a

natural fit for IFC (encryption, online shopping and banking) are also those areas

where users expect to see a reasonable degree of performance. Chapter 4 proposes

a new approach to gradual IFC that solves the refactoring and performance

problems of the methods discussed here.
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2.3.2 Quantified Information Flow

The study of the quantification of information within software has a small, but

active, community. Quantified information flow, or QIF, is a comprehensive math-

ematical theory to explain precisely what information is [62], what information

flow is, and how to make quantitative assessments of flow. Alvim et al. [7] provide

the best summary of the state of the art in this area. It is not possible to cover

here all the multitude of uses and approaches of QIF, so we focus on those most

relevant to Chapter 3 and Chapter 4.

Exact quantification is possible in formal systems, such as simple while lan-

guages. The work of Clark et al. explores exact measurement of information in

these confines [137, 55, 56, 57]. It has not yet been possible to scale these exact

approaches to real world software systems, and the research trend has focused

increasingly on estimation of information flow, rather than exact measurement.

Smith [187, 186, 188] gives a comprehensive overview of the various measures

used for measuring information flows, with a special emphasis on information

security. The most common measures are entropy and mutual information. Gen-

eralised gain functions [6] are increasingly used in security orientated information

theory, as they more accurately model different attacker models. For example,

min-entropy measures the “one shot” risk to data in a way that mutual informa-

tion simply cannot. We use mutual information throughout this thesis, though

the techniques should generalise to other information theoretic measures. Mutual

information has the advantage of being useful even without an attacker model, as

we demonstrate with ICMs in Chapter 3.
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2.3.3 Entropy Estimators

Estimating the entropy of a random variable X is an important problem that

has many uses. If one has infinite data, or exact knowledge of the underlying

distribution of that data, then no estimation is necessary. It is sufficient to plug

the probability vector p into the equation for (continuous) entropy

H(p) =−
K

∑
k=1

pk log(pk) (2.1)

where 0log(0) = 0, and K ≥ 2 is the number of different outcomes. Being a

probability distribution, we require that p = (p1, p2, · · · , pK), such that pk ≥ 0 and

∑k pk = 1.0.

Infinite data or exact knowledge is rare, so estimation is necessary. Entropy

estimators can be classified as working on either discrete or continuous data. We

examine discrete estimators only. This is motivated by our use of hashing in Chap-

ter 3 to discretise the data provided via our observations. Broadly comparable

tools, such as LEAKWATCH, make similar decisions.

The simplest possible estimator is the naive plugin estimator. This provides an

entropy estimator purely from the histogram of observations, that is,

ĤN =−
K

∑
k=1

p̂klog(p̂k) (2.2)

where the circumflex above a variable indicates that it is an estimate. Equa-

tion (2.2) is equivalent to

ĤN = log(n)−
1

n

K

∑
k=1

hk log(hk) (2.3)

where hk is the sum of outcomes in the histogram. Equation (2.3) is easy to

implement and efficient, but has a notable drawback. On average, it underes-
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timates the true entropy Equation (2.1) [21]. Informally, we have the following

situation. Consider a single bin, k in our histogram h for a random variable X . To

know the precise contribution of k to the H(X), we need the precise probability of

k, pk. Not having this, we substitute the frequency count instead, p̂k = hk/n, where

n is the sum of all k ∈ h. The marginal distribution of p̂k is a binomial distribution.

Evaluating the concave function f (x) =−x log(x) leads to the underestimation of

entropy on average due to Jensen’s inequality.

Improved estimators take this bias into account. The simplest is the Miller

correction [150], proposed in 1955. This works by adding a constant offset, K in

the bias expression (Equation (2.4)). The Miller-Madow algorithm extends this by

also estimating K from the data.

ĤM = ĤN
K−1

2n
(2.4)

Grassberger proposes a mutual information estimator in [118]. Grassberger’s

estimator is computationally efficient and is generally considered both robust

and useful. Indeed, RIFFLER (Chapter 3) falls back on Grassberger when there is

insufficient sampling to use the Nemenman-Shafee-Bialek (NSB) estimator. We

shall examine this in more detail in Section 4.5.
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Chapter 3

Ranked Information Flow

Information flows through all software. Some of this information should be

secure, some not. Problems arise when information flows in unintended ways.

These are not just security problems, but general software engineering problems.

Flow-aware tools exist but have had little impact on development practice to

date. A significant barrier to the adoption of these tools is the level of expertise in

information theory required by the programmer. We propose to lower this bar

through enabling a more exploratory, feedback driven approach.

We present information flow cartography, a means to map and visualise the

flow properties of software. Our approach produces topographical heat-maps

that allow a programmer to readily understand the internal information flow of

software under development. We instantiate our approach with RIFFLER, a tool

for creating a flow cartography. This automatically creates information flow maps

via a lightweight program transformation. It requires no specialist knowledge

to use. It is tunable and allows the user to produce maps at any level of detail.

Unlike other approaches, such as dynamic taint analysis, RIFFLER requires no

initial assumptions about what is important in the code.
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We show that RIFFLER produces an information contour map that can usefully

approximate brute-force flow estimation methods after just 2 hours of fuzzing.

RIFFLER uses Ranked Information Flow (RIF), a novel, practical, feasibly computable

abstraction of information flow. By contrast, existing information theoretic ap-

proaches to flow quantity analysis rely on an expensively large number of obser-

vations or formal methods with limited scalability in order to draw conclusions.

RIF requires 60% fewer samples than the minimum number required by more

precise estimation tools. We evaluate RIFFLER via case studies that demonstrate

our approach. These include use of flow contour maps to both find security

problems in code and aid code navigation and comprehension.

“We cannot get anything for nothing, not even an observation.” Dennis

Gabor [86]

3.1 Introduction

Programs are information processing systems, but we rarely have any idea how

information is moving around inside them. Knowing how information moves

can tell us whether it is moving correctly and securely. Knowing where there are

large changes in information flow reveals where import control flow decisions

are being made: moving from high to low flow shows “code funnels”, where

a larger input space is partitioned. Information theory (IT) [172], specifically

Quantitative Information Flow or QIF [188], allows us to measure flow, but has

barriers to practical use.

Assuming we overcome these barriers, we can build an information map of

a program. Amongst other uses, this map can be used to consider the security

policy of the program. A security policy defines what information can be read
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and written by different classes of users. It is not easy to know if a program

satisfies a particular policy, but it is also not always easy to know what a policy

should be: program interactions are complicated. One might mark a variable as

private, and another as public, but such annotations might lead to unexpected

problems via transitivity of information flow. This problem has familiar siblings for

every developer, where data no longer has the expected form due to preceding

calculations.

There are many tools that track information flow through a program, with

an eye to security (Section 3.7). They all rely on a least one of the following

assumptions:

1. the pre-development existence of a security policy: the developer knows

what is secret and what is public;

2. knowledge of the attacker model: the powers of the attacker, whether they

can access memory, read the source code, or provide inputs etc;

3. declassification (i.e. how much information can be allowed to leak from a

program.)

It is common for developers to lack this knowledge and be unable to exploit the

power of information flow control development techniques.

There are two principal barriers to building these maps: knowing what to

observe, and making enough observations to draw conclusions. The first is that it

is very hard for a developer to know what is important when there is no explicit

policy. One question is: “What do I need to track?”. Another is: “Have I done

enough work to make an estimate of what I am tracking?”. The computational

complexity of many QIF calculations is PSPACE-complete and, in general, a large

number of observations is required (Section 3.3.1) for a precise QIF estimate.
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To solve the first problem, we introduce a testability transformation [101] that

uses sensible defaults to track input/output at the function level. We introduce

Ranked Information Flow, or RIF (Section 3.3), to address the second problem. RIF

approximates the relative rank of flows to ameliorate observation under-sampling

and mitigate the cost of more accurate estimation. Leveraging RIF, we also pro-

pose the Information Contour Map (ICM) to help non-specialist developers gain

knowledge about flows in their program. RIF abstracts dynamic QIF, improving

computational feasibility. The ICM brings this information to the non specialist,

without burdensome detail. A developer can use this map to explore the infor-

mation flow semantics of the program, confirming or denying intuitions about

information policy. The RIF information map does not, by default, offer strong

statistical guarantees, but it also does not require the assumptions of other security

tools. In particular, an ICM can help identify malware (Section 3.2).

The assumption for existing QIF tools (Section 3.7) is that tight precision

or a tight bound is always the goal. Precision is what we want when we know

precisely where to dig, but more high-level mapping is what we require when

we are exploring a landscape. Knowing in intimate detail one small square of

land does not help us put that small plot in context. RIF creates that context, yet

still allows for the more precise details. We use RIF to map information flows

over a program’s callgraph and rank them via FlowForward (Section 3.3.2), a new

information-theoretic measure that normalises mutual information (MI) by the

size of the input.

We instantiate FlowForward and RIF in RIFFLER1, a tool to perform information

theoretic code cartography. RIFFLER uses a testability transformation to gather

1A riffler is a small, double ended file for detailed, precision work. Our tool uses RIF to enable

information-theoretic code exploration.
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program information from a normal testing regime (Section 3.4). RIFFLER’s scope

is tunable along two dimensions: scope of observation and observation detail.

RIFFLER comes with an annotation system that allows the users to add or remove

annotations with minimal user intervention (Section 3.4.2). This annotation system

bootstraps at the function level as a default, but additional annotations can be

manually added or removed.

Our principal contributions are:

• We introduce IT cartography, a means to explore the security policy a pro-

gram implements (Section 3.2);

• We introduce the concept of RIF and also FlowForward, an IT measure which

can be meaningfully ranked (Section 3.3);

• We present RIFFLER, a security cartography tool integrated into normal

testing that uses RIF to map information flows over a program’s callgraph

(Section 3.4).

• We show that RIF is computable and efficient (Section 3.5);

RIFFLER’s implementation, and the scripts and data used to evaluate it, can

be found at https://github.com/kellino/python-riffler

3.2 Motivating Example

Every piece of software has a security policy. For something like a calculator,

for example, the policy might simply be that no data is secret. Other programs,

like login applications, might have a policy that very little information about

the password is revealed, i.e. just success or fail. Other programs might have

considerably more subtle policies. Knowing what the policy should be is not the
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same as knowing that the policy is satisfied. In order to discover a program’s

security policy as instantiated, a map of what a program is doing would be

extremely useful, especially as a formal definition of policy is usually lacking.

RIF, and our tool, RIFFLER (Section 3.4) allow developers who lack training

in information theory and information security to leverage their general program-

ming knowledge to explore hypotheses about what flows should and should not

be. In particular, anomalous flows become much more obvious. The interpretation

of flows, and whether they are anomalous or not, depends on context.

If we look at the left-hand side of Figure 3.1, we see the ICM of a small

PYTHON program. The ICM is a colour coded extract from the program callgraph;

it shows how much information is passing through each function. This transit

is FlowForward (Section 3.3.2). This extract can be sliced from the larger callgraph

by looking for large changes in information flow. This large change occurs be-

tween __init__ and log. Given just a callgraph, log does not warrant any special

investigation, but taken together with its FlowForward, we ask why is it only called

here in the callgraph, and why does it appear to do nothing with its information?

The program does not keep any log file. The log function in Figure 3.1 is clearly

different from all the other functions in the graph.

Let us add more fine-grained annotations. By default, our tool, RIFFLER,

records at the function level, but it also has some heuristics annotations at the

statement level (i.e. capturing print statements). We requested more detail from

RIFFLER and produced the map on the right of Figure 3.1. The log function has

gone from 0 to 1, but there is still no evidence of a log file anywhere. This is

deeply suspicious. Closer inspection of the function reveals total information

exfiltration. Our private details are being sent, unencrypted, over the internet.

The only physical code examination required was at the end of the process, to see
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Figure 3.1: The left shows an extract of the callgraph from ssh decorator with

default RIFFLER settings. Immediately, one can see that log is both in an unusual

position in the callgraph, and is an information “black hole”; it appears to do

nothing with the information sent to it. The program keeps no obvious log file. It

is clear that log warrants further investigation. The extract on the right shows the

same callgraph with manual annotations added to log. This function is not losing

any information at all; this is suspicious, as we might expect a logging function to

compress some of its input into formulaic messages.

exactly what was being stolen.

This log function comes from the module ssh-decorate, which was “back-

doored” on PyPI by insertion of code that sends a user’s private credentials to an

external url. These credentials were sent without encryption. While the offending

code is no longer available through PyPI, and the GitHub repository [11] never

contained the offending code, it is possible to reconstruct the malware from code

snippets online [40] and the code on GitHub. We mocked a server and tested

ssh-decorate using fake credentials and our tool, RIFFLER.
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3.3 RIF: Ranked Information Flow

We present ranked information flow as a feasibly computable abstraction of QIF.

Traditional dynamic QIF suffers from high sampling requirements (Section 3.3.1).

IT measures, such as mutual information (MI), can have misleading results if

ranked naı̈vely, so we introduce a new measure, FlowForward (Section 3.3.2).

Ranking directly by FlowForward, or any IT measure, can produce too detailed a

picture, so we also show how to simplify the FlowForward to produce an abstract

map of program information flow (Section 3.3.5).

3.3.1 Cost of Dynamic QIF

QIF is a powerful tool for measuring security leaks in a program. Many tools

exist, that differ in their scalability [26] and accuracy. None of these tools has

made much impact in software engineering. The reasons vary per tool, but some

combination of heavy resource consumption, expensive calculation, or requiring

a security policy, i.e. knowing what to observe and what to ignore, always comes

into play.

Approaches that rely on dynamic observation, in particular, suffer either

from under-sampling or high resource consumption. To demonstrate this, we

took a simple Java program that takes an integer and appends it to increasing

amounts of “noise”. We limited the integer value binary to either 0 or 1. IT says

that binary contains 1 bit of information. We generated noise (random numbers)

of a given length and appended the binary value, as a string, to the string of noise.

We measured the mutual information (Equation (3.1)) between the two; mutual

information being a measure of dependence between two variables. To measure

the mutual information, we used LEAKWATCH [49]. This is a high quality tool

for point-to-point IT analysis in Java. It relies on heuristics to determine when
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Figure 3.2: The effect of population size on the amount of work required to

estimate MI is very large. As the population size increases, the number of samples

required for an estimate increases linearly. Using sophisticated entropy estimators

(Section 3.3.4) and ranking (Section 3.3.5) reduces the amount of work required.

the minimum amount of samples has been taken2. We ran the program and

counted the number of executions required before reaching the default statistical

threshold.

Figure 3.2 shows that the amount of work increases markedly with the size

of the observation space. The MI estimate, however, only decreases a little.

This shows two things: MI is a robust measure of dependence between two

variables, and it is just not practical to estimate MI in this fashion. This is just

2The full details can be found in the paper, but there must be at least 4 times the product of

unique input and output observations.
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one point-to-point observation, yet takes hours to run. For a string 6 characters

long, we required 2,021,438 executions before achieving confidence, but in our

experiments, the most any one program was sampled was 404,682 (Section 3.5).

We cannot defeat fundamental complexity. The big-O complexity of quanti-

tative information flow (QIF) calculations is high. The QIF bounding problem,

checking whether the flow in a program can be bounded above by a constant

d, is PSPACE-complete [43]. Other problems in the QIF space have a similar

complexity [44].

We want to map information as it moves through a program. Using standard

QIF directly for all program variables is too expensive. We present RIF as a means

to create a scalable, useful, approximation of information flow over an entire

program, and not just over a few select variables. We assume that we do not, a

priori, know whether a vulnerability exists (though we might know what we want

to keep secure). As we do not know, it is unwise to make assumptions about

how many observations an attacker can make. These considerations motivate an

information theoretic measure which is not primarily concerned with one-shot

“guessability”, that is normalised in such a way as to allow for easy comparison,

and that provides reasonable results even when resources are limited.

A map of an entire system should not be overwhelmed in detail. This moti-

vates our use of ranking. Knowing the relative magnitudes of flows within the

callgraph provides sufficient information to describe that system. Once the system

has been mapped, and nodes of interest identified, one can use target those nodes

for more detailed cartography.

RIF solves the cost problem of QIF by recognising that relative magnitude is

more useful at most programming stages than precision. In the limit, as sampling

approaches infinity, RIF becomes QIF. RIF also maps information in a way that is
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easier for the non-specialist to interpret. One does not already need to know what

to look for, the scalability of the approach means that everything can be observed

and understood in context.

3.3.2 FlowForward

An example IT measure is mutual information (MI). The MI between two random

variables, X and Y , is given by

I(X ;Y ) = ∑
x∈X ,y∈Y

p(x,y) log2

(
p(x,y)

p(x)p(y)

)
(3.1)

This tells us how much information is shared between two random variables,

X and Y . If we know both X and Y perfectly, then it is easy to calculate MI. In

all of our examples to follow, X is the distribution of inputs to a function, and

Y is the output of that function. As an example, a function might take a single

integer argument: in actual program execution, this integer might only occur

within some range, and some integers might occur very frequently, some very

rarely. In practice, we rarely know X and Y perfectly and have to approximate

them through sampling. If we test a function on just a handful of inputs, the MI

picture is less accurate than if we test with many inputs. Ideally, we also have to

test with the right inputs: those that we actually see during execution.

For example, let us define a leak as any unwanted movement of information,

and quantify the size of that movement using MI. A leak of 1 bit from a boolean

valued function is a leak of all the information in that function, whereas a leak of 3

bits from a 64 bit integer valued function is probably rather little. To the specialist

this is all rather obvious, but most software engineers are not specialists, and it

is software engineers who write the code and consider code security. To rank

these correctly, it is more useful to know how much of the input is reflected in

the output. With these requirements in mind, we introduce a new information
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theoretic measure which we call FlowForward. FlowForward is the proportion of

information contained in X that is reflected in Y (Figure 3.3).

Definition 3.3.1 (FlowForward). Given 2 random variables, X and Y , and a critical-

ity weighting δ , the FlowForward from X , F(X ,Y,δ ) is given by

F(X ,Y,δ ) = δ

(
1−

H(X)− I(X ;Y )

H(X)

)
(3.2)

This does not make assumptions about the nature (whether total or pure)

of the function, i.e. H(Y ) can be greater than H(X). This might be the case if a

program function has access to state that is not captured in its input parameters, for

example. H(X)− I(X ;Y ) is just the conditional entropy of X given Y , so F(X ,Y,δ )

can be rewritten δ
(

1− H(X |Y )
H(X)

)
. The criticality weighting, δ , allows a user to include

a security policy or some other form of model into the map. We assume δ

is uniformly 1 in our examples, but a simple confidentiality policy could be

modelled by setting δ > 1.0 for any nominated function. F(X ,Y,δ ) is guaranteed

to be a value between 0.0 and 1.0 when δ is 1.0. Given the fact that I(X ;Y )≤ H(X)

then we have, in the case of no mutual information, 1− (H(X)−0/H(X)) = 0.0,

as expected, and in the case of total flow 1− (H(X)−H(X)/H(X)) = 1.0. This

allows us to compare different functions and methods which are different in their

supports.

The presence of δ allows us to scale FlowForward based on assumptions of

importance. For example, a simple security policy might say that all user input

should be regarded as suspicious. By defining δ > 1 for these functions, they will

have a higher FlowForward, which will result in greater prominence in the ICM.

If, even after applying δ , the FlowForward of a function is low, it is likely that the

information introduced by a user is having limited effect on the computation.

Knowing the exact values of X and Y is, as we have seen, very difficult. In practice
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Figure 3.3: FlowForward is 1 - the area in blue, normalised by H(X). This allows us

to think of FlowForward as the proportion of information in H(X) that reaches H(Y ).

Let f be a function with input X and output Y : if H(X) = 2.3 and H(Y ) = 4.0 and

I(X ;Y )= 1.3, then the FlowForward R(X ,Y,δ ) (assuming δ = 1.0) is 1− 2.3−1.3
2.3 = 0.56.

The normalised deterministic squeeziness (H(X)−H(Y )
H(X) ) is 2.3−3.5

2.3 =−0.74, indicating

the there must be an additional source of information inside the body of f which

is not coming from X . This addition source of information is represented by H(Z),

state accessed inside the body of f .

we have F̂(X ,Y,δ ) = δ
(

1− Ĥ(X)−Î(X ;Y )

Ĥ(X)

)
; the estimated value of FlowForward for

random variables X and Y . This estimate may fall below 0, or rise above 1 due to

noise in the estimated values of Ĥ(X) and Ĥ(Y ).

3.3.3 Interior Information

FlowForward is excellent for telling us about how much information passes through

the function but it does not tell the whole story. If observations are taken at the

granularity of the function, then some important information may be missed.

If a function calls on global state within its body, FlowForward cannot directly
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detect this. To solve this problem, we follow up a suggestion from Clark et al. [57]

and we repurpose another IT measure, squeeziness [53], specifically normalised

(deterministic) squeeziness (NSq), Equation (3.3) [54]. It measures how much a total,

deterministic function compresses information.

It finds application in work on fault masking and failed error propagation

(Section 3.7). Normalised squeeziness is defined as H(I|O)/H(I), a Shannon

measure and always positive. For deterministic functions we can use the simpler

SQN( f ) =
H(I)−H(O)

H(I)
(3.3)

as f being deterministic means H(O) ≤ H(I) and SQN( f ) yields a positive real

number. If f is not deterministic then we are no longer, technically, measuring

squeeziness, but performing a relative comparison between input and output

entropy. It is no longer a Shannon measure. It does, however, allow us to flag

functions which feature some non-deterministic or stateful components. A nega-

tive result is due either to hidden state or some source of non-determinancy, as

in Figure 3.3. By outputting both the FlowForward, showing how much of the

input carries through to the output, and the NSq, if negative, we can build a

detailed map of how information moves inside the SUT’s call graph (Figure 3.7).

3.3.4 Data and Entropy Estimators

To improve estimate efficiency, RIF uses state-of-the-art entropy estimators. As

previously discussed in Section 3.2), calculating entropy via Monte Carlo methods

is an expensive problem. The simplest entropy estimator is the Maximum Likelihood

Estimator, also known as the Plugin estimator. This takes the count data from

observations and slots the resulting histogram into the entropy formula. Such an

approach, while simple, on average, underestimates entropy [22]. This realisation

has led to a large amount of research into how best to estimate entropy from count
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data.

Some well-known estimator improvements are Grassberger [118] and those

in Planinski [151]. Essentially, they all add a bias to account for undersampling

and differ in how they calculate that bias. Several estimators specifically for MI

exist, such as those proposed by Zeng et al. [225], and Hernández et al. [105].

The most flexible, in that it handles mixed discrete and continuous data, is the

knn-based estimator of Gao et al. [88]. While we tried this algorithm, it is unclear

how best to automatically set the value for k. Moreover, FlowForward requires an

entropy estimate, not just an MI estimate.

The idea behind Bayesian entropy estimators is simple: specify a model

relating observations to the unknown quantity, then compute the posterior given

the observations. In particular, we use the NSB (Nemenman-Schafee-Bialek)

algorithm [144]. This algorithm allows entropy estimation even when the number

of samples is much smaller than the size of the alphabet, where the alphabet is

the number of classes with a non-zero probability. Given the extreme difficulty

of knowing the alphabet size for any given datum, this flexibility is extremely

important for our approach. When we have custom objects for our random

variable, we really do not have a ready means to assess the cardinality of that

object. When such information is not present or known (as will most often be

the case), we use a variant on the NSB algorithm for random variables with large

cardinalities [142]. In effect, this simulates a strongly undersampled regime for

countably infinite spaces.

Continuous Data: We use the “3H” approach to calculate mutual information:

I(X ;Y ) = H(X)+H(Y )−H(X ,Y ), where H(X ,Y ) is the entropy of the joint distri-

bution. While this has some limitations in higher-dimensional continuous spaces,

it is sufficient for our purposes. MI estimators for such spaces exist [88], but it is
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not clear how to apply them to entropy estimation. Their use is, so far, largely con-

fined to machine learning applications. Continuous data is traditionally handled

via discretisation, as the entropy of a continuous distribution is infinite.

3.3.5 Noise Reduction via Clustering

In any SUT there might be several hundred active observation points. It stretches

credulity to assume that the ranking of these points’ FlowForward will remain

stable over time. Even the best entropy estimators will fluctuate when a variable’s

distribution changes. We also have the problem of “circling” functions: those

whose estimates circle each other again and again without reaching a fixpoint.

Such functions will always perturb rank correlations, even though the essence of

the ranking approach asserts there is no useful difference between an estimate of

9.05 and 9.1.

Our solution is to group functions with “similar” FlowForward and assess

rank similarity over the groups. The problem then is to define “similar”. Initially,

we experimented with various clustering algorithms. These operate on the as-

sumption that this is an underlying grouping to the data, and often require an

initial guess as to how many groups there are. We quickly realised that we could

not make such assumptions. There is no reason to assume clear groupings in the

information flow properties of functions, and we had no idea how many groups

there might be. We resolved this problem through much simpler mathematics:

rounding. We group similar functions by rounding their estimates to the nearest

.x. We control how many groups there are by careful specification of x. This solves

the problems of “circling” functions.

The only subtlety we permit ourselves in this simple system is we always

round in the same direction: up. We note that rounding induces a Galois Con-

nection [217]. Let the set of raw FlowForward scores be partially ordered (R,≤).
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Figure 3.4: Lattice A contains the raw RIF scores, partially ordered by value,

derived from testing the program, while lattice B is the abstract lattice of those

scores with the same partial order. The red arrow is the abstract function α . Here

α is interpreted simply as round up to the nearest .xx. The concretisation function

γ (in blue) maps the abstract value to the nearest value below it, thus satisfying

the requirements for a Galois Connection, ∀a ∈ A,b ∈ B : α(a)≤ b iff a≤ γ(b). We

compare rankings over the abstract lattice.

Further, let αn : R→ R, so that αn(x) = x′, where x′ is x rounded to n decimal

places. αn is a monotone map x1 ≤ x2→ αn(x1)≤ αn(x2), extensive x≤ αn(x), and

idempotent αn ◦ αn = αn, so it is a closure map. We use it as our abstraction map

but define γ as the largest data point less than the abstraction This defines a Galois

Connection in the ordered set of real numbers.

3.4 RIFFLER Implementation

RIFFLER is written in Python. It consists of two parts: an annotator and a Flow-

Forward estimator. It uses decorators to capture function call information. These
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decorators are the only language specific part. There is no absolute need to use

decorators, but they make the process of applying annotations much easier. In

return for the ease of application, the granularity of automatic observation is at

the level of function. One can, of course, write manual observation points at any

level of granularity. We provide a decorator for Python, and an decorator for Rust.

The annotator automatically applies the decorator annotations to Python code

but, for Rust, annotations are currently manual.

The second component of RIFFLER performs the information theoretic calcu-

lations. This uses a Bayesian entropy estimator; we discuss why we chose this

and how it works in Section 3.3.4. Observations are stored in a NoSQL database,

by default, MongoDB.

3.4.1 Capturing Observations

RIFFLER uses the dill serialisation library [134]. We record the input arguments

to the function and serialise them using dill. For reasons of efficiency (of both

comparison and memory use), rather than dumping the bytestring output directly

to the Mongo database, we store the 128 bit murmur3 hash [218]. We use a constant

seed to allow us to compare different runs of the program. We assume the input to

be trusted. Hashing preserves identity only: this is not a problem for information

theory, as a count of identities is all that is required. We do not need to know what

is being observed.

RIFFLER converts the list of input hashes to a csv string before storing them in

its Mongo database. We use the same procedure for the output of the wrapped

function. For functions that mutate the input values and do not return a value of

interest, our solution compares the hashed snapshot of inputs before calling the

wrapped function, with the hashed snapshot of inputs after calling the wrapped

function.
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We record the occurrence count for each unique input/output pair of a func-

tion. From a purely practical point of view, this saves space in the database. As a

happy byproduct, this also permits using the count as a means of assessing the

input/output diversity of our testing regime. Given that a uniform distribution is

the most informative, we can easily compare the RIF of a function ignoring the

occurrence count and with the occurrence count. Similar values means that the

multiplicity of input/output pairs has had little effect on the RIF, so we have a

distribution approaching uniform.

Certain functions, such as __init__, tend to be called infrequently while

fuzzing. They are important, so we do wish to include them in the callgraph, but

we also cannot give a FlowForward estimate with a large degree of confidence.

For functions called fewer than 5 times, we use the Grassberger estimator (Sec-

tion 3.3.4), as NSB does not function under these circumstances. The output of

RIFFLER makes clear where there was insufficient data (Section 3.6).

3.4.2 RIFFLER Discussion

While we have attempted to make RIFFLER as robust and usable as we can, there

are still a few areas where manual intervention is required or limits to the testing

regime are exposed. We discuss these, and our solutions, below.

RIFFLER comes with a Python3 annotation script for adding and removing

RIF annotations. This annotation is a Python decorator that is added before each

def in the source code. We ignore certain files in a project by adding them to

a global ignore list. This includes, by default, such files as setup.py, which is an

artefact of Python setuptools and not part of the source code proper.

RIFFLER requires a test harness, provided as a command line variable. This

file needs to be a self-contained Python script. When testing library code, only

those functions callable through the testing harness are observed. It can easily be
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the case that a large number of RIF annotations are added via the annotation tool

that will never be observed from the given entry point. This indicates that a better

test harness is required.

