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Abstract  
 

Bats are the only flying mammals known. They have longer lifespan than other 

mammals of similar size and weight and can resist high loads of many pathogens, 

mostly viruses, with no signs of disease. These distinctive characteristics have 

been attributed to their metabolic rate that is thought to be the result of their flying 

lifestyle. Compared with non-flying mammals, bats have lower production of 

reactive oxygen species (ROS), and high levels of antioxidant enzymes such as 

superoxide dismutase. This anti-oxidative vs. oxidative profile may help to explain 

bat´s longer than expected lifespans.  

The aim of this study was to assess the effect that a significant reduction in flying 

has on bat leukocyte mitochondrial activity. This was assessed using samples of 

lymphoid and myeloid cells from peripheral blood from Artibeus jamaicensis bats 

shortly after capture and up to six weeks after flying deprivation. Mitochondrial 

membrane potential (m), mitochondrial calcium (mCa2+), and mitochondrial 

ROS (mROS) were used as key indicators of mitochondrial activity, while total 

ROS and glucose uptake were used as additional indicators of cell metabolism.  

Results showed that total ROS and glucose uptake were statistically significantly 

lower at six weeks of flying deprivation (p<0.05), in both lymphoid and myeloid 

cells, however no significant changes in mitochondrial activity associated with 

flying deprivation was observed (p>0.05).  

These results suggest that bat mitochondria are stable to sudden changes in 

physical activity, at least up to six weeks of flying deprivation. However, decrease 

in total ROS and glucose uptake in myeloid cells after six weeks of captivity 
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suggest a compensatory mechanism due to the lack of the highly metabolic 

demands associated with flying.  
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1. Introduction  

Bats are classified within the order Chiroptera, the only order of flying mammals 

(Maina et al., 2000). They serve as reservoirs of several human pathogens, 

including SARS-CoV-2 (Li et al., 2005; Brook and Dobson, 2014; Zhou et al., 

2020), and can carry high loads of certain intracellular pathogens, notably 

viruses, without showing any sign of disease (Brook and Dobson, 2015). As a 

cosequence, the bat´s immune system has become a subject of intensive 

research. Their ability to cope with viral infections has been attributed to their 

flying lifestyle (Zhang et al., 2013; Gorbuniva et al., 2020) and also to immune 

adaptations that mostly dampen, rather than activate, the immune response 

(Baker et al. 2013; O´Shea et al., 2014; Stockmaier et al. 2015; Gorbuniva et al., 

2020).  

There is increasing evidence of a close correlation between metabolism and 

immune response (Pearce et al., 2018; Jung et al., 2019). Bats have one of the 

highest basal metabolic rates amongst mammals, which further increases during 

flying (Speakman et al., 2003). Paradoxically, the production of reactive oxygen 

species (ROS) in relation to oxygen consumption is lower in bats than in other 

mammalian species with similar metabolic rates, and bats also live longer 
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compared to other mammals of a similar size and weight (Brunet-Rossinni et al., 

2004). Studies aimed at understanding this long lifespan have included the 

analyses of reactive oxygen species (ROS) and anti-oxidants production, as well 

as mitochondrial proton leak, and their ability to control inflammation (Wilhelm et 

al., 2007; Gorbunova et al., 2020). Compared with non-flying mammals, bats 

exhibit a lower production of ROS and a lower mitochondrial membrane potential 

(m) (Brown et al., 2009), and higher levels of antioxidants such as superoxide 

dismutase (Wilhelm et al., 2007).  

Since mitochondria are key components of metabolism and immunity (Mehta et 

al., 2017; Angajala et al., 2018; Breda et al., 2019), comparing mitochondrial 

function in immune cells shortly after capture and following flying deprivation, will 

help to reveal whether mitochondria play a role in bats unique resistance to 

pathogens and longer lifespan.  

Here we evaluated mitochondrial membrane potential (m), mitochondrial ROS 

(mROS) and mitochondrial calcium (mCa2+), as key indicators of mitochondrial 

function (Duchen, 2000; Murphy, 2009; Görlach et al., 2015; Zorova et al., 2018), 

and total ROS and glucose uptake as additional metabolic indicators, from 

lymphoid and myeloid cells obtained from the peripheral blood of Artibeus 

jamaicensis bats shortly after capture and up to six weeks of flying restriction. 

