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Abstract. We discuss the role of misspecification and censoring on Bayesian
model selection in the contexts of right-censored survival and concave log-
likelihood regression. Misspecification includes wrongly assuming the cen-
soring mechanism to be non-informative. Emphasis is placed on additive ac-
celerated failure time, Cox proportional hazards and probit models. We offer
a theoretical treatment that includes local and non-local priors, and a gen-
eral non-linear effect decomposition to improve power-sparsity trade-offs.
We discuss a fundamental question: what solution can one hope to obtain
when (inevitably) models are misspecified, and how to interpret it? Asymp-
totically, covariates that do not have predictive power for neither the outcome
nor (for survival data) censoring times, in the sense of reducing a likelihood-
associated loss, are discarded. Misspecification and censoring have an asymp-
totically negligible effect on false positives, but their impact on power is ex-
ponential. We show that it can be advantageous to consider simple models
that are computationally practical yet attain good power to detect potentially
complex effects, including the use of finite-dimensional basis to detect truly
non-parametric effects. We also discuss algorithms to capitalize on sufficient
statistics and fast likelihood approximations for Gaussian-based survival and
binary models.

Key words and phrases: Additive regression, Generalized additive model,
Misspecification, Model selection, Survival.

1. INTRODUCTION

Determining what covariates have an effect on a survival (time-to-event) outcome
is an important task in many fields, including Biomedicine, Economics and Engineer-
ing. For interpretability and computational convenience it is common to use parametric
and semi-parametric models such as Cox proportional hazards [7] or accelerated failure
time (AFT) regression for survival outcomes, possibly with non-linear additive effects.
The proportional hazards model assumes that covariates have a multiplicative effect on
the baseline hazard, whereas in AFT models covariates drive the mean of the logarith-
mic (or other monotonic transform) times-to-event. These models can be combined with
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2 ROSSELL AND RUBIO

Bayesian model selection to provide a powerful mechanism to select variables, enforce
sparsity and quantify uncertainty. However, the precise consequences of model misspec-
ification and censoring are not sufficiently understood. By misspecification we mean that
the data are truly generated by a distribution outside the considered class. For instance,
one may fail to record truly relevant covariates or represent their effects imperfectly, e.g.
when using a Cox model but the true covariate effects on the hazard are non-proportional.
This issue can be addressed by enriching the model, e.g. via non-parametric or time-
dependent effects. Then, the potential concerns are that the larger number of parameters
can adversely affect inference, unless the sample size is large enough, and that compu-
tation can be costlier. Censoring is also important. First, it reduces the effective sample
size. Second, wrongly assuming the censoring mechanism to be non-informative, i.e.
independent of the outcome conditionally on covariates, may affect the selected model,
even asymptotically.

Our goal is to help understand the consequences of three important issues on model
selection: misspecification, censoring, and trade-offs when including non-linear effects.
We first consider that the data analyst assumed a non-linear additive AFT model, or an
additive Cox model, but data are truly generated by a different probability distribution
F0. We also consider probit regression, which can be formulated as a particular case
of the Normal AFT model, and more general concave log-likelihood regression, which
provides a unifying framework for the models we consider here.

There are many data analysis methods for survival outcomes, along with theory for
well-specified models and empirical results suggesting potential issues under misspeci-
fication, but their implications for model selection have not been described in sufficient
detail. We first review results on the behavior of misspecified AFT and proportional haz-
ard models, and subsequently discuss some model selection methods for survival data.
Although both models have similar asymptotic properties, and which model is more ap-
propriate depends on the data at hand, AFT inference has been argued to be more robust
and to better preserve interpretability under misspecification. More precisely, the max-
imum likelihood estimators under misspecified Cox and AFT models have comparable
limiting distributions if censoring is absent or independent of covariates [49, 56], but not
so under covariate-dependent censoring [47]. Covariate-dependent censoring also affects
frequentist hypothesis tests. In misspecified Cox models it can lead to a substantial type
I error inflation [8]. In misspecified AFT models the power of the tests may be affected,
but simple strategies to control the type I error are available [47, 20, 15].

Another situation where both models behave differently is when omitting truly ac-
tive covariates, e.g. because these were not recorded. A proportional hazards model with
omitted variables tends to underestimate covariate effects, even for a treatment of interest
that is uncorrelated with other covariates [49, 25]. Further, even if the data-generating
truth has proportional hazards, the marginal model conditioning only on the observed
covariates does not (except in positive stable distributions, [18]). In contrast, if the data-
generating truth is an AFT model and one omits relevant covariates, the unaccounted
variability is subsumed into the error term, and regression parameters remain inter-
pretable as averaged effects across the population [20]. Note that omitting covariates
is intimately connected to incorporating a covariate but misspecifying its effect: using
a linear or finite-dimensional effect can be seen as omitting a subset of the columns of
the basis defining a truly non-parametric effect. Thus our discussion on omitted vari-
ables applies directly to misspecifying covariate effects. To summarize, censoring and
misspecification have non-trivial effects on estimation and hypothesis testing.
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ADDITIVE BAYESIAN VARIABLE SELECTION 3

We now review some model selection methods for survival data, discussing the extent
to which they considered misspecification. [19, 46, 34] proposed likelihood penalties for
Cox and semiparametric AFT models, and [51] for broader generalized hazards models.
Most of this work focused on linear covariate effects, computation and proving consis-
tency under covariate-independent censoring. There are however empirical results on the
effect of misspecification, e.g. [58] showed in simulations an increase in false positives
of the Cox-LASSO method [50] when data truly arise from an AFT model. There are
also many Bayesian variable selection methods for survival data. [10] and [44] proposed
shrinkage priors for the Cox and AFT models and assessed performance via simulations
where the model was well-specified. [22] studied Bayesian model selection for the Cox
model, [9] for the so-called additive hazards model, and [31] for the Cox model under
non-local priors [23, 24]. See [21] for a review, with a focus on the Cox model. While
interesting, these Bayesian proposals do not consider misspecification. [38] did study
misspecified Bayesian linear regression, showing that misspecification often reduces the
power to detect active variables, but did not consider censoring.

We summarize our main messages. We show that, under mild assumptions, Bayesian
model selection asymptotically discards covariates that do not predict neither the out-
come nor the censoring times. By predict, we refer to increasing the expectation of the
log-likelihood function. For any fully-specified model, said expectation is a weighted
average of a reward for assigning a high probability to the observed censoring time
in individuals that are censored, and a reward for predicting survival times accurately
in uncensored individuals (e.g. mean squared error, for Normal AFT models). For the
partially-specified Cox model, the reward is for assigning a high hazard to individuals
who experienced the event, relative to other individuals at risk. We discuss that both cen-
soring and wrongly specifying covariate effects have an exponential effect in power, but
that asymptotically neither leads to false positive inflation. We also develop a novel non-
linear effect decomposition to ameliorate the power drop, and study the consequences
of using finite basis to describe covariate effects, a practical strategy to speed up com-
putations when one considers many models. For concreteness, we outline a formulation
based on a novel combination of non-local priors [23] and group-Zellner priors that in-
duce group-level sparsity for non-linear effects. As a technical contribution, we prove
the asymptotic validity of Laplace approximations to Bayes factors for concave log-
likelihoods under minimal conditions, allowing for misspecification, which provides a
simple basis to study Bayes factors that covers all models considered in this paper. We
also provide software (R package mombf).

The outline is as follows. Section 2 discusses the likelihood for AFT and Cox models,
priors and a non-linear effect decomposition aimed at improving power. Section 3 dis-
cusses known and novel results on asymptotic normality and Bayes factor rates, and how
to interpret the Bayesian model selection solution under misspecification. Similar results
are obtained for general concave log-likelihoods, see Section S10. See also Section S9
for a known but seemingly unexploited result in the literature, that probit models are a
particular case of the Normal AFT model. Section 4 discusses the relative computational
convenience of AFT vs. Cox models related to the use of sufficient statistics. It also
discusses an approximation to the Normal log-distribution function and derivatives that
significantly increases speed and accuracy, and may have some independent interest, and
simple model exploration strategies. Section 5 illustrates the effect of misspecification
and censoring in simulations and cancer datasets, practical power-sparsity trade-offs, and
the use of finite-dimensional non-linear basis. Section 6 concludes. The supplementary
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4 ROSSELL AND RUBIO

material contains derivations related to the likelihood, priors and their derivatives, and
prior elicitation (Sections S1-S3). Sections S4-S6 offer detailed discussions on computa-
tional algorithms, including a novel approximation to Normal log-distribution functions
that may have some independent interest. Section S7 contains all proofs for our main re-
sults, Sections S8-S9 additional propositions for the AFT model with Laplace errors and
probit models, and Section S10 on the asymptotic validity of Laplace approximations to
integrated likelihoods. Finally, Section S11 contains empirical results that supplement
those in the main paper.