While the Python RIF decorator is quite robust, it does have limitations. For

instance, some functions contain code that dill does not serialise, due to infinite

recursion. This infinite recursion leads to a stack overflow and causes the Python

instance to crash. It is not possible to recover gracefully from this crash, nor to

catch it before the damage is done. Such annotations need to be removed.

At the moment, RIFFLER annotations are immutable during a testing run.

This means that, even if a sufficient number of samples has been gathered to

have a good confidence that the FlowForward is correct, RIFFLER takes a testing

performance hit from the decorator. Future work will edit the AST on the fly to

remove exhausted annotations to improve testing efficiency. RIFFLER’s annotation

imposes a runtime cost. As it is a testability transformation [101], production code

does not pay it.

Continuous Data: Our entropy estimator only handles discrete data. A contin-

uous variable has infinite entropy; the usual method to tackle this is to discretise

the data. Our method of hashing every variable to a 128 bit integer and using an

asymptotic entropy estimator maps the uncountably infinite space of the reals

to a countably infinite space. This transformation is therefore lossy. While this

technique is in line with standard practice, future iterations of RIFFLER should

allow bucket sizes to be set by the user in the event that the information is known,

or bucket size is important.

Confidence: RIFFLER does not provide statistical guarantees on its map by

default. Other tools provide such guarantees, at the expense of more upfront

knowledge and expertise. For the user who requires such confidence, RIFFLER
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can use the standard deviation of the entropy estimate as a stopping criterion.

The NSB algorithm, being Bayesian, returns a normal distribution, specifically

its mean and standard deviation. It is a simple task to require RIFFLER to keep

testing until the standard deviation is sufficiently low.

False Constant Functions: Information theory does not care what is observed,

just how often it is observed. Take for example the function parse(*args, **

kwargs): it might be expected to have a high RIF, as parsers usually convert

information instead of throwing it away. The parse function, however, might

return a pointer to an object <obj.Parse.parser at 0x343f343e> instead of a

detailed view of the input stream and partial AST. Observing only this memory

address leads to the false constant problem. All sorts of changes may have occurred

internally to this object, but the observation point value itself never changes. As a

result, parse appears to be a constant function. Constant functions have a very

low MI, and therefore very low RIF.

Is the reported RIF for false constant functions correct? Yes, in a purely

information theoretic sense. In a practical, useful, sense, we want to minimise the

presence of these false constant functions. To expose the output of such functions,

RIFFLER attempts a full serialisation of the object. We use DILL to deference all

internal pointers. When full serialisation is impossible, due to recursion limits,

we resort to a shallow serialisation of the top level object members only. RIFFLER

records the occurrence of shallow serialisation. If even this fails, RIFFLER resorts

to very shallow and simply directly hashes the returned value.

Fuzzing: We use fuzzing for ease of testing. Fuzzing requires only one

entry point. It should be possible to generalise a PYTHON test suite to produce

random input values, but this is not something that Pytest or similar tools does

automatically. This introduces the problem of creating more “junk” inputs, i.e.
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inputs that are not likely to ever be seen in real deployment but which do not

cause an error; a problem from which fuzzing suffers less. This could potentially

distort the input distribution to the point that then entropy estimate is misleading.

Deployment: RIFFLER is intended for deployment into a project’s testing

regime. RIFFLER can automatically annotate individual files or entire directories

for testing and automatically removed them for release. This is the only manual

step for most projects. As discussed above, testers will need to remove some

annotations due to recursion difficulties. Future versions of RIFFLER will aim to

handle this problem more elegantly by automatically detecting such functions.

RIFFLER is independent of testing regime. As long as a function is called a

sufficient number of times with diverse inputs (i.e. enough that the NSB algorithm

can return a result), then a contour map can be produced. In general, the better

the testing regime, the better the map.

RIFFLER is a prototype tool for RIF measurement. It requires pure PYTHON

programs for decorator application. This acts as a limit on the size of program

testable: not because of an inherent limitation in the approach, but rather lim-

itations in PYTHON. Large PYTHON projects, such as numpy and pandas are

frequently written in C, with a PYTHON interface. We cannot yet produce maps

for these large and interesting projects, as C lack decorators. Further engineering

work is required to solve the problem of capturing I/O pairs automatically for C

functions.

3.5 Evaluation

The ICM that RIFFLER produces is only meaningful if the ranking is meaningful.

Given an unlimited testing budget, RIF approaches accurate QIF. In the limit, we

know that RIF produces useful results. In the real world, unlimited testing budgets
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are unlikely. The question then becomes what is the least amount of work that we

can do to obtain reasonable results. We answer this question experimentally.

Experiments: For scalability and utility, we show that estimating FlowForward

produces meaningful results w.r.t the ground truth of information flow within

the SUT. The chief difficulty is establishing the ground truth. As we have seen,

obtaining a bounded MI estimate with a 95% confidence interval, for even one

random variable, can be prohibitively expensive (Section 3.2). We tested each

program for 24 hours and took the final ordering as the ground truth. We use

the Kendall rank correlation coefficient [216], τ , to measure the similarity of the

orderings at each hour compared to the ground truth. We exclude functions that

are chronically under-sampled. Kendall τ requires that both orderings are the

same length. As fuzzing progresses, it may find more functions, so the orderings

will be different lengths. To calculate interim orderings, we truncate the ground

truth to include only those functions in the interim ordering.

Experiments were conducted on Microsoft Azure cloud computing. We used

RIFFLER to add annotations. A total of 10 annotations were removed across 3

programs due to serialisation limitations. We tested each program for 24 hours,

either with a seed corpus, or a HYPOTHESIS test suite. We tested each program 10

times, and present the average of the results in Table 3.1. In one case, ruamel, a slow

unit report caused fuzzing to terminate earlier than 24 hours. RIFFLER attempts

to automatically restart until the required time has passed. In our experiments,

we used the atheris fuzzer from Google [96]. This is a Python front-end for the

LIBFUZZer project. We used the ENTROPIC scheduler to improve code coverage.

Corpus: Our corpus consists of the programs listed in Table 3.1. As no existing

corpus dedicated to fuzzing Python is known to us, we built our own. Two

programs in the corpus are derived from the sample fuzzers included in the
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ATHERIS GitHub repository. We drew the other programs uniformly at random

from a search of projects on GitHub. First, we filtered to find only those projects

which had existing Hypothesis test suites. Next, we removed projects which were

not largely in Python. The prototype RIFFLER tool cannot yet add annotations to

non-Python code. We filtered this list to remove tutorials: we only considered

library code and executables for inclusion. While this last stage is not essential,

we wished to explore real-world code first and foremost. Full details of this search

procedure are in Section 3.9. We chose 8 programs, with a total of 12 distinct

testing entry points, as a large enough sample from which to draw conclusions.

Many fuzzing papers, in particular, use fewer programs. Our corpus suffers

the usual threats to external validity. We created a corpus to match our computing

resources and RIFFLER’s current limitations, but we have no reason to believe

these concerns bias our corpus selection in RIF’s favour.

RIF Performance: If ranking is to scale, it needs to approximate the ground

truth before exhaustive testing. We fuzzed a total of 11 entry points drawn from

8 different Python programs. As many of these projects are libraries rather than

executables, different testing entry points had to be prepared. The results are

presented in Table 3.1. Functions tracked is the total of all functions called during

testing, with total calls being the complete amount of work done over the 24

hours. Under-sampled is the number of functions for which there are insufficient

samples, even after 24 hours, whereas Shallow covers both shallow and very

shallow serialisations. We tracked a total of 768 different functions over the course

of the experiments. Rankings over individual runs were quite stable; this is likely

due to the use of the same seed corpora or test cases for fuzzing.

From Table 3.1, we can conclude that for most programs, under-sampling and

shallow functions were not a problem. The number of under-sampled functions in
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idna is rather startling. Only 17 were sampled sufficiently to obtain good quality

estimates. The shallow sampling of ruamel is the result of regular expressions

in the code; these are difficult to serialise; though can be explicitly ignored. The

virtue of different entry points while fuzzing is displayed by jamespath: fuzzing

the search API covered 75 functions, whereas fuzzing through the main entry

point only covered 21. Shallow functions (and, by extension, false constant

functions) were not problematic in our corpus, though they did account for 22%

of all tested functions in Fernet. Figure 3.6 shows RIF’s performance. We found

that, on average, ranking relative to ground truth started at 92%. While testing for

even an hour produces a good quality map, testing for longer produces a bigger

map, as new code is found by the fuzzer.

As previously discussed, obtaining a ground truth with another tool, such as

LEAKWATCH, is computationally unfeasible. However, it is possible to calculate

the minimum number of samples that LEAKWATCH requires given a particular

input/output space. This is four times to product of unique inputs and outputs

per observation. We calculate this and compare it against the actual number

of observations. As we have used fuzzing as a test driver, some functions are

over-sampled with respect to LEAKWATCH requirements. These functions in-

clude __init__ functions and similar object creation activities. We exclude these

functions from our analysis, as the over-sampling is a byproduct of the testing

regime, rather than a necessity of ranking.

Over our corpus, we find that ranking requires only 40% of the lower bound

number of samples required by more precise estimation. This is a minimum 60%

saving on number of executions, as shown in Figure 3.5. A z score analysis of the

results does not reveal any outliers until setting the score at 1≤ z≤ 2.

Threats To Validity: We address the external threat our corpus poses above.
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Program
Functions

Tracked

Total

Calls

Under-

sampled
Shallow

ruamel 161 373824 0 41

chardet 120 314562 0 0

ecdsa 57 363937 8 0

idna 95 404682 78 0

hazmat∗ 53 398978 0 15

fernet∗ 82 363572 17 18

dateutil 20 366603 6 1

james main∗∗ 21 381898 5 4

james search∗∗ 75 394276 6 7

james api∗∗ 63 378872 7 7

ssh-decorator 21 387330 0 1

Table 3.1: RIFFLER performance on Python programs using atheris. The total

number of functions ranked over the corpus is 768. Shallow readings are only

problematic in a few cases. Large under-sampling is, except in the case of idna.

Entries marked ∗ are different algorithms in the Python Cryptography library,

whereas those marked ∗∗ are different parts of the API for the jamespath library.

RIFFLER has two limitations that further threaten its external validity: slow unit

reports and non-observable functions. Serialising objects takes time. This addi-

tional cost sometimes leads LIBFUZZer to spuriously report slow unit. Further

work is required to disentangle the overhead of RIFFLER’s decorations from non-

functional characteristics of a decorated function. A small number of functions

could not be easily serialised and were dropped. This serialisation limitation is
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Figure 3.5: Rankings require far fewer samples than more exact estimation meth-

ods. RIF needs 60% fewer observations than the minimum required by LEAK-

WATCH for a particular set of input/output observations.

as a result of dill not being able to serialise some parts of the Python language,

especially regular expressions. We have no reason to suspect that dropping them

affected RIFFLER’s performance. Even if we are wrong, and filtering introduces

systemic bias, the proportion is so small any resulting bias would also be small.

3.6 Case Studies

We present several RIFFLER case studies. We have already seen, in Section 3.2, that

malware can be discovered by RIF mapping. We look at several popular Python

projects to discover what an ICM can tell us about them. Each ICM presented was

extracted from the larger callgraph by looking for large change in FlowForward

between functions. This helps to reduce the complexity inevitable in the graph

visualisation of software. The colour schemes for the ICM were chosen from a
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Figure 3.6: The more testing resources spent on RIFFLER, the larger the map: as

the fuzzer finds more functions, the map grows. The accuracy of the map also

improves, but already starts at 92%. Even a small amount of testing produces a

good approximation of the result obtained at 24 hours.

cool heatmap colour scheme. This colour scheme can be changed in our prototype

RIFFLER tool.

Cryptography: The Python Cryptography module provides cryptographic

recipes and primitives. This module is mostly written in Python, with a small

amount of code in Rust. We show a small extract from its ICM in Figure 3.7. While

most of the ICM has low RIF, the interior information of finalize jumps out. It

draws our attention to the presence of an information source not present in this

slice of the ICM. Where does this information come from, and can it be trusted?

Closer inspection of the function reveals that it is receiving a lot of information

via calls to C through the foreign function interface (ffi). There is a great deal of

trust being placed in these foreign calls. Prudence suggests additional testing and
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Figure 3.7: An extract from the hmac module ICM in Python’s cryptography li-

brary. The copy node is dashed because too few samples were taken to make a

good estimate. The fat arrow going into finalize is negative normalised squeezi-

ness (interior information) and indicates an information source other than the

function’s input. This information source is large. Is it legitimate?

annotations here might forestall or reveal leaks in the future.

ECDSA: The Python ecdsa library [201] is a pure Python implementation

of the Elliptic Curve Digital Signature Algorithm. It allows the user to quickly

create key pairs for both signing and verifying. We examine a part of the ICM

in Figure 3.8. The first obvious feature is the relative lack of connectivity between

the nodes of the ICM. The low RIF of most of the functions appears linked to the

low connectivity. These functions are setting up state rather than returning values

of interest.

Of more interest are sign and verifies. The verifies function has a RIF of

0.12 and an interior information of 0.88. Examining the code, one sees that it

returns a boolean value: it verifies that the signature is a valid signature of the

provided hash. A lower RIF might be expected here, given that most of the
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Figure 3.8: Extract from the ICM of ecdsa. Information groups form within the

map, those with low RIF being associated with initialisation. Note that the verifies

function has similar RIF to the verify function in Figure 3.7.

information provided is not passed on. Whether it constitutes a leak or not is

project dependent, but the user now knows that over 10% of the input entropy

flows through this function.

The function sign is an interesting example where a criticality weighting,

δ < 1.0, might be applied. It preserves, but converts, the information given to

it. Its high flow is expected, but it is not a leak, as the information is encrypted.

Now that we are aware of it, we can give it less weight in the visualisation during

subsequent testing.

IDNA: The Python library, idna [64], is an implementation of the Internation-

alized Domain Names in Applications protocol as specified in RFC 5891 [116].

Figure 3.9 shows an extract from its ICM that RIFFLER produces for it. This extract

makes three actionable suggestions:
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1. a name refactoring;

2. error condition testing is inadequate; and

3. a potential mismatch between function names — encode and decode — and

their flows.

One can immediately see that the ICM splits into two groups. One group is

the low RIF group, containing all the functions with the prefix check_. The

function valid_string_length has the same RIF as the check_ group, but a

different naming convention. Looking at the ICM, one might choose to re-

name valid_string_length to ease code navigation and aid code completion

tools.

Another feature that leaps out is that IDNAError was not called during 24

hours of fuzz testing. This speaks well for the robustness of our code, and badly

for the robustness of our testing regime. It is clear that both encode and decode

preserve a great deal of their information inputs, and also dump directly into

IDNAError. Seeing this, a developer should consider writing tests that make sure

to exercise this path most of all. While tests should also be written to exercise the

path from check_hyphen to IDNAError, this is of lower priority. Why? Because the

information flow from check_hyphen is very low, whereas from decode it is very

high.

It seems both encode and decode compress, while their names suggest lossless

encoding. They do not have the same RIF: moreover, encode has a normalised

deterministic squeeziness of 0.87 and decode 0.05. This low information compres-

sion of decode is likely to be a statistical fluke, brought about by error margins in

the entropy estimator. But it is certainly worth investigating to ensure it is not a

programming error. Closer inspection of the code suggests that the information
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Figure 3.9: An extract from the ICM of core.py from idna. One can immediately

see that one can group them by information characteristics. All of the functions

called check have the same RIF and are connected in the ICM. Both encode and

decode have similar, but not identical, RIF. Both functions are slightly lossy, encode

more than decode. The dashed lines and dashed node on IDNAError mean that

this function was not called during testing.

loss for both functions is due to the presence of default parameters. It is likely

that these were not altered during testing and so their information was “ignored”.

This suggests for improving our testing regime.

3.7 Related Work

As far as we know, we are the first to discover information policies via mapping

within a computer program. Mu [138] proposes quantified program dependence

graphs; while these have a superficial similarity to our ICMs, they do not map
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information flow through systems, and only function for a simple while language.

Our ICMs map information flow in real software. We achieve this scalable map-

ping by grouping and ranking flows by magnitude. We are the first to propose

this method and provide experimental data that such a method works and has

practical value. Existing tools, as discussed below, assume that the user knows the

policy, and quantifies deviation from policy for some variables. Such an approach

is undoubtedly useful when considering protecting secret values, but it does

little to help us when security concerns are underspecified. IT has recently been

shown to have applications outside of program security (Section 3.7.1). Again,

the main barrier to acceptance is the problem of obtaining sufficient observations

to make estimates. We briefly examine work in this area before moving on to the

traditional home ground of QIF, information security.

3.7.1 Information Theory in SE

While information theory for SE is still in its infancy, it has already shown its

utility. We focus on two different applications, one of which has impacted the

state-of-the-art in fuzzing, and another which improves test suite health.

ENTROPIC [28] is an extension to LIBFUZZer [125] which uses information

theory. By prioritising the seed with the largest entropy for continued fuzzing,

ENTROPIC is also using ranking: it implicitly recognises that the precise amount

of entropy is not important, just how much it has in relation to other variables.

Failed error propagation (FEP) is one known cause of coincidental correctness:

the situation where a program contains faults, but still produces the expected

output. Androutsopoulos et al. [10] define FEP with information theoretic setting

based on conditional entropy. The paper demonstrates that knowing relative

magnitude of conditional entropy is sufficient to detect the presence of FEP. RIF

shows that relative ranking is stable and efficient and our tool, RIFFLER, could be

94



used to provide this information. This would improve both code and test suite

quality.

3.7.2 Information Theory in Computer Security.

RIFFLER is a new direction in the security sphere, yet is complementary to existing

information theory tools to program security. There are many tools attempting to

solve the problem of places bounds on information leaks within a program; we

examine the most relevant and discuss how they fit with RIFFLER.

The nearest research to RIFFLER’s approach is dynamic information flow analysis

(DIFA) [130]. This is both a profiling and enforcement mechanism. It uses a

program slicing analysis which focuses on precision. It requires a separate testing

phase and is also used during deployment. DIFA does not use RIF to scale its

analysis. Moreover, RIFFLER is a testing transformation with an associated flow

analysis mechanism that fits into a normal testing campaign. With RIFFLER, unlike

with DIFA, the user has direct access to observation points; changes are source

level. A user is free to add or remove annotations, or write tests that explicitly

target a part of the code. This makes RIFFLER a highly flexible generalisation

of DIFA. Our method of storing the point-to-point variable observations allows

a wealth of other analyses to be performed in addition to those presented by

Podgurski et al. [130].

DIFA uses StrengthFlow [131], performing a similar task to FlowForward.

StrengthFlow is defined as StrengthFlow(X ,Y ) = H(X)−H(X |Y ). FlowForward has

the advantage of normalisation, and is more easily interpreted as the percentage

of information in X that occurs in Y . The normalisation allows us to perform

ranking based on the proportion of the input which is shared with the output.

No previous DIFA work suggests using ranking to simplify the resultant policy

picture as we do here. StrengthFlow lacks the criticality weighting, δ , which allows
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us to model expert knowledge within our policy map.

Given the number of papers which consider the question of precise, or bound-

ing, QIF, it is impossible to cover everything here. Instead, we discuss a few

approaches which are most relevant to RIFFLER. We believe that each method is

usable in conjunction with RIFFLER, after the preparation of an ICM.

F-BLEAU [46] is a black box leakage estimation tool that uses machine learn-

ing techniques to provide an entropy estimate based on samples of input/output

behaviour. This could be used as a replacement for the NSB entropy estimator:

this requires further investigation before drawing conclusions about which is

more effective and cost efficient. Other machine learning approaches, such as that

of Romanelli et al. [160] might serve a similar function.

The LEAKWATCH tool for Java [49] uses a flexible point-to-point leakage

model which is similar to RIFFLER. It allows the insertion of arbitrary obser-

vations points into source code. One can introduce these observations at the

statement level. RIFFLER, by default, works at the function level but there is

not reason, other than user effort, that its observations cannot work at another

level of granularity. The advantage of workings at the function level is we do

not need to make decisions about what to observe and where. Such decisions

imply policy knowledge and understanding, which we believe is unlikely in large

projects. RIFFLER provides that policy knowledge, but can also provide the details

of LEAKWATCH. RIFFLER maintains the a separate estimate for each function

observed and ranks them with respect to each other: LEAKWATCH returns only

one value for the entire program and cannot be used as a mapping tool. One has

to assume that annotations are correct and in the correct places. RIFFLER does not

make such an assumption.

Biondi et al. [26] present an experimental comparison of different leakage
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estimators. These leakage estimators mostly focus on one or two variables, and

assume the existence of a security policy. Moreover, all of the tools make the

assumption that one knows where to look for problems in the code. RIFFLER

identifies problems when the policy is unknown or poorly understood and can be

used in conjunction with any of the other approaches. This is especially useful

when considering tools based on symbolic execution. RIFFLER can identify those

parts of the code that need more careful examination. Mapping an entire sys-

tem using methods based on symbolic execution would be extremely expensive,

whereas RIFFLER is lightweight.

Backes et al. [20] present a method for automatically detecting and quantifying

information leaks from a program. This provides a detailed IT analysis via logical

relations and symbolic execution. Their tool requires a model checker, with all

its attendant limitations. RIFFLER has no such requirements and only requires

observations. RIFFLER is a much more lightweight approach which is also much

more transparent to the user.

McCamant et al. [132, 133] use network flow capacity to model information

flow security in C-language programs. Their tool requires multiple program runs

to provide a bound on leakage within the SUT. This is an additional testing regime,

whereas RIFFLER integrates into normal testing. As they say in their discussion

for FLOWCHECK, it is envisaged as an auditing tool for a security policy, rather

than as a means for creating or discovering a policy. RIFFLER is both, providing

a map of information flow without prejudice to policy, and the ability to “drill

down” into more detailed flow exploration.

Finally, we highlight a distinction between our dynamic flow analysis and

unrelated work with a similar name. The term dynamic information flow analysis is,

unfortunately, overloaded. It can refer to the DIFA work, as discussed above, but it
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can also refer to a body of work which is not directly concerned with information

theory and quantification. Austin et al. [16, 18] use this name to describe various

methods for ensuring non-interference [95] at runtime. This relies on the presence

of data labelled w.r.t some security policy, and makes no attempt to quantify the

size of any potential leaks, tracking label interactions instead.

3.8 Conclusion

We have presented RIF, a scalable abstraction of QIF for software information

mapping. We show that RIF allows us to build an abstract picture of information

flow within a program using far fewer samples than previous methods. We have

also presented FlowForward, a new information theoretic measure for mapping

information flows through the callgraph of a program. In addition, we have

presented a new use for normalised squeeziness, showing that it allows us to

identify hidden sources of information within the body of function during greybox

testing.

We introduce a tool, RIFFLER, which creates a RIF image of the SUT. RIFFLER

is easy to use, automatic, and incorporates seamlessly into software testing. We

anticipate that RIF will bring information theory to the non-specialist developer,

allowing them to explore and define security policy for software in an interactive

and evolutionary manner.
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3.9 Appendix: Creating a corpus of Python Projects

The corpus was created from open source projects hosted on Github https:

//www.github.com. The Github API allows programmatic access to public repos-

itories: it requires the creation of a access token. Alternatively, the web interface

provides the same search functionality, but data presentation is more difficult to

parse.

The main search query was ’’from hypothesis’’language:python. The Hy-

pothesis library is used by more that 4% of Python users, according to the

Python Developers Survey 2020 https://www.jetbrains.com/lp/python-

developers-survey-2020/. As Hypothesis is almost always used as a quali-

fied import, the search term looks for the most common form of this. The search

term will miss repositories that import Hypothesis directly without qualification.

Projects were then selected, uniformly at random, from the search results and

then subjected to the following manual analysis:

• project must be on PyPi https://pypi.org. This was to remove tutorials,

lab work and homework repositories.

• the project must be largely in Python. This information is available on

the Github page of each project. “Largely” was taken to be 85%. This

figure is essentially arbitrary, but projects are rarely 100% Python according

to Github analysis. This is due to the presence of configuration files and

documentation files in repositories. As the prototype RIFFLER tool only

works on Python code, certain large projects are not yet suitable for analysis.

Projects that did not meet these requirements were discarded, and another

project chosen uniformly at random, until sufficient projects are found.
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Chapter 4

Optional Security Typing

Many prominent recent attacks have been memory leaks of sensitive data,

such as Heartbleed, Meltdown and Spectre. Information Flow Control (IFC) type

systems could have prevented them. Nonetheless, IFC type systems have not

seen widespread industrial uptake. OAST, or Optional Security Typing, is a novel

IFC that aims to facilitate uptake by allowing optional security annotations. The

optional annotations are supported by information theoretic measures, resulting

in a type system that incorporates testing into its decision procedure.

OAST combines gradual typing and quantified information flow in programs,

gradualising IFC and allowing developers to incrementally add or remove security

annotations. Local, incremental annotation avoids the upfront program-wide

effort that may need to be revisited whenever the program changes.

Gradualising IFC is challenging. First, it can inhibit testing or refactoring,

because code change may temporarily violate the security policy. Secondly, sound-

ness forces the type checker to make conservative decisions about the security

policy, thereby dynamically enforcing a policy that is possibly not intended by

the developer. To meet both challenges, OAST leverages a new form of quantified
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information flow called ranked information flow (RIF), to replace soundness with

quantified risk.

4.1 Introduction

“Shall I be secure or insecure?”1 Ideally, a secure program provably satisfies a security

policy that circumscribes how information moves within the program. One type

of policy often studied is a Denning-style lattice policy [66]. In this model, every

variable has a security label, say, public and private. The labels form a lattice, i.e.

({public, private},≤), with flows tracked by lattice operations over the labels. A

variable marked public can flow into a private variable, but not vice-versa. Such a

system is intuitive and inherently granular: one may label every single variable, or

apply a label to an entire module. Each approach is equally expressive [163, 207].

In language-based security, many information flow control (IFC) languages utilise

lattice systems to enforce noninterference (NI). Informally, noninterference means

that confidential variables do not affect the publicly observable behaviour of a

program (Section 4.3).

Writing a program that provably satisfies such a policy is very hard to do,

so the answer to our question for most software is “insecure”. This is insecurity

through necessity or inability, not negligence. Noninterference is a very strict

security policy: one way to relax noninterference is by increasing expressiveness,

allowing more complex and realistic policies to be encoded [140]. Expressiveness

includes the import dimension of declassification, allowing private data to be

used in a public context in a controlled manner. Expressiveness and usability

are not the same thing, however; this problem goes some way to explaining

1We allow ourselves the liberty of adapting a quote from Philip Wadler [211].
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the relatively poor uptake of IFC in both research and industry. Encoding more

realistic policies does not make it easier to perform the encoding, especially as

developing functional properties must run in tandem with developing security

properties. Doing both that the same time is more than most developers can

manage. The complexities lead developers to handle security with ad hoc solutions

that cannot be checked easily via static methods or human intervention. This is a

major challenge for IFC languages: security counts in industry, so industry uptake

counts.

An emerging approach to usability for type systems is gradual typing. This

allows a developer to partially annotate a program [176], evolving the typing in

conjunction with the program evolution. Applied to security typing, the hope is

that security considerations are partially decoupled during functional properties.

A partially typed gradual security system enforces NI at runtime. Some Gradual

type systems enforce noninterference [93, 204], but fall foul of the dynamic part of

the gradual guarantee [179]. Also, dynamic gradual typing comes with a runtime

cost that is difficult to mitigate [194]. An alternative to gradual typing, optional

typing, is increasingly found in industry. Languages with support for optional

typing include PYTHON, TYPESCRIPT and HACK. Optional typing is a typing

regime that forgoes the dynamically checked element of gradual typing. By doing

do, a program stays performant, but sacrifices program-wide type safety. Such a

sacrifice of program wide type safety is problematic for information security, as

partial guarantees are no guarantees at all.

We present OAST, the first type system for IFC which mixes optional typing

with information theoretic risk assessment and declassification. OAST allows a

developer to decouple a program’s security policy from its main functionality.

To achieve this, it relaxes the static demands of NI in the form of an optional
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system, i.e. one that has ‘no effect on the runtime semantics of the programming

language’ [31]. To assist with annotations, both what and where to label, we use

ranked information flow, RIF (Chapter 3) , a novel use of quantified information flow

(QIF) [55] in IFC to order unannotated code by relative magnitude of flow. Every

unannotated function in a program has its RIF calculated via random testing.

RIF requires only a stable ordering of flows, rather than an estimate with a high

degree of confidence. Once we have the ordering of annotation “holes”, we have

multiple options: we can annotate where flow is high, or we can further refine

our RIF estimates. The ranking helps us prioritise leaks. RIF in a type system is

also useful for declassification. While QIF is an expressive means of controlling

declassification in a program [167], it has seen limited use in practice. This is

largely due to the cost of its calculation. However, if we have a RIF ranking, we

need only calculate a high quality estimate on the largest element in the ordering.

If this comes in below our leakage tolerance threshold, then it is safe to assume

that everything below it leaks a tolerable amount of information.