 

2. Materials and methods  

2.1 Animals and blood samples  

An initial experiment was conducted with five fruit-eating bats (Artibeus 

jamaicensis) captured in Oaxtepec, Morelos, Mexico (latitude: 18° 54' 20.99" N; 

longitude: -98° 58' 50.56" W) with the aid of a 12-meter mist net, set up at sunset. 
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In a second experiment six Artibeus jamaicensis bats were captured in Cocoyoc, 

Morelos, Mexico (latitude: 18° 53' 3.01" N; longitude: -98° 58' 54.98" W) (Fig. 1). 

Blood samples (100-200 l) were obtained from the cephalic vein, immediately 

after capture and two weeks later in the first experiment and, at two, four and six 

weeks of captivity in the second experiment. Blood samples were added to 

Alsever gelatin containing micro-tubes (200 l) and left at room temperature for 

20-30 min to allow red blood cells separation from the leukocyte rich plasma 

(LRP). LRP was separated into several tubes individually containing probes for 

the assessment of mitochondrial membrane potential (m), mitochondrial 

calcium (mCa2+), mitochondrial ROS (mROS), total ROS, or glucose uptake, as 

indicated below. All animals were kept in two cages (40 x 40 x 55 cm), and during 

the studies bats consumed a diverse array of fruits ad libitum, in addition to water, 

in the absence of any flight, in order to assess how bat´s mitochondria deal with 

a surplus of energy. Of note, animals did not show any appreciable change in 

their behavior, they ate well, had normal resting periods, and remained healthy 

for the duration of the experiments. The project had the approval of SEMARNAT 

Mexico (SGPA/DGVS/08986/18). 

2.2. Mitochondrial function analysis  

Mitochondrial function was assessed with the use of three probes that measure 

mitochondrial membrane potential (m), mitochondrial calcium (mCa2+), and 

mitochondrial ROS (mROS). The experimental procedure was identical for all 

three mitochondrial function indicators except for the molecular probe. Briefly, 

cells from leukocyte rich plasma were labeled with the m–sensitive MitoTracker 

Red CMXRos (Thermo Fisher Scientific Inc., Walthman, MA, USA.) or 

Tetramethyl rhodamine, methyl ester (TMRM) (Thermo Fisher Scientific Inc) 
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molecular probes, at a final concentration of 5 μM for 20 minutes at room 

temperature, before being washed with PBS and then fixed with 4% 

paraformaldehyde in PBS. m was assessed by flow cytometry (FACScan, BD 

Biosciences, San José, CA. USA). Forward scatter (FSC) and side scatter (SSC) 

parameters were used to distinguish between lymphoid cells and myeloid cells. 

The mean fluorescence intensity (MFI), as an indication of m, was retrieved 

from the gated cells (lymphoid cells or myeloid cells). Raw data was analyzed 

with the CellQuest program (BD Biosciences) and expressed as F1/F0, where F1 

is the MFI of MitoTracker Red CMXRos- (first experiment), or TMRM-labelled 

cells (second experiment), and F0 is the MFI due to cells auto-fluorescence.  

For mCa2+, cells were labelled with the mitochondrial calcium indicator Rhod-

2/AM (Thermo Fisher Scientific Inc.) at a final concentration of 10 μM, and for 

mitochondrial ROS (superoxide anion), cells were labeled with the mitochondrial 

superoxide indicator MitoSOX™ Red (Thermo Fisher Scientific Inc.) at a final 

concentration of 5 μM. Raw data was treated in the same way as for m 

assessment.  

 

2.3. Total ROS 

Total reactive oxygen species (ROS) was assessed in a similar way as 

mitochondrial function assessment, except that the molecular probe used for this 

functional parameter was CM-H2DCFDA (Thermo Fisher Scientific, Inc.), an 

indicator of general oxidative stress, at 5 M final concentration, followed by flow 

cytometric analyses as previously described.   
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2.4. Glucose uptake  

 
Leukocyte rich plasma obtained from the peripheral blood was added to a tube 

containing the fluorescent glucose analogue 2-(N-(7-nitrobenzen-2-oxa-1,3-

diazol-4-yl) amino)-2-deoxyglucose (2-NBDG) (Thermo Fisher Scientific, Inc.), at 

a final concentration of 250 M. Cells were incubated at room temperature for 20 

minutes and then washed with PBS, followed by fixation with 4% 

paraformaldehyde, and flow cytometric analyses, again as previously described.  