2. FORMULATION

Our discussion focuses on survival data, but see Section S9 for binary regression
and Section S10 for concave log-likelihoods. Section 2.1 sets notation, reviews the AFT
and proportional hazards models, their being a particular cases of the generalized haz-
ards structure, and a non-linear effects decomposition to improve interpretability and
power. Section 2.2 embeds the problem within a Bayesian model selection framework.
Section 2.3 introduces prior distributions that can accommodate group and hierarchical
constraints, and Section 2.4 suggests default prior parameter values.

2.1 Likelihood

Let us introduce the notation. Suppose that one is interested in studying the depen-
dence of a survival (or time-to-event) outcome oi ∈ R+ on a covariate vector xi =
(xi1, . . . , xip)

> ∈ Rp, for individuals i = 1, . . . , n. Suppose that there are right-censoring
times ci ∈ R+, such that one only observes the outcome for uncensored individuals, i.e.
those for which oi ≤ ci. Denote by ui = I(oi < ci) the indicator that observation i
is uncensored, yi = min{log(oi), log(ci)} the observed log-times, y = (y1, . . . , yn),
u = (u1, . . . , un), and the number of uncensored individuals no =

∑n
i=1 ui.

We review two popular models for survival data, the AFT and Cox models, and dis-
cuss a strategy to decompose non-linear effects. The AFT model postulates

log(oi) =

p∑
j=1

gj(xij) + εi,

where gj : R → R and εi are independent across i = 1, . . . , n with mean E(εi) = 0
and variance V (εi) = σ2 (assumed finite). Typically, gj is expressed in terms of an r-
dimensional basis, e.g. splines or wavelets [53]. For interpretability and to gain power
(see Section 3.2) it is convenient to decompose gj into a linear and a deviation-from-
linearity components. To fix ideas, the cubic splines used in our examples consider

log(oi) = x>i β + s>i δ + εi,(2.1)

where β = (β1, . . . , βp)
> ∈ Rp, δ> = (δ>1 , . . . , δ

>
p ) ∈ Rrp and s>i = (s>i1, . . . , s

>
ip),

where sij ∈ Rr is the projection of xij onto a cubic spline basis orthogonalized to xij
(and the intercept). The idea is that x>i β captures linear effects, whereas s>i δ captures
deviations from linearity. Even if a covariate truly has a non-linear effect, the linear
term often captures a fraction of that effect using a single parameter, hence one can
gain in power to detect its presence. Specifically we built sij , the ith row of the n × r
matrix Sj , as follows. Let Xj and S̃j have row i equal to (1, xij) and the cubic spline
projection of xij (equi-distant knots), then Sj = (I−Xj(X

>
j Xj)

−1X>j )S̃j is orthogonal
to Xj . Denote by (X,S) the design matrix with (x>i , s

>
i ) in its ith row, and by (Xo, So)
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ADDITIVE BAYESIAN VARIABLE SELECTION 5

and (Xc, Sc) the submatrices with the rows for uncensored and censored individuals
(respectively). This formulation contains partially linear models as particular cases (i.e.
when only some of the covariates are assumed to have a non-linear effect). We denote
the parameter space by Γ ⊂ Rp(r+1) × R+.

In survival analysis it is common to pose a model only for the survival times, such
as (2.1). This is because the censoring is assumed to be non-informative given the co-
variates, and then the censoring distribution factors out of the likelihood function (see
Section S1 for a brief derivation). The likelihood and partial likelihood used by the AFT
and Cox models, which we review next, embed such a non-informativeness assumption.
See Section 3 for a discussion on the consequences of this assumption not holding.

Regarding the likelihood associated to (2.1), consider the particular case where the
errors are Gaussian. It is convenient to reparameterize α = β/σ, κ = δ/σ and τ = 1/σ,
as then the log-likelihood is concave, provided the number of uncensored individuals is
greater than the number of model parameters (no ≥ p + rp) and that (Xo, So) has full
column rank [2, 45]. The log-likelihood is

`(α, κ, τ) = −no
2

log

(
2π

τ2

)
− 1

2

∑
ui=1

(τyi − x>i α− s>i κ)2

+
∑
ui=0

log
{

Φ
(
x>i α+ s>i κ− τyi

)}
,(2.2)

see Supplementary (S2.1) for its gradient and hessian.
The Cox model instead assumes that the hazard function at time t takes the form

hPH(t | xi) = h0(t) exp
{
x>i β + s>i δ

}
,

where h0(·) is a baseline hazard, typically estimated non-parametrically, and (β, δ) are
estimated using the log partial likelihood [7]

`p(β, δ) =
∑
ui=1

log

(
exp

{
x>i β + s>i δ

}∑
k∈R(oi)

exp
{
x>k β + s>k δ

}) ,(2.3)

where R(t) = {i : oi ≥ t} denotes the set of individuals at risk at time t.
To relate both models, (2.1) can be formulated in terms of the hazard function hAFT (t) =

h0

(
t exp

{
x>i β + s>i δ

})
exp

{
x>i β + s>i δ

}
. Both models are special cases of the gen-

eralized hazards structure [5]

hGH(t) = h0

(
t exp

{
x>i β + s>i δ

})
exp

{
x>i θ + s>i ξ

}
,(2.4)

which we use in our examples to portray the behaviour of misspecified AFT and Cox
models. Clearly, (2.4) contains the AFT model for (β, δ) = (θ, ξ) and the proportional
hazards model for (β, δ) = 0.

2.2 Model selection

Our goal is model selection, which we formalize as choosing among three possibilities

γj =


0, if βj = 0, δj = 0,

1, if βj 6= 0, δj = 0,

2, if βj 6= 0, δj 6= 0,
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6 ROSSELL AND RUBIO

corresponding to no effect, a linear and a non-linear effect of each covariate j = 1, . . . , p.
That is, γ = (γ1, . . . , γp) determines what covariates enter the model and their effect,
and there are 3p total models to consider. We remark that by non-linear effect we refer
to the specific effect coded by the chosen basis, e.g. B-splines in our examples. One
could extend the exercise by considering other types of non-linear effects, for example
by adding a fourth possibility γj = 3 associated to a wavelet basis. Such basis would be
orthogonalized to the linear term, as described after (2.1).

This formulation has two key ingredients. First, it decomposes effects into linear and
deviation from linearity components, enforcing the hierarchical desiderata that the latter
are only included if the linear terms are present. This decomposition is similar to the
structured additive regression of [42], the main difference is that they do not test for
exact βj = 0, δj = 0 and that they rely on a spectral decomposition that is less general
than our simpler orthogonalization of (Xj , Sj). Our theory and results show that such
decompositions improve the power to detect truly active effects. As discussed, this is be-
cause the option γj = 1 captures part of the effect of a variable with a single parameter.
The second ingredient is considering the group inclusion of all non-linear coefficients
δj ∈ Rr. The motivation is that including individual entries in δj increases the proba-
bility of false positives, e.g. if j truly had no effect there would be 2r − 1 subsets of Sj
leading to including j.

Bayesian model selection proceeds as follows. Let pγ =
∑p

j=1 I(γj 6= 0) be the
number of active variables according to model γ, sγ =

∑p
j=1 I(γj = 2) the number

of non-linear effects, and dγ = pγ + rsγ + 1 the total number of parameters in γ for
AFT models, and dγ = pγ + rsγ for Cox and probit models. (Xγ , Sγ) and (βγ , δγ)
are the corresponding submatrices of (X,S) and subvectors of (β, δ), and (Xo,γ , So,γ)
and (Xc,γ , Sc,γ) the submatrices of the observed (Xo, So) and censored (Xc, Sc) design
matrices. One then obtains posterior model probabilities

(2.5) π(γ | y) =
p(y | γ)π(γ)∑
γ p(y | γ)π(γ)

=

1 +
∑
γ′ 6=γ

Bγ′,γ
π(γ′)

π(γ)

−1

,

where π(γ) is the model prior probability, Bγ′,γ = p(y | γ′)/p(y | γ) the Bayes factor
between (γ′, γ) and

p(y | γ) =

∫
p(y | αγ , κγ , τ)π(αγ , κγ , τ | γ)dαγdκγdτ,

the integrated likelihood p(y | αγ , κγ , τ) with respect to a prior density π(αγ , κγ , τ |
γ). One may choose the model with highest π(γ | y), variables with high marginal
posterior probabilities π(γj 6= 0 | y) and, when the interest is in prediction, use Bayesian
model averaging where models are weighted according to π(γ | y), or alternatively
choosing a sparse model giving similar predictions [13]. Either way π(γ | y) are critical
for inference, hence the importance to understand their behavior.