OAST offers, while typing is partial, information on what to annotate. The

partiality of the type system allows it to model a simple declassification system,

governed by a leakage threshold, calculated via RIF. As the number of annotations

increases, the confidence in the NI guarantee likewise increases. This is because

OAST satisfies the confinement property2, a novel safety property formalised here

for optional security type systems (Section 4.6). If there is a leak, it must come

from a part of the code with no annotation. Confinement treats every fully typed

subprogram as an independent program, which independently satisfies NI. The

2This confinement differs from the Bell-LaPadula Strong Star Property, which is sometimes

informally also called confinement, in that it confines the origin of leaks to untyped regions, not

writes only to the matching security level.
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interface between modules is monitored via RIF. When typing is complete, there

are no interfaces to monitor, and NI is satisfied. As the security properties of a

program are separated from the functional properties, it is always possible to test

a program without worrying that security errors trump functional errors. OAST

considers a program as a collection of secure subprograms, communicating over

potentially insecure channels; Bayesian information theoretic estimates track flows

over this unknown channels and prioritise them by relative magnitude of flow.

RIF provides useful feedback on where to start applying additional annotations.

No gradual system that we know of provides the user with information on what

and where to annotate.

“Shall I be secure or insecure?” We can be both; rather than xor, security can be

reasoned about locally in a sound manner with fault prioritisation and localisation

at the global level. With gradual typing one can be conservative and reject too

much, or one can be liberal and except too much, thereby potentially leaking

secure data. We propose a third way. Like the liberal approach, we allow leaks but

use RIF to report and advise the developer at every stage, even post deployment.

Our principal contributions are:

• We present OAST, the first optional type system for information flow control;

• we show that RIF allows OAST to provide information on what to annotate

and as a scalable form of information declassification;

• we introduce a new safety property for optionally typed languages, the

confinement property, and prove that it holds for noninterference in OAST;
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4.2 Background

OAST sits at the intersection of multiple different research strands. As this is

the first work to sit in this intersection, few researchers have expertise in all the

required disciplines. We present a short summary of basic concepts to facilitate

reading this chapter. These concepts are covered extensively in Chapter 2.

Gradual type systems (Section 2.2) are a hybrid of static and dynamic type

systems. They provide a spectrum of typing possibilities, from the complete

absence of type annotations to complete typing information. Type safety is always

guaranteed in a gradual type system: what cannot be resolved statically is resolved

dynamically. The exact methods of this dynamic resolution are system dependent.

In the research community, the gold standard for gradual systems is the Gradual

Guarantee (Theorem 2.2.3), which states that adding or removing type annotations

does not change program behaviour, apart from catching more or fewer errors at

compilation time.

We distinguish gradual systems from optional systems. Optional systems do

not satisfy the Gradual Guarantee. In fact, they have no additional runtime com-

ponent. Systems such as MYPY for PYTHON and the type system of TYPESCRIPT

are industry standard optional type systems. While they lack the guarantees

of a gradual system, developers favour them for their lightweight analysis and

because they do not penalise performance (Section 2.2.5). OAST is an optional

type system for information security, the first of its kind.

Information Flow control (IFC) programming languages treat security as a

first class concept, built into the language. This is commonly achieved via type

systems (Section 2.1.2). A security policy they frequently seek to enforce is nonin-

terference (Section 2.1.1). By Definition 2.1.1, program c satisfies noninterference
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(more precisely, termination insensitive noninterference) if, for any memories µ

and v that agree on low variables, the memories produced by running c on µ and

on v also agree on low variables (provided that both runs terminate successfully).

Gradual IFC systems apply the logic of partial type information to this prob-

lem: classical noninterference assumes that all data has a known security level.

Gradual IFC allows for data to have an unknown label, while still providing

noninterference at runtime (Section 2.3). Resolving security labels at runtime in

the face of incomplete information is hard (Section 2.3). As OAST does not have a

runtime component to resolve labels, we propose a different technique: quantified

information flow (QIF).

QIF measures information in a system (Section 2.3.2). It uses techniques from

information theory and program analysis to quantify how much information

passes through two observation points. At its heart, information theory uses

entropy (Equation (2.1)) to quantify the information in a signal. Given the desire

to know the effect of one variable (or signal) on another, we use the common

information theoretic measure of mutual information (Equation (3.1)). This is a

measure of dependence between two random variables. OAST does not use mu-

tual information directly, but rather FlowForward (Definition 3.3.1), a normalised,

asymmetric measure built on mutual information (Figure 3.3). As estimating Flow-

Forward precisely is as expensive as estimating mutual information (Figure 3.2),

we use the ranking method explored in Chapter 3 to reduce the testing cost.

4.3 Motivating Example

An optional security type system permits partial policy disclosure via labelling

of variables and functions. This partial disclosure is checked statically. In a

gradual type system, further checks are performed dynamically, during program
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execution, to enforce NI. Toro et al. [204] demonstrate that this approach has

various problems, in addition to the efficiency problems associated with gradual

typing. A partially annotated program with no dynamic enforcement cannot be

provably shown to satisfy NI. Our approach divides a program into statically

known unknown parts, and interrogates their communication using techniques

from information theory. This procedure is done during testing, not deployment.

This procedure can be conducted to various degrees of accuracy and confidence,

depending on requirements.

We consider a program in a simply typed λ -calculus, with a core of primitive

types (Section 4.4). We assume two confidentiality levels, L = ⊥ (public), H = ⊤

(secret) and the following functions, initially without any security labelling.

f , (λx : Int. . . .)

g , (λx : Int. . . .)

h , (λx : Int. λy : Int. . . .)

With no policy disclosure for the type checker, any composition of functions

that type checks on base types (those without a security annotation) also type

checks in its security aspects. In the absence of security label information, the type

checker might assume the ⋆ label, which trivially type checks. Worse, the type

checker might assumes everything to be public, giving a correct, but spurious,

guarantee of NI. A more sophisticated checker might make deterministic decisions

on behalf of the developer. This is a problem for gradual type systems, as enforcing

NI is not the same as enforcing the security policy desired by a developer. The

developer has a requirement to provide sufficient information to the type checker
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to disambiguate the intended policy from among the (possibly) many different

NI-satisfying policies.

We add some security labels to a program written with these basic functions,

and constant values. We assume constant values have label L. Let x and y be user

provided values of unknown trustworthiness.

λx : Nat.λy : Nat .h?(h?( fH(y), g?( fH(x))), 3)

We have colour coded the program to highlight how labels statically sub-

divide a program into parts about which we have sufficient knowledge, and

insufficient. Code in red, if considered as standalone programs, is secure (Sec-

tion 4.6.1). The H label of f serves to classify the user provided value of x. We

do not, at this stage, know the security level of x itself. Note that it could still be

the case that fH(x)is illegal w.r.t to the intended policy: the provider of x may not

have permission to call f .

If we consider the code fragment g?( fH(x)), we have an example of a secure

value used in a context with unknown security value. The function g does not

yet have a security label (here marked with ? for clarity). It is at this point

that a gradual type system would use dynamic methods to enforce NI. We

call this phenomenon, of secure code wrapped in an insecure context, a chink3

(Section 4.6.1). Instead of dynamic enforcement at this point, OAST uses RIF

(Chapter 3). It incorporates this as a testing phase.

First, we need to identify which functions require testing. In our example, we

3This term comes from the expression “a chink in the armour”, which refers to a weakness in

traditional metal armour. We are aware that in some countries, especially North America, this

word is also used in a racist context. It is absolutely not our intention to cause offence in any way,

but still regard this as the apposite term.
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can see two values, fH(y) and fH(x), which have a confidential label. However,

fH(x) appears in an insecure context, so OAST generates a test that calls g? with

multiple integer values mocking the output of fH(x) (Section 4.5). We repeat

this procedure for all chinks. In this simple program, we have three chinks, just

enough to rank our unknowns by the magnitude of their flows. We want to do

the smallest amount of testing possible in order to produce a trustworthy ranking.

RIF uses FlowForward (Section 4.5), a real-value, in the interval [0,1], to perform

its ranking. Underlying this value, however, is a Bayesian entropy estimation. We

use this to test our confidence in our estimates.

Let us choose two chinks and say that chink 1 is g?(x) and chink 2 is h?(y, 3).

RIF itself does not provide a guide to when to stop testing, so we look to

the mutual information estimate provided by a Bayesian estimator. The NSB

(Nemenman-Schafee-Bialek) algorithm [144] returns the mean and standard de-

viation of its distribution for its estimate. Given the available parameters, we

assume a normal distribution. We use both the standard deviation and the Wasser-

stein distance [219] as stopping parameters, rather than the experimental evidence

of stabilisation as provided in Section 3.5. We detail this in Section 4.5.

Figure 4.1 plots the two estimates of MI from the two chinks in our program.

After just 100 tests, the estimates are unlikely to be sufficient to reach conclusions

about the ordering. The two curves share a great deal of overlap, too much to be

comfortable in stating that they are definitely drawn from different distributions

and that there is a statistically significant different between the two estimates.

Depending on how certain we wish to be, we can set our parameters to request

extra tests. Ones sees the effect of this in Figure 4.2, where we can be more certain

that we are seeing is different information behaviour, and not just error due to

our sampling regime. We explore this in more detail in Section 4.5.
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Figure 4.1: Mutual information estimates after 100 tests each. The standard

deviations of both distributions are the same, but the Wasserstein distance is only

0.0002. These are close, but the standard deviation threshold has not been reached,

so testing continues to see if they really have the same ranking, or represent

distinct points in the ordering of chinks.

4.4 OAST Language

To reify optional security typing with ranked information flow, we present λOAST,

a pure functional language with eager semantics. λOAST is an instantiation of

the OAST concept. λOAST is a simply typed λ -calculus extended with a optional

security labels.

4.4.1 Core Language

Figure 4.3 presents the abstract syntax of λOAST. The typing rules were derived

using the AGT method of Garcia and Tanter [91]. AGT uses principles drawn

from abstract interpretation, creating a formal method for deriving gradual type

systems from existing languages. We only require one half of the AGT method,

as we do not require gradualised dynamic semantics. As we have used AGT, the
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Figure 4.2: After 100 more tests of each function, we now have narrower standard

deviations (1.2 and 1.6) with similar means. Our confidence has increased in our

ranking. The Wasserstein distance is now 0.01, meaning it is less likely that we

are looking at sampling from the same distribution. We take these to represent

separate points in the ordering.

static rules of λOAST share features with the same authors presentation of a simply

typed, security λ -calculus, λ
S̃EC

[93]. λ
S̃EC

itself is a gradualised counterpart to

Zdancewic’s λSEC [223]. We provide the syntax of λOAST in Figure 4.3. This gives

the calculus after transformation to include security labels. We do not detail the

procedure for gradualising a non-gradual calculus.

The most salient difference between λOAST and a simply typed λ -calculus is

that every type also bears a security label, including annotations on the ‘arrow’

type. The simplest function type consists of three security labels xℓ→ℓ′ yℓ′′ . The

overall security label of this type is the iterated join over its labels, i.e. ((ℓ⊔⋆ ℓ
′)⊔⋆

ℓ′′) where ⊔⋆ is the gradual join defined for this lattice (Section 4.4.2).
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ℓ ∈ CONCRETE LABEL, S ∈ LABELLEDTYPE, x ∈ VAR, b ∈ BOOL, n ∈NAT

t ∈ TERM, ⊗ ∈ BOOLOP, ⊕ ∈NATOP

¬ ∈ UNARYOP, Γ ∈ VAR ⇀ LABELLEDTYPE, r ∈ UNLABELLED VALUE

v ∈ VALUE

ℓ → ⊥ | ⊤

ℓ⋆ → ℓ∪⋆

S → Boolℓ⋆ | Natℓ⋆ | S→ℓ⋆ S

b → true | false

n → zero | succ n

r → b | n | λx : S. t

v → rℓ⋆

t → v | t t | t⊗ t | ¬t | t⊕ t | if t then t else t

Figure 4.3: λOAST is an extension of a simply typed λ -calculus to include optional

security labels and a fixpoint term to allow for general recursive computations.

The security label variable is denoted ℓ, where ℓ is either ⊤ or ⊥. Only security

labels have optional values; we assume that base type values are known.

4.4.2 Security Labels

λOAST features a {⊥,⊤} security label model extended with a ⋆ (any) label. While

({⊥,⊤},⊑) provides an easily defined two point lattice, the addition of a ⋆ neces-

sitates changes to the calculation of lattice operations. In general, the addition

of a ⋆ to a lattice of security labels breaks the lattice requirements. Thus, it is an

abuse of terminology to refer to gradual security lattices. Indeed, ⋆ breaks the

requirements to even be a partial order, since security label consistency (Figure 4.6)

is not transitive. We detail gradual joins and meets in Figure 4.4 and Figure 4.5.

One sees that ⋆ ‘sits in the middle’: for gradual joins, it dominates ⊥, erasing that
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⊤ ⊔⋆ ⋆= ⋆ ⊔⋆ ⊤=⊤

ℓ⋆ ⊔⋆ ⋆= ⋆⊔⋆ ℓ⋆ = ⋆ if ℓ⋆ 6=⊤

ℓ1 ⊔⋆ ℓ2 = ℓ1 ⊔ ℓ2 otherwise

Figure 4.4: Security label join. The join over concrete labels, denoted simply ⊔, is

standard.

⊥ ⊓⋆ ⋆= ⋆ ⊓⋆ ⊥=⊥

ℓ⋆ ⊓⋆ ⋆= ⋆⊓⋆ ℓ⋆ = ⋆ if ℓ⋆ 6=⊥

ℓ1 ⊓⋆ ℓ2 = ℓ1 ⊓ ℓ2 otherwise

Figure 4.5: Security label meet. The meet over concrete labels, denoted simply ⊓,

is standard.

label and replacing it with itself, but is erased in turn by ⊤. The inverse holds for

gradual meets.

During type checking, we often need to update the value of the security label

of a term. The return type of an binary operation over integers, for example, is the

join of its operands. As an example, if x : Natℓ1
and y : Natℓ2

then the term x+ y

has the type x+ y : Natℓ1⊔ℓ2
(as + : ⊥→⊥→⊥). To perform these updates, we

define a label stamping function over the shape of the type (Figure 4.7).

In λOAST, base types are types with security labels erased; that is, there is a

function erase that takes Nat⊥→⊥ (Bool⊥→⊥ Nat) to Nat→ (Bool→Nat). There

is no implicit ⋆ label in the second signature: it is a type in the underlying λ -
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ℓ≈ℓ ℓ ℓ≈ℓ ⋆ ⋆≈ℓ ℓ

Figure 4.6: Label consistency: ⋆ is consistent with all security labels.

Sℓ⋆ ⊔⋆ ℓ
′
⋆ = S(ℓ⋆⊔⋆ℓ′⋆)

(S1→ℓ⋆ S2)⊔⋆ ℓ′⋆ = S1→(ℓ⋆⊔⋆ℓ′⋆)
S2

Figure 4.7: Label stamping updates the security label of a term during type

checking. It does not affect the base type, as these are not gradualised in OAST.

calculus, not in λOAST. A concrete type in λOAST is one about which everything is

known, both its base type and the concrete value of all security labels. Base types

are not gradual and are checkable in a separate pass. Nat⊥→⊥ Nat⊤ is a concrete

type, while Nat⋆→⊥ Nat⊤ is not.

The labelling system of λOAST is fine-grained in the sense that every function

and function parameter takes a security annotation. This is in contrast to more

coarse-grained labelling approaches in which entire ‘blocks’ of code have one

security label (Section 2.2.7). Hard coded literals, such as booleans and integers,

default to public. This conforms with a standard assumption of NI attacker

models, that the source code is available [165]. Every type in λOAST has a slot for

security label, including function types (Figure 4.3).

Definition 4.4.1 (Concrete Type). A concrete type is a base type labelled with all
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concrete security labels ℓ.

C ∈ CONCRETE SECURITY TYPE

C ::= Boolℓ |Natℓ | C→ℓ C |

t1 : Boolℓ1
⋆

t2 : Boolℓ2
⋆

ℓ1
⋆ ≈ℓ ℓ

2
⋆

Boolℓ1
⋆
≈t Boolℓ2

⋆

t1 : Natℓ1
⋆

t2 : Natℓ2
⋆

ℓ1
⋆ ≈ℓ ℓ

2
⋆

Natℓ1
⋆
≈t Natℓ2

⋆

t1→ℓ1
⋆

t2 t3→ℓ2
⋆

t4 t1 ≈t t3 t2 ≈t t4 ℓ1
⋆ ≈ℓ ℓ

2
⋆

t1→ℓ1
⋆

t2 ≈t t3→ℓ2
⋆

t4

Figure 4.8: Type consistency rules for λOAST.

We replace type equality with type consistency (Figure 4.8). We define a

consistency relation for the static rules in the manner of sound gradual typing.

The key observation is that type consistency, unlike equality, is not transitive. The

‘fuzzy’ nature of ⋆ does not fit into an equivalence relation: Nat⊥ ≈t Nat⋆ and

Nat⋆ ≈t Nat⊤ but, clearly Nat⊥ ≈t (Nat⋆ ≈t Nat⊤) does not imply that Nat⊥ ≈t

Nat⊤. Base types use the standard definition of type equality, consistency is

relevant to labels.

Figure 4.9 gives the typing rules for λOAST. To reduce notational clutter a

little, we let S range over security types (base types with security label either

⊥,⊤ or ⋆), without making the presence of ⋆ explicit. The most interesting rule is

function application, SAPP. The security level of function application is the join

of the lambda abstraction’s label, and the right hand side of the function type. In

effect, as long as the argument is a subtype of the formal parameter, its label does

not affect the output label. λOAST has a flow-insensitive static system in the sense
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Γ ⊢ t : S

x : T ∈ Γ

Γ ⊢ x : S

(SX)
Γ ⊢ bℓ⋆ : Boolℓ⋆

(SB)
Γ ⊢ nℓ⋆ : Natℓ⋆

(SN)

Γ, x : S1 ⊢ t : S2 ℓ⋆

Γ ⊢ (λx : S1. t)ℓ⋆ : S1→ℓ⋆ S2

(Sλ )
Γ ⊢ t1 : Boolℓ1

⋆
Γ ⊢ t2 : Boolℓ2

⋆

Γ ⊢ t1⊗ t2 : Bool(ℓ1
⋆ ⊔⋆ ℓ

2
⋆)

(S ⊗)

Γ ⊢ t : Boolℓ⋆

Γ ⊢ ¬t : Boolℓ⋆

(S ¬)
Γ ⊢ t1 : Natℓ1

⋆
Γ ⊢ t2 : Natℓ2

⋆

Γ ⊢ t1⊕ t2 : Nat(ℓ1
⋆ ⊔⋆ ℓ

2
⋆)

(S ⊕)

Γ ⊢ t1 : S11→ℓ⋆ S12 Γ ⊢ t2 : S2 S2 <: S11

Γ ⊢ t1 t2 : (S12 ⊔⋆ ℓ⋆)
(SAPP)

Γ ⊢ t : Boolℓ⋆ Γ ⊢ t1 : S1 Γ ⊢ t2 : S2 S1∨̃ S2

Γ ⊢ if t then t1 else t2 : (S1∨̃S2)⊔⋆ ℓ⋆

(SIF)

Figure 4.9: OAST inference rules; Figure 4.10 defines ∨̃ and Figure 4.11 defines <:.

S ranges over security types, i.e. base types labelled with either a concrete label or

⋆.

that “flow-insensitivity uses a single abstraction (in this case a single security

level) to represent each variable in the program” [108]. We do not yet consider

a system with type-level declassification; a ⊤ variable remains high throughout

type checking: it cannot be directly re-labelled ⊥. It can, however, have its label

effectively erased via a ⋆-typed function (Section 4.6.1). Such a function introduces

a chink into the program, which becomes subject to RIF analysis (Section 4.5).
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S∨̃S,S∧̃S

∨̃ : TYPE×TYPE ⇀ TYPE

Boolℓ⋆∨̃Boolℓ′⋆ = Boolℓ⋆⊔⋆ℓ′⋆

Natℓ⋆∨̃Natℓ′⋆ = Natℓ⋆⊔⋆ℓ′⋆

(S11→ℓ⋆ S12)∨̃(S21→ℓ′⋆
S22) =

(S11∧̃S21→ℓ⋆⊔⋆ℓ′⋆
(S12∨̃S22)

S∨̃S, undefined otherwise

∧̃ : TYPE×TYPE ⇀ TYPE

Boolℓ⋆ ∧̃ Boolℓ′⋆ = Boolℓ⋆⊓⋆ℓ′⋆

Natℓ⋆ ∧̃ Natℓ′⋆ = Natℓ⋆⊓⋆ℓ′⋆

(S11→ℓ⋆ S12) ∧̃ (S21→ℓ′⋆
S22) =

(S11 ∨̃ S21)→ℓ⋆ ⊓⋆ ℓ′⋆
(S12 ∧̃ S22)

S∧̃S, undefined otherwise

Figure 4.10: Joins and meets on types; Figure 4.9 uses the operators defined here.

These definitions are mutually recursive.

S <: S

ℓ⋆ ≤ ℓ′⋆

Boolℓ⋆ ≤: Boolℓ′⋆

ℓ⋆ ≤ ℓ′⋆

Natℓ⋆ ≤: Natℓ′⋆

S′1 ≤: S1 S2 ≤: S′2 ℓ⋆ ≤ ℓ′⋆

S1→ℓ⋆ S2 ≤: S′1→ℓ′⋆
S′2

Figure 4.11: λOAST subtyping rules.

The subtyping rules in Figure 4.11 extend those in Zdancewic [223] and Garcia

and Tanter [91]. It is perhaps a bit of a misnomer to refer to these as subtype rules

in that τ⊥ is not a subtype of τ⊤; rather, it is a type indexed by a security label. It

seems reasonable, however, to stay with the accepted terminology if, as in this

case, it is does not lead to any confusion. The ⋆ security label comes anywhere in

the subtype relation, i.e. ⋆≤⊥ and ⊤≤ ⋆.

Definition 4.4.2 (Concrete Security Labels and Security Labels). A concrete security
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label ℓ is a point ({⊥,⊤}) in the label lattice L .

A security label ℓ⋆ is either a concrete label ℓ ∈L or the unknown label ⋆.

That is, a security label can be any element drawn from the set L ∪ ⋆ of labels,

whereas a concrete label explicitly excludes ⋆; it is a statically declared value

drawn from the set L , where ⋆ 6∈L . In the case of λOAST, this means a concrete

label is either ⊤ or ⊥, which we map to private and public terms. Provided the

partial ordering ⊥≤⊤ we construct, without loss of generality, a simple security

lattice. In this (concrete) lattice, the only disallowed flow is from⊤ to⊥, i.e. ⊤ 6≤⊥.

Operational semantics for λOAST are standard as for a simply typed λ -calculus.

We present them in the form of big-step semantics, Figure 4.12, which is sufficient

for proving Termination Insensitive Noninterference.

4.5 Ranking Flows for Security

Measuring the information flowing through a system is powerful: QIF offers an

alternative, systematic, method for relaxing noninterference. QIF allows reasoning

about information flow at a very fine granularity, but is very expensive to compute

exactly (Section 4.7). To address this problem, we utilise Ranked Information Flow,

a novel approach to reducing the cost of QIF via Monte Carlo methods. Rather

than waiting until there is a single high quality estimate, RIF relies on the fact

that the ordering of flows by magnitude requires fewer samples. The intuition

why is simple: much of the time spent in generating a high quality estimate

is in the refinement process, when the provisional estimate is already “in the

ballpark”. Ballpark estimates are good enough for an ordering, assuming that

the risk of the two estimates flipping place is sufficiently low. RIF produces a

reliable information theoretic ordering that experimental evidence shows can be

computed more efficiently. We extend the RIF approach to strengthen confidence
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t ⇓ v

v ⇓ v

(EVAL-VAL)
e1 ⇓ b1 : Boolℓ1

e2 ⇓ b2 : Boolℓ2

e1⊗ e2 ⇓ (b1J⊗Kb2)(ℓ1⊔ℓ2)

(EVAL-BINOPB)

e1 ⇓ n1 : Natℓ1
e2 ⇓ n2 : Natℓ2

e1⊕ e2 ⇓ (n1J⊕Kn2)(ℓ1⊔ℓ2)

(EVAL-BINOPA)

e1 ⇓ b1 : Boolℓ

¬e1 ⇓ J¬Kb1ℓ

(EVAL-UNOPBOOL)

e ⇓ bℓ e1 ⇓ vℓ′

if e then e1 else e2 ⇓ vℓ⊔ℓ′

(EVAL-COND1)

e ⇓ bℓ e2 ⇓ vℓ′

if e then e1 else e2 ⇓ vℓ⊔ℓ′

(EVAL-COND2)

e1 ⇓ (λx : s.e)ℓ e2 ⇓ v e{v/x} ⇓ v′ℓ′

e1 e2 ⇓ v′(ℓ⊔ℓ′)

(EVAL-APP)

Figure 4.12: Big step operational semantics for λOAST.

in the ordering.

Ranking directly over mutual information is problematic (Section 3.3). Mutual

information, I(X ;Y ), is the information measure given by

I(X ;Y ) = ∑
x∈X ,y∈Y

p(x,y) log2

(
p(x,y)

p(x)p(y)

)

119



As a flow of 1 bit from a boolean valued function is more than a flow of 3 bits

from an integer valued, ranking chinks via their mutual information would imply

that the 3 bit flow was always worse than the 1 bit flow, and this might not be the

case. We do the final ranking and estimation using FlowForward (Definition 3.3.1),

but change the testing termination condition of entropy.

FlowForward(X ,Y,δ ) = δ

(
1−

H(X)− I(X ;Y )

H(X)

)

FlowForward and mutual information can be estimated through trial runs of

the software under test (SUT). As Chothia et al. [49] show in their work on the

LeakWatch tool for Java, a large number of samples is often required to ensure that

the estimated mutual information Î(X ;Y ) is close to the real mutual information

I(X ;Y ). This large number is ‘many more samples than the product of the number

of secret to observable values’ [49]. As a result, when the secret’s I/O domains

are large, the number of trial runs becomes problematic. To reduce some of the

problems associated with a small sample size, the PYTHON RIF calculator, RIFFLER

(Section 3.4) uses the Bayesian NSB entropy estimator [144, 143]:

P(α) =
1

logK
(Kψ1(Kα +1)−ψ1(α +1)) (4.1)

where ψ1 is the trigamma function [214] and K is the number of samples. The

virtue of using a Bayesian approach is that it returns a distribution, not just a

point estimate. We utilise this fact to introduce a means to define a termination

condition for ranking, something absent from RIFFLER (Section 3.4). Confidence in

ranking is controlled via two parameters: the standard deviation of the estimate,

and the Wasserstein distance between two estimates, i.e. probability distributions.
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This latter is more commonly known as Earth mover’s distance in computer science:

EMD(P,Q) = inf
γ∈∏(P,Q)E(x,y)∼γ [‖x− y‖] (4.2)

where P and Q are the two distributions being compared, and ∏(P,Q) is the set

of all joint distributions whose margins are P and Q. In short, if the deviation

around the estimate is sufficiently small, then we use the Wasserstein distance to

decide whether the two estimates have the same rank or differ.

Obtaining chinks To use this approach for a program, we first need to generate

a list of chinks from that program. One obtains these via the static typing in-

formation. In the event that there is only one chink, no ordering is possible. In

this case, it is reasonable simply to test until a high quality estimate is achieved.

In the event that there is insufficient information to detect the definite presence

of chinks (i.e. there are only ⊥ and ⋆ labels), the user can, of course, opt to test

all functions anyway. The requirement to generate a list of chinks for testing is

largely to reduce resource usage.

Once we have obtained this list, we need to generate tests for the outer

function, the entry point to our chinks. Such entry points will always have the ⋆

security annotation, but contain within them a ⊤ computation. We test the chinks

by generating random inputs of the appropriate types, saving both inputs and

outputs in a database. Each function is tested a minimum of n times, with n being

a user provided parameter. After every n tests, we calculate the ranking and

analyse it in accordance with Algorithm 1. This algorithm is an extension to the

basic testing approach used by RIFFLER.
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Algorithm 1: Modified RIF algorithm that includes the twin stopping

criteria of standard deviation (std target) and wasserstein distance

(wsd target). New batches of n input/output pairs are added until the

stopping predicates are satisfied.

Input: C = [chink], std target, wsd target, n

Output: [(FlowForward, chink)]

1 L← []

2 foreach c ∈C do

3 st = std+1 // set while condition to true

4 while st > std do

5 ss← test(c,n) // call c n times and collect output

6 m,st←NSB(ss) // calculate mean and standard deviation

7 end

8 L.append((m, st, c)) // If st is sufficiently small, save

details

9 end

10 R← []

11 L← sort(L) // sort L by m estimate

12 for i ∈ [0, len(L) -1] do

/* pairwise comparison of Wasserstein Distance in ordered

list */

13 d←wasserstein(L[i], L[i + 1])

14 if d ≥ wsd start then

15 f ← FlowForward(L[i].m)

16 R.append((f, c))

17 end

18 end

19 return R 122



from cryptography.fernet import Fernet

def get_message()_L -> bytes_H:

message = input(’Enter Secret Message: ’)

return message.encode(’utf-8’)

key : bytes_H = Fernet.generate_key()

f : Fernet_L = Fernet(key)

token = f.encrypt(get_message())

out = f.decrypt(token)

Listing 4.1: An embedding of OAST into Python. Security annotations are

appended to normal Python type hints. These are type checked with a separate

analysis pass.