 

2.5. Statistical analyses  

Mean Fluorescence Intensity (MFI) numerical values for each metabolic 

parameter were compared between sample groups using a Mann-Whitney test, 

ANOVA one-way non-parametric Kruskal Wallis test, and Turkey post hoc using 

Graph Pad Prism Software (Graphpad, La Jolla, CA).  

 

3. Results 

     3.1. Mitochondrial activity of leukocytes from the fruit-eating bat 

Artibeus jamaicensis remains unchanged up to six weeks of flying 

restriction 

Based exclusively on size (forward light scatter, FSC) and cell complexity (side 

light scatter, SSC), the flow cytometric analyses allowed us to distinguish 

between lymphoid- and myeloid-type cells. This enabled assessment of the 

mitochondrial activity (m, mCa2+, and mROS) in these two cells populations. 

The first experiment (using bats captured in Oaxtepec, Morelos) showed an 

apparent increase in m, and mCa2+, at two weeks of flying deprivation 
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compared with recently captured bats, especially in lymphoid cells (Fig. 2). 

However, these differences were not statistically significant. In a second 

experiment (bats captured in Cocoyoc, Morelos) where longer flying restriction 

was tested (2, 4, and 6 weeks) showed no statistically significant differences in 

m, mCa2+, or mROS  (Fig. 3).  

 

3.2. Total reactive oxygen species diminishes at later time points of 

bats flying restriction in lymphoid and myeloid cells  

In the first experiment no difference in mROS was observed between time of 

capture and 2 weeks of flying restriction (Fig. 2). In the second experiment total 

ROS in addition to mROS were assessed. No differences in mROS were 

observed. However, total ROS was significantly lower in lymphoid and myeloid 

cells at 6 weeks compared with 2 and 4 weeks (p<0.05) of flying deprivation (Fig.  

4). 

 

3.3. Glucose-uptake by Bat´s lymphoid and myeloid cells varies 

during flying restriction 

In the first experiment (Oaxtepec) glucose uptake by bat´s myeloid-type cells was 

significant higher two weeks after capture compared with recently captured bats  

(p=0.03) (Fig. 2). In the second experiment (Cocoyoc), glucose uptake by both 

lymphoid- and myeloyd- type cells was significantly lower after six weeks of flying 

restriction compared with four weeks of flying restriction (p<0.05) (Fig. 4). 
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4. Discussion  

The main finding of this study is that bat leukocytes take up less glucose while 

keeping mitochondrial function un-altered, as a way of adapting to several weeks 

of flying restriction.  

Three specific characteristics distinguish bats from non-flying mammals of similar 

weight and size: i) higher metabolic rate, ii) longer than expected lifespan, and iii) 

resistance or tolerance to viral infections (Speakman et al., 2003; Subudhi et al., 

2019; Gorbunova et al., 2020). Flight is among the most energy consuming 

physiological activities and it is thought that adaptive evolution of energy 

metabolism is at the core of flight development in bats. Shen et al found that bat 

mitochondrial and nuclear encoded oxidative phosphorylation genes display 

evidence of adaptive evolution that supports the high metabolic demands of flying 

(Shen et al., 2010; Subudhi et al., 2019), and Pollard et al identified differences 

in the proteome and lipidome of bats mitochondria, compared with those of mice 

(Pollard et al., 2019).  

Mitochondria are key components of metabolism, lifespan and resistance to viral 

infections (Mills et al., 2017; Sharma et al., 2018), we therefore wanted to test the 

effect that flying restriction has on bat leukocyte mitochondrial activity. Results 

showed that m, mCa2+ and mROS remained un-altered in bat peripheral blood 

lymphoid and myeloid cells after 6 weeks of flying restrictions, in spite of the fact 

that during their daily flights, bats metabolic rate increases about 15-fold 

compared with their resting metabolic rate (Speakman and Thomas, 2003; 

O´Shea et al., 2014).  