To conclude, we comment upon a practically-relevant computational issue. In additive
models, it is common to either let the basis dimension r grow with n and add a regu-
larization term (e.g. P-splines), or to learn r from the data (e.g. knot selection). Letting
r grow with n is interesting theoretically and in prediction problems where one fits a
single model, but less so when one considers many models. Large r increases the com-
putational cost (e.g. matrix determinants require r3/3 operations) and is often unneeded
when the goal is just to detect if a covariate has an effect. Instead one may use a moderate
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ADDITIVE BAYESIAN VARIABLE SELECTION 7

r, e.g. misspecify the predictive-optimal model. The question is then, what answer can
one hope to obtain and what are its properties. Our theory and software allow learning r
among several fixed values, but in our examples a small r = 5 provided better inference
at lower cost (particularly for small n, e.g. Figure S3, bottom).

2.3 Prior distributions

Although our discussion applies to a wide class of priors, we present three concrete
options.

πL(αγ , κγ , τ) =

∏
γj≥1

N
(
αj ; 0, gLn/(x

>
j xj)

) ∏
γj=2

N
(
κj ; 0, gSn(S>j Sj)

−1
)π(τ)

πM (αγ , κγ , τ) =

∏
γj≥1

α2
j

gM
N (αj ; 0, gM )

∏
γj=2

N
(
κj ; 0, gSn(S>j Sj)

−1
)π(τ)

πE(αγ , κγ , τ) =

∏
γj≥1

e
√

2−gE/α2
jN (αj ; 0, gE)

∏
γj=2

N
(
κj ; 0, gSn(S>j Sj)

−1
)π(τ),

where π(τ) = 2τ−3IG(τ−2; aτ/2, bτ/2), and IG denotes the inverse gamma density,
and gL, gS , gM , gE , aγ , bτ ∈ R+ are given dispersion parameters, for which we propose
default values in Section 2.4.

These choices include a standard Normal prior and two variations of non-local priors.
The use of non-local priors can be argued from a foundational viewpoint, where one
wishes to assign prior beliefs that are coherent with the parameters assumed non-zero
by a given model [23]. For our purposes, however, their main role is that they lead to
faster Bayes factor rates to discard spurious parameters. See [39] for further discussion.
We refer to πL as group-Zellner prior. It is a product of Zellner priors across groups of
linear and non-linear terms for each covariate. This prior is local, i.e. it assigns non-zero
density to αγ having zeroes. The Zellner structure is chosen for simplicity, our theory
can be easily extended to other local priors, provided they are continuous and positive at
the asymptotically-optimal parameter values (Section 3, [23]). The priors πM and πE are
non-local with respect to αγ , the so-called product MOM and eMOM priors introduced
in [24, 40], and a group-Zellner prior on κγ .

Regarding the prior on the models π(γ), we consider joint group inclusion of non-
linear coefficients δj and the hierarchical restriction that their inclusion requires that of
the corresponding linear coefficient βj . Letting π(γ) depend only on the number of non-
zero parameters in (βγ , δγ), as customarily done when only linear effects are considered,
would ignore such structure and hence be inadequate. Instead, we let π(γ) depend on
the number of variables having linear and non-linear effects, (pγ , sγ). By default, we
consider independent Beta-Binomial priors [43]

π(γ) =
1

C
BetaBin(pγ ; p, a1, b1)

(
p

pγ

)−1

BetaBin(sγ ; s, a2, b2)

(
s

sγ

)−1

,(2.6)

where BetaBin(z; p, a, b) is the probability of z successes under a Beta-Binomial dis-
tribution with p trials and parameters (a, b) and C a normalizing constant that does
not need to be computed explicitly. Any model such that the number of parameters is
pγ + rsγ > n is assigned π(γ) = 0, as it would result in data interpolation. By de-
fault we let a1 = b1 = a2 = b2 = 1 akin to [43], e.g. in the p = 1 case these give
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8 ROSSELL AND RUBIO

π(γ1 = 0) = π(γ1 = 1) = π(γ1 = 2) = 1/3. As alternatives to (2.6), one can also con-
sider Binomial priors where BetaBin(z; p, aj , bj) is replaced by Bin(z; p, aj) for a given
success probability aj ∈ [0, 1] and Complexity priors [4] where it is replaced by 1/pajz

for some constant aj > 0. These two alternatives are implemented in our software and
covered by our theory in Section 3, but for simplicity our examples focus on (2.6).

2.4 Prior elicitation

The prior dispersion parameters (gL, gM , gE , gS) are important for variable selection.
For instance, setting large dispersions helps induces sparsity, particularly when they are
allowed to grow with the sample size n [30]. However such large values also reduce
power, see [36] and our Propositions 3, 4 and S5, and are harder to justify from the point
of view that the expected effect sizes a priori should not depend on n. We briefly discuss
default values that do not depend on n, and refer the reader to Section S3 for details.

Specifying prior parameters provides an opportunity to define what effects are practi-
cally relevant. Importantly, in what follows we assume that continuous covariates were
standardized to unit variance, else the parameter interpretation and default values change.
Basic considerations give a fairly narrow range of values that we deem reasonable in ap-
plications. For example, in AFT and Cox models e|βj | define the effect size, when these
are say < 15% (i.e. e|βj | < 1.15) they are typically practically irrelevant. Based on these
considerations, our recommended defaults for AFT and Cox models are gM = 0.192,
gE = 0.091, gL = 1, gS = 1/r and aτ = bτ = 3, whereas for probit regression they are
gM = 0.139 and gE = 0.048. One should not take these defaults at their exact value,
rather as defining a range of reasonable values. These ranges are discussed in Section S3.
In our examples, results were robust to the prior dispersions, provided they stay within
our recommended range.

We remark that if one were to change the prior dispersion arbitrarily then results
would be affected, in a similar manner to how regularization parameters affect penalized
likelihood results. However, in our view the prior beliefs implied by arbitrary prior dis-
persions would be unreasonable in most applications. We also note that there is a wide
objective Bayes literature on using the data to set the prior parameters, see [6] for an
excellent review. We do not argue against such strategies, but we focus on our defaults
as a simple strategy that attains a fairly competitive performance in practice.

3. THEORY

This section describes the asymptotic solution returned by Bayesian model selection,
when the observed data (oi, ci, zi) ∼ F0 are independent realizations from some F0,
where zi ∈ Rp(r+1)+q for q ≥ 0 contains the observed covariates (xi, si) ∈ Rp(r+1), and
potentially also q additional columns. These columns may contain covariates that were
not recorded but are truly relevant for the outcome or the censoring, or non-linear effects
and interactions missed by (xi, si). We do not assume F0 to be parametric, rather it can
be quite general, and the whole model structure assumed by the analyst (e.g. accelerated
times, proportional hazards) may be wrong.

Section 3.1 shows that when one assumes the Normal AFT model (2.1) but truly
(oi, ci, zi) ∼ F0, the maximum likelihood estimator under each model γ converges to
an optimal (α∗γ , κ

∗
γ , τ
∗
γ ) and is asymptotically normally-distributed. See [16] and [17]

for related asymptotic results, and Section S8 for analogous results for the Laplace AFT
model. Section 3.2 shows that Bayesian model selection in the AFT model asymptoti-
cally returns the smallest γ∗ such that all effects in (α∗γ , κ

∗
γ) are non-zero. Equivalently,
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ADDITIVE BAYESIAN VARIABLE SELECTION 9

γ∗ is defined by the zeroes in (α∗, κ∗), the optimal value under the full model including
all parameters. Section 3.3 gives analogous results for Cox models. These results are
extended to probit models in Section S9, and in Section S10 to more general concave
log-likelihood models. It is possible to derive similar results beyond the concave case,
however this class encompasses all the models we consider here and allows simplifying
the proofs and technical conditions.

Throughout we help interpret the solution and certain Bayes factors properties. Of
particular relevance, Section 3.1 discusses that the asymptotic solution γ∗ excludes co-
variates that do not help predict the outcome nor the censoring times, and offers some
examples. Section 3.2 comments on potential advantages of using low-dimensional basis
and non-linear decompositions to detect covariate effects.

3.1 Asymptotic solution in AFT models

As the sample size grows, Bayesian model selection recovers a model γ∗ that ex-
cludes parameters that are asymptotically estimated to be zero. Under mild regularity
conditions, this limiting parameter is the value maximizing the expected log-likelihood
under F0. We start by defining the expected log-likelihood, then state the limiting result,
and finally interpret its meaning and implications for model selection.