4.5.1 A Python Prototype

OAST’s combination of theorem-based validation (Definition 4.6.1 and informa-

tion theoretic reasoning over information flow is unusual. The proof of confine-

ment is relatively easy for our core language (Figure 4.3), due to its purity. We

examine in this section a shallow embedding of the OAST approach in Python,

highlight some of the advantages and attendant difficulties, and also demonstrat-

ing the savings of RIF over more exhaustive statistical methods.

The Python cryptography module provides cryptographic primitives and

recipes for Python developers. It does not feature any type hints. No existing

Python static type checker known to us allows the user to create new first class

types, as required for the custom logic of optional security types. One can rely on
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dynamic methods, i.e. refinement types and assertions, but these have precisely

the runtime implications that we wish to avoid with OAST. Barring an extension

to mypy or other type checker, we embed an optional system in OAST via type

annotations suffixed with _L and _H. We use a simple static analysis to generate

a callgraph, and then type check the security components only. These security

suffixes can erasable, so that the program can also be type checked with a standard

Python tool.
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Figure 4.13: Four chinks in a partially annotated Python module. The quality of

the estimates improves with time. By 600 samples, there is sufficient confidence

in the ranking to halt. The function verify_signature has a low FlowForward. It

is unlikely to create a problematic leak. extract_timestamp passes nearly all its

information: RIF highlights this function for further investigation. Both encrypt

and decrypt have high FlowForward, as expected from their functionality. Due to

the normalising properties of FlowForward, the ranking is stable in this case after

just 100 samples.
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We show some example code in Listing 4.1. This code has “obvious” annota-

tions applied: the type signature of get_message(), for example, means that it is a

public function, usable at any security level (as shown by the L on the parenthe-

ses). The function returns a bytestring that must be secret, as it is the message to

be encoded. We applied annotations to part of the cryptography module Fernet.

This produced 4 chinks, which were then tested, with the results in Figure 4.13.

We relied on manually written tests using the HYPOTHESIS property-based testing

library [126] to generate random input values. It is important to note that these

chinks are not necessarily leaks in the cryptography module per se: policy in the

module is implicit and both encrypt and decrypt are expected to let information

pass through them. The key is, of course, that the information should be distorted

and not easily recoverable by an attacker.

PYTHON does not enforce any privacy policy on methods or functions, so

all and any functions are available to a developer. It is, of course, good practice

that library code should behave in secure and predicable ways: knowing where

the chinks are, and how much they FlowForward information allows the library

author to apply appropriate annotations, making it more difficult for a library

user to misuse functionality.

We set k in the Algorithm 1 at 100, and target_std at 0.1. These numbers

can be changed depending on resource budget. The Wasserstein threshold was

likewise set at 0.1. If two estimates have a Wasserstein distance less that 0.1, then

they are considered to have the same FlowForward, and given the same ranking.

Again, this can be set at user discretion. The values provided here were derived

from small scale studies: further work is required to provide good default values

for both deviation and distance.

The most interesting chinks in Figure 4.13 are obviously encrypt and decrypt.
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They both have high information flow. At 500 samples, the standard deviations

for both decrypt and encrypt are sufficiently low to meet the stopping condi-

tion for all three estimated entropies (input, output and joint). Likewise, the

wasserstein distances between the different estimates provides reason to trust the

FlowForward estimate: for example, the distance between the input estimates of

_verify_signature and extract_timestamp at 400 samples is 0.15, and the Flow-

Forward estimates, at no point, approach each other over the testing run. In order

to further reduce the work required, we average the distance over the 3 different

entropy estimates. The value of FlowForward is clear from Figure 4.13: the ranking

is clear from just 100 samples and does not alter, even though the individual

entropy estimates are mobile. When there are more chinks to explore, the benefit

of increased testing is more apparent. The FlowForward for extract_timestamp,

for example, can be seen to be rising slowly, before starting to flatten. If there

were other chinks in the same range, then the order might change slightly.

The importance of this approach is now clear. In any current gradual security

type system, it would not be possible to type decrypt. It receives obviously confi-

dential data, but no existing system yet allows for declassification: decrypt would

fail at runtime if left unannotated, even though it is not a security risk. OAST not

only draws our attention to the function, it gives the user confidence that it may

be ignored for typing. The absence of runtime enforcement is not a negative if the

behaviour of the function is already understood from an information theoretic

perspective. Likewise, even though _verify_signature handles confidential in-

formation, its output is public, but uninformative. This would not be possible to

type in any gradual system without declassification. Given the complex semantics

that already exist for gradual security typing without including declassification,

this highlights the elegance of the OAST approach.
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4.6 Noninterference and Confinement

“How small a chink lets in how dire a foe.” — Ants, William Empson [75]

OAST does not try to satisfy the dynamic component of the gradual guarantee.

By construction, as proved by Garcia et al. [91], a sound type system lifted via

the AGT method satisfies the static part of the gradual guarantee (Section 2.2.2).

This static part states that ifΓ1 ⊢ c1,Γ1 ⊑ Γ2 andc1 ⊑ c2, thenΓ2 ⊢ c2. This condition

requires that adding (or removing) correct type annotations does not affect the

correctness of the type analysis. Essentially, by removing annotations, we are

asking the language to trust the developer, but any that we add can be rigorously

checked for correctness. The dynamic part of the gradual guarantee is much more

difficult to satisfy; this requires that any typing derivation constructed during

runtime to correct and enforceable. This has been shown to be very hard for

information flow languages [8].

Given that OAST does not include a dynamically type checked element, we

only prove satisfaction of NI for fully annotated programs (Section 4.9.1). It is not

the case however, that we cannot say anything useful about the static guarantees

of a partially annotated program. We introduce a useful safety property which

we call the confinement property in Definition 4.6.1. Informally, this says that,

if our program leaks, then the leak cannot be in a fully typed fragment; the

problem must occur somewhere where there are no annotations. The confinement

property formalises the notion that unannotated code need not be sound, but

fully annotated code is trustworthy. This means that code within annotated

regions can be effectively ignored during IFC debugging. This is a practical and

useful property for any optional type system to possess and adds strength to type

systems that satisfy only the static requirements of the gradual guarantee.
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The intuition behind confinement is simple: we decompose the program into

fully typed fragments and check that those satisfy NI. These fully typed fragments

are essentially mini-programs, a property we possess due to the purely functional

nature of λOAST. We type check these mini-programs and either error, or record

the conclusion of the typing derivation. Mini-programs which are typed as ⊥

do not contribute to program risk. Mini-programs typed ⊤, if used within an

untyped context, are chinks and assessed for risk.

We formalise this notion as follows: let sts be a non-optional information flow

type system for some simple λ calculus, such that ⊢ t : τℓ is a typing judgement in

sts. Semantics in the language of sts must satisfy the standard definition of type

preservation. Let sts⋆ be sts extended with ⋆, such that ⊢⋆ t : τℓ⋆ is a judgement in

sts⋆. Γ⋆ denotes the environment of sts⋆ whereas Γ denotes the environment for

sts.

Definition 4.6.1. Confinement Property

∀t ∈ TERM, if Γ⋆ ⊢⋆ t : τ ⇓ v : τ ∧Γ 6⊢ t : τ then ∃x, x ∈ FV (t), Γ⋆(x) = ⋆∧Γ(x) =⊤

where FV (t) are the free variables of t and ⊤ is the top element in the security

lattice.

This states that, if a term t type checks under optional labels, but does not

type check when concretely labelled, then the error must be found in a subterm

of t, say t ′, that has the ⋆ label and itself contains a subterm of security label

⊤. Confinement is a desirable property of an optional security type system. It

is especially useful when wishing to reason safely about a subset of a statically

unsafe type system. This characterisation is rather different from sound gradual

typing, which is a dynamically safe extension to a safe underlying type system.

Blame, in the Wadler sense [212], is not possible in the optional typing setting,

as optional type systems do not, by definition, have a runtime component and
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therefore cannot track blame.

For our language (Section 4.4.1), security annotations confine Termination

Insensitive Noninterference [165]. Confinement means that any information leak in

the program originates in an unannotated area. The word “originates” perhaps

needs some clarification: while the information leaked may come from a typed

fragment (it is the presence of a ⊤ label that denotes it as a leak rather than just

an information flow), the leak itself is the point where the information becomes

publicly visible. If an annotated region of code is typeable (i.e. is accepted by the

type checker), then we can safely ignore it when debugging and refactoring, even

if it is the source of the information under threat.

Given that the presentation of λOAST is a purely function language, the proof

that it confines Termination Insensitive Noninterference and satisfies the confinement

property is relatively straightforward. More complex, possibly stateful, languages

will have a more complex proof burden, as we see in Section 4.5.1. With that in

mind, we introduce some mechanics to ease the proof of confinement for both

λOAST and for possible future languages.

We separate type checking of base types from security types. This decoupling

is easy to achieve in the context of optional security typing. We anticipate that, in

a real world system, this should make the creation of useful error messages easier

to accomplish. Given we have two layers of type error, errors in base types and

errors in information flow labels, it is useful to be able to easily distinguish them

terminologically.

We call a term t in λOAST well-typed if there exists a security type S such that

⊢ t : S. In λOAST, a program is a well-typed term t such that the set of free variables

of t is empty, that is FV (t) = /0 and ⊢ t : S: such a term is closed. We say a term t is

concrete if it is well-typedc, that is, every subterm has a concrete label. Proof of
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Termination Insensitive Noninterference for λOAST is only possible over concretely

well-typed programs.

Definition 4.6.2 (λOAST Well-Typedness). A term is well-typedb if it type checks

over base types.

A term is well-typed⋆ if its information flows type check but its typing derivation

conclusion has label ⋆.

A term is well-typedi if its information flows type check with its typing derivation

having label ⊥ or ⊤.

A term t is well-typedc if and only if it is well-typedb∧well-typedi.

The presence of an unknown flow in an λOAST term ‘pollutes’ our reasoning

about the information flow of its enclosed terms, as we have seen in Section 4.3.

This problem can occur at any stage in a partially annotated program. Particularly

pernicious are unlabelled sources. In a gradual system, information must be

dynamically assigned a label, and any such dynamic assignment is deterministic.

While it is certainly possible to enforce Termination Insensitive Noninterference via

this method, it has the problem of generating false positives; flows that ought to

have been allowed, but were disallowed due to incorrect inference of the intended

security policy. Worse, it might allow information flow to occur which really ought

to have been kept secret. This difficulty obliges a developer to add annotations for

policy disambiguation; such an obligation runs counter to the intended purpose

of gradual typing. Quantified chinks help to address this problem.

4.6.1 Chinks in the Program

The ⋆ label causes problems in our ability to reason about Termination Insensitive

Noninterference. If a program is well-typed⋆ then some of its terms may be chinks.

Informally, a chink is a term in a program that introduces uncertainty about flow
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properties. In practice, they appear in two ways in λOAST: either as a result of

partial typing, or deliberately in order declassify information. This last use is the

most interesting, and is not yet modelled in any form of gradual security typing

known to us. For example, a function of the form f : Nat⋆→⋆ Nat⊥ accepts any

integer input, including ⊤. The effect of applying f to a value of label ⊤ (rule

SAPP Figure 4.9) is to erase the ⊤ label, and stamp the result as ⋆. We address the

lack of safety of this approach with Bayesian information theory estimation, as

detailed in Section 4.5.

A chink, therefore, characterises the notion that ⋆ loses or obscures label

information. There may be multiple chinks in a program.

Definition 4.6.3 (Chink in λOAST). A chink in λOAST is a lambda abstraction of the

form (λx⋆.yℓ)ℓ′ such that at least one of ℓ and ℓ′ is ⋆ and neither is ⊤.

If the security label on y is ⊤ then the lambda abstraction is not a chink, as

the ⊤ dominates ⋆ (Section 4.4.2). Likewise, if the label on the abstraction itself is

⊤, this makes the entire lambda abstraction confidential. Chinks correspond to

the locations we want to observe for leakage.

To show that λOAST confines Termination Insensitive Noninterference failures to

chinks, we sequentially concretise the ⋆ labels in a program p until we witness a

violation of NI within a term (i.e. p fails to type check) or we show p is well-typedc

and therefore proves it satisfies NI. For the purposes of proof, we assume that p

is a static, “finished” program, in the sense that the only changes to be made are

to its security annotations.

Gradualisation of security labels means that p’s security context, its mapping

from program variables to security labels, is in flux. At any point, we have a policy

mapping we are trying to achieve as we move from a partially to fully annotated

program. This final policy may exist in the mind of the developer only until
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the mapping is complete, at which point it can be checked for static correctness.

A standard assumption of IFC research is that the policy is fully known to the

developer, but there is no reason why this need be the case. Such an assumption

falls into the same category as the competent programmer. It is a useful abstraction,

but often fails when applied in real development. OAST’s use of RIF can aid with

policy discovery, as it shows flows around typed fragments. When the mapping

is complete, we say that the security policy is concrete for that program.

It is useful to know how many variables in Γ map to ⋆; this is the ⋆ cardinality

of the context.

Definition 4.6.4 (Any Cardinality). The ⋆-cardinality of a term t, |t|⋆, is the number

of ⋆ labels in the free variables in t.

The ⋆-cardinality is a safe over-approximation of the number of chinks; chinks,

by definition, must have a ⋆ in their construction. When |p|⋆ = 0, the mapping is

complete: this context is the policy context. While the mapping is still incomplete,

we call it the flux context.

Definition 4.6.5 (Policy Context and Flux Context). The policy context of a program

p, Γp, is a total mapping from program variables to concrete security labels:

∀v ∈ FV (p),v→ ℓc. The flux context of a program p , Γ⋆, where |p|⋆ > 0, maps

identifiers to labels.

The flux context, a partial mapping of program variables to concrete security

labels, needs to stay ‘in sync’ with the policy context, a complete description of

our security policy for our program p. This is naturally described in terms of a

relation: we say that the flux context and the policy context of a program p are

policy context related, Γc ≈p Γ⋆ iff the following condition is met:
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Γp ≈p Γ⋆↔∀x ∈ dom(Γp), Γp(x) = Γ⋆(x) ∨ Γ⋆(x) = ⋆ (4.3)

Policy completion is then the process of turning the flux context into the policy

context of a given program. We call this process label concretisation.

Definition 4.6.6 (Label Concretisation). Let t be a well-typed term with |t|⋆ ≥ 1.

Then a label concretisation function γ : (Γ⋆,Γp,x)→ t ′ takes the current flux context,

the policy context, and a program variable as arguments and returns a term t ′

where t ′ is term t with the label of x concretised as per its value in Γp.

In effect, the label concretisation function replicates the ideal developer’s

knowledge about the security policy of the program. We overload γ to indicate the

function that takes a expression and flux context Γ⋆ : t and sequentially concretises

the ⋆ labels in accordance with the policy in Γp, which is obviously related to the

flux context, Γp ≈p Γ⋆. Then a concretiser of t, γ(t), is a function which substitutes

instances of ⋆ within a chink until the type of that chink becomes concrete or the

chink is no longer typeable. This function is repeatedly applied, monotonically

decreasing the ⋆ cardinality, |t|⋆, of t. To minimise notation burden, we overload γ

to apply directly to labels, i.e. γ(ℓ⋆) = c where c is some concrete label.

To show that a term t in λOAST with |t|⋆ = 0 satisfies Termination Insensitive

Noninterference, we adopt the approach from Zdancewic [223], extended to for

our extra base types. The proof is otherwise identical. First, we need to show

that the static type system of λOAST, without ⋆, satisfies preservation. We require

canonical forms for proof of progress and preservation, and also for proof of

noninterference.

Lemma 4.6.1 (Canonical Forms). 1. If ⊢ v : Boolℓ then v = Trueℓ′ or v = Falseℓ′ and

ℓ′ ⊑ ℓ
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2. If ⊢ v : Natℓ then v = 0ℓ′ or v = (suc n)ℓ′ and ℓ′ ⊑ ℓ

3. If ⊢ v : (S1→ S2)ℓ then v = (λx : S′1.e)ℓ′ and S1 ≤ S′1 and ℓ′ ⊑ ℓ

Lemma 4.6.2 (Progress). If ⊢ t : S then t is either a value v or there is some t ′ such that

t −→ t ′.

Proof. Standard proof by induction on the derivation ⊢ t : S

Lemma 4.6.3 (Preservation). If ⊢ t : S and t −→ t ′ then ⊢ t ′ : S′ and S′ ≤: S.

Proof. Standard proof by induction on the derivation ⊢ t : S.

The proofs of progress and preservation are entirely standard for this simple

type system. In addition to a proof of preservation, we also require that there be a

predicate that checks that a closed term t is typeable. Let TC(t) be a predicate that

takes a closed term t and provides a proof in the form of a type derivation that t is

well-typed. This predicate is the type checking algorithm.

We now have the material in place to prove Termination Insensitive Noninter-

ference for λOAST. Full details of the proof are provided in Section 4.9.1. Formally,

the property we want to establish is:

Theorem 4.6.4 (Noninterference). If x : S⊤ ⊢ e : S⊥ and ⊢ v1, v2 : S⊤ then e{v1/x} ⇓

v ⇐⇒ e{v2/x} ⇓ v

Proof. This follows by using the method of logical relations as a special case

of Theorem 4.6.5.

The intuition behind the proof comes from observing the behaviour of a

program from the perspective of a low-security observer. If the program is secure,

the low-security observer should not be able to see any of the actions performed on

sensitive data, while still being able to see the low-security data and computations.
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To model this ability to see or not see data, we use an equivalence relation. Given

that secure values should be indistinguishable to a low-security observer, we

say that two values are related if they cannot be distinguished. If an observer

is high-security, then this changes the equivalence relation. Everything should

be visible. For this reason, the equivalence relation is parameterised with ζ , the

security level of the observer.

The technique of logical relations [136] allows us to extend these equivalence

relations to higher-order data and computations. This is identical to that in

Zdancewic [223] except that it is extended to also include natural numbers as a

base type.

Definition 4.6.7 (Security Logical Relations). For an arbitrary element ζ of the

concrete security lattice L , the ζ -level security logical relations are type indexed

binary relations on closed terms defined inductively as follows. The notation v1≈ζ

v2 : S indicates that v1 is related to v2 at type S (i.e. indistinguishable). Similarly,

the notation e1 ≈ e2 : C(S) indicates that e1 and e2 are related computations that

produce values of type S.

v1 ≈ζ v2 : Boolℓ ⇐⇒⊢ vi : Boolℓ∧ ℓ⊑ ζ ⇒ v1 = v2

v1 ≈ζ v2 : Natℓ ⇐⇒⊢ vi : Natℓ∧ ℓ⊑ ζ ⇒ v1 = v2

v1 ≈ζ v2 : S1→ℓ S2 ⇐⇒⊢ vi : S1→ℓ S2 ∧

ℓ⊑ ζ ⇒∀v′1 ≈ζ v′2 : S1.(v1 v′1)≈ζ (v2 v′2) : C(S2⊔ ℓ)

e1 ≈ζ e2 : C(S) ⇐⇒ ei : S∧ e1 ⇓ v1∧ e2 ⇓ v2∧ v1 ≈ζ v2 : S

To show that a well-typedc program e produces a ζ -observable output of

type S, it is enough to show that e ≈ζ e : C(S). From this, it is enough to show
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that substitution (i.e. the act of evaluation in λOAST), preserves the η-equivalence

relations.

Lemma 4.6.5 (Substitution preserves relations). If Γ ⊢ e : S and Γ ⊢ σ1 ≈ζ σ2 : S

then σ1(e)≈ζ σ2(e) : C(S)

Proof. By induction on the typing derivation that a term t has type S. See Sec-

tion 4.9.1.

Given that we have fully annotated programs in OAST satisfy Termination

Insensitive Noninterference, it is a simple matter to show that any leaks cannot occur

within fully annotated code, but outside it.

Theorem 4.6.6 (Confinement of Termination Insensitive Noninterference in λOAST).

Suppose t is a closed, well-typed⋆ program where |t|⋆ > 0. We apply γ to a free variable

FV(t) in t, giving γ(t) = t ′, such that we reduce the number of ⋆, then either:

1. the new term fails to type check, thereby showing that our program does not satisfy

Termination Insensitive Noninterference with respect to the policy,

2. we complete the concretisation process, demonstrating Termination Insensitive

Noninterference or

3. we reduce the number of chinks where a leak can exist.

Proof. By induction over the structure of the typing derivation of a term t. See Sec-

tion 4.9.2.
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Γ ⊢ t : s |t|⋆ ≥ 1 γ(t) = t ′ ¬TC(Γ′ ⊢ t ′)

∄ s′ . Γ′ ⊢ t ′ : s′
(VNI)

Γ ⊢ t : s |t|⋆ = 1 γ(t) = t ′ TC(Γ′ ⊢ t ′)

Γ′ ⊢ t ′ : s′ |t ′|⋆ = 0

(NI)

Γ ⊢ t : s |t|⋆ ≥ 1 γ(t) = t ′ TC(Γ′ ⊢ t ′)

Γ ⊢ t ′ : s′ |t|⋆ = |t
′|⋆+1

(RESTRICT)

Figure 4.14: Confinement property inference rules.

The inference rules in Figure 4.14 formalise the description in Theorem 4.6.6.

The rule VNI corresponds with point 1 of Theorem 4.6.6, NI with point 2, and

RESTRICT with point 3.

Finally, we recall the discussion, in Section 4.5.1, of a simple implementation

of OAST in Python. Does this implementation satisfy confinement? Unfortunately,

PYTHON’s type system does not capture I/O. Moreover, PYTHON does not have

an effect-based type system, so global state changes are not expressed in the type

signature. Without these features, it is unsafe to assume that the only effects a

function have are fully documented in the type signature. A sound embedding

of OAST in PYTHON should be possible, especially if a functional programming

approach (via the returns library for example) were enforced. The security anno-

tation component would also need to be included directly in the type checker,

requiring non-PEP extensions to be made. Confinement is easy to prove for the

λOAST language that we discuss in Section 4.4, but proving it for a real production

language is considerably more vexed, and will require a large engineering effort.
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4.7 Related Work

Sabelfeld and Myers’ [165] excellent survey provides a thorough overview of

language-based security research as it stood at the turn of the century. Research

has been very active in type systems for NI in the years since. It is not possible to

cover all the work done in this area, so we focus here on work that bears directly

on gradual security typing and QIF.

In recent years, researchers have suggested that gradual typing [176] can

alleviate some of the difficulties associated with writing programs having sound

information flow. Disney and Flanagan [72] made the first attempt to bring the

benefits of gradualisation to the problem of writing information flow secure code

when they introduced λgi f in 2011. λgi f is a simply-typed λ -calculus extended

with gradual information flow. The base language is similar to our presentation

of OAST. λgi f requires explicit security casts in the code in order to enforce NI

dynamically. Unlike OAST, the language requires a deterministic treatment of

unlabelled values. OAST forgoes this in favour of information theoretic estimation

and therefore the type system is not required to make policy decisions. Their

language, λgif treats an unlabelled type as implicitly having the ⊤ label. Casts

move the label downwards in the lattice. This is analogous to Thatte’s quasi-static

typing approach [199]. Quasi-static typing accepts too many erroneous programs

statically; it is precisely this issue which triggered the development of gradual

typing [176].

Fennell and Thiemann [79] introduce LJGS. This is an extension to a

lightweight Java core calculus with a guarantee of secure information flow. LJGS

works on the sequential subset of the Java language. They use a static type system

supplemented by a dynamic monitor. LJGS also relies on inserting casts into the
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source code; such dynamic methods necessarily impact runtime performance.

Aware of these problems, they provide a language translation to remove unneces-

sary casts. Casts are explicit in LJGS; this is a considerable burden as these are not

merely annotations, but changes to the source code’s logic. OAST only requires

annotations, which are entirely optional. The source code of an OAST program

does not need to be changed at all, unless the developer learns that it does not

satisfy the desired security policy.

A more ‘purely gradual’ approach comes from Garcia et al. [93], who use their

“Abstracting Gradual Typing” (Garcia et al. [91]) method to derive a gradual source

language from Zdancewic’s λSEC [223]. λSEC itself is a simplified presentation of

the SLam calculus of Heintze and Riecke [102]. Garcia and Tanter are concerned

with showing that their language λ
S̃EC

is a sound extension of λSEC. Semantics

greatly extend those of λ
S̃EC

. While we do not present, in OAST, a practical

industrial language, we plan to scale the technique to meet this task. The chief

difficulty is extending the chink identification process to encompass functions that

are not purely functional. Toro, Garcia and Tanter extend their work on gradual

security typing to consider a language with references [204]. They make the

important observation that NI is difficult to reconcile with the dynamic conditions

of the gradual guarantee.

The confinement property is related to the blame [212], but is a purely static

guarantee intended to ease fault localisation. Optional systems that do not satisfy

confinement make reasoning about code unnecessarily difficult. A good example,

outside of security, of an optional type system that fails to satisfy confinement

is TYPESCRIPT. TYPESCRIPT allows bi-variant subtyping, so even code which is

fully annotated cannot be fully trusted, as shown in Listing 4.2 and Listing 4.3.
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enum EventType { Mouse, Keyboard }

interface Event { timestamp; number; }

interface MountEvent extends Event { p1 : number; p2 : number }

function foo(eventType : EventType; handler:(n : Event) => void) {

/* ... */

}

listenEvent(EventType.Mouse, (e : any) => console.log(e.p1 + "," +

e.p2))

Listing 4.2: TYPESCRIPT does not satisfy the notion of confinement, here extended

to type errors in general, and not just secure information flow.

listenEvent(EventType.Mouse, (e : MouseEvent) => console.log(e.p1 +

"," + e.p2))

Listing 4.3: Type checking that does not satisfy confinement.

This code is not type safe4. We do not, however, expect type safety in the

presence of ⋆. Wishing to show that there are no possible type errors in annotated

regions, we concretise the ⋆ type in the final function call.

The resulting code type checks but is still not type safe, rendering the con-

cretisation of the ⋆ as arguably redundant and perhaps even misleading to the

developer. Type errors can occur dynamically in fully statically checked code. In

an attempt to capture the permissive aspects of the runtime system of JAVASCRIPT,

the type system has, perhaps, been made too generous in what it accepts. For

security, we definitely wish to avoid undermining confidence in typed regions.

Gradual typing has come under scrutiny for poor performance, following

Takikawa et al.’s result [194]. Making sound gradual typing efficient enough to

4As provided in the TypeScript documentation https://www.typescriptlang.org/docs/
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be practical is an active area of research [121] and different solutions have been

suggested for different type systems. In practice, industry has largely ignored

sound gradual typing in favour of optional typing, an approach which we explore

here in OAST. Optional typing does not come with a performance penalty, but

does not offer any dynamic soundness guarantees, unless a program contains

enough optional types that the type system can detect necessary logical errors

and contradictions. While we have instantiated OAST for optional typing, there

is nothing to OAST that is necessarily antithetical to gradual typing. RIF can be

usefully used with gradual typing as a means for suggesting locations for type

annotations.

QIF for estimating leakage has its origins in the work of Clark, Hunt and

Malacaria [55]. Various tools for estimating leakage from programs have been

suggested. It is not controversial to state that these tools have not made any

noticeable impact on industry practice. The QIF Analyser, by Mu et al. [137] and

QUAIL by Biondi et al. [27] compute information flow for simple core imperative

languages. Methods for approximating QIF statically exist. Biondi et al. [26] use

a model-checking based method for quick, approximate measurement of QIF in

real world C programs. They use this approach to to quantify the HeartBleed bug.

It does not help, however, with the initial detection of HeartBleed. One needs to

know that the problem is there before trying to quantify it. OAST is useful here as

a means to detect problems in an unknown information landscape. ApproxFlow,

perhaps more importantly, also requires symbolic execution, with all of its inherent

limitations. This assumes the existence of a tool such as CBMC [119] for the target

language. It is difficult to scale this approach to testing many different potential

chinks. OAST does not require any specialised tools in order to work, though it

cannot produce an estimate anywhere nearly as quickly as ApproxFlow.
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LeakWatch, by Chothia et al. [49] is a leakage quantification tool for Java.

LeakWatch uses robust statistical measures to compute a leakage, in bits, from a

Java program. This leakage measure comes with a 95% confidence. Achieving

this confidence interval requires many tests. LeakWatch does not feature any type

enforcement of NI, indeed, it is not a tool which even attempts to enforce a form

of security policy. LeakWatch imposes a coding burden on its users: it requires

them to insert API calls into their code at each secret point of interest and each

observation (public) point. It assumes the user knows where observations need to

be placed. LeakWatch’s annotation and runtime tax may be high for a program

with many secrets and public sinks. The OAST type system tells us exactly where

the chinks are and that these are the points in which to perform RIF analysis. We

do not need to change the executable code directly.

RIFFLER is a tool for creating information contour maps through a program.

This is typically done by testing at least one entry point of a Python program.

While RIFFLER is geared towards the analysis of Python, there is nothing in the

underlying theory that limits it. We extend RIFFLER by adapting its information

theoretic ranking mechanism as detailed in Algorithm 1. RIFFLER has no built-in

stopping point for statistically significant estimates of FlowForward, nor does it

have any ability to enforce security policy. While OAST utilises the convenience

of ranked estimates derived from RIFFLER, OAST is the first NI type system to

our knowledge that uses information theory to make security labels optional and

assess the risk of doing so.

4.8 Conclusion

We have presented OAST, a novel framework for optional security typing. OAST

uses information theory to measure the movement of information between se-
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curely typed code fragments. In order to reduce the cost of QIF calculations,

OAST extends RIF with a principled stopping condition for testing. We reify this

with OAST, a pure functional language with optional security typing.

We have also presented a new safety property for optional security languages,

namely the confinement property. The OAST approach opens doors to new op-

portunities. Much theoretical and practical work remains to be done. Most

importantly, now that the general method has been defined for a core language,

and demonstrated the potential in real-world programming, we intend to target

an industry programming language with an OAST type system.
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4.9 Appendix: Proofs

We present here more detailed proofs of both Termination Insensitive Noninterference

for OAST, and the confinement property of OAST. As previously discussed,

confinement is a natural property of the core OAST language, due to the fact a

program readily splits cleanly into subprograms. A proof of confinement for a

language such as PYTHON would be considerably more difficult.

4.9.1 Proof of Noninterference

Proof. By induction on the typing derivation that e has type Sc. A well-typedc

term may have sub-expressions which are well-typed⋆, however we can prove

termination insensitive noninterference for e as long as such sub-expressions are

not chinks. Considering the last step used in the derivation:

Case (x). Immediate from the facts that substitutions map variables to values

and that σ1(x)≈ζ σ2(x) : Γ(x) because Γ ⊢ σ1 ≈ζ σ2.

Case (bool). e = bℓ. By definition of substitution, σ1(bℓ) = σ2(bℓ). By definition,

bℓ ≈ζ bℓ : Boolℓ as required.

Case (nat). e = nℓ. By definition of substitution, σ1(nℓ) = σ2(nℓ). By definition,

nℓ ≈ζ nℓ : Natℓ as required.

Case (λ ). e = (λx : S1.e
′)ℓ. Then S = S1 →ℓ S2. Assuming that x 6∈ dom(σ1), we

have σ1(e) = (λx : s1.σ1(e
′))ℓ. We need to show

(λx : S1.σ1(e
′))ℓ ≈ζ (λx : S1.σ2(e

′))ℓ : (S1→ S2)ℓ

If ℓ 6⊑ ζ then the terms are trivially related in s. We assume that ℓ ⊑ ζ and the

existence of two values v1 and v2 such that v1 ≈ζ v2 : S1. Now we need to show

that

((λx : S1.σ1(e
′))ℓ v1)≈ζ ((λx : S1.σ2(e

′))ℓ v2) : C(S2⊔ ℓ)
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By the evaluation rule we have

σ1(e
′){v1/x} ⇓ v′1∧σ2(e

′){v2/x} ⇓ v′2∧ v1 ≈ζ v2 : (S2⊔ ℓ)

By inversion of the typing rule, we have Γ,x : S1 ⊢ e′ : S2 and that x 6∈ dom(Γ).

It follows therefore that

Γ,x : S1 ⊢ (σ1{x 7→ v1})≈ζ (σ2{x 7→ v2})

By the induction hypothesis, we have

(σ1{x 7→ v1}(e
′))≈ζ (σ2{x 7→ v2}(e

′)) : C(S2⊔ ℓ)

which, because x 6∈ dom(Γ) is equivalent to

σ1(e
′){v1/x} ⇓ v′1∧σ2(e

′){v2/x} ⇓ v′2∧ v1 ≈ζ v2 : (S2⊔ ℓ)

as required.

Case(App). e = e1e2 and S = S′⊔ ℓ for some appropriate S′ and ℓ. It follows from

the well-typedness of e and the induction hypothesis that

σ1(e1) ⇓ v11∧σ2(e1) ⇓ v12∧ v11 ≈ζ v12 : (S1→ S′)ℓ

and

σ2(e2) ⇓ v12∧σ2(e2) ⇓ v22∧ v12 ≈ζ v22 : S′

By the definition of ≈ζ -related values as defined for function types we have

(v11v12)≈ζ (v21v22) : C(S′⊔ ℓ)

Case(Conditional). e = if b then e1 else e2 where Γ ⊢ b : Boolℓ and Γ ⊢ ei : S′⊔ℓ. Our

goal is to show

(σ1(if b then e1 else e2))≈ζ (σ2(if b then e1 else e2)) : C(S′⊔ ℓ)
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which, by the definition of substitution, is the same as

(if σ1(b) then σ1(e1) else σ1(e2))≈ζ (if σ2(b) then σ2(e2) else σ2(e2)) : C(S′⊔ ℓ)

If ℓ 6⊑ ζ then the two terms are trivially related. We assume therefore that

ℓ⊑ ζ .

By the induction hypothesis we have that σ1(b) ≈ζ σ2(b) : C(Boolℓ) so by

definition we have σ1(b) ⇓ v1 and σ2(b) ⇓ v2. Since ℓ⊑ ζ we have v1 = v2. Let us

assume the condition is true (the false branch is analogous). In this case we have

σ1(if b then e1 else e2) ⇓ v11, where σ1(e1) ⇓ v11

σ2(if b then e1 else e2) ⇓ v11, where σ2(e1) ⇓ v12

By the induction hypothesis we already have v11 ≈ζ v12 : C(s′⊔ ℓ) as required.

Case(BooleanBinaryOp). e = e1⊗e2 and s = Boolℓ where ℓ is the join of the security

levels of e1 and e2, ℓ = ℓ1⊔ ℓ2. We have that, for each substitution, σi(e1⊗ e2) is

well-typed and has type s. Therefore, we need to show that

σ1(e1⊗ e2) ⇓ v1∧σ2(e1⊗ e2) ⇓ v2∧ v1 ≈ζ v2 : Boolℓ

From the definition of substitution, we have

σi(e1⊗ e2) = σ1(e1)⊗σi(e2)

By inversion of the typing judgment and two applications of the induction

hypothesis, we have

σ1(e1)≈ζ σ2(e1) : C(Boolℓ1
)

σ1(e2)≈ζ σ2(e2) : C(Boolℓ2
)

Consequently, we have:

σ1(e1) ⇓ v11∧σ2(e1) ⇓ v21∧ v11 ≈ζ v21 : Boolℓ1

σ1(e2) ⇓ v12∧σ2(e2) ⇓ v22∧ v12 ≈ζ v22 : Boolℓ2
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By Lemma 4.6.1 we have:

v11 = (b11)ℓ11
v12 = (b12)ℓ12

v21 = (b21)ℓ21
v22 = (b22)ℓ22

By two applications of the evaluation rule where have:

σ1(e1⊗ e2) ⇓ (b11J⊗Kb12)(ℓ11⊔ℓ12)

σ2(e1⊗ e2) ⇓ (b21J⊗Kb22)(ℓ21⊔ℓ22)

Finally, we need to show that

(b11J⊗Kb12)(ℓ11⊔ℓ12) ≈ζ (b21J⊗Kb22)(ℓ21⊔ℓ22) : Boolℓ

If ℓ 6⊑ ζ then the expressions are trivially related. Assuming that ℓ ⊑ ζ , we

need to show that the expressions are equal. If ℓ⊑ ζ it follows by definition that

ℓi ⊑ ζ which means, by definition of ≈ζ on boolean values, that b11 = b21 and

b12 = b22, therefore

(b11Jb12)(ℓ11⊔ℓ12) = (b21J⊗Kb22)(ℓ21⊔ℓ22)

as required.

Case(ArithBinaryOp). Analogous to BooleanBinaryOp, but with natural numbers

as the base type.

Case(UnaryOp). e =¬b and s = Boolℓ. By induction on e and the typing derivation

of s.

4.9.2 Confinement Proof

Proof. By induction over the ⋆ cardinality of a program and case analysis over the

grammar. We assume that the program p has an ⋆ cardinality |p|⋆ ≥ 1. We cover

the base cases here. Operations follow the same pattern as APPLICATION.
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Case (VARS AND LITS): ⋆ cardinality of a var x is 1. γ(x) results in Termination

Insensitive Noninterference as there is no high-low partition.

Case (ABSTRACTION): let t be the term λx : T.eℓ. The ⋆ cardinality of t =

|t|? + |ℓ|? + |e|? = c. We now apply γ to concretise 1 security label, creating a new

term t ′. If ¬TC(t ′) then we have VNI. Otherwise we reason over the size of c; if

c = 1 and TC(t ′) then we have NI, otherwise we have shown that there was no

leak present and rule RESTRICT applies.

Case (APPLICATION): let t be a well-typed term of the form e · e1. The ⋆

cardinality of t is |e|? + |e1|? = c. If |e|? ≥ 1 then we apply γ to e, otherwise we

perform γ(e1). By definition, |t|? ≥ 1. Let t ′ = γ(t). If ¬TC(t ′) then we have VNI.

Otherwise we reason over the size of c. If c = 1 and TC(t ′) then t ′ is a concrete

term and we have NI, otherwise we apply the RESTRICT rule.

Note that the RESTRICT rule is essentially our induction hypothesis. We do

not need to complete the inductive process to show the confinement property, but

by following the logic to its conclusion and monotonically applying γ , we always

arrive at one of the two base cases, either VNI or NI.
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Chapter 5

SafeStrings

The versatility of strings makes them a powerful extensibility mechanism;

they enable universal varargs at the price of a bit of parsing. Internet APIs, such

as RESTful APIs, make extensive use of strings for precisely this reason. Such ex-

pressive power comes at a cost; it is easy to introduce bugs via malformed strings

or incorrect string handling. The latent structure within strings is opaque to most

type checkers. So far, attempts to provide safe string-based extensibility provide

insufficient safety or lose extensibility. We introduce SAFESTRINGS to square

the circle and provide safe extensibility for data-carrying strings. SAFESTRINGS

harness latent structure and expose it to the type checker. SAFESTRINGS use the

subtyping and inheritance mechanics of their host language to create a natural hi-

erarchy of string subtypes. This makes them more expressive than regex-validated

strings. A drop-in replacement for strings, SAFESTRINGS are less rigid than DSLs,

preserving the powerful extensibility of strings. SAFESTRINGS are lightweight,

deployable, and optional: we demonstrate this by both retrofitting two program-

ming languages, Java and TYPESCRIPT, with SAFESTRINGS and also show their

inclusion from the ground up in BOSQUE, a new language with native support for
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SAFESTRINGS.

5.1 Introduction

Strings are ubiquitous in code; their versatility makes them an flexible encoding

mechanism, and a universal means of moving information. It is no wonder that

RESTful APIs [81] make extensive use of them. Strings allow a developer to

interact with and within systems without constantly creating new types; they

provide easy extensibility. This extensibility can be crucial to a project’s viability

when a system’s requirements have not gelled.

Great utility and flexibility also means strings can easily introduce bugs [73].

Unsurprisingly, most programming communities discuss string validation at

length, especially those that target string heavy problem domains. Discussion

of string literals [161] and regex-validated strings [205], in TYPESCRIPT and other

languages, are just two examples. String handling bugs often arise due to the

latent structure hidden within many strings. This latent structure, all mono-typed

under the umbrella ’string’, is a implicit, type system embedded within the parent

type system. The type checker has limited power to help the developer avoid

mistakes. Refactoring strings to appropriate data types is laborious and comes at

the cost of making the system harder to extend.

We introduce SAFESTRINGS to preserve the extensibility of data-carrying

strings while providing type safety guarantees. SAFESTRINGS expose a data-

carrying string’s latent structure to a type checker, so that the checker can ensure

the structure’s integrity. As SAFESTRINGS use annotations only, it is easy to revert

code to purely typed. This is not the case when producing custom types for

every string. SAFESTRINGS rest on the observation that data-carrying strings are
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Abstract Data Types (ADT). SAFESTRINGS are a principled way to embed the data

into the string ADT of the language, improving both safety and the flexibility

of string. Notable examples of such ADTs are csv strings, lists, and records to

represent postal addresses. This principled embedding means a developer can

treat a SAFESTRING solely as a string, and not as some more complex object, while

enjoying two assurances of type checking: that a SAFESTRING contains only valid

data and assigning an instance of one SAFESTRING into another incompatible

type triggers a type error.

It is easy to write new SAFESTRINGS (Section 5.4.3), making it convenient

to move the intrinsic complexity of dealing with latent string structure away

from front-end developers to library authors. SAFESTRINGS are string subtypes,

so one can always pass an appropriate subtype without having to rewrite code.

SAFESTRINGS can define a subtype relation over structured strings more eas-

ily than via language inclusion (Section 5.3.2). They permit ‘type-safe’ string

manipulation, in the sense that the result of an operation is always well-typed

under a SAFESTRING, as long as its grammar accepts the serialisation of the result

(Section 5.3.4). String validation becomes membership checking and occurs when

converting a raw string to a SAFESTRING; revalidation is either unnecessary or

requires only rechecking substrings for membership.

Fortunately, most uses of data-carrying strings reuse a small set of struc-

tures: our empirical study of a Java corpus found that just 10 structures covered

100% of all data-carrying strings in a uniformly at random sampling of the cor-

pus (Section 5.5.2). This means that developers often need only replace their

language’s raw string with the appropriate SAFESTRING annotation from our

SAFESTRING, as our case studies illustrate (Section 5.5). Annotations can be added

incrementally, or removed. As the underlying program type checks with , remov-
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ing the annotation simply reverts the type to . This permits easy incremental type

migration [220].

The requirements for SAFESTRINGS are common in modern languages: user-

defined data types, subtyping, and static type checking. This means SAFESTRINGS

are essentially language agnostic and applicable to any object-orientated language.

When using a language retrofitted with SAFESTRINGS (Section 5.4), a developer

need only annotate a string variable to declare its SAFESTRING type. Because

SAFESTRINGS store and reuse the underlying string structure while still main-

taining the string interface, they are more compact and efficient than PCRE21

validated strings [152], which are a verbose encoding and just perform a syntactic

validity check. PCRE2, in general, is known to be difficult to read, write and

maintain [135]. Moreover, by discarding structural knowledge, PCRE2-validated

types do not allow for easy subtyping, nor method specialisation (Section 5.6).

Domain-specific languages (DSL) extend their host language to ease rea-

soning about and solving domain-specific problems; DSLs focus on code, not

data. Their goal is to expose latent semantics, not latent structure. DSL code

regions necessarily have different semantics than their host language. When a

DSL handles latent string structure, exposing that structure to its host language

is usually challenging. For example, a syntax-embedded string is no longer a

drop-in replacement for string. In contrast, SAFESTRINGS focus on data, not code;

they do not change or extend their host language’s semantics, but leverage its

existing abilities. SAFESTRINGS expose latent string structure to their host’s type

checker. This focus gives SAFESTRINGS their power and concision, making them

readily deployable. SAFESTRINGS aims at the ‘sweet spot’ between deployable,

1PCRE2, “‘Perl-compatible regular expressions”, are often called regex in industry, despite

being much more powerful than regular expressions.
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but brittle PCRE2, and a bespoke DSL with its complex interactions with its host

language (Section 5.6).

To evaluate SAFESTRINGS, we first retrofit TYPESCRIPT and Java, thus show-

ing the language agnosticism of SAFESTRINGS. By using Java, we demonstrate

SAFESTRINGS for a nominal type system, and in Section 5.3.2 for a structural

type system, such as TYPESCRIPT. We describe the construction of a library of

SAFESTRING definitions and demonstrate a possible concrete syntax for both

TYPESCRIPT and Java, which we implement via preprocessing (Section 5.4.1).

We show a language, BOSQUE [129, 128], where SAFESTRINGS are native, first

class citizens and demonstrate their usage (Section 5.4.4). We discuss several case

studies of real code (Section 5.5), including filepaths, css hex colour strings, and

css units. Leveraging the core library, we applied SAFESTRING annotations to a

corpus of Java programs to measure its annotation burden on existing projects

(Section 5.5.2). We also measure the performance impact of our library in terms of

SAFESTRING serialisation and deserialisation costs.

Our principle contributions are:

• To address the latent structure problem for strings, we introduce

SAFESTRINGS, a lightweight, language-agnostic, and seamlessly deployable

programming model for string type checking (Section 5.3);

• We show how SAFESTRINGS facilitate the definition and verification of a

subtype relation under strings (Section 5.3.2) and type safe operations over

strings (Section 5.3.4); and

• We present realisations of SAFESTRINGS in Java, TYPESCRIPT and BOSQUE

(Section 5.4).
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5.2 Motivating Example

Bugs from mishandling strings in this manner are common[73]. An analysis

of primitive type usage in SF110 [85] shows that strings are commonly used in

complex control points. Given that strings are a common source of bugs, and

strings are used in complex ways, handling strings at the type level can obviate a

class of bugs. Of nine basic types studied in [85], strings account for approximately

22% of control points in all classes. Only booleans and integers are more used. Of

these 9 basic types, 6 are different representations of number. No such recognition

of plurality is afforded to string: a reasonable corollary is that the uni-typing of

strings leads to errors.

Apache bug OFBIZ-42372 results in a execution ending exception being

thrown if a string parameter does not contain a colon, “:” ( Listing 5.1). The

code takes in a string from a call to readLine (in a method processClientRequest

()) which is sent for processing by the private method processClient(). This

method returns a String. The returned String takes the form of a flexible enumer-

ation, a common use for strings as it makes for a convenient varargs mechanism.

It is difficult to envisage how to remove String entirely from this code without a

massive refactoring effort touching other parts of the project. This is due to the

readLine call, to matching a substring in the request to a string in a config file,

and finally to the the requirement for a flexible, meaningful, return value.

Listing 5.1 was patched with an additional check for the presence of the colon

delimiter. The patch itself is simple, but this code passed through all quality

control mechanisms and resulted in an error caught by the end user. The error

is more easily catchable by the addition of a SAFESTRING annotation for a colon-

2https://issues.apache.org/jira/browse/OFBIZ-4237
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String request = reader.readLine();

if (request != null) {

writer = new PrintWriter(client.getOutputStream(), true);

String key = request.substring(0, request.indexOf(’:’));

N /* unsafe string handling */

String command = request.substring(request.indexOf(’:’) + 1);

if (key.equals(config.adminKey)) { · · · }

Listing 5.1: Line 1 takes a string from an outside source. This string is split on a

colon delimiter in line 4, but the string does not guarantee a colon is present. This

leads to an error that can be difficult to spot.

delimited string, as in Listing 5.2.

The annotation in Listing 5.2 introduces a dynamic check, much in the man-

ner of gradual typing[174]. However, unlike with gradual typing, it is now easy

to simplify the code as an optional refactoring exercise Listing 5.3. Such simplifi-

cation allows the cost of dynamic SAFESTRING instantiation to be offset against

corresponding code reduction.

With SAFESTRINGS is it easy to model partially structured strings. The client

request of listing 5.2 returns more than just a colon delimited string. It returns a

string structured around that colon. The substrings surrounding the colon may

have additional structure. This is easy to model with SAFESTRINGS, as we can use

other SAFESTRINGS to check and type the available substrings, i.e. we can have

the type @Colon(@Comma)(@String), where we have a hierarchy of concerns and

structural obligations. Due to SAFESTRINGS using native subtyping and objects,

this is easy to achieve. We can use the @String annotation to allow tagging of data.

The real power of SAFESTRINGS comes in the sequences of method calls.

If Listing 5.3 returns the colon delimited string as its result, then all meth-
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H /* only a Java annotation required */

String @ColonDelimitedSafeString request = reader.readLine();

if (request != null) {

writer = new PrintWriter(client.getOutputStream(), true);

String key = request.substring(0, request.indexOf(’:’));

String command = request.substring(request.indexOf(’:’) + 1);

N /* both key and command could benefit from annotations */

if (key.equals(config.adminKey)) { · · · }

Listing 5.2: The addition of a simple SAFESTRING type annotation inserts a

dynamic type check that request contains a colon. Any annotated methods that

use this string can be statically assumed to have the correct structure. Adding

annotations to both key and command will provide even more string safety.

ods calling it can use the information provided via the annotation for purely

static type checking. If we wrap the code fragment Listing 5.3 in a function

String @ColonDelimitedString foo(), and given a method void bar(String

@CommaDelimitedString s), then we can now statically reject bar(foo()). The

runtime cost of a SAFESTRING is only paid once, when the string is instantiated,

so over the course a program run, the cost is amortisable.

5.3 SafeStrings

SAFESTRINGS are abstract data type for strings. We make them via such famil-

iar tools as objects, grammars and parsers. First, we present Definition 5.3.1 in

Section 5.3.1. When working with SAFESTRINGS, you want to know whether

an operation on, say, an email string produces an email string as output: we

discuss this closure problem when discussing the definition. Essential to the

SAFESTRING programming model is that SAFESTRINGS should be indistinguish-
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@ColonDelimitedSafeString request = reader.readLine();

if (request[0].equals(config.adminKey)) { · · · }

Listing 5.3: From 6 lines to 2: using a ColonDelimitedSafeString drastically simplifies

the code. The developer no longer needs to write checks each time, but rely instead

on one dynamic assertion and static reasoning otherwise. If request passes the

check, then the field access in line 2 is certain to succeed.

String @ColonDelimitedSafeString(@Comma)(@String) request = reader.

readLine();

/* request := ‘‘csv,list,of,data:metadata which we want to store’’ */

request.append(‘‘safe’’);

/* request := ‘‘csv,list,of,data,safe:metadata which we want to store

’’ */

Listing 5.4: We can use SAFESTRINGS to carry metadata about the string that does

not interfere with type safe methods, but is still available for reading and writing.

able from strings from the user perspective: this requires method overriding,

which we discuss in Section 5.3.4.

5.3.1 Definition

Informally, SAFESTRINGS combine a string, a grammar, a parser and a structured,

internal representation (Definition 5.3.1). This combination creates an algebraic

data type (ADT) to make implicit structure explicit for better string type checking.

To instantiate a SAFESTRING, a parser first checks a string for language mem-

bership. The SAFESTRING stores the parser output in its internal representation,

which makes explicit the SAFESTRING’s structure. The user never manipulates

this internal representation directly, but rather an appropriate serialisation of it.
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This serialisation comes via a cast() function and must satisfy an equivalence law

(Equation (5.1)). A SAFESTRING represents the set of all strings that its grammar

accepts. We now define SafeStrings.

Definition 5.3.1 (SAFESTRING). For a host language H with the string type SH , a

SAFESTRING defines a subtype of SH via the 4-tuple 〈G,ρ,φ ,α〉, with the following

types

G : (N,Σ,P,S) grammar

ρ : ASTH a structured object for storing the AST

φ : SH ⇀ ASTH parser

α : ASTH → SH serialiser

A SAFESTRING’s parser φ parses the unambiguous context-free grammar G [184].

We limit ourselves to languages recognisable by CFGs because we are interested

in capturing those strings that encode data, rather than code: common structured

strings, such as filepaths and delimited strings (Section 5.4), are all CFG recognis-

able. We require Σ⊆ ΣH .

Instances of a SAFESTRING range over L(G), all those strings φ parses. When

it succeeds, φ outputs an instance of AST H , an abstract type that encompasses all

ways to encode structure in H, which a SAFESTRING stores in ρ . Conceptually,

ρ stores and makes explicit its raw string’s structure, which would otherwise be

submerged in STH . ρ combines a record and metadata, storing an instance of

ASTH . α uses the metadata to recover STH ’s raw string, modulo ≈t (See Equa-

tion (5.1) below). A SAFESTRING calls φ to initialise ρ in a constructor; when s

is the raw string passed into the constructor, ρ = φ(s), if φ succeeds. The parser

φ is partial to capture the possibility of failure. The handling of the partiality of

φ is H specific. A parse error generates a type error: the input string is not in
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L(G) and therefore does not have the same type as the SAFESTRING declaration.

Listing 5.11 shows how to make error messages more informative. It is beneficial

for method overriding (Section 5.3.4), which SAFESTRINGS use to seamlessly

integrate into SH , and the space and time efficiency of SAFESTRING operations if

φ is compositional, i.e. decomposes into subparsers that can separately handle

fields in ρ (Section 5.3.2).

We use α to recover the string, s, from ρ . Conceptually, it is akin to a pretty

printer. It is insufficient, however, for α to be merely a literal serialisation of ρ . For

interoperability with STH , φ and α of the SAFESTRING ß must, when φ is defined

on s, satisfy the following equivalence

s≈t (α ◦φ)s (5.1)

where s ∈ Σ∗. The token equivalence relation, denoted ≈t
3, does not require equality

over non-tokenisable characters, e.g. "foo " ≈t "foo" iff trailing whitespace is

ignored during tokenisation. The equivalence defined in Equation (5.1) is the

algebraic specification of the SAFESTRING ADT [74]. This equivalence can cause

some problems with equality, as the SAFESTRING version of foo may not be equal

to the original input string. We discuss this further in Section 5.3.4. In general,

we refer to α as the cast() method in code fragments, though we reify cast() via

familiar toString() methods in our implementations.

The fundamental insight for SAFESTRINGS rests on Equation (5.1). By build-

ing a transformation between string and structure mediated by Equation (5.1), it

is possible to have the best of both worlds: a simple string programming model,

with the power of an object model. Previous work on typed strings does not have

ρ , therefore it performs a membership check but does not convert and store the

3Not to be confused with the OAST type consistency relation of Figure 4.8
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AST (Section 5.6). The hard work of verification is discarded, rather than kept and

utilised. Alternatively, other methods translate the string into a record type and

leave it as such. The input is no longer a string and cannot be used conceptually as

a string. The programming model is altered: SAFESTRINGS address this problem.

Grammars, their associated parsers, and pretty printers can be huge. Despite

this, SAFESTRINGS are, in practice, quite small. This is due to their focus on encod-

ing structured data. Using SAFESTRINGS requires adding new type annotations

to code. Here too, the reuse of implicit structure in code keeps low both the cost

of defining SAFESTRINGS and cost of annotating strings to use them. Section 5.5.2

quantifies these low costs over our Java corpus.

SAFESTRINGS rely on the host language’s type checker for type safety. This

is both a positive and negative feature. SAFESTRINGS cannot guarantee type

safety beyond the guarantees of the host language: thus, the static power of typed

strings differs per language. TYPESCRIPT allows bi-variant subtyping by default,

which undermines subtyping guarantees. Other languages, such as Java and

BOSQUE, do not permit this type of error. Adding SAFESTRINGS to an existing

language compliments the existing type safety guarantees.

Closure. When operating on a SAFESTRING instance, such as an email address,

you may want to know that an operation produces a valid email address or

errors. Operations over strings are much simpler: functions over strings, S∗, of

the form f : S∗→ S∗ are endomorphisms: such endomorphisms do not require

dynamic checking. This is not true, in general, for SAFESTRINGS. Many standard

string operations, such as concatenation, when lifted to a SAFESTRING, σ , are

no longer automatically endomorphisms in L(σ), unlike with SH . They require

language membership checks. Other common methods, such as replaceAll(),

change characters that might alter the SAFESTRING type of a string; i.e. changing
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the comma to semicolon in a CommaDelimitedString means the result is still a

delimited string, but not a CommaDelimitedString, whereas changing the delimiter

on the super-type DelimitedString does not have this effect. It is difficult to know

statically what actions over a SAFESTRING are necessarily endomorphisms. We

handle this problem in a practical fashion by lifting all SAFESTRING types. A type

is lifted iff it has bottom, ⊥, as an element. In Java and TYPESCRIPT, such lifting is

automatic, as every type has access to exception handling mechanisms, but this is

not necessarily the case.

5.3.2 The SAFESTRING Subtype Relation

We may categorise subtyping broadly between nominal and structural: informally,

nominal subtyping has it that one type is a subtype of another if so declared (i.e. a

naming relationship is sufficient), whereas structural subtyping holds that two

types have a subtype relation if they share corresponding elements, regardless

of any declared relationship. In languages with structural subtyping, the easiest

way to induce a subtype relation is to include the sub-parsers as fields in the

record (Definition 5.3.2). Structural subtyping is guaranteed then by adding extra

parsing fields and adjusting φ accordingly.

SAFESTRINGS use ρ to produce a subtype relation for strings (Figure 5.1). The

soundness of this subtype relation is controlled by the parsers, which act as filters

over STH . To make the presentation programming language agnostic, we discuss

subtyping in terms of records. Exact implementation is language dependent. The

subtype relation for SAFESTRINGS is most easily presented in terms of width

subtyping [154]. Informally, width subtyping incorporates additional fields into a

record, making it ‘more informative’ than its super-type. Because SAFESTRINGS

have ρ , it makes it much easier to define a subtype relation in terms of objects

with fields, rather than via language inclusion (Section 5.6).
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Figure 5.1: Given a subtype hierarchy, SAFESTRINGS create a local subtype hierar-

chy within string. The error state, ⊥, is shared between SAFESTRINGS and the

“external” hierarchy. ⊥ occurs when a string fails to satisfy the requirements for a

particular SAFESTRING. All the SAFESTRING types, apart from ⊥, can be assigned

the type string.

We have implemented SAFESTRINGS for both structural and nominal type

systems (Section 5.4). For the nominal type system, the subtype relation is easy

to enforce. For the structural type system of TYPESCRIPT, we chose to increase

width via parser combinators; these provided us with the necessary extra fields.