Let ηγ = (αγ , κγ , τ) ∈ Γγ be the vector with pγ + rsγ regression parameters under
a given model γ (Section 2.2) plus the error variance, where Γγ = Rpγ+rsγ × R+ is the
corresponding parameter space. Let

m(ηγ) = (1− u1)
[
log Φ

(
x>1 αγ + s>1 κγ − τ log(c1)

)]
+ u1

[
log(τ)− 1

2
log(2π)− 1

2

(
τ log(o1)− x>1 αγ − s>1 κγ

)2
]
,

the contribution of one observation to the log-likelihood (2.2), and

M(ηγ) = EF0(m(ηγ)) = PF0(u1 = 0)EF0

[
log Φ

(
x>1γαγ + s>1γκγ − τ log(c1)

)
| u1 = 0

]
,

+PF0(u1 = 1)

(
log(τ)− 1

2
log(2π)− 1

2
EF0

[(
τ log(o1)− x>1γαγ − s>1γκγ

)2
| u1 = 1

])(3.1)

its expectation under the data-generating F0. Under minimal conditions, M(ηγ) has a
unique maximizer, denoted by η∗γ = (α∗γ , κ

∗
γ , τ
∗
γ ). Below we focus our interpretation

on viewing (3.1) as the expectation of a likelihood-associated reward, and η∗γ as the
associated minimizer, but η∗γ can also be viewed as minimizing the Kullback-Leibler
divergence to F0(y, u) (also called generalized Kullback-Leibler divergence, see [16]).

Proposition 1 proves that the maximum likelihood estimator η̂γ converges to η∗γ , and
Proposition 2 its asymptotic normality with a sandwich covariance that is standard in
misspecified models, and corresponds to the smallest possible covariance for unbiased
estimators under model misspecification. Such variance alteration does not affect con-
sistency but can alter finite n false positives and asymptotic power (see Section 3.2). See
also Propositions S1-S2 for analogous results on the AFT model with Laplace errors.
Mild technical conditions, denoted A1-A5, that suffice for the proposition to hold are
discussed in Section S7. We remark that A3 assumes the existence and finiteness of η∗γ
and η̂γ (the latter for large enough n), which implies that these optima cannot occur at
the boundary of Γγ and must be unique (by concavity). For example, this rules out sit-
uations where η∗γ contains infinite regression parameters or variance, or zero variance,
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10 ROSSELL AND RUBIO

which we view as pathological cases that we exclude from consideration. We thank an
anonymous referee for pointing out an inconsistency in our original proof, and providing
our current argument leading to A3.

PROPOSITION 1. Assume A1-A3. Then, η∗γ = argmaxΓγ M(ηγ) is unique and η̂γ
P→

η∗γ as n→∞.

PROPOSITION 2. Assume A1-A5. Then
√
n(η̂γ − η∗γ)

D−→ N
(

0, V −1
η∗γ

EF0 [∇m(η∗γ)∇m(η∗γ)>]V −1
η∗γ

)
,

where Vη∗γ is the Hessian matrix of M(ηγ) evaluated at η∗γ , and m(η∗γ) = log p(y1 | η∗γ).

Proposition 1 has important implications for model selection. Let (α∗, κ∗) be the opti-
mal parameter under the full model that includes all linear and non-linear terms. Asymp-
totically, one obtains the model γ∗ of smallest dimension maximizing (3.1) (see Section
3.2), which is defined by zeroes in (α∗, κ∗). Specifically, γ∗j = 0 if both linear and non-
linear coefficients (α∗j , κ

∗
j ) are zero, γ∗j = 1 if α∗j 6= 0 and κ∗j = 0, and γ∗j = 2 if

κ∗j 6= 0.
To interpret this asymptotic solution, we turn attention to (3.1). If a covariate does not

contribute to improving neither of the two terms in (3.1), then its corresponding entry in
(α∗, κ∗) is zero. The first term is the expected log-probability, as predicted by the model,
that the individual is censored at the observed log(c1) (conditional on being censored).
Therefore, any covariate that helps the model predict more accurately the occurrence
of censoring events contributes to this first term. The second term is the mean squared
error in predicting the observed time log(o1), conditional on the time being uncensored.
Expression (3.1) is an average of these two components weighted by the true censoring
probability PF0(u1 = 0), and averaged across covariate values under F0. Hence γ∗ drops
covariates that do not predict survival neither censoring times, but may include those
that, even if truly unrelated to survival, help explain the censoring. This interpretation
extends to working models other than the Normal AFT. For any other fully-specified
model, the first term in (3.1) features the model log-predicted probability of censoring,
and the second term the usual log-likelihood for uncensored data. For example, under a
AFT model with Laplace errors the asymptotic solution is defined by the mean absolute
error and the Laplace survival function (see Section S8).

We present some simple examples to illustrate our discussion.

EXAMPLE 1. Suppose that under F0, truly log oi | ci ∼ N(xi1 + θ log ci, σ
2) and

log ci ∼ N(xi2, σ
2). The analyst adopts the model log oi ∼ N(β1xi1 + β2xi2, 1/τ

2),
which, as discussed, assumes non-informative censoring. If θ = 0, the censoring under
F0 is non-informative, and then α∗2 = β∗2 = 0, hence xi2 is discarded asymptotically.

However, if θ 6= 0 then truly log oi = xi1 + θxi2 + εi, where εi ∼ N(0, (1 + θ2)σ2).
Plugging this expression into (3.1), it is easy to show that then α∗2 6= 0. That is, the
presence of informative censoring causes xi2 to be asymptotically selected.

EXAMPLE 2. Suppose that there is a fixed administrative censoring at log ci = a
for all individuals (so it is truly non-informative under F0), a single covariate xi ∈ R,
and that the analyst adopts the model log oi ∼ N(β1 + β2xi, 1/τ

2). Suppose that xi
truly has an effect on the outcome under F0, but that said effect only occurs at a time
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ADDITIVE BAYESIAN VARIABLE SELECTION 11

b > a. Then the effect cannot be detected from the observed data, since all individuals
are censored at a. The issue is that the covariate has an effect that deviates from the
assumed AFT structure. For example suppose that, under F0,

log oi = zi + θxiI(zi > b),

where xi ∈ {0, 1} indicates that individual i received a treatment, zi ∼ N(0, 1) is the
survival time for untreated individuals, and θ > 0 quantifies the treatment effect.

Here the effect is only present among individuals that live longer than b and, since
censoring occurs before b, for all uncensored individuals one observes log oi = zi.
Plugging this expression and log ci = a into (3.1), and noting that the conditioning on
u1 can be removed from the expectations, one can show that α∗2 = β∗2 = 0. This is an ex-
treme example where one cannot detect an effect that strongly deviates from the assumed
mean structure, even though the censoring is non-informative. One could conceive re-
lated examples where a covariate has a time-varying effect that is first positive and then
negative, before administrative censoring occurs, so that the average effect is near-zero.

EXAMPLE 3. Suppose that a potentially informative censoring occurs early, so that
PF0(u1 = 0) ≈ 1. Then (3.1) under the full model is approximately equal to

EF0

[
log Φ

(
x>1 α+ s>1 κ− τ log(c1)

)]
.

As discussed, this term is the log-probability that the outcome occurs after the observed
censoring time, as predicted by the Normal AFT model. Hence, (α∗, κ∗) are essentially
chosen to predict censoring times. If the censoring is informative and depends on a set of
covariates, then (α∗, κ∗) will in general assign non-zero coefficients to these covariates,
which will be asymptotically selected. A similar argument can be made for late censoring
where PF0(u1 = 1) ≈ 1, then (α∗, κ∗) is approximately the usual (population) least-
squares solution. If the outcome depends on the censoring, which in turn depends on a
set of covariates, then least-squares will assign a non-zero coefficient to the latter.

3.2 Bayes factor rates for misspecified AFT models

This section proves that the posterior probability of the optimal model γ∗ converges
to 1, under mild conditions. Recall that the posterior probability of γ∗ is

π(γ∗ | y) =
p(y | γ∗)π(γ∗)∑
γ p(y | γ)π(γ)

=

1 +
∑
γ 6=γ∗

Bγ,γ∗
π(γ)

π(γ∗)

−1

.

Proposition 3 gives the rate at which each Bγ,γ∗ converges to 0 (in probability), when
ones assumes a potentially misspecified AFT model. Provided that eachBγ,γ∗π(γ)/π(γ∗)
converges to 0 (this follows immediately in the standard case where prior model proba-
bilities are bounded, for example) it follows that π(γ∗ | y)

P−→ 1. This implies that the
highest posterior probability model consistently selects γ∗, and that including covariates
with marginal posterior probability π(γ∗j | y) > t, for any fixed threshold t, also leads
to consistent selection.