Definition 5.3.2. SAFESTRING Subtyping.

Let ρ be a record with named fields ρ = {x, ...,z}; ρ has type τ . Each field has an

associated parser, {xp, ...,zp}, also part of ρ . Then a subtype τ ′ of τ is the collection

of named fields {x, ...,z} and an associated collection of parsers {xp,yp, ...,zp}.

where yp is a new parser not in xp, ...,zp. This definition is independent of the

correctness of the parsers w.r.t the language they are intended to recognise: sub-

typing still works for incorrect parsers during type checking level; the problem
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being the subtype relation is not the one intended by a developer.

Of course, simply adding extra sub-parsers is not very principled. We require

that both yp and some parser y′p already in the parsing collection both examine

the same part of the input string, one acting as a specialisation of the other.

Two degenerate cases can occur: when yp = y′p and when the intersection of the

languages recognised by yp and y′p is empty, i.e. L(yp)∩L(y′p) = /0. We leave it to

the developer of a SAFESTRING definition to ensure that this does not happen.

5.3.3 Equivalence of Operations over SAFESTRINGS and Strings

Definition 5.3.1 says nothing about operations on SAFESTRINGS. In practice, all

OOP languages define a string interface, a collection of methods available over

all strings. To maintain the string-like quality of SAFESTRINGS, we must expose

at least the same interface. We also consider that a SAFESTRING might add, or

override, methods. This is for convenience and expressiveness. We do not want

to permit adding or overriding methods that violate the string contract of the host

language interface: it would be contrary to the string API in Java, for example, if

we were to add an eval() method as integral element to a SAFESTRING. To ensure

that no added or overridden methods fundamentally alter the string interface, we

define a limit on what may be added (Definition Definition 5.3.3). The easiest way

to implement a sane string interface for a SAFESTRING is to copy the native string

interface over to the parent SAFESTRING object: this is the core of the method we

use for both Java and TYPESCRIPT.

At a minimum, a SAFESTRING must implement the entire set of methods of

the host language string interface, Sadt . We call this implementation Safeadt . To add

or override a method, m, to Safeadt , we stipulate that the result of calling m must

be reproducible via a finite number of methods calls in Sadt . If we add a method,

for example, to an email SAFESTRING that extracts the domain element, String
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getDomain(), then the same functionality is replicable via substring searching

and splitting over a raw string that encodes an email address.

Definition 5.3.3. Sound Interface Extension

A method mex is a sound interface extension to Safeadt iff there exists a finite

sequence of methods σ = m0 · · ·mx ∈ Sadt such that, for a string s, mex(s)≈t σ(s).

For a SAFESTRING implementation to be a safe drop-in replacement for string,

it needs to sound w.r.t the string interface of H.

Theorem 5.3.1. SAFESTRING Soundness

Given a Safestring type Sst , and for all strings, s, such that Sst(s) exists, and for any

valid sequence of operations, m = op0 · · ·opx(s), in Sst , there exists a finite sequence of

operations in Sadt σ = op′0 · · ·op′x(s), such that mst(s)≈t σ(s).

By valid, we mean that the sequence of operations type checks in the host

language.

Proof. The proof is per SAFESTRING definition, and proceeds by induction over

the length of σ . The base case requires that Equation (5.1) holds for each individual

method of Safeadt .

Equality. Equality presents no problems when comparing two SAFESTRINGS

of the same type. More delicate, however, is comparing a string against a

SAFESTRING for equality. Consider a program, p, that takes in a user input

string s (Figure 5.2). This string is a filepath that contains trailing whitespace. At

some point in the program flow, s is instantiated as a FilePath SAFESTRING. This

effectively strips any trailing whitespace, as whitespace at the end of a filepath

is not tokenisable. Equality between the original string, s and the SAFESTRING

version s′ no longer holds. To address this, when comparing a string against a
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s := “trailing ”

@Safe s’ := s block using s

block using s’

if s’.cast() == s

do something do something else

Figure 5.2: A string might fail to equal itself if equality is handled naively. s′ is a

SAFESTRING which has had its whitespace automatically trimmed. As a result, it

is no longer equal with “itself”, the original input string, s.

SAFESTRING, we attempt to coerce the string to the appropriate SAFESTRING. If

this fails, then false is returned.

5.3.4 Operation Overriding

A SAFESTRING includes an internal representation. Operations over these repre-

sentations are often simpler to perform and reason about than operations over the

raw string. One need only touch individual fields or sequence elements, without

reprocessing the entire string. An operation such as replaceAll() can often be

viewed as ‘tree surgery’: changing all delimiters in a delimited SAFESTRING via

replaceAll() is just changing the contents of the parent node, from ‘,’ to ‘:’, for ex-

ample. Unfortunately, not all operations are as simple as this. SAFESTRINGS open

the prospect of increasingly type-safe string operations beyond replaceAll() and

similar functions. We have already seen this idea in Section 5.1 in the discussion

of cssColour strings, an example where it is necessary to operate over the entire

AST, but doing so results in a rational, type safe function (Listing 5.5).

/* @param{return : cssColour} */ concat(’#001’, ’#100’) => ’#101’

concat(’#001’, ’#100’) => ’#001#100’ /* probably not what we want */
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/* the specialised concat function. This is more efficient, and

statically type

safe, if c1 and c2 have already been annotated as cssColour strings

*/

concat’(c1 : string, c2 : string) : cssColour {

let c1_ = new cssColour(c1);

let c2_ = new cssColour(c2);

let ret = new cssColour(cssColour.add(c1.rgb, c2.rgb).toString());

return ret;

}

Listing 5.5: Concatenating two cssColour SAFESTRINGS together in TYPESCRIPT

is guaranteed to produce a well-formed cssColour SAFESTRING. This operation

is closed over its type due to the fact that a cssColour SAFESTRING is structurally

a natural number: cssColour concatenation operation becomes (overflow-aware)

addition over natural numbers. The annotation in the doc string enables to choice

of an appropriate definition of concat. When the input strings are not typed, we

need to attempt to coerce the arguments to SAFESTRINGS.

Another common operation over a string is slicing, i.e. extracting a substring.

Slicing in SAFESTRINGS rests on the intuition that we normally look to extract a

particular substring from a string, and not just a random slice. These particular

substrings are likely to be represented a SAFESTRING’s internal structure ρ as

individual elements or the composition of individual elements. Slicing becomes

projection from the internal representation. Listing 5.6 shows one way to perform

this in TYPESCRIPT. Given a regex-validated string, one still needs to write email

.split(’@’)[0]. With a SAFESTRING, one simply extracts the named field, i.e.

email.name, an action that has no additional runtime cost. As an email.name, its
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character set is statically known, and its subparser is still dynamically available.

Moreover, this form of slicing cannot fail silently, as in the second example in

Listing 5.6. A user desiring free slicing over a SAFESTRING need only manipulate

the raw strings as opposed to its representation, i.e. take a slice from the cast() of

the SAFESTRING.

"name@email.com".split(’@’)[0] // OK: returns ’name’

"nameemail.com".split(’@’)[0] // Bad: returns ’nameemail.com’ without

warning

Listing 5.6: Slicing in TYPESCRIPT can fail silently and is easy to get wrong.

SAFESTRINGS make many common slicing operations simpler as the internal

representation is the original string “sliced” into syntax elements.

5.3.5 Locally Gradual Typing

There is flexibility for the user in using SAFESTRINGS and strings: casting a

SAFESTRING to string allows a program to statically type check when otherwise

it might not. We call this flexibility locally gradual typing (LGT).

Gradual typing is essentially a typing discipline allowing a free mixture of

static and dynamic type checking. Different flavours exist: LGT most closely

resembles quasi-static typing [199]. Quasi-static typing is a combination of partial

types and the automatic insertion of implicit positive and negative coercion. This

accurately describes the action of the program transformation (subsection 5.4.1).

A quasi-static system divides programs into three categories: well typed, ill typed

and ambivalent. LGT relies on subtyping and treats the ⋆ type as the top of the

subtype hierarchy (Figure 5.1). Siek et al. [177] show that the general form of

quasi-static typing suffers from the fact that implicit downcasts, combined with

the transitivity of subtyping, creates a fundamental problem that allows ill typed

programs to exist, even when all parameters are annotated.
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SAFESTRINGS utilise the intuition that the problem of quasi-static typing

is much simpler when it is local: rather than ⊤ being the absolute top in the

type hierarchy (e.g. Object in Java), let ⊤ be string, and the subtype hierarchy

the lower set of string whose elements are strings parameterised by language

membership. More formally, given the subtype hierarchy, O, of a programming

language, the quasi-static lower set, S↓, is ∀s ∈ S↓,∀y ∈ O,y≤ S↓⇒ y ∈ S↓, where

we set O⊤ to be Object and S⊤ to be string. Given this, the danger of casting to

and from absolute top ⊤ ∈ O is removed. Casting to ⊤ ∈ S↓, notated ⊤s↓ , is safe,

because all elements below ⊤s↓ are string filtered by language membership, or

an exception. We cannot transfer out of the string element of the type hierarchy,

unlike with standard quasi-static typing (Figure 5.1).

The partial (string) types are defined by:

τ ::= gi . . .g j | ⊤s|τ → τ

where gi . . .g j are typed strings parameterised by language membership, such that

gi 6= g j, when i 6= j. The type ⊤ is assignable to all objects g. ⊤ is not assignable to

the special object ⊥, which signifies a runtime error, and function types.

In Figure 5.3 and Figure 5.4 we see the three categories of locally gradual

program: well typed, ill typed, and ambivalent. Different degrees of annotation

provide different degrees of guarantee. When there are no annotations at all

(Figure 5.3), the program type checks but fails dynamically. When annotations

are complete, as in the right-hand examples of Figure 5.4, then the resulting code

is statically type safe w.r.t string usage. The other two examples have partial

annotations and show the ambivalent aspect of locally gradual typing for strings.

Only if foo is annotated (the first method to be called), can good static guarantees

be made, otherwise SAFESTRINGS capture that subset of errors which is within

scope of the annotations. The partially annotated code, if statically acceptable,
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function sep(ipv4 : string) : string { return ipv4.split(‘‘.’’); }

function fetch(url : string) : string { return get_ipv6(url); }

console.log(sep(fetch(api_input())));

Listing 5.7: Well-typed string manipulating code that has two sources of error.

Even if the API input is a well-formed URL, there is still a problem with IP

versions.

function sep(ipv4 : string) : string { return ipv4.split(‘‘.’’); }

function fetch(url : string) : IPv4SafeString { return get_ipv4(

url); }

console.log(sep(fetch(user_input())));

Listing 5.8: Partial type annotations reduce the scope for errors. The programmer

has fixed the IP version problem via SAFESTRING type annotations, but API input

has still not been validated.

function sep(ipv4 : IPv4SafeString) : string { return ipv4.split

(‘‘.’’); }

function fetch(url : URLSafeString) : IPv4SafeString { return

get_ipv4(url); }

console.log(sep(fetch(user_input())));

Listing 5.9: SAFESTRINGS prevent the errors of the previous code fragments.

If API input is malformed, then the developer gets a type error, which helps

debugging.

Figure 5.3: Different stages of SAFESTRING type annotations. The code on the left

type checks, as everything gets and returns a string, but produces a dynamically

generated error via an exception mechanism. The code on the right is partially

SAFESTRING annotated. This type checks, but fails with a runtime error.
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has the same semantics as the unannotated code.

LGT with Gradual Typing. When ⊤ is ambiguous, i.e. not statically determined

to be string, then LGT may suffer from the same problems as quasi-static typing.

Such a situation occurs in languages with gradual or optional type systems,

such as TYPESCRIPT. If ⊆ is the subsumption relation in an optionally typed

language, then we can statically check that a filepath fp is indeed a subtype of

string, fp : SafeFilePath ⊆ fp’ : string, but we cannot be statically certain that

fp : SafeFilePath⊆ fp’ :⋆ holds, where ⋆ is the unknown type in gradual typing.

5.4 Realising SAFESTRINGS

Having defined SAFESTRINGS and detailed their expression power, we now

describe how we implemented them in three languages: TYPESCRIPT, Java, and

BOSQUE. We chose TYPESCRIPT because of its powerful and flexible type system

and support for both object-oriented and functional programming. Data-as-string

is common in both TYPESCRIPT and JavaScript code. JavaScript makes heavy use

of regex [65]: if the presence of regex correlates with string usage, then JavaScript

also makes heavy use of strings. We needed the type system of TYPESCRIPT

for SAFESTRINGS, so we did not use JavaScript. We chose Java because of its

static type system, popularity, and OO programming model. The fact that both

retro-fits are similar suggests the potential ease of generalising SAFESTRINGS to

other object-based languages, such as Python. For these retro-fitted languages,

we designed program transformations Section 5.4.1 that take annotated code and

output SAFESTRING code. These program transformations use annotations linked

to a core library of definitions. We discuss the construction of these libraries

in Section 5.4.2. The core library only captures common use cases, so we also

discuss how to make your own SAFESTRINGS in Section 5.4.3, to enrich the core
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String foo(@SafeString String str) {...} ⇒ String foo(SafeString str) {...}

@SafeString String foo(String str) {...} ⇒ SafeString foo(String str) {...}

@SafeString String foo(@SafeString String str) {...} ⇒ SafeString foo(SafeString str) {...}

String foo(SafeString str) { return arg1; } ⇒ String foo(SafeString str) { return str.cast(); }

SafeString foo(String str) { return arg1; } ⇒ SafeString foo(String str) { return new SafeString(str); }

Figure 5.5: The program transformation in OO-style pseudo-code. The rewriting

of type signatures is relatively easy for arguments. The impact of annotating the

return type is more profound, as it involves calling the appropriate constructors.

library with domain specific definitions. BOSQUE does not require a program

transformation, as SAFESTRINGS are native; it uses SAFESTRINGS to enforce the

structural integrity of messages in RESTful APIs (Section 5.4.4).

5.4.1 Program Transformation

The program transformation, Figure 5.5, for retrofitting languages, is source-

to-source. It takes a file and rewrites it into SAFESTRING form. Source level

transformation of the code is useful for a number of reasons. For many statically

typed languages in common use, e.g. Java, the type checker works over the AST

rather than compiled byte code. Changing the source is also more transparent,

allowing the developer to see, and understand, the emitted code (Listing 5.10).

The transformation performs several tasks, as detailed in Figure 5.5. First, it

desugars annotations in type signatures to replace them with the appropriate

types. If the return type is string, but the method body has been performing

operations and checks over SAFESTRINGS, then the SAFESTRING needs to be cast

back to string.

Both the TYPESCRIPT and Java program transformations use a simple textual

search and replace. This source-to-source transformation preserves source line

numbers. As result, errors share lines in both the original and transformed
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/*

* We want file to be a SafeString

* @param file : FilePathSafeString

*/

let file : string = ’/this/is/a/file.txt’;

// the preprocessor performs this rewrite

let file : FilePathSafeString = new FilePathSafeString(’/this/is/a

/file.txt’);

/* we need file to be a string again

* @param file : string

*/

api.call.wants.string(file);

// becomes

api.call.wants.string(file.toString());

Listing 5.10: Desugaring in TYPESCRIPT. The rewriting is simple and transparent,

and is easy to do manually.

files. This facilitates debugging, by eliminating the need to examine or edit the

transformed file. Dynamic errors can be made much more informative; the error

from the constructor, essentially a parse error, can be incorporated into the error

message, as in Listing 5.11.

5.4.2 Constructing a SAFESTRING Library

SAFESTRINGS are not tied to any specific language, and, as such, a SAFESTRING li-

brary can be implemented for an existing language. We start by discussing aspects

of an implementation based on our experiences doing so for TYPESCRIPT. Firstly,

a fixed set of strings forms a trivial yet fundamental SAFESTRING type. Then,
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/* a typical error message */

t.ts:1:5 : Argument of type ’num’ is not assignable to parameter of

type ’string’

/* improved error message for string parameters */

t.ts:1:5 - error _ = Argument of type ’email’ is not assignable to

parameter

of type ’creditcard’. The input string was supposed to be a credit

card number, but the input string had the letter ‘d’ in position 1

instead

of a number.

Listing 5.11: Dynamically generated error messages now contain information

from the parser. PCRE2 does not provide this type of feedback.

we explore how both Dyck-like grammars and delimited strings are common

supertypes, with many SAFESTRINGS inheriting their features. Next, the structure

of our Java implementation is explained through a class diagram (Figure 5.6). We

discuss using annotations and documentation to allow a developer to specify the

SAFESTRING type of a string. Finally, we present a discussion on the importance

of an efficient implementation.

To decide what to implement, we first looked at different feature requests

on [205]. We also examined the decisions made by [112] for its standard library.

Neither of these sources justify their choices. This small survey included css

strings, such as font style and colour, zip and post codes, emails, and date strings.

When we annotated a Java corpus (Section 5.5.2), we found significant similarities

between this initial seed and what we actually used, giving some indication of

what might constitute a sufficient core library.
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String SafeString

XMLPrintableASCII

FTP Date Numeric

CamelCase

Delimited

IP HexColour FilePath Email

Figure 5.6: Class diagram for all SAFESTRING types used in the Java imple-

mentation for SF110 (Section 5.5.2). String is the base Java type, which the

abstract class SafeString inherits from. PrintableASCII and Delimited

all implement SafeString. The remaining types inherit from these. The use of

relationship is also shown, where PrintableASCII and Numeric are used by

other types.

Simple SAFESTRINGS: Word, PrintableASCII and NumericWord. The Word

SAFESTRING type is any set of fixed strings, i.e. its recogniser accepts only inputs

directly matching one of its encoded options. This is the same as TYPESCRIPT

string literals; it models strings used as enumerations. We did not implement

these for TYPESCRIPT as they are already available. Word represents a useful gen-

eralisation of string literals: instead of matching against an exact pattern, they can

match against a regular expression. PrintableASCII and Numeric SAFESTRINGS

are the building blocks of more complex types. PrintableASCII contains only

those strings with printable characters. This class is useful for those strings where

there is little easily discovered structure (i.e. natural language strings) but there

is a restricted character set. Numeric captures those strings which are only num-

bers. In Figure 5.6, we see that date, for example, uses both PrintableASCII and

Numeric
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Dyck and Delimited Strings. More complex strings are frequently subtypes of

Dyck strings [215]. Dyck strings are strings with an underlying Dyck-like grammar,

of the form S→ ”(”S”)S”. We relax this to allow other SAFESTRINGS to appear

between the balanced delimiters. Another common SAFESTRING supertype is

the delimited string. These are strings of fields with a set delimiter, such as

CSV. The fields themselves may also be SAFESTRINGS. This is a useful way to

encode common structures such as file paths and sort codes for bank accounts.

One can represent an email with a separate field for name, “@”, domain, “.” and

topleveldomain, but such a representation is needlessly noisy. A delimiter in a

SAFESTRING is a substring of the SAFESTRING that always occupies the same

position w.r.t the other substrings of the string. Both the “@” symbol and the

first dot “.” of an email address are delimiters. They are the ‘scaffold’ around

which the other elements (sub-strings) are disposed. Consider an ‘inner-comma’

string, a string of the form s = s1 ·
′,′ ·s2, where ′,′ 6∈ (s1∪ s2). The simplest suitable

representation is a list of length 3. The first element would be the delimiter,

’,’, while the remainder would be the substrings disposed on either side. This

simple schema for delimiters underlies the DelimitedSafeString class, which is a

parent class for a large number of other SAFESTRINGS. Emails themselves can be

modelled in the DelimitedSafeString class (Figure 5.7). Delimited strings can have

bounds on the number of their fields. A DelimitedSafeString with no lower bound

(i.e. min = 0) is a degenerate case. Such a string may be empty, or have one field

only.

Java SafeStrings. To overcome the final nature of string in Java, we copy the

string interface entirely into a new, non-final, class, SafeString. The program

transformation allows us the pass easily between String and SafeString, via the

cast() method and constructor calls. The JVM can optimise final classes more
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country
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φ3

uni

φ2

field1

φ1

Figure 5.7: Emails are nested delimited strings, with sub-parsers φ . The email

address “name@uni.ac.pp” can be represented as two different subtypes of delim-

ited string. This increases their subtyping richness, but also makes the internal

structure simpler and more efficient: they can be stored as arrays of delimited

strings.

efficiently, but we see, in Section 5.5.2, that the cost of adding SAFESTRING is

commensurate with the increased safety. Figure 5.6 displays the class diagram

of a SAFESTRING implementation in Java. One can see how inheritance plays an

important part of the library design, allowing simple yet expressive restrictions of

existing types. A number of SAFESTRING types make use of other SAFESTRINGS to

restrict the type of fields within their structure. For example, DateSafeString,

HexColourString and IPSafeString all use NumericSafeString.

Annotations. SAFESTRINGS’ Java realisation makes use of the Java annotation

language [222]. TYPESCRIPT lacks a similar, convenient, annotation system. It

does, however, have a useful documentation language. We use this documentation

language to provide the necessary information for the language transformation.

We have already seen, in Listing 5.5, how TYPESCRIPT doc strings are used

to specialise the base string type. BOSQUE does not require annotations, as

SAFESTRINGS are part of the language specification.
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Efficiency. There is usually a dynamic element to using SAFESTRINGS. The effi-

ciency of this instantiation rests on the parser implementation used. We use parser

combinators in the TYPESCRIPT and Java implementations (Section 5.4), as they

are an in-language solution and do not require new programs or processes to be

added to the development cycle. While it is possible to tailor strings that provoke

the worst-case behaviour of a recogniser, as in the regular expression denial of

service attack, ReDOS [63], we do not consider SAFESTRINGS in this adversarial

context in this paper. SAFESTRING operations can be made efficient via incremen-

tal parsing, and using parser combinators. Space must also be considered. The

space requirements for SAFESTRINGS depends on the size of the AST H . A well

designed encoding can make the SAFESTRING representation more space efficient

than that of the string. Consider the context-free language anbn of equal numbers

of ’a’ and ’b’ characters. Such a string can be arbitrarily long, but a SAFESTRING

need only record the structure and the value of n.

5.4.3 Making Your Own SafeStrings

The procedure for making your own SAFESTRING type is essentially the same

for both Java and TYPESCRIPT, so we discuss it in a generalised manner here.

BOSQUE has its own means, that nevertheless are similar (Section 5.4.4). To

ensure the interoperability of SAFESTRINGS with the string type, the base class

of SAFESTRING is a copy of the string class. That is, all operations, methods

and fields available in the base string class are also available in SAFESTRING base

class. We have added tryParse() and cast as abstract methods: these are the only

methods that must be implemented when creating a new SAFESTRING subtype.

Making your own custom SAFESTRING is as simple as adding a new class to the

core library. The program transformation searches within the library for a class of

the appropriate name. We use the naming convention “...SafeString” to ensure
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public class NaturalNumberSafeString extends NumericSafeString {

public NaturalNumberSafeString(String str) {

this.value = str;

validate();

}

@Override

protected void validate() {

for (char c : this.value.toCharArray()) {

if (!Character.isDigit(c)) {

throw new IllegalArgumentException(‘‘NumericSafeString

contains none numeric character.’’;

)}}}

Listing 5.12: A simple SAFESTRING definition. Many definitions need be no more

complex than this, as the base SAFESTRING class does a great deal of the difficult

work.

that non-SAFESTRING comments are ignored by the program transformation. The

annotation must use the same word as the name of the class file in the library. For

users who need custom types but do not require advanced techniques such as

overridden methods, the bar to SAFESTRING definition is low. Writing the parser,

P, and designing φ is the single largest programming challenge.

Many SAFESTRINGS are simple, as the core SAFESTRING class does most of the

“heavy lifting”. We present a simple string subtype, NaturalNumberSafeString in

Listing 5.12 that shows the minimal effort required to create a basic new type.

Parsing in Java and TYPESCRIPT. We use parser combinators in TYPESCRIPT and

PEG parsers in Java. Parser combinators are familiar tools in functional program-

ming, having been first introduced by Burge [38] and extended by others, such
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as Hutton [109]. PEG parsers were first introduced by Ford [83] and offer similar

advantages to parser combinators. The motivation to use both parser combina-

tors and PEGs was due to the presence of well-maintained libraries in the target

languages. Both provide an elegant and declarative method for implementing

parsers. They do not require a separate toolchain, thus avoiding integration issues.

Parser combinators can allow ambiguity to appear at runtime. This can only

be resolved by taking care, in the SAFESTRING definition, to remove ambiguity.

Using either PEGs or parser combinators, however, allow SAFESTRINGS to be

entirely in-language: a program using SAFESTRINGS is self-contained and does

not need anything other than the normal language runtime for deployment. Both

PEGs and parser combinators have another extremely useful property that we

exploit; they are composable. They give us the separately callable parsers that

enable compartmentalised checking (Section 5.3.4). Using a single PCRE2, a recog-

niser for an email address is formidable; given the power to compose and order

recognisers however, it is a much simpler proposition:

invariantAt = /@/

name = /[0-9a-zA-Z]+/

invariantDot = /\./

left = /[0-9-a-zA-Z-]+/

right = /[0-9-a-zA-Z-.]+/

where the parser sequence is the obvious (right◦ invariantDot◦ left◦ invariantAt◦

name)(s). Moreover, given a mapping, φ , to an appropriate structure:

(At ’@’ (Name string1) (InvariantDot ’.’ (Left string2) (Right string3)

))

a change to the sub-string, string2, requires only dynamically rechecking with

the left recogniser, as the rest of the structure is unaltered (Section 5.3.4). This is

much cheaper than rechecking the entire email address string.
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5.4.4 SafeStrings in Bosque

The BOSQUE programming language [129] is a ground up language and tooling co-

design project, focused on addressing the challenges developers face when build-

ing micro-service or server-less architecture cloud applications. These systems

interact heavily via remote calls using RESTful APIs [80] and involve interacting

with multiple endpoints implemented using a variety of programming languages.

Thus, least-common-denominator data formats are used extensively, including

JSON and (latently structured) strings, which can be parsed by any member of the

polyglot micro-service confederation and are well suited to sending over diverse

forms of communication stacks.

In this development model, the ability to explicitly provide information

about the latent structure in string data provides two major benefits. By lifting the

implicit structure explicitly into the type system, BOSQUE can drastically improve

the quality and usability of any API endpoints it exposes. This makes them easier

for other services to consume and helps structure the parsing/validation logic

for the service implementer4. In addition, by providing explicit structures for the

form of data in a string, SAFESTRINGS enable the construction and application

of advanced tooling for BOSQUE developers. By using the explicit logic that

describes the form of a string, BOSQUE is able to provide a SMT-based generator

that constructs valid input strings for symbolic model checking. By using the

explicit input string structure, the checker spends drastically less time exploring

parsing and validation code and achieves much higher coverage of the actual

application logic.

Due to BOSQUE’s native SAFESTRING capabilities, it is an easy operation to

4For example by catching paths where a string is not properly sanitised/validated and remains

of type String instead of validated as a StringOf<Date>.
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extend the available SAFESTRING definitions with new types (Listing 5.13). These

simple definitions are a form of light validation and type tagging that prevents

confusion in the code and reduces problems with APIs which have multiple string

valued parameters, a common cause of argument selection defects [159].

typedef L4 = /\w\w\w\w/; \\ SafeString may contain only 4 letters

typedef D4 = /\d\d\d\d/; \\ SafeString may contain only 4 digits

function fss(s1: SafeString<D4>): Bool {

return s1->string() == ‘‘1234’’;

}

fss(SafeString<L4>::as(‘‘abcd’’)) // type error L4 incompatible with

D4

fss(SafeString<D4>::as(‘‘abcd’’)) // runtime error ’abcd’

incompatible with D4

fss(SafeString<D4>::as(‘‘1234’’)) // true

Listing 5.13: BOSQUE permits the quick creation of simple SAFESTRINGS for input

validation and type tagging.

The BOSQUE type system has univariate parametric types and the target

domain has a mix of simple string formats that can be easily regex-validated, as

well as complex data format strings. Thus, the BOSQUE implementation adapts

the SAFESTRING concepts slightly to match the needs of the domain and target

developers by: (1) providing simpler regex-validated SafeString<T> where T is

a regex type definition, and (2) a user defined parser validated SafeString<T>,

where T implements the special Parsable trait. As parametric typing is univariate,

BOSQUE does not support subtyping on the SAFESTRINGS and uses a simplified

equality, in order to be strict on the type and string contents. These simplifications

sacrifice some of the power of SAFESTRINGS but retain the key value propositions,
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while making them approachable for the target web developer.

5.5 SAFESTRINGS: Evaluation

We evaluate SAFESTRINGS in two ways: case studies and a study of the cost

of their adoption. The case studies span all three languages and illustrate the

power and expressiveness of SAFESTRINGS. SAFESTRINGS are not free: they

require definition and annotation. Section 5.5.2 quantifies these costs. As library

implementation details are similar between Java and TYPESCRIPT, we focus on

Java in Section 5.5.2.

5.5.1 SAFESTRING Case Studies

We explore the benefits of SAFESTRINGS with examples drawn from real code

found on Github or StackOverflow answers. In some cases, we simplified the

code for brevity. Historically, the fact that Windows and UNIX choose different

file path delimiters has caused many problems. The FilePath study illustrates

SAFESTRING inheritance and how SAFESTRINGS can prevent common problems,

such as converting file paths across operating systems. Hex colours demonstrate

how to redefine a SAFESTRING’ operations and specialise them to exploit the

structure of the data the SAFESTRING contains. Units of measure often cause

issues. Our css example shows how a SAFESTRING can make units type checkable

and prevent hard to detect mistakes. The final two cases studies show how

SAFESTRINGS can eliminate boilerplate validation checks and error handling.

FilePaths. Filepaths are a common feature in many programs and are usually

typed as string. Filepaths have different formats on different architectures, some

using \\, some /, or even a mixture of the two. Filepaths can also be relative,

or absolute. Consider the join function, available from path TYPESCRIPT node
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let x = ’/foo’; let y = ’more/stuff’; let evil = ’gone\bad’;

path.join(x, y, evil);

=> returns ’/foo/more/stuff/gone\bad’

Listing 5.14: It is easy to make an invalid filepath in most languages, including

TYPESCRIPT.

let x = ’/foo/’ : @UnixFilePathSafeString; // valid

let y = ’more/stuff/’ @UnixFilePathSafeString; // valid

let evil = ’gone\bad\’ : @WindowsFilePathSafeString; // valid

UnixFilePath.concat(x, y, evil) // bad, but produces a type error.

Listing 5.15: We can prevent invalid strings from being passed in as paths statically.

We override the concat method for FilePath SAFESTRINGS to produce a type safe

version of path joining. When SAFESTRINGS are native, as in BOSQUE, then joining

is already aware of string subtypes.

module. It is easy to build an invalid path via this method, as in Listing 5.14 5.

With appropriate type annotations, it is possible to guarantee that this error is

caught statically, as in Listing 5.15.

We implement FilePathSafeString as a subtype of DelimitedSafeString,

where the representing structure is a list of PrintableASCIISafeString’s (Fig-

ure 5.6). The delimiter resides in a separate field. Specialising the delimiter field

allows us to generate distinct FilePath subtypes, such as SAFESTRINGS of Unix and

Windows style paths. Moreover, a leading delimiter is optional, creating the possi-

5Adapted from a stackoverflow answer at https://stackoverflow.com/questions/

41553291/can-you-import-nodes-path-module-using-import-path-from-path/

45218692
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class UnixPathSafeString extends FilePathSafeString {

separator = ’/’;

fields = [‘‘root’’, ‘‘then’’, ‘‘other’’, ‘‘stuff.org’’];

basename = fields.slice(0, -1);

filename = fields.slice(-1);

}

Listing 5.16: Subtyping for filenames via specialising the separator. We can also

make the class more usable by setting up aliases for indices into the list containing

the ASCII typed substrings.

bility of accepting absolute and/or relative paths. By making UnixPathSafeString

and WindowsPathSafeString subtypes of FilePathSafeString, we can use them

wherever we require a generic FilePath, but control when we require specifically

Unix or Windows-style paths. Extracting filename, extension and path are just

named projections from the internal representation (Listing 5.16).

Hex Colours. Web-based programming is especially rich in strings. Cascading

Style sheets (css) is an almost ubiquitous style sheet language that is fundamentally

string manipulating. This makes it easy to incorrectly assign data with little that

either a type checker or static analyser can do to prevent it. A common usage of

css is setting colours of different html elements.

We have already seen, in Section 5.1, some of the problems caused by repre-

senting colours as strings. Analysing a hex colour string reveals an underlying

structure. However, superficial differences in presentation can mean a string

comparison of two strings encoding the same hex colour may return inequal-

ity. Abstracting a hex colour, however, gives the simple structure (Colour (

Red N) (Green N) (Blue N)), where each value is 0-255, which ignores presen-
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tational differences. Equality is now optionally over the structure of the hex

colour, rather than just the raw string. The original strings can, of course, still

be compared as strings, using SAFESTRINGS’ cast() operation. The ’#’ sym-

bol is a SAFESTRING delimiter, so does not need to be stored in the represen-

tation: cast(): string = ’#’+ red.toString(16)+ green.toString(16)+ blue

.toString(16). This HexColourSafeString representation, and the fact that it

contains only valid hexadecimal colour strings, is much easier to manipulate

than string. Changing elements in the structure leaves the structure itself, and

therefore its type, unaltered. We have already seen an example of this in the

blend() method of Listing 5.5.

CSS Units. Units in css, such as pixels, points and picas, are all strings with

an obvious latent structure that vanishes when typed as string. This makes it

easy to assign the wrong unit to the wrong variable (Listing 5.17). It also makes

it difficult for a static analysis to identify these errors. While css is not a type

checked language, TYPESCRIPT allows inline css, exposing it to the TYPESCRIPT

type checker. Units are the archetypal NumericWord SAFESTRING. A string “1cm”

has the simple representation (CM 1). It is trivial to catch the incorrect assignment

let font-size : Point = ’1cm’. Listing 5.17 has a simple mistake, c was typed

instead of x in the unit for margin; spotting this error in a dense page of css

is difficult and time-consuming. A linter may not detect this as an error. A

declaration that margin takes the union type (PX | AUTO) catches the error with

minimal programmer effort.

Stripping the unit information and normalising the numerical representa-

tion also makes it much easier to define conversion functions that do not ex-

pose their complexity to the front-end user (Listing 5.18). This can be achieved

through, for example, operator overloading. If operator overloading is not desir-
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<!-- we assume that margin, width, padding etc have type (PX | AUTO)

--!>

object { height : 250px; width : 200px; margin: 10pc; margin-bottom:

10px;

padding: 5px;}

Listing 5.17: Mixing units of measure can lead to topographical errors that are

difficult to debug in css. SAFESTRING catches this unit error during the normal

compilation cycle.

able (TYPESCRIPT, for example, does not encourage it), then TYPESCRIPT’s union

types can be used to overload a function to choose the correct transformation.

Unneeded Exception Handling. SAFESTRINGS reveal the presence of errors

statically, but they can also simplify existing project code. Figure 5.8 shows code

for parsing an RGB colour from an input string. This code is not amenable to static

checking: exceptions are fundamentally dynamic. Using a RGBColourSafeString

makes almost all of this uncheckable code superfluous.

The use of SAFESTRINGS turns Figure 5.8 into Listing 5.19. This code can

be statically guaranteed to return a value of type Colour. The question of how

to safely parse an integer within a string has remained open for many years. A

StackOverFlow post6 on this question has been actively discussed for the last 10

years and accumulated 185,000 views at the time of writing. SAFESTRINGS were

designed to address most of the cases this thread discusses: strings encoding data

with simple structure, like the embedded numbers NumericSafeString captures.

Calculator in BOSQUE. Listing 5.20 shows a simple calculator API in BOSQUE

using a simple validated SafeString<CalcOp> for the structure of the operation

6https://stackoverflow.com/questions/1486077/good–way-to-encapsulate-integer-parseint
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// overloading + for a pixel string

add(operand : Pixel | Picas | Points) {

if (operand isinstanceof Pixel) { return cm self.value + operand.

value; }

else if (operand isinstanceof Picas) { return cm self.value +

operand.toCm(); }

// ... etc

}

Listing 5.18: The complexity of adding incompatible units is abstracted away

from the front-end user.

string and a more complex StringOf<BigInt> custom validated format string

(via the builtin BigInt type). Since the API types ensure that the strings are well

formed, the code can safely omit further validation in this case and use the strings

directly. This example also shows how literal SAFESTRINGS are constructed and

compared in a type safe manner.

5.5.2 The Cost of Adopting SAFESTRINGS

SAFESTRINGS impose a new annotation burden. We break this burden into 3

separate costs; number of annotations to be added to code, number of unique

SAFESTRING annotations a developer must be aware of, and the effort to create

a new SAFESTRING type. We show these costs are low and do not constitute an

obstacle to the adoption of SAFESTRINGS.

We tested SAFESTRINGS on existing Java classes, taken from SF110 [85]. SF110

is a collection of 110 Java projects selected from source-forge between 2012 and

2014, containing over 23,000 classes. We annotated a subset of SF110 to assess the

annotation burden and the effect of annotations on code quality, as per Section 5.4.
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Figure 5.8: Real Java code that parses an RGB string and returns a Colour object.

We can remove almost all of this code by the simple inclusion of SAFESTRING

annotations.

To do this, we first used Soot [206] to perform a flow dependency analysis on

Java classes. This was to identify classes containing at least one method that has

a string parameter which is used in a control decision. This is because, in many

cases, it is more beneficial to annotate parameters, rather than local variables, in

order to increase overall type safety. This analysis identified 1,339 classes.

We chose 500 classes, uniformly at random, from the initial dependency

filtering of SF110. We manually examined each class to see where strings were

being used and to ascertain their structure. Due to the large number of classes

to examine, and due to the fact that we anticipate SAFESTRINGS being used in

a production setting where the refactoring time budget may be low, we gave

ourselves approximately one minute to understand the structure of the string.

One minute was envisaged as a stringent time limit: in most cases it was, in fact,
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public static Color processColour(ColourSafeString colStr, Color

defaultColour) {

if (!colStr.isEmpty()) {

return new Colour(colourDef.r, colorDef.g, colorDef.b);

} else {

return defaultColour;

}

}

Listing 5.19: SAFESTRINGS can radically simplify the code that a user needs to

write. This is because the language transformation inserts the necessary checks.

This checks are correct by construction.

generous. Frequently, determining structure was an easy task, as the parameters

usually had informative names (i.e. an XML string parameter was called “xml”).

On other occasions we had to understand the structure from looking at the control

flow of the method. Some strings could not be assigned a type. This was due to a

lack of interaction within the function body. For example, an existence, or non-

null check of a string parameter called key, while suggestive, does not provide

enough information to decide its grammar.

We observed 28 unique SAFESTRING types, among the latently structured

strings in the 500 classes, excluding strings that we were unable to adequately

charaterise within our time limit. A developer with domain specific knowledge

could easily add the required SAFESTRINGS, building on the core library defini-

tions. Next, we chose, without replacement, a further thirty classes from the initial

dependency filtering. These thirty classes only used 10 SAFESTRING types, as

detailed in Figure 5.9. The overlap between the assumptions made by Rosie [112]

and types found in our subset of SF110 is substantial, but not total. For example,
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typedef CalcOp = /negate|add|sub/;

entrypoint function main(op: SafeString<CalcOp>,

arg1: StringOf<BigInt>, arg2?: StringOf<BigInt>): StringOf<BigInt>

requires release (op == CalcOp‘add’ || op == CalcOp‘sub’) ==> arg2

!= none;

{

if(op == CalcOp‘negate’) {

return SafeString<BigInt>::stringify(-1 * BigInt::parse(arg1))

;

}

else {

...;

}

}

Listing 5.20: A BOSQUE calculator API endpoint using SafeString and StringOf

validated string types.

we did not anticipate a CamelCase subtype. Given that CamelCase is the recom-

mended style for variable naming in Java, it seems likely that this string subtype

is language dependent. Other programming languages might also have language

dependent types.

Usage of SAFESTRINGS, within the thirty classes, follows a Pareto distribution,

with α being close to 1. This suggests that, to benefit from SAFESTRINGS, a

developer need only use a handful of types. The three most common SAFESTRING

types account for over 50% of required annotations. Within the 10 types in

Figure 5.9, there was an average of 35 source lines of code (SLOC), excluding

imports. This indicates relatively little effort is required of a developer to create a
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Figure 5.9: Type frequency in the 30 classes sampled from SF110.

new SAFESTRING type.

The left-hand plot in Figure 5.10 shows the average worst case construction

times for SAFESTRINGS. Measuring constructor performance in Java is difficult.

We ran each constructor a million times, with string inputs randomly taken from

lists of prepared (correct) string inputs, up to a length of 128 characters. To ensure

that the loop was fully executed, we disabled the JVM’s JIT compiler. The JVM

JIT compiler is a sophisticated piece of software, and is quick to remove ’dead

code’, such as unused constructor calls. As a result, the numbers represent the

very first time the JVM encounters a SAFESTRING type. As the parsers are static

methods, once the parser is JIT’ed, the cost of further instantiations is less. The

outlier is EmailSafeString. This is likely due to the relative complexity of the
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grammar, but might also indict that the implementation needs optimisation. The

right-hand plot in Figure 5.10 shows the average worst case lstinlinetoString times

for the Java library. Once the toString() method has been called once, the result

is memoised in the SAFESTRING object, hence the construction time need be paid

only once. For some simple strings, such as BinarySafeString, the input value is

trimmed of white space and stored directly, assuming it passes the membership

test.

Figure 5.11 shows average memory impact per SAFESTRING. We used JOL,

the Java Object Library, to obtain information about the size of our SAFESTRING

objects. The parser implementations account for the majority of increased mem-

ory usage. Again, as parsers are shared per SAFESTRING, this increased memory

usage is paid only once per SAFESTRING type. The outliers are those with com-

plex parboiled parsers, (CamelCaseSafeString and EmailSafeString). This could

doubtless be make more efficient, but we have opted for readability and correct-

ness as a default.
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5.6 Related Work

The problems associated with strings are well known and long standing. There

have been many suggestions for string safety from both the research community

and industry. We focus on each in turn. We start with common design patterns

and partial solutions. These are industry practices, so may lack theoretical rigour

or be informally applied. We then move onto attempts to model strings in type

systems, before considering syntax embedding and DSLs. This work focuses on

string sanitisation, rather than type checking for strings. SAFESTRINGS require

type annotations, we explore how type specific languages might be a means to

introduce elegant syntax. Finally, we consider techniques that might make library

construction easier, such as using SMT solvers to determine operation closure

properties and subtype relation construction.

Design Patterns. There are a number of informal approaches to increased

string type safety which make for reasonably usable design patterns. All of

these require more effort from the user than the simple annotation language of

SAFESTRINGS. Type aliasing is a simple means for ad hoc string typing [197]. This is

supported in many languages, but its primary use case is often for documentation

purposes rather than type safety. In TYPESCRIPT, for example, one writes type

Name = string. From the perspective of enforcing invariants however, the utility

of aliasing is limited because it does not enforce type (in-)equality. It does not

prevent static type errors of the kind gmail : Gmail = "not a gmail address",

where Gmail is some previously declared type alias for string. If a language has

newtypes, greater type safety can be achieved. These wrap an existing type. A

newtype is different from an alias in that it is exposed to the type checker and

can be used to enforce inequality. Object-oriented languages emulate these by
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class Monolithic {

// recogniser check on input

constructor(s) {

if p s then mono = s else error ‘‘bad parse’’;

}

Bool p (String s) : /regex/ check

String mono;

}

Listing 5.21: An object wrapped string.

wrapping a primitive type in an object or using an interface [197]. This object

wrapper pattern can be validated with a recogniser. A simple instance of this

pattern is explored in [84] (Listing 5.21). The constructor is augmented with a

regex check for string membership. The constructor fails with an error if the string

is not in the language expressed by the regex.

Since version 1.8, TYPESCRIPT has had string and number literal types [197].

The original pull request for string literals [161] summarises them as: “A string

literal type is a type whose expected value is a string with textual contents equal

to that of the string literal type.” A string literal type can only be assigned the

exact value specified in that type. String literal types can be used with other

features of the type system, most notably union types, to create (finite) enumerable

sets of strings. This allows them to act as type guards in pattern-matching in a

similar way to type constructors in pattern-matching within the ML family. Regex-

extended string literals relax the need for exact matching, making string literal

types even more expressive. SAFESTRINGS subsume these approaches, adding

extra functionality as well as acting as a relaxation for exact matching in pattern

guards. TYPESCRIPT 4.0 has increased the flexibility and type safety of strings by
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featuring literal narrowing, allowing constant strings to have their own unique

type. They do not have the expressive range of SAFESTRINGS, which can easily

implement this feature, but can also allow for subtyping and interoperability with

strings. Moreover, these features in TYPESCRIPT are changes made at the level

of the compiler, whereas SAFESTRINGS and be retrofitted to a language without

change to the implementation.

SAFESTRINGS are an example of the “parse, don’t validate”7 philosophy

commonly found in languages such as Haskell. Validation, instead of parsing,

is one of the weaknesses of the regex-validated strings approach. Haskell has

typeclasses. In particular, Read and Show provide (and check for) (de)-serialisabilty

of an algebraic data type. They are the logical way to implement SAFESTRINGS.

The core of SAFESTRINGS’s contribution is the contract that it imposes on any

realisation. Notably, Equation (5.1) ensures sound conversion between the ADT

and string representations of the data. SAFESTRINGS also do not alter the string

interface, meaning they are drop-in replacements for string. Doing this latter

operation in Haskell is not possible without the use of a program transformation

(Section 5.4.1), as Haskell does not support subtyping.

One can use parametric polymorphism to mimic some of the advantages of a

program transformation, but at the risk that a function’s type signature becomes

too general, i.e. the desired foo :: Email -> String needs to become foo :: (

Read a)=> a -> String, which accepts far more than the intended signature. To

support easier type checking for SAFESTRINGS in Haskell, where tools give real

time type information that might be confounded by a pre-compilation program

transformation, future work will look at embedding SAFESTRING type annotations

within a refinement type system, such as Liquid Haskell. Finally, most OO

7https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/ accessed Dec 2020
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languages do not have equivalents of typeclasses: our annotation-based method

overcomes this problem.

Strings in Type Systems. Recognising the problem of structured input encoded

as strings, [107] introduce regular expression types for XML. These encode the

structure of the XML at the type level, combining typing judgements via operators

inspired by those of regular languages. This has the advantage of providing

expressive types for each XML string, creating a family of XML-types for all

schema. SAFESTRINGS do not aim for this degree of expressiveness, choosing

instead to model valid XML as one type. Of course, one could subtype to create a

similar family of types, but this would not be as syntactically clean. Subtyping

with regular expression types is not modelled in the host language, but reduces

to the inclusion problem for tree automata. In contrast, SAFESTRING is eminently

practical and designed to be entirely within language. Their regular expression

types only apply to XML and would have to be implemented for a target language.

Finally, and most importantly, regular expression types are no longer strings, and

no longer easily inter-operate with strings; the programming model has changed.

PCRE2-validated string types of [205] allow for a high degree of type safety

w.r.t to strings. A type declaration takes the form: type CssColor = /ˆ#([0-9a-

f]{3}|[0-9a-f]{6}), with assignment being let fontColor : CssColor = #000.

SAFESTRINGS are strictly more expressive, however, in that they are not tied to

one form of membership test (i.e. PCRE2): arbitrary logic can be included in

the recogniser for a SAFESTRING. SAFESTRINGS also offer elegant support for

subtyping and operations over strings, which PCRE2-validated strings do not.

There are expressive alternatives to using regexes.

The Rosie Pattern Language (RPL) of [112] is a replacement for more familiar

regexes. RPL is based on Parsing Expression Grammars, or PEG [83]. It should be
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possible to use RPL as an alternative for parser combinators. RPL, by itself, is

not an alternative for SAFESTRINGS, as it is simply a pattern matching language,

rather than a means to expose structure to a type checker.

CLOTHO [70] is a taint analysis tool for strings. It uses a hybrid approach,

with a static analysis designed to detect statements likely to represent inappro-

priate string handling. It combines this with a dynamic analysis which generates

patches for the incorrect code in the event of execution. CLOTHO is not a type

based approach, though some of its techniques would be adaptable to enable

SAFESTRING inference. Automatic patch generation should see improved results

in the presence of more precise type information.

Syntax Embedding and DSLs. Work on syntax embedding, such as [33], aims to

make code immune to injection attacks, by construction. They embed the grammar

of a guest language, such as SQL, into the host language. Immediately, they have

moved away from a string programming model. They generate code that maps

the guest language to the host language, escaping functions as appropriate. This

approach has different intentions from SAFESTRINGS, where we are concerned

more with the shallow embedding of data for the type checker, rather than the

deep embedding of executable code for safety. SAFESTRINGS can be used to

do a shallow pass over SQL, preventing syntactically invalid strings from being

executing. Syntax embedding is akin to compilation, a heavyweight solution

compared to SAFESTRINGS. Again, and most importantly, any conception of the

input string as string is lost. The programming model has changed, whereas

SAFESTRINGS preserves the experience of string-based programming.

Syntax. SAFESTRINGS need type annotations for TYPESCRIPT and Java.

It is difficult to retroactively add syntactic features to these languages. We

solve this using a preprocessing stage. BOSQUE already has native syntax
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for SAFESTRINGS. [147, 148] introduce type specific languages and reasonably pro-

grammable literal notation, which is a principled approach to adding new literal

notation to existing programming languages. As such, their approach could be

used to provide direct syntax support for retrofitting SAFESTRINGS, without the

need for a separate program transformation pass. For the moment, their work

is limited to Reason, an alternative front-end for OCaml. As we require explicit

annotations, OCaml and Reason are not a suitable testing bed for SAFESTRINGS.

Future work could hopefully make use of this powerful approach to obviate the

need for an annotation language and independent preprocessor.

Operations. Writing a SAFESTRING library requires effort. In addition to writing

the parsers, decisions need to be made about methods. SAFESTRINGS provide

a mechanism for lifting string operations, but whether the lifted operation is

closed under the SAFESTRING is difficult to determine and may require computer

assistance. The question of the decidability of string theory, i.e. the problem of

automatically solving string constraints, has seen a recent renewal of interest in

the research community [2, 3, 87, 45]. This is doubtless due to the recognition of

the ubiquity of string manipulating programs in many programming domains. A

large amount of recent work has focused on the development of practical string

solvers. The list of SMT solvers handling at least a part of string theory includes

Z3-str [226], CVC4 [124] and Stranger [221]. The primary use case for these solvers

is in symbolic analysis, as discussed in [115] and [39]. The need to recheck after

an operation over a SAFESTRING is one of its greatest costs, even allowing for the

fact that, in general, we only require rechecking of sub-trees.
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5.7 Conclusion

We have presented SAFESTRINGS, a language-agnostic approach to type safety for

strings. SAFESTRINGS require no special language mechanisms, requiring only an

ability to encode structures and recognisers. SAFESTRINGS translate a structure

over which the type checker has no particular knowledge (i.e. string) into a form

that exposes rich latent structure. SAFESTRINGS are applicable either statically or

dynamically. SAFESTRINGS squeeze more invariants out of simple type systems

by treating strings as algebraic structures. The complexity of advanced language

features, such as dependent types and GADTs, are not required. A simple type

system can go further by putting the burden of representation on the producer of

library code, rather than the consumer. We have also presented instantiations of

SAFESTRINGS in Java, BOSQUE, and TYPESCRIPT, showing the relative ease with

which they can be encoded and used.
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Chapter 6

Conclusion

This chapter summarises the overall conclusions of this thesis and how the pre-

sented work addresses the problems under investigation. It also discusses how

the approaches presented can be extended, improved and enhanced in future

work.

6.1 Contributions and Summary

The main contributions of the thesis are:

• Empirical study on ranked information flow

We conduct the first empirical study into ranked information flow. Ranking

information flow relies on relative magnitude of information movement,

rather than precise information estimates. We have presented empirical

evidence that ranking of information flow is more efficiently computable

than exact estimation. Over nearly 800 different functions, we show that the

ranking is 95% stable after 3 hours of fuzzing. This is equivalent to just 40%

of the minimum number of samples required by similar tools.

• A new Information Theoretic Measure

We introduce FlowForward (Definition 3.3.1), a new information theoretic
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measure suitable for ranking. It is bounded in the interval [0,1]. Due to

its normalisation properties, it stabilises rapidly, even when the mutual

information estimate is still changing (Figure 4.13).

• Software Engineering Uses for RIF

We introduce information contour maps (Section 3.2) to visualise information

movement within the SUT. The ICM is a colour-coded callgraph, in which

the colours represent relative flow size. We present various uses and inter-

pretations for ICMs, including, but not limited to, security, refactoring and

test case adequacy analysis.

• RIFFLER

We present a prototype RIF and ICM tool generation tool, RIFFLER, which

decorates a PYTHON program an captures input/output pairs at the function

level. RIFFLER calculates FlowForward at a set time increment. It can colour

code a callgraph provided in GRAPHVIZ dot format, or provide detailed

analysis in the terminal. RIFFLER adds and removes PYTHON function

decorators semi-automatically and integrates seamlessly into a standard

fuzzing campaign.

• OAST

We present the first optional type system for security than does not use a

dynamic cast calculus. OAST replaces the dynamic monitoring of traditional

gradual typing with a testing phase that utilises RIF. OAST solves the brit-

tleness problem of security typing by providing the software engineer with

detailed risk information embedded inside provably secure components.

We introduce and prove the confinement property Definition 4.6.1 for OAST,

that states that any errors that occur must originate in untyped regions
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of the code. We present a prototype PYTHON implementation of OAST,

highlighting the flexibility of the system, but also showing shortcomings in

the prototype; specifically its failure to satisfy confinement.

• SAFESTRINGS

We present SAFESTRINGS, a novel type embedding for increased type safety

for strings. SAFESTRINGS use the native capabilities of an object-based

type system, and a program transformation, to enable strings to be labelled

with more precise types. These types serve to reduce the available entropy

for a string: the developer can specify that a string s : string is s : email ⊆

string. We present a SAFESTRING library in Java, and detail various case

studies highlighting their use. We report performance characteristics and

the annotation burden for a subset of the Java SF110 corpus of programs. We

also analysis the type of strings used in SF110, and discover that they follow

a broadly Zipfian distribution. SAFESTRINGS have already been incorporated

natively into a language from MICROSOFT, BOSQUE. SAFESTRINGS solve

the subtyping problem of regex-validated strings. By using annotations and

a program transformation, one can retrofit a language with SAFESTRINGS.

6.2 Future Work

Much work remains to be done to further the approaches detailed in this thesis.

The main thrust of this thesis has been on novelty: to scale the approaches to

effective software engineering tools required a larger engineering effort. The

techniques described in this thesis are intended to be practical: we have deliber-

ately abandoned formal proofs of properties in favour of probabilistic guarantees

whenever a formal system presents itself as too inflexible. This is most obvious in

OAST, but it also holds for SAFESTRINGS, where a SAFESTRING substring can be
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cast, at any point, back up to string, thus voluntarily discarding information.

RIFFLER works on pure PYTHON programs only. However, there is nothing

inherent in the approach that limits it in this manner. Future versions of RIFFLER

will seek to address the problem of adding annotations automatically to C. This

will allow RIFFLER to be lifted to handle large scale software such as numpy and

pandas. The problem of false constant functions (Section 3.4) is likely to increase

for these programs. A custom fork of the dill library, with a controllable recursion

depth, would go a long way to solving this problem. RIFFLER functions in two

parts: a PYTHON specific part, and a RIF calculator. Future work will decouple

these two sections, allowing for new language specific front-ends to be added.

We have tested RIFFLER via fuzzing, but an analysis of the callgraphs gen-

erated suggests that fuzzing may not be the most efficient way to compute RIF.

While fuzzing has the virtue of requiring little setup, and little input from the user,

it also wastes resources on some functions, calling them far more than required,

and fails to adequately sample other functions. For the point of view of contin-

uous integration, a 3 hour fuzzing budget may be too large. Future work will

examine the benefits of different testing methods, such as adapting traditional

test suites. It is not possible to use most test suites directly, due to their inability

to generate many random inputs. Ideally, it would be possible to rewrite test

suites quasi-automatically to include input generators, and not just user-provided

hard-coded values.

Linking specific language features to particular types of FlowForward would

greatly simplify the interpretation of ICMs. While every attempt has been made to

make an ICM easy to understand, requiring no specific knowledge of information

theory, exact interpretation is more difficult. Future work will examine specific

constructs to measure their average FlowForward. With this knowledge, it will be
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possible to do outlier analysis. The hope is that such anomalies as Figure 3.1 will

be identified automatically without user intervention.

User guidance needs to be developed to assist a user in interpreting the

various metrics that RIFFLER generates. This is a non-trivial task. An ICM requires

interpretation, easiest when it either provokes cognitive dissonance, or cognitive

agreement. For example, we would expect a good hash function to have high

FlowForward, and an ICM could indicate the quality of a hash function. But this

is only true if the user has an expectation of the behaviour of a hash function.

For non-obvious code, the interpretation may be non obvious. There are various

methods we could explore to make interpretation easier, such as looking at natural

language channels in code (variable names for example may be semantically

loaded) or relying on lightweight annotations from a developer.

Although we focus on the stability of ranking in Chapter 3, precise ranking

are not essential for all uses. A broader treatment ranking as just low, middle and

high could provide a great deal of useful information. Indeed, as can be seen

in Figure 4.13, the interesting behaviour is not even whether the FlowForward is

high or low, but whether it is flat or changing when plotted. Functions which

exhibit this “drifting” FlowForward behaviour are doing something interesting

with their information. Further work is required to understand what this thing

is, and how to exploit this knowledge for e.g. test case prioritorisation. As an

example, changing input distribution when FlowForward is flat should increase the

probability of provoking new behaviours in code. This could potentially increase

testing efficiency, or even be a complimentary metric to line coverage. Stability of

ranking, where is it important, is expressible in different ways. For example, it

may be more intuitive for users to characterise uncertainty in ranking in terms

of probabilities: e.g. 0.01 probability of any ranking being more than 3 out. User
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studies or surveys may go some way to answering questions about information

presentation in the absence of information theory knowledge.