Proposition 3 clarifies the role of censoring and misspecification. The result is stated
for Laplace approximations to Bayes factors, a computationally-convenient alternative
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12 ROSSELL AND RUBIO

to obtaining exact marginal likelihoods, but in our setting both are asymptotically equiv-
alent (Proposition S6). Specifically, we consider

Bγ,γ∗ =
p̂(y | γ)

p̂(y | γ∗)
,(3.2)

where p̂(y | γ) is obtained via a Laplace approximation:

p̂(y | γ) = exp{`(η̃γ) + log π(η̃γ)}(2π)dγ/2
∣∣H(η̃γ) +∇2 log π(η̃γ)

∣∣−1/2
,

where η̃γ = arg maxηγ `(ηγ)+log π(ηγ) is the maximum a posteriori under prior π(ηγ).
See Section S4 for details on computing this approximation.

Proposition 3 treats separately overfitted models (containing γ∗) and non-overfitted
models (not containing γ∗). Overfitted models contain all truly relevant plus a few spu-
rious parameters, a situation where the challenge is to enforce sparsity. Non-overfitted
models are missing some truly relevant parameters, there the challenge is also to have
high power to detect the missing signal. By truly relevant we mean improving M(η∗γ),
i.e. the prediction of either observed or censored times, see Section 3.1. Recall that
dγ = dim(ηγ) = pγ + rsγ + 1. Intuitively the proof of Proposition 3 is based on estab-
lishing the asymptotic distribution of the likelihood-ratio test statistic 2[`(η̃γ)− `(η̃γ∗)],
which is bounded by central chi-squares in the overfitted case and non-central chi-
squares in the non-overfitted case, and then finding an asymptotic approximation to the
other quantities featuring in p̂(y | γ).

PROPOSITION 3. Let Bγ,γ∗ be the Bayes factor in (3.2) under either πL, πM or
πE , where γ∗ is the AFT model with smallest dγ∗ minimizing (3.1), and γ 6= γ∗ an-
other AFT model. Assume that both γ∗ and γ satisfy Conditions A1-A5. Suppose that
(gM , gE , gL, gS) are non-decreasing in n.

(i) Overfitted models. If γ∗ ⊂ γ, then

logBγγ∗ = log(an) +
r

2
(sγ∗ − sγ) log (ngS) + Op(1),

where an = (ngL)
pγ∗−pγ

2 under πL, an = (ngM )3(pγ∗−pγ)/2 under πM , and
an = (ngEe

2gE
√
n)(pγ∗−pγ)/2 under πE .

(ii) Non-overfitted models. If γ∗ 6⊂ γ, then

log(Bγγ∗) = −n[M(η∗γ∗)−M(η∗γ)] + log(bn) +
r

2
(sγ∗ − sγ) log(ngS) + Op(1)

where bn = (ngL)
pγ∗−pγ

2 under πL, bn = (ng3
M )(pγ∗−pγ)/2 under πM , and bn =

(gEn)pγ∗−pγe−gEc under πE , for finite c ∈ R.

By Proposition 3(i) the rates to discard overfitted models are unaffected by misspeci-
fication and censoring (but certain constants can affect finite n behaviour, see the proof).
These sparsity rates are improved by non-local priors and by setting large prior disper-
sions (gL, gM , gE , gS), extending previous results [24, 30, 39, 38] to misspecified sur-
vival models. By Proposition 3(ii) the rate to detect non-spurious effects is exponential
in n with a coefficientM(η∗γ∗)−M(η∗γ) > 0 that measures the drop of predictive ability
in γ relative to γ∗, and is hence affected by misspecification and censoring. Recall that
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ADDITIVE BAYESIAN VARIABLE SELECTION 13

predictive ability can be understood as a weighted average of forecasting the outcome
to occur after the censoring time (for censored individuals) and the actual outcome time
(for uncensored individuals).

When one misspecifies the model family,M(η∗γ∗)−M(η∗γ) is driven by the projection
of F0 onto the assumed family. Interpreting the geometry of such projections is beyond
our scope, but intuitively projections usually reduce distances and hence makeM(η∗γ∗)−
M(η∗γ) smaller than if one were to assume the correct model class. By Part (ii), this
would decrease the power to detect non-zero effects in η∗γ .

To facilitate interpretation suppose there is no censoring. Then simple algebra shows
that M(η∗γ∗) −M(η∗γ) = EF0

[
log(τ∗γ∗/τ

∗
γ )
]
, which measures the difference in mean

squared prediction errors from using model γ instead of the optimal γ∗ (given by 1/(τ∗γ )2

and 1/(τ∗γ∗)
2, respectively). For instance, omitting covariates increases τ∗γ∗/τ

∗
γ , causing

an exponential drop in power, see our examples in Sections 5.1-5.2 for an illustration.
Proposition 3 also highlights trade-offs in modeling non-linear covariate effects. In-

cluding a truly active non-linear term is rewarded by an improved model fit M(η∗γ∗) −
M(η∗γ), but runs into an r log(ngS) penalty. In contrast, including a linear effect leads to
a smaller improvement in fit, but also incurs a smaller log(ngS) penalty. Hence, decom-
posing effects into a linear and non-linear components can improve power.

A similar observation illustrates that for model selection purposes, the advantages of
using fully non-parametric effects over a finite-dimensional basis may be small. Suppose
one replaced the basis dimension r by a larger r∗ maximizing M(η∗γ∗) −M(η∗γ). For
m-degree splines with equi-spaced knots and sufficiently smooth M() the improvement
in M(η∗γ∗) −M(η∗γ) associated to increasing r to r∗ is at most of order 1/rm [35]. For
said increase to offset the complexity penalty it needs to hold that rm+1(r∗ − r)/2 is
of a smaller order than n/ log(ngS). Hence by letting rm+1r∗ grow sub-linearly with
n could improve power relative to r. However for even moderate r and cubic splines
(m = 3) the required n > r∗r4 can be impractically large, e.g. see the examples in
Section 5.1 with r ∈ {5, 10, 15}. Further, the computational cost of using a large r∗ for
each considered model γ is impractical when one wishes to consider many models.

In summary, using a small basis dimension r (e.g. r = 5, in our examples) within
the non-linear effect decomposition in Section 2.1 may be practically preferable to a
non-parametric basis where r grows with n, for the purpose of detecting the effect.

3.3 Bayes factor rates for misspecified additive Cox models

Our Bayes factor results under misspecified Cox models are similar to Section 3.2,
but here the optimal model γ∗ is defined by zeroes in the parameter η∗ = (β∗, δ∗) maxi-
mizing the expected partial likelihood (2.3) under F0, see (S7.11) for its expression and
some discussion. The interpretation of η∗ is also analogous, though here (2.3) rewards
predicting a higher risk for individuals who experienced the event (uncensored) than for
other individuals at risk. An alternative interpretation is possible by noting that (2.3)
can be approximated by a Poisson regression log-likelihood [26], where one models the
mean number of uncensored events in infinitesimal intervals. Intuitively, any covariate
that helps predict this mean, which depends on the distribution of the censoring and sur-
vival times, is asymptotically selected. Covariates that are unrelated both to survival and
censoring are hence discarded.

We consider Bayes factors obtained by a Laplace approximation to the integrated

imsart-sts ver. 2014/10/16 file: main.tex date: November 11, 2021



14 ROSSELL AND RUBIO

partial likelihood

p(y | γ) =

∫
exp {`p(βγ , δγ)}π(βγ , δγ | γ)dβγdδγ(3.3)

these can be viewed as the integrated likelihood under a limiting non-informative non-
parametric Gamma process prior on h0, see [21] and [31] for a discussion. We obtain
Bayes factor rates analogous to Section 3.2, the proof builds upon [52] and [28] who
proved that η̄γ = (β̄γ , δ̄γ) maximizing (2.3) are consistent and asymptotically normal
under misspecification, under Conditions B1-B4 listed in Section S7.4.

PROPOSITION 4. LetBγ,γ∗ be the Bayes factor based on (3.3) under πL, πM or πE ,
γ∗ the Cox model with smallest dγ∗ minimizing the expected log partial likelihoodMp in
(S7.10), and γ 6= γ∗ another Cox model. Assume that (γ∗, γ) satisfy Conditions B1-B4,
and that (gM , gE , gL, gS) are non-decreasing in n.

(i) Let an be as in Proposition 3. If γ∗ ⊂ γ, then

logBγγ∗ = log(an) +
r

2
(sγ∗ − sγ) log (ngS) + Op(1),

(ii) Let bn be as in Proposition 3. If γ∗ 6⊂ γ, then

log(Bγγ∗) = −n[Mp(η
∗
γ∗)−Mp(η

∗
γ)]+log(bn)+

r

2
(sγ∗−sγ) log(ngS)+Op(1).

That is, the Bayes factors under an assumed Cox model have similar asymptotic be-
havior as under an assumed AFT model, hence the conclusions stated in Section 3.2 also
apply to the Cox model.

4. COMPUTATION

The two main computational challenges are exploring the model space γ ∈ {0, 1, 2}p,
and approximating the integrated likelihood p(y | γ) in (2.5) for each model. We first
discuss relative advantages of the Normal AFT and Cox models for computing p(y | γ),
and how they relate to the amount of censored data in Section 4.1. We also discuss
an approximation to the Normal log-distribution function derivatives that dramatically
speeds up computation for the AFT and probit models. Section 4.2 discusses the model
search, when one cannot enumerate all 3p models.

4.1 Within-model calculations

When the log-likelihood is concave (or locally concave around η∗γ , as in asymptot-
ically Normal models), Laplace approximations to p(y | γ) are one of the fastest and
more accurate methods available. A practical limitation is that, when one wishes to con-
sider many models or the sample size is large, solving the required optimization prob-
lems can still be cumbersome. This cost can be significantly ameliorated by combining
convex optimization algorithms that use warm initializations, see Section S4. See also
[37] for an approach based on approximate Laplace approximations that bypasses the
optimization exercise altogether.

Within survival analysis, an advantage of exponential-family AFT models is admitting
sufficient statistics for the uncensored part of the likelihood, e.g. (y>o yo, X

>
o y,X

>
o Xo)

for (2.2). These can be computed upfront in no(1 + p + p(p + 1)/2) operations and
re-used whenever a new model γ is considered at no extra cost, but for large p such pre-
computation has significant cost and memory requirements. Since one typically visits
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ADDITIVE BAYESIAN VARIABLE SELECTION 15

only a small subset of models, many elements in X>o Xo are never used and it would be
wasteful to compute them all upfront. It is more convenient to compute the entries in
X>o Xo when first required by any given γ and storing them for later use. Our software
follows this strategy by using sparse matrices in the C++ Armadillo library [41].

Given these sufficient statistics the log-likelihood in (2.2) requires min{ndγ , (nc +
1)dγ + dγ(dγ + 1)/2} operations, and each entry in its gradient and hessian require
nc + 1 further operations. In contrast the Cox model’s partial likelihood has a minimum
cost of nodγ +no(no−1)/2 operations when censored times precede all observed times
(max ci < min oi), and a maximum cost ndγ+[n(n+1)−nc(nc−1)]/2 when observed
times precede all censored times. That is, the AFT likelihood has a significantly lower
cost than the Cox model when nc < no (moderate censoring) or n > dγ (sparse settings).

A caveat of the Normal AFT model, however, is requiring the extensive evaluation
of the log-cumulative distribution log Φ and its derivatives. Each likelihood evaluation
requires nc terms featuring Φ and, although these terms can be re-used when comput-
ing r(z) = φ(z)/Φ(z) and D(z) = r(−z)2 − zr(−z) in the gradient and hessian,
evaluating Φ(z) is costly. Briefly, the problem of approximating the inverse Mill’s ra-
tio r(z) has been well-studied [11]. There are many algorithms to approximate Φ(z),
but r(z) is harder, e.g. Expression 26.2.16 in [1] (page 932) has maximum absolute er-
ror < 7.5 × 10−8 for Φ(z) but unbounded absolute error for r(z) as z → −∞. By
combining existing proposals we built a fast approximation that guarantees the small
relative errors. One may combine the Taylor series and asymptotic expansions in [1]
(page 932, Expressions 26.2.16 and 26.2.12) for Φ(z) with an optimized Laplace con-
tinued fraction in [27] (Expression (5.3)) for r(z) as z → −∞. The resulting r̂(z) has
maximum absolute and relative errors < 0.000185 and < 0.000102 respectively, and
for D̂(z) = r̂(−z)2 − zr̂(−z) they are < 0.000424 and < 0.000505. See Section S5
for further details. As an empirical check, the posterior model probabilities obtained in
Section 5.3 when replacing (r(z), D(z)) by (r̂(z), D̂(z)) remained identical to the third
decimal place.

This approximation also facilitates evaluating the log-likelihood and derivatives for
probit and other models involving log Φ, and may have some independent interest. Using
this approximation and the warm initializations in Section S4 is practically meaningful,
for the TGFB data (Section 5.3, 868 parameters) they reduced the cost of 1,000 Gibbs
iterations from >4 hours to 38 seconds.

4.2 Model exploration

Recent advances in Markov Chain Monte Carlo provide model exploration strategies
that perform fairly well in practice, see [57] for a tempering approach that is particularly
helpful when there are multi-modalities in p(γ | y), or [12] for adaptive methods that
reduce the effort in exploring low posterior probability models. Further, as n grows and
posterior probabilities concentrate on a single model, it is possible to prove quick con-
vergence [55]. Intuitively, if p(γ∗ | y) ≈ 1 and the chain converges quickly, there is high
probability that γ∗ will be visited after a few iterations. Most iterations are spent on mod-
els with high π(γ | y) which, from Proposition 3, are models with dimension close to
dγ∗ . The main burden arises from obtaining p(y | γ), which only needs to be computed
the first time that γ is visited and can be stored for subsequent iterations. Hence, if dγ∗
is not too large (sparse data-generating truths) or π(γ | y) is concentrated on relatively
few models, the cost is manageable.

Here for simplicity we describe Algorithm 1, a Gibbs algorithm that builds upon
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earlier proposals [24, 38], with the novelty that it adds a latent augmentation to en-
force hierarchical restrictions (non-linear terms in S are only added if the correspond-
ing linear term in X is in the model) in a computationally-efficient manner. The al-
gorithm obtains B samples γ(1), . . . , γ(B) from π(γ | y). It is not a naive Gibbs al-
gorithm that sequentially samples p trinary indicators, i.e. sets γ(b)

j = k with proba-
bility π(γj = k | y, γ1, . . . , γj−1, γj+1, . . . , γp) for k ∈ {0, 1, 2}. Instead, it is more
convenient to run an augmented-space Gibbs on 2p binary indicators. Specifically let
γ̃j = I(γj = 1) for j = 1, . . . , p denote that covariate j only has a linear effect, and
γ̃j = I(γj−p = 2) for j = p + 1, . . . , 2p a non-linear effect. Algorithm 1 samples γ̃j
individually but prevents (γ̃j , γ̃j+p) = (0, 1), i.e. enforces that having a non-linear effect
when βj = 0 has zero posterior probability. The greedy initialization of γ̃(0) is analogous
to that in [24] and to the heuristic optimization in [33].

We remark that Algorithm 1 may suffer from worse mixing than naive Gibbs sam-
pling of γj ∈ {0, 1, 2}, but is advantageous in sparse settings. If covariate j has a small
posterior probability π(γj 6= 0 | y) then π(γ̃j = 1 | y) is small and in most iterations
γ̃j+p is set to zero without the need to perform any calculation. In contrast when sam-
pling γj ∈ {0, 1, 2} one must obtain the integrated likelihood for γj = 2, which can be
costly due to adding the r extra parameters needed to capture the non-linear effect. As
an example, in Section 5.3 sampling γj ∈ {0, 1, 2} took over 5 times longer to run than
Algorithm 1, but provided the same effective sample size up to 2 decimal places.

Algorithm 1 Augmented-space Gibbs sampling
1: Set b = 0, γ̃(0) = (0, . . . , 0).

2: For j = 1, . . . , 2p, update γ̃(0)
j = argmaxk p

(
γ̃j = k | y, γ̃(b)

−j

)
. If an update was made across

j = 1, . . . , 2p go back to Step 2, else set γ(0)
j = max

{
γ
(0)
j , γ

(0)
j+p

}
for j = 1, . . . , p and go to Step 3.

3: Set b = b+ 1. For j = 1, . . . , p set γ̃(b)
j = 1 with probability

P
(
γ̃j = 1 | y, γ̃(b)

−j

)
=


1, if γ̃j+p = 1,

p
(
y|γ̃j=1,γ̃

(b)
−j

)
p
(
γ̃j=1,γ̃

(b)
−j

)
p
(
y|γ̃j=0,γ̃

(b)
−j

)
p
(
γ̃j=0,γ̃

(b)
−j

)
+p

(
y|γ̃j=1,γ̃

(b)
−j

)
p
(
γ̃j=1,γ̃

(b)
−j

) , if γ̃j+p = 0,

and otherwise set γ̃(b)
j = 0.