While non-functional properties have not been the focus of this work, there is

no reason in principle why these cannot be considered as outputs for RIF analysis.

Indeed, there is the potential for rich interplay between FlowForward rankings

of functional and non-functional properties: such an interplay may assist in

automating the search for dissonance that so assists in ICM interpretation.

We have presented a formal description of OAST for a simple λ -calculus.

This only hints at the full utility of the approach. Unfortunately, no existing

PYTHON type checker allows for the creation of custom types to be embedded

into the checker. This limits to power of the PYTHON prototype, which is far too

brittle to be used in production. The type checker MYPY supports plugin type

checkers. It might be possible to include a security type checker via a plugin,

though there is no evidence that custom types are introducible via this method. A

more realistic approach would be a security orientated fork of MYPY.

SAFESTRINGS have a mature library for Java, and a prototype library for

TYPESCRIPT. At time of submission, work is already far along in demonstrating

the power of SAFESTRINGS for improved test case generation and improved

coverage for Java programs and RESTful APIs. This work does not form part of

this thesis. Future work will focus on improving the efficiency of SAFESTRINGS,

the bottleneck being the quality of the parsers. We will also introduce a simple

schema for creating SAFESTRINGS within a Java program, via types already

existing in the SAFESTRING library. In this way, a regex could be conveniently

embedded in the SAFESTRING framework, gaining the subtyping power lacking in

regexes, but with the easy extensibility of writing a simple in program declaration.
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[93] Garcia, R., Tanter, É.: Deriving a simple gradual security language. CoRR

1511.01399 (2015), http://arxiv.org/abs/1511.01399

[94] Giacobazzi, R., Mastroeni, I.: Abstract non-interference: Parameterizing

non-interference by abstract interpretation. SIGPLAN Not. 39(1), 186–197

(Jan 2004), http://doi.acm.org/10.1145/982962.964017

[95] Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE

Symposium on Security and Privacy. p. 11. IEEE (1982)

221

http://doi.acm.org/10.1145/2676726.2676992
http://doi.acm.org/10.1145/2914770.2837670
http://doi.acm.org/10.1145/2914770.2837670
http://doi.acm.org/10.1145/2837614.2837670
http://arxiv.org/abs/1511.01399
http://arxiv.org/abs/1511.01399
http://doi.acm.org/10.1145/982962.964017


[96] google: atheris (2021), https://github.com/google/atheris, [On-

line; accessed 19-July-2021]

[97] Groef, W.D., Devriese, D., Nikiforakis, N., Piessens, F.: Flowfox: a web

browser with flexible and precise information flow control. In: Proceedings

of the 2012 ACM Conference on Computer and Communications Security

(CCS 2012). pp. 748–759. ACM (2012), https://lirias.kuleuven.be/

handle/123456789/354589

[98] Groef, W.D., Devriese, D., Nikiforakis, N., Piessens, F.: Secure

multi-execution of web scripts: Theory and practice. J. Comput. Se-

cur. 22(4), 469–509 (Jul 2014), http://dl.acm.org/citation.cfm?id=

2699784.2699786

[99] Gronski, J., Knowles, K., Tomb, A., Freund, S.N., Flanagan, C.: Sage: Hybrid

checking for flexible specifications. In: Scheme and Functional Program-

ming Workshop. pp. 93–104 (2006)

[100] Guernic, G.L., Banerjee, A., Jensen, T., Schmidt, D.A.: Automata-based

confidentiality monitoring. In: Proceedings of the 11th Asian Computing

Science Conference on Advances in Computer Science: Secure Software and

Related Issues. pp. 75–89. ASIAN’06, Springer-Verlag, Berlin, Heidelberg

(2007), http://dl.acm.org/citation.cfm?id=1782734.1782741

[101] Harman, M., Hu, L., Hierons, R., Wegener, J., Sthamer, H., Baresel, A., Roper,

M.: Testability transformation. IEEE Trans. Softw. Eng. 30(1), 3–16 (Jan 2004),

https://doi.org/10.1109/TSE.2004.1265732

[102] Heintze, N., Riecke, J.G.: The SLam calculus: Programming with secrecy

and integrity. In: Proceedings of the 25th ACM SIGPLAN-SIGACT Sym-

222

https://github.com/google/atheris
https://lirias.kuleuven.be/handle/123456789/354589
https://lirias.kuleuven.be/handle/123456789/354589
http://dl.acm.org/citation.cfm?id=2699784.2699786
http://dl.acm.org/citation.cfm?id=2699784.2699786
http://dl.acm.org/citation.cfm?id=1782734.1782741
https://doi.org/10.1109/TSE.2004.1265732


posium on Principles of Programming Languages. pp. 365–377. POPL

’98, ACM, New York, NY, USA (1998), http://doi.acm.org/10.1145/

268946.268976

[103] Hennessy, M.: The security picalculus and non-interference (extended

abstract). Electron. Notes Theor. Comput. Sci. 83, 113–129 (Jan 2013),

http://dx.doi.org/10.1016/S1571-0661(03)50006-8

[104] Herman, D., Tomb, A., Flanagan, C.: Space-efficient gradual typing. In: In

Trends in Functional Programming (TFP) (2007)

[105] Hernández, D.G., Samengo, I.: Estimating the mutual information between

two discrete, asymmetric variables with limited samples. Entropy 21(6)

(2019), https://www.mdpi.com/1099-4300/21/6/623

[106] Hicks, B., Ahmadizadeh, K., McDaniel, P.: Understanding practical applica-

tion development in security-typed languages. In: 22nd Annual Computer

Security Applications Conference (ACSAC). Miami, Fl (Dec 2006)

[107] Hosoya, H., Vouillon, J., Pierce, B.C.: Regular expression types for xml.

ACM Transactions on Programming Languages and Systems (TOPLAS)

27(1), 46–90 (2005)

[108] Hunt, S., Sands, D.: On flow-sensitive security types. In: Conference Record

of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages. pp. 79–90. POPL ’06, ACM, New York, NY, USA (2006),

http://doi.acm.org/10.1145/1111037.1111045

[109] Hutton, G., Meijer, E.: Monadic Parser Combinators. Technical Report

NOTTCS-TR-96-4, Department of Computer Science, University of Notting-

ham (1996)

223

http://doi.acm.org/10.1145/268946.268976
http://doi.acm.org/10.1145/268946.268976
http://dx.doi.org/10.1016/S1571-0661(03)50006-8
https://www.mdpi.com/1099-4300/21/6/623
http://doi.acm.org/10.1145/1111037.1111045


[110] Igarashi, Y., Sekiyama, T., Igarashi, A.: On polymorphic gradual typ-

ing. Proc. ACM Program. Lang. 1(ICFP), 1–29 (Aug 2017), http://

doi.acm.org/10.1145/3110284

[111] Ina, L., Igarashi, A.: Gradual typing for generics. SIGPLAN Not. 46(10),

609–624 (Oct 2011), http://doi.acm.org/10.1145/2076021.2048114

[112] Jennings, H.A.: Rosie pattern language (2020), https://rosie-

lang.org/index.html, [Online; accessed 05-03-2020]

[113] Joshi, R., Leino, K.R.M.: A semantic approach to secure information flow

(2000)

[114] King, D., Hicks, B., Hicks, M., Jaeger, T.: Implicit Flows: Can’t Live with

‘Em, Can’t Live without ‘Em, pp. 56–70. Springer Berlin Heidelberg, Berlin,

Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-89862-

7{ }4

[115] King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7),

385–394 (Jul 1976), http://doi.acm.org/10.1145/360248.360252

[116] Klensin, J.: Internationalized domain names in applications (2021), https:

//datatracker.ietf.org/doc/html/rfc5891, [Online; accessed 19-

August-2021]

[117] Kobayashi, N.: Type-based information flow analysis for the &#x03C0;-

calculus. Acta Inf. 42(4), 291–347 (Dec 2005), http://dx.doi.org/

10.1007/s00236-005-0179-x

224

http://doi.acm.org/10.1145/3110284
http://doi.acm.org/10.1145/3110284
http://doi.acm.org/10.1145/2076021.2048114
https://rosie-lang.org/index.html
https://rosie-lang.org/index.html
http://dx.doi.org/10.1007/978-3-540-89862-7{_}4
http://dx.doi.org/10.1007/978-3-540-89862-7{_}4
http://doi.acm.org/10.1145/360248.360252
https://datatracker.ietf.org/doc/html/rfc5891
https://datatracker.ietf.org/doc/html/rfc5891
http://dx.doi.org/10.1007/s00236-005-0179-x
http://dx.doi.org/10.1007/s00236-005-0179-x
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[122] Lehmann, N., Éric Tanter: Gradual refinement types. In: Proceedings

of the 44th ACM SIGPLAN Symposium on Principles of Programming

Languages. pp. 775–788. POPL 2017, ACM, New York, NY, USA (2017),

http://doi.acm.org/10.1145/3009837.3009856

[123] Li, P., Zdancewic, S.: Downgrading policies and relaxed noninterference.

SIGPLAN Not. 40(1), 158–170 (Jan 2005), http://doi.acm.org/10.1145/

1047659.1040319

[124] Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A dpll(t) theory

solver for a theory of strings and regular expressions. In: Proceedings of the

16th International Conference on Computer Aided Verification - Volume

225

https://link.aps.org/doi/10.1103/PhysRevE.69.066138
https://link.aps.org/doi/10.1103/PhysRevE.69.066138
http://arxiv.org/abs/1802.06375
http://doi.acm.org/10.1145/3009837.3009856
http://doi.acm.org/10.1145/1047659.1040319
http://doi.acm.org/10.1145/1047659.1040319


8559. pp. 646–662. Springer-Verlag, Berlin, Heidelberg (2014), https://

doi.org/10.1007/978-3-319-08867-9 43

[125] LibFuzzer: A library for coverage-guided fuzz testing (2019), https://

llvm.org/docs/LibFuzzer.html, [Online; accessed 13-July-2021]

[126] MacIver, D., Hatfield-Dodds, Z., Contributors, M.: Hypothesis: A new

approach to property-based testing. Journal of Open Source Software 4(43),

1891 (Nov 2019), http://dx.doi.org/10.21105/joss.01891

[127] Malecha, G., Chong, S.: A more precise security type system for dy-

namic security tests. In: Proceedings of the 5th ACM SIGPLAN Workshop

on Programming Languages and Analysis for Security. pp. 1–12. PLAS

’10, ACM, New York, NY, USA (2010), http://doi.acm.org/10.1145/

1814217.1814221

[128] Marron, M.: Bosque language (2019), https://github.com/

microsoft/BosqueLanguage/blob/master/docs/language/

overview.md, [Online; accessed 20-11-2019]

[129] Marron, M.: Regularized programming with the bosque lan-

guage. Tech. Rep. MSR-TR-2019-10, Microsoft (April 2019),

https://www.microsoft.com/en-us/research/publication/

regularized-programming-with-the-bosque-language/

[130] Masri, W.A.: Dynamic information flow analysis, slicing and profiling. Case

Western Reserve University (2005)

[131] Masri, W., Podgurski, A.: Measuring the strength of information flows

in programs. ACM Trans. Softw. Eng. Methodol. 19(2) (Oct 2009), https:

//doi.org/10.1145/1571629.1571631

226

https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-08867-9_43
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
http://dx.doi.org/10.21105/joss.01891
http://doi.acm.org/10.1145/1814217.1814221
http://doi.acm.org/10.1145/1814217.1814221
https://github.com/microsoft/BosqueLanguage/blob/master/docs/language/overview.md
https://github.com/microsoft/BosqueLanguage/blob/master/docs/language/overview.md
https://github.com/microsoft/BosqueLanguage/blob/master/docs/language/overview.md
https://www.microsoft.com/en-us/research/publication/regularized-programming-with-the-bosque-language/
https://www.microsoft.com/en-us/research/publication/regularized-programming-with-the-bosque-language/
https://doi.org/10.1145/1571629.1571631
https://doi.org/10.1145/1571629.1571631


[132] McCamant, S., Ernst, M.D.: Quantitative information-flow tracking for C

and related languages (2006)

[133] McCamant, S., Ernst, M.D.: Quantitative information flow as network

flow capacity. In: Proceedings of the 29th ACM SIGPLAN Conference on

Programming Language Design and Implementation. pp. 193–205 (2008)

[134] McKerns, M.M., Strand, L., Sullivan, T., Fang, A., Aivazis, M.A.G.: Building

a framework for predictive science (2012)

[135] Michael, L.G., Donohue, J., Davis, J.C., Lee, D., Servant, F.: Regexes are

hard: Decision-making, difficulties, and risks in programming regular ex-

pressions. In: Proceedings of the 34th IEEE/ACM International Conference

on Automated Software Engineering. p. 415–426. ASE ’19, IEEE Press (2019),

https://doi.org/10.1109/ASE.2019.00047

[136] Mitchell, J.: Foundations for Programming Languages. Foundations of com-

puting, MIT Press (1996), https://books.google.co.uk/books?id=

KyCLQgAACAAJ

[137] Mu, C., Clark, D.: A tool: quantitative analyser for programs. In: Pro-

ceedings of the 8th Conference on Quantitative Evaluation of Systems. pp.

145–146. QEST 2011 (2011)

[138] Mu, C.: Quantitative program dependence graphs. In: Aoki, T., Taguchi,

K. (eds.) Formal Methods and Software Engineering. pp. 103–118. Springer

Berlin Heidelberg, Berlin, Heidelberg (2012)

[139] Muehlboeck, F., Tate, R.: Sound gradual typing is nominally alive

and well. In: OOPSLA. ACM, New York, NY, USA (2017), http://

www.cs.cornell.edu/˜ross/publications/nomalive/

227

https://doi.org/10.1109/ASE.2019.00047
https://books.google.co.uk/books?id=KyCLQgAACAAJ
https://books.google.co.uk/books?id=KyCLQgAACAAJ
http://www.cs.cornell.edu/~ross/publications/nomalive/
http://www.cs.cornell.edu/~ross/publications/nomalive/


[140] Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label

model. ACM Trans. Softw. Eng. Methodol. 9(4), 410–442 (Oct 2000), http:

//doi.acm.org/10.1145/363516.363526

[141] Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif 3.0: Java

information flow (Jul 2006), http://www.cs.cornell.edu/jif

[142] Nemenman, I.: Coincidences and estimation of entropies of random vari-

ables with large cardinalities. Entropy 13(12), 2013–2023 (2011)

[143] Nemenman, I., Bialek, W., de Ruyter van Steveninck, R.: Entropy and

information in neural spike trains: Progress on the sampling problem.

Physical Review E 69(5), 056111 (2004)

[144] Nemenman, I., Shafee, F., Bialek, W.: Entropy and inference, revisited. In:

Advances in neural information processing systems. pp. 471–478 (2002)

[145] New, M.S., Ahmed, A.: Graduality from embedding-projection pairs. Proc.

ACM Program. Lang. 2(ICFP), 1–30 (Jul 2018), http://doi.acm.org/

10.1145/3236768

[146] Nicola, R.D., Ferrari, G., Pugliese, R.: Programming Access Control: The

Klaim Experience, pp. 48–65. Springer Berlin Heidelberg, Berlin, Heidelberg

(2000), http://dx.doi.org/10.1007/3-540-44618-4{ }5

[147] Omar, C., Aldrich, J.: Reasonably programmable literal notation. Proceed-

ings of the ACM on Programming Languages 2, 1–32 (07 2018)

[148] Omar, C., Kurilova, D., Nistor, L., Chung, B., Potanin, A., Aldrich, J.: Safely

composable type-specific languages (2014)

228

http://doi.acm.org/10.1145/363516.363526
http://doi.acm.org/10.1145/363516.363526
http://www.cs.cornell.edu/jif
http://doi.acm.org/10.1145/3236768
http://doi.acm.org/10.1145/3236768
http://dx.doi.org/10.1007/3-540-44618-4{_}5


[149] Ou, X., Tan, G., Mandelbaum, Y., Walker, D.: Dynamic Typing with

Dependent Types, pp. 437–450. Springer US, Boston, MA (2004), http:

//dx.doi.org/10.1007/1-4020-8141-3{ }34

[150] Paninski, L.: Estimation of entropy and mutual information. Neural Com-

putation 15, 1191–1253 (2003)

[151] Paninski, L.: Estimation of entropy and mutual information. Neural compu-

tation 15(6), 1191–1253 (2003)

[152] PCRE2 contributors: pcre2 man page (2019), https://www.pcre.org/

current/doc/html/pcre2.html, [Online; accessed 18-11-2019]

[153] Pierce, B.C.: Types and Programming Languages. Mit Press, MIT Press

(2002), https://books.google.co.uk/books?id=ti6zoAC9Ph8C

[154] Pierce, B.C.: Types and Programming Languages. The MIT Press, 1st edn.

(2002)

[155] Potts, D., Bourquin, R., Andresen, L., Andronick, J., Klein, G., Heiser, G.:

Mathematically verified software kernels: Raising the bar for high assurance

implementations. Technical report, NICTA, Sydney, Australia (Jul 2014)

[156] Rajani, V., Garg, D.: Types for information flow control: Labeling granularity

and semantic models. In: 31st IEEE Computer Security Foundations Sym-

posium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018. pp. 233–246

(2018), https://doi.org/10.1109/CSF.2018.00024

[157] Rastogi, A., Swamy, N., Fournet, C., Bierman, G., Vekris, P.: Safe &#38;

efficient gradual typing for typescript. SIGPLAN Not. 50(1), 167–180 (Jan

2015), http://doi.acm.org/10.1145/2775051.2676971

229

http://dx.doi.org/10.1007/1-4020-8141-3{_}34
http://dx.doi.org/10.1007/1-4020-8141-3{_}34
https://www.pcre.org/current/doc/html/pcre2.html
https://www.pcre.org/current/doc/html/pcre2.html
https://books.google.co.uk/books?id=ti6zoAC9Ph8C
https://doi.org/10.1109/CSF.2018.00024
http://doi.acm.org/10.1145/2775051.2676971


[158] Reynolds, J.C.: What do types mean? — From intrinsic to extrinsic se-

mantics, pp. 309–327. Springer New York, New York, NY (2003), https:

//doi.org/10.1007/978-0-387-21798-7{ }15

[159] Rice, A., Aftandilian, E., Jaspan, C., Johnston, E., Pradel, M., Arroyo-Paredes,

Y.: Detecting argument selection defects. Proc. ACM Program. Lang.

1(OOPSLA), 104:1–104:22 (Oct 2017), http://doi.acm.org/10.1145/

3133928

[160] Romanelli, M., Chatzikokolakis, K., Palamidessi, C., Piantanida, P.: Esti-

mating g-leakage via machine learning. In: Proceedings of the 2020 ACM

SIGSAC Conference on Computer and Communications Security. pp. 697–

716 (2020)

[161] Rosenwasser, D.: String literal types.

https://github.com/Microsoft/TypeScript/pull/5185 (2015), accessed:

2019-03-06

[162] Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis.

In: Proceedings of the 2010 23rd IEEE Computer Security Foundations

Symposium. pp. 186–199. CSF ’10, IEEE Computer Society, Washington, DC,

USA (2010), http://dx.doi.org/10.1109/CSF.2010.20

[163] Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis.

In: 2010 23rd IEEE Computer Security Foundations Symposium. pp. 186–

199 (2010)

[164] Russo, A., Sabelfeld, A., Li, K.: Implicit flows in malicious and nonmali-

cious code. In: Logics and Languages for Reliability and Security, pp. 301–

230

https://doi.org/10.1007/978-0-387-21798-7{_}15
https://doi.org/10.1007/978-0-387-21798-7{_}15
http://doi.acm.org/10.1145/3133928
http://doi.acm.org/10.1145/3133928
http://dx.doi.org/10.1109/CSF.2010.20


322. NATO (2010), http://dx.doi.org/10.3233/978-1-60750-100-

8-301

[165] Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE

J.Sel. A. Commun. 21(1), 5–19 (Sep 2006), https://doi.org/10.1109/

JSAC.2002.806121

[166] Sabelfeld, A., Russo, A.: From dynamic to static and back: Riding the roller

coaster of information-flow control research. In: Proceedings of the 7th In-

ternational Andrei Ershov Memorial Conference on Perspectives of Systems

Informatics. pp. 352–365. PSI’09, Springer-Verlag, Berlin, Heidelberg (2010),

http://dx.doi.org/10.1007/978-3-642-11486-1{ }30

[167] Sabelfeld, A., Sands, D.: Declassification: Dimensions and princi-

ples. J. Comput. Secur. 17(5), 517–548 (Oct 2009), http://dl.acm.org/

citation.cfm?id=1662658.1662659

[168] nados Schwerter, F.B., Garcia, R., Éric Tanter: A theory of gradual effect
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[204] Toro, M., Garcia, R., Éric Tanter: Type-driven gradual security with ref-

erences. ACM Trans. Program. Lang. Syst. 40(4), 1–55 (Dec 2018), http:

//doi.acm.org/10.1145/3229061

[205] TypeScript: Suggestion: Regex-validated string type.

https://github.com/Microsoft/TypeScript/issues/6579 (2016), accessed:

2019-03-06

[206] Vallee-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot:

A java bytecode optimization framework. In: CASCON First Decade High

Impact Papers. pp. 214–224. IBM Corp. (2010)

[207] Vassena, M., Russo, A., Garg, D., Rajani, V., Stefan, D.: From fine- to coarse-

grained dynamic information flow control and back. Proc. ACM Program.

Lang. 3(POPL) (Jan 2019), https://doi.org/10.1145/3290389

[208] Vitousek, M.M., Kent, A.M., Siek, J.G., Baker, J.: Design and evaluation of

gradual typing for python. SIGPLAN Not. 50(2), 45–56 (Oct 2014), http:

//doi.acm.org/10.1145/2775052.2661101

[209] Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow

analysis. J. Comput. Secur. 4(2-3), 167–187 (Jan 1996), http://dl.acm.org/

citation.cfm?id=353629.353648

[210] Volpano, D., Smith, G.: Probabilistic noninterference in a concurrent lan-

guage. J. Comput. Secur. 7(2-3), 231–253 (Mar 1999), http://dl.acm.org/

citation.cfm?id=353594.353608

[211] Wadler, P.: The essence of functional programming. In: Proceedings of the

19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

237

http://doi.acm.org/10.1145/3229061
http://doi.acm.org/10.1145/3229061
https://doi.org/10.1145/3290389
http://doi.acm.org/10.1145/2775052.2661101
http://doi.acm.org/10.1145/2775052.2661101
http://dl.acm.org/citation.cfm?id=353629.353648
http://dl.acm.org/citation.cfm?id=353629.353648
http://dl.acm.org/citation.cfm?id=353594.353608
http://dl.acm.org/citation.cfm?id=353594.353608


Languages. pp. 1–14. POPL ’92, ACM, New York, NY, USA (1992), http:

//doi.acm.org/10.1145/143165.143169

[212] Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: Pro-

ceedings of the 18th European Symposium on Programming Languages

and Systems: Held As Part of the Joint European Conferences on Theory

and Practice of Software, ETAPS 2009. pp. 1–16. ESOP ’09, Springer-Verlag,

Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-

00590-9 1

[213] Wheeler, J.A.: Information, physics, quantum: the search for links (1999)

[214] Wiesstein, E.W.: Trigamma function. from mathworld – A wol-

fram web resource (2021), https://mathworld.wolfram.com/

TrigammaFunction.html, [Online; accessed 29-Nov-2021]

[215] Wikipedia contributors: Dyck language — Wikipedia, the free encyclope-

dia (2020), https://en.wikipedia.org/wiki/Dyck language, [On-

line; accessed 14-05-2020]

[216] Wikipedia contributors: Kendall rank correlation coefficient — wikipedia

the free encyclopedia (2020), https://en.wikipedia.org/wiki/

Kendall{ }rank{ }correlation{ }coefficient, [Online; accessed

15-Feb-2020]

[217] Wikipedia contributors: Galois connection — wikipedia the

free encyclopedia (2021), https://en.wikipedia.org/wiki/

Galois{ }connection, [Online; accessed 16-June-2021]

238

http://doi.acm.org/10.1145/143165.143169
http://doi.acm.org/10.1145/143165.143169
http://dx.doi.org/10.1007/978-3-642-00590-9_1
http://dx.doi.org/10.1007/978-3-642-00590-9_1
https://mathworld.wolfram.com/TrigammaFunction.html
https://mathworld.wolfram.com/TrigammaFunction.html
https://en.wikipedia.org/wiki/Dyck_language
https://en.wikipedia.org/wiki/Kendall{_}rank{_}correlation{_}coefficient
https://en.wikipedia.org/wiki/Kendall{_}rank{_}correlation{_}coefficient
https://en.wikipedia.org/wiki/Galois{_}connection
https://en.wikipedia.org/wiki/Galois{_}connection


[218] Wikipedia contributors: Murmurhash — wikipedia the free

encyclopedia (2021), https://en.wikipedia.org/wiki/

MurmurHash#cite{ }note-4, [Online; accessed 16-June-2021]

[219] Wikipedia contributors: Wasserstein metric— wikipedia the free encyclope-

dia (2021), https://en.wikipedia.org/wiki/Wasserstein metric,

[Online; accessed 08-Nov-2021]

[220] Wright, H.K.: Incremental type migration using type algebra. In: 2020 IEEE

International Conference on Software Maintenance and Evolution (ICSME).

pp. 756–765 (2020). https://doi.org/10.1109/ICSME46990.2020.00085

[221] Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic

string analysis for vulnerability detection. Form. Methods Syst. Des. 44(1),

44–70 (Feb 2014), http://dx.doi.org/10.1007/s10703-013-0189-1

[222] Yu, Z., Bai, C., Seinturier, L., Monperrus, M.: Characterizing the usage,

evolution and impact of java annotations in practice. IEEE Transactions on

Software Engineering (2019)

[223] Zdancewic, S.A.: Programming Languages for Information Security. Ph.D.

thesis, Cornell University, Ithaca, NY, USA (2002), aAI3063751

[224] Zdancewic, S.: A type system for robust declassification. Elec-

tronic Notes in Theoretical Computer Science 83(Supplement C), 263–

277 (2003), http://www.sciencedirect.com/science/article/

pii/S1571066103500147, proceedings of 19th Conference on the Math-

ematical Foundations of Programming Semantics

239

https://en.wikipedia.org/wiki/MurmurHash#cite{_}note-4
https://en.wikipedia.org/wiki/MurmurHash#cite{_}note-4
https://en.wikipedia.org/wiki/Wasserstein_metric
http://dx.doi.org/10.1007/s10703-013-0189-1
http://www.sciencedirect.com/science/article/pii/S1571066103500147
http://www.sciencedirect.com/science/article/pii/S1571066103500147


[225] Zeng, X., Xia, Y., Tong, H.: Jackknife approach to the estimation of mutual

information. Proceedings of the National Academy of Sciences 115(40),

9956–9961 (2018), https://www.pnas.org/content/115/40/9956

[226] Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: A z3-based string solver for

web application analysis. In: Proceedings of the 2013 9th Joint Meet-

ing on Foundations of Software Engineering. pp. 114–124. ESEC/FSE

2013, ACM, New York, NY, USA (2013), http://doi.acm.org/10.1145/

2491411.2491456

240

https://www.pnas.org/content/115/40/9956
http://doi.acm.org/10.1145/2491411.2491456
http://doi.acm.org/10.1145/2491411.2491456

	Introduction
	Challenges
	Basic Concepts
	Contributions and Outline

	Background and Literature Review
	Information Flow Control Background
	Noninterference
	Security Typing
	Flow Sensitive Type Systems

	Gradual Typing Background
	Cast Calculus
	Gradual Guarantee
	Abstracting Gradual Typing
	Extended Type Systems
	Gradual Typing Efficiency
	Static and Dynamic IFC
	Granularity
	Other Approaches to Information Security

	Gradual Information Flow
	Gradual Security Type Systems
	Quantified Information Flow
	Entropy Estimators


	Ranked Information Flow
	Introduction
	Motivating Example
	RIF: Ranked Information Flow
	Cost of Dynamic QIF
	FlowForward
	Interior Information
	Data and Entropy Estimators
	Noise Reduction via Clustering

	Riffler Implementation
	Capturing Observations
	Riffler Discussion

	Evaluation
	Case Studies
	Related Work
	Information Theory in SE
	Information Theory in Computer Security.

	Conclusion
	Appendix: Creating a corpus of Python Projects

	Optional Security Typing
	Introduction
	Background
	Motivating Example
	OaST Language
	Core Language
	Security Labels

	Ranking Flows for Security
	A Python Prototype

	Noninterference and Confinement
	Chinks in the Program

	Related Work
	Conclusion
	Appendix: Proofs
	Proof of Noninterference
	Confinement Proof


	SafeStrings
	Introduction
	Motivating Example
	SafeStrings
	Definition
	The SafeString Subtype Relation
	Equivalence of Operations over SafeStrings and Strings
	Operation Overriding
	Locally Gradual Typing

	Realising SafeStrings
	Program Transformation
	Constructing a SafeString Library
	Making Your Own SafeStrings
	SafeStrings in Bosque

	SafeStrings: Evaluation
	SafeString Case Studies
	The Cost of Adopting SafeStrings

	Related Work
	Conclusion

	Conclusion
	Contributions and Summary
	Future Work

	Bibliography