4: For j = p+ 1, . . . , 2p set γ̃(b)
j = 1 with probability

P
(
γ̃j = 1 | y, γ̃(b)

−j

)
=


0, if γ̃j+p = 0,

p
(
y|γ̃j=1,γ̃

(b)
−j

)
p
(
γ̃j=1,γ̃

(b)
−j

)
p
(
y|γ̃j=0,γ̃

(b)
−j

)
p
(
γ̃j=0,γ̃

(b)
−j

)
+p

(
y|γ̃j=1,γ̃

(b)
−j

)
p
(
γ̃j=1,γ̃

(b)
−j

) , if γ̃j+p = 1,

and otherwise set γ̃(b)
j = 0. If b = B stop, else go back to Step 3.

5. EMPIRICAL RESULTS

We illustrate via examples the effect of censoring, misspecification and the use of
non-linear effect decompositions on model selection. Section 5.1 considers a simple
simulation study with p = 2 variables, which Section 5.2 extends to p = 50. We consider
different data-generating truths where the covariates have a monotone or non-monotone
effect, and where the truth follows an AFT, proportional hazards, or generalized hazards
structure. In Section 5.3, we analyze the effect of gene TGFB on colon cancer. Given
that the data-generating truth is unknown, in Section 5.4 we study the number of false
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FIG 1. Simulation truth and a simulated dataset for Scenarios 1 (left) and 2 (right).

positives via a permutation exercise. See also Supplementary Section S11.3, where we
analyze the effect of the estrogen receptor on breast cancer survival.

We consider five model selection methods combining the AFT and Cox models with
local and non-local priors and with LASSO. For all Bayesian methods we took the high-
est posterior probability model γ̂ = arg maxπ(γ | y) as the selected model. We refer
to the first three methods as AFT-Zellner, AFT-pMOMZ and AFT-LASSO. They all
assume an AFT model and use either the block-Zellner prior πL, the non-local pMOM-
Zellner prior πM (Section 2.3), or LASSO penalties as proposed by [34]. AFT-Zellner
and AFT-pMOMZ assume the Normal AFT model in (2.1), whereas AFT-LASSO uses a
semi-parametric AFT model. The remaining two methods combine the Cox model with
piMOM priors (Cox-piMOM, [31]) and LASSO (Cox-LASSO, [46]). For AFT-Zellner
and AFT-pMOMZ we used the function modelSelection in the R package mombf
with the default prior parameters, the Beta-Binomial prior π(γ) in (2.6) andB = 10, 000
iterations in Algorithm 1. For Cox-piMOM we the used function cov bvs in the R
package BMSNLP with default parameters and prior dispersion 0.25 as recommended
by [31]. For AFT-LASSO and Cox-LASSO we used the functions AEnet.aft and
glmnet in the R packages AdapEnetClass and glmnet, and we set the penaliza-
tion parameter via 10-fold cross-validation.

5.1 Censoring, model complexity and misspecification with p = 2

We consider sample sizes n ∈ {100, 500}, as well as censored and uncensored data.
We present results for AFT-pMOMZ, as those for AFT-Zellner and Cox-piMOM were
largely analogous. These methods are compared to Cox-LASSO and AFT-LASSO in
Section 5.2. We consider 6 simulation scenarios. Scenarios 1-2 have a data-generating
AFT model, Scenarios 3-4 a generalized hazard model and Scenarios 5-6 a proportional
hazards model. The first covariate has a linear effect in all scenarios, whereas the second
covariate has a non-linear effect. In Scenarios 1, 3 and 5 this effect is strongly non-linear
and non-monotone, whereas in Scenarios 2, 4 and 6 it is monotone and can be roughly
approximated by a linear trend, see Figure 1.

SCENARIO 1. AFT structure with log oi = xi1 + 0.5 log(|xi2|) + εi and ci = 0.5,
where xi ∼ N(0, A), A11 = A22 = 1, A12 = 0.5, εi ∼ N(0, σ = 0.5).

SCENARIO 2. AFT structure with log oi = xi1 + 0.5 log(1 + xi2) + εi and ci = 1,
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where xi = (x̃i1, |x̃i2|), x̃i ∼ N(0, A) and A, εi as in Scenario 1.

SCENARIO 3. Generalized hazards structure with

hGH(t) = h0(t exp {−xi1/3 + 0.5 log(|xi2|)}) exp {−xi1/3 + 0.75 log(|xi2|)} ,

ci = 0.5, h0 being the Log-Normal(0,0.5) baseline hazard and xi as in Scenario 1.

SCENARIO 4. Generalized hazards structure with

hGH(t) = h0(t exp {−xi1/3 + 0.5 log(1 + xi2)}) exp {−xi1/3 + 0.75 log(1 + xi2)} ,

ci = 1, and h0 and xi as in Scenario 3.

SCENARIO 5. Proportional hazards with h(t) = h0(t) exp {3xi1/4− 5 log(|xi2|)/4},
ci = 0.55, h0 being the Log-Normal(0,0.5) baseline hazard and xi as in Scenario 1.

SCENARIO 6. Proportional hazards with h(t) = h0(t) exp {3xi1/4− 5 log(|xi2|)/4},
ci = 0.95, and h0 and xi as in Scenario 5.

In all scenarios, we first consider that there is no censoring, and then a strong admin-
istrative censoring, giving censoring probabilities PF0(ui = 0) ≈ 0.7.

We first discuss Scenarios 1-2 and illustrate the advantage of using our non-linear ef-
fect decomposition. We first only considered the selection of non-linear effects, i.e. γj ∈
{0, 2}. In such case, the power to detect the effects (Figure S3, top) was significantly
lower than when decomposing them into linear and non-linear parts (Figure S3, mid-
dle). These findings align with Proposition 3, in the sense that the improvement in
model fit needs to overcome the penalty for using a non-linear basis. By considering
γj ∈ {0, 1, 2}, one can capture part of the effect with a single linear term. Figure S3 also
shows that censoring tends to reduce the power for both covariates.

Second, we illustrate the effect of the non-linear basis dimension r. We compared
the earlier results, where r was part of the model selection, to those obtained under a
single fixed r = 5, 10 or 15 (Figure S3, bottom). Interestingly, in Scenario 1 the best
performance was observed for r = 5, despite the data-generating truth being strongly
non-linear (Figure 1). In Scenario 2 the results were highly robust to r, as one might
expect from the true effect being near-linear. That is, the smaller r = 5 gave a good
compromise between inference and computation, we thus used r = 5 from now on.

The results for Scenarios 3-4 are in Figure S4, and for Scenarios 5-6 in Figure S5.
The effect of censoring, model complexity and misspecifiying covariate effects were
largely analogous to Scenarios 1-2. To explore further the effects of misspecification, we
repeated the simulations in Scenarios 1-2 but now setting F0 to have asymmetric Laplace
errors εi ∼ ALaplace(0, s, a), where a = −0.5 is the asymmetry and s the scale in the
parameterization of [38]. We set s such that the error variance was equal to the Normal
simulations, that is s = σ2/[2(1 + a2)] = 0.1. Figure S6 shows the results. These are
similar to Figure S3 except for a slight drop in the power to include active covariates.

Finally, we explored the effect of omitting covariates by analyzing the data from Sce-
narios 1-2 but considering that only xi1 was actually observed, i.e. removing xi2 from
the analysis. Figure S7 shows the results. Relative to Figure S3, under Scenario 1 there
was a reduction in the posterior evidence for including xi1. Such reduction was not ob-
served in Scenario 2, presumably due to xi1 being correlated with log(1+xi2) and hence
picking up part of its predictive power.
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FIG 2. Scenarios 1-2, p = 50. Correct model selection proportion in uncensored (left) and censored (right)
data.

5.2 Censoring, model complexity and misspecification with p = 50

We extended Scenarios 1-6 from Section 5.1 by adding 48 spurious covariates. We
generated covariates xi ∼ N(0, A) where A is a 50 × 50 matrix with unit diagonal
and all off-diagonal Aij = 0.5, and otherwise simulated data as in Section 5.1. Figure
2 shows the proportion of correct model selections by each model selection method in
Scenarios 1-2, across 250 independent simulations. Figure S8 reports these results for
Scenarios 3-4, and Figure S9 for Scenarios 5-6. Tables S1-S6 also display the posterior
probability assigned to the optimal model γ∗ and the average number of truly active and
truly inactive selected covariates. All Bayesian methods exhibited a good ability to se-
lect γ∗ that improved with larger n and uncensored data (as predicted by Proposition
3), and they all provided significant improvements over Cox-LASSO and AFT-LASSO,
particularly in reducing the number of false positives. As expected AFT-Zellner and
AFT-pMOM tended to slightly outperform Cox-piMOM under truly AFT data (Scenar-
ios 1-2), and conversely under truly proportional hazards data (Scenarios 5-6), though
the differences were relatively minor. Interestingly, under the generalized hazards model
(Scenarios 3-4) again AFT-Zellner and AFT-pMOMZ achieved higher correct selection
rates, presumably due to these generalized hazard settings being closer to an AFT than
to an proportional hazards model.

imsart-sts ver. 2014/10/16 file: main.tex date: November 11, 2021



20 ROSSELL AND RUBIO

5.3 Effect of TGFB and fibroblasts in colon cancer metastasis

[3] studied the effect of 172 genes related to fibroblasts (f-TBRS signature), a cell type
producing the structural framework in animals, and a growth factor (TGFB) associated
with lower colon cancer survival (time until recurrence). The authors obtained 172 genes
responsive to TGFB in mice fibroblasts. They then used independent gene expression
data from human patients, with tumor stages 1-3, to show that an overall high mean
expression of these 172 genes was strongly associated with metastasis. We analyzed their
data to provide a more detailed description of the role of TGFB and f-TBRS on survival.
We used the n = 260 patients with available survival times, and used tumor stage (2
dummy indicators), TGFB and the 172 f-TBRS genes as covariates, for a total of p =
175. We first performed model selection via AFT-pMOMZ only for staging and TGFB.
The top model had 0.976 posterior probability and included stage and a linear effect
of TGFB, confirming that TGFB is associated with metastasis. The posterior marginal
inclusion probability for a non-linear effect of TGFB was only 0.009. As an additional
check, the maximum likelihood estimator under the top model gave P-values< 0.001 for
stage and the linear TGFB effect. The estimated time accelerations associated to TGFB
are substantial (Figure S12, left).

Next, we extended the exercise to all 175 variables, only considering linear effects.
The top model contained gene FLT1 and the second top model genes ESM1 and GAS1,
with respective posterior model probabilities 0.088 and 0.081. These were also the genes
with highest inclusion probabilities (0.208, 0.699 and 0.567 respectively). There is plau-
sible biology connecting FLT1, ESM1 and GAS1 to metastasis. From genecards.org
[48], FLT1 is a growth and permeability factor in cell proliferation and cancer invasion.
ESM1 is related to endothelium disorders, growth factor receptor binding and gastric
cancer networks, and GAS1 plays a role in growth and tumor suppression. Interestingly
the marginal inclusion probability for TGFB was only 0.107, that is after accounting
for the top 3 genes TGFB did not show a significant effect on survival. For confir-
mation, we fitted via maximum likelihood the model with FLT1, ESM1, GAS1, stage
and TGFB. The P-value for TGFB was 0.281 and its estimated effect was substantially
reduced (Figure S12, right). Finally, we considered both linear and non-linear effects
(p(1 + r) = 1050 columns in (X,S)). All non-linear effects had inclusion probabili-
ties below 0.5 and the top 2 models contained FLT1, ESM1 and GAS1, as before. For
comparison we run Cox-piMOM, AFT-LASSO and Cox-LASSO on the linear effects
(p = 175). Stage and FLT1 were again selected by the top model under Cox-piMOM
and by Cox-LASSO. Cox-LASSO selected 9 other genes, but only 4 had a significant P-
value upon fitting a Cox model via maximum likelihood. Finally AFT-LASSO selected
stage and 6 genes, two of which were also selected by Cox-LASSO. See Section S11.3
for a similar analysis of the estrogen receptor ESR1 effect on breast cancer.

Since this is a real-data application with an unknown ground truth, it is hard to assess
which method performed best. As a first check, Table S7 reports the estimated predictive
accuracy of each method via the leave-one-out cross-validated concordance index [14].
Cox-LASSO and AFT-pMOMZ achieved the highest concordance indexes, with the for-
mer selecting more variables than the latter on average across the cross-validation (13.6
vs. 3.9 for p = 175 and 11.7 vs. 4.9 for p(1 + r) = 1050). We remark that predictive ac-
curacy is not our primary goal, but if a method were to miss truly active covariates then
one would expect accuracy to decrease, hence it serves as a rough proxy for statistical
power. To complete the exercise, we next evaluate false positive probabilities.
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Stage + TGFB (p(r + 1) = 8) Stage + all genes (p = 175)
False positives γ̂ = 0 False positives γ̂ = 0

AFT-pMOMZ 0.0 100.0 0.0 100.0
Cox-piMOM 12.1 3.0 0.6 1.0
AFT-LASSO 35.9 31.0 2.2 45.0
Cox-LASSO 12.6 68.0 1.5 61.0

TABLE 1
Percentage of false positives and correct model selections (γ̂ = 0) in permuted colon cancer data (100

permutations) when the design had 8 columns (stage, linear and non-linear effect of TGFB) and 175
columns (stage and linear effect of 173 genes).

5.4 False positive assessment under colon cancer data

We did a permutation exercise to assess false positive findings in the colon cancer
data. We randomly permuted the recurrence times, and left the covariates unpermuted.
We obtained 100 independent permutations and recorded the model selected by each
method. We first included only stage, a linear and non-linear term for TGFB as covari-
ates, for a total of p(r + 1) = 8 columns in (X,S). Next, we repeated the exercise
considering linear effects for staging and the 173 genes, for a total of p = 175 columns.

The results are in Table 1 and Figure S10. AFT-pMOMZ achieved an excellent false
positive control, it selected the null model in all permutations and assigned an average
posterior probability π(γ = 0 | y) = 0.846 and 0.844 to the null model in the ex-
ercises with 8 and 175 columns (respectively). That is, AFT-pMOMZ not only selected
the null model but also assigned a high confidence to that selection. All competing meth-
ods selected the null model significantly less frequently. They also showed inflated false
positive percentages for the analysis with 8 columns, though interestingly these percent-
ages were lower in the analysis with 175 columns. Figure S10 reveals an interesting
pattern for Cox-piMOM, in > 97% of the permutations only 1 covariate was included.
That is, although the mean false positives percentage for Cox-piMOM was similar to
AFT-LASSO and Cox-LASSO, the selected model was always very close to the null
model, as expected from the strong sparsity-inducing properties of non-local priors.

6. DISCUSSION

Our main contributions are describing a generic Bayesian model selection framework
to incorporate non-linear effects in a data-driven fashion to balance power and spar-
sity and, perhaps more importantly, helping understand the interplay between censoring,
misspecification and model complexity. In survival models, we showed that one asymp-
totically discards covariates that do not help predict the outcome neither censoring times
(conditionally on other covariates), whereas in probit regression one keeps those that
help reduce the probit loss function, and similarly for other concave log-likelihoods. We
showed that censoring and misspecification can reduce power significantly. Understand-
ing this phenomenon can be useful in the design of experiments, where one may increase
the follow-up length to gain power. Enriching the model class, by considering semi- and
non-parametric terms, to alleviate model misspecification requires some care as these
additional terms can incur computational and statistical power losses. Our recommen-
dation is to use Bayesian model selection to decide their inclusion in a data-adaptive
manner, as in the proposed linear plus deviation from linearity decomposition. Although
not discussed here for simplicity, one can also easily incorporate interactions between
covariates into the proposed theory and computational methods.
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From a technical point of view we used standard asymptotic arguments which, for
concave log-likelihoods, lead to simpler proofs and technical conditions. It should be
possible to extend our results, with some care, to non-concave and non-asymptotic set-
tings (for example, using the high-dimensional framework in [32]), interval and left cen-
sored data, as well as to cure rate, recurrence or excess hazards models. We focused
on fixed p to provide simpler results and intuition, under less restrictive technical con-
ditions. While, in theory, it can be potentially interesting to allow the non-linear basis
dimension r to grow with n, for actual methodology this often implies an impractical
computational cost. This is critical in structural learning, where one wishes to consider
many models. For this reason, in applied settings, it is common to use a finite basis.

Regarding high-dimensional settings, from recent results on misspecified penalized
non-concave likelihood [29] Bayesian model selection [54, 36], we speculate that our
main findings should remain valid. We remark, however, that high-dimensional formula-
tions often incorporate stronger sparsity via the prior distribution, hence the power drop
caused by censoring and misspecification could be more problematic than in our fixed p
case.

We focused on model selection within additive models, but our results extend directly
when one wishes to consider interactions, by adding the corresponding basis to our for-
mulation. Our theory is valid for any given basis and also when performing selection
on the basis itself, however, admittedly our examples focused on spline basis with fixed
knots. We feel that a detailed study of basis selection would obscure the high-level intu-
ition of our main results, but it represents an interesting aspect for future research.
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