10 
 

m is instrumental for aerobic energy production, and the driving force behind 

other mitochondria physiological processes, such as Ca2+ uptake and heat 

production by brown fat (Gerencser et al., 2012). During flight, a bats body 

temperature may reach 41oC or more (Morrison et al., 1967) making them highly 

dependent on m maintenance. m also drives the generation of NADPH, 

which constitutes an antioxidant mechanism (Brand et al., 1995; Nicholls et al., 

2004). In spite of 6 weeks feeding on a diverse array of fruits ad libitum, and in 

the absence of any flight, the bats m remained un-altered allowing, amongst 

other functions, mitochondrial Ca2+ uptake. Mitochondrial Ca2+ activates Krebs 

cycle dehydrogenases such as pyruvate dehydrogenase, isocitrate 

dehydrogenase, and oxoglutarate dehydrogenase, favouring ATP synthesis 

(Takeuchi et al., 2015). Calcium influx into mitochondria also increases the 

electron transport chain flux, and thus m and mROS production (Brookes et al., 

2004), thus providing a link between mitochondrial calcium transport and the 

regulation of cellular bioenergetics (Yi et al., 2004; Walsh et al., 2009; McKenzie 

et al., 2016). 

Mitochondrial ROS (mROS) production is related to the respiration rate, and while 

low levels of mROS are required for normal cell function (Sena and Chandel, 

2012), such as innate immune responses (West et al., 2011), increased 

production of mROS may lead to oxidative stress, cell death, and disease 

(Wilking et al., 2013). In spite of their high metabolic rate, bats produce low 

amounts of ROS and may also be more resistant to oxidative stress (Brunet-

Rossinni et al., 2004). A mild depolarization of the m by tethering of ATP-

consuming kinases to mitochondrial membranes may account for the limited 

production of mROS in mammals. Interestingly, this mechanism is lost in aging 
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mice but remains active in aging bats species (Vyssokikh et al., 2020), providing 

yet another possible mechanism for the longer lifespan of bats. Our results 

showed that after 6 weeks of flying restriction bat´s leukocytes mitochondria 

maintain unaltered m and mROS. Blood leukocytes are good sensors of their 

metabolic microenvironment, as they can sense metabolic stress and modulate 

their mitochondrial energetics in response. They have been dubbed as “the 

canary in the coal mine” for bioenergetics dysfunction (Kramer et al., 2014). Our 

results showing that m, mCa2+, and mROS remain un-altered after six weeks 

of flying restriction (Fig. 3) suggesting that bat mitochondria are well adapted to 

sudden changes in their usual and highly energy-demanding activity of flying.   

Bats usually fly at the onset of their activity period, fuelled by limited fat reserves 

(Voigt et al., 2010). They therefore need to rapidly fuel metabolism through the 

ingestion of simple carbohydrates as otherwise their high metabolic rates and 

small body size would place them at risk of starvation if sufficient food is not found 

(Welch et al., 2016; O´Mara et al., 2017). During this study bats were allowed to 

consume a diverse array of fruits ad libitum (in the absence of any flight) in order 

to assess how their mitochondria deal with a surplus of energy. In the first 

experiment (Oaxtepec) a significant increase in glucose uptake in myeloid-type 

cells but not in lymphoid-type cells was measured after two weeks of flying 

restriction (Fig. 2). However, in the second experiment (Cocoyoc) glucose uptake 

was significant lower at six weeks of flying restriction, alongside a significantly 

lower production of total ROS (Fig. 4), and an apparent but non-statistically 

significant reduction in mROS production in both lymphoid and myeloid cells (Fig. 

3). While the increase in glucose uptake by myeloid cells at 2 weeks of flying 

restriction is intriguing, the results showing that bat myeloid and lymphoid cells 
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take up less glucose at a later time point of flying restriction (six weeks) suggests 

a way of adapting to flying restrictions, and thus reduced energy requirements, 

so as to avoid oxidative damage, but keeping mitochondrial function un-altered. 
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Figure legends 

 

Fig. 1. Oaxtepec and Cocoyoc geographical location. 

Oaxtepec (latitude: 18° 54' 20.99" N; longitude: -98° 58' 50.56" W) and Cocoyoc 

(latitude: 18° 53' 3.01" N; longitude: -98° 58' 54.98" W) linear distance form one 

another is approximately 3 km. Both are within the Morelos state in Mexico, and 

Artibeus jamaicensis  as well as other bat species are widely distributed.   

 
Fig. 2 Glucose uptake by peripheral blood myeloid-type cells increased 

after two weeks in captivity. In the first experiment (Oaxtepec), bats peripheral 

blood was taken shortly after capture and then at two weeks of flying restriction. 

Mitochondrial membrane potential (m), mitochondrial ROS (mROS), 

mitochondrial calcium (mCa2+), and glucose uptake were assessed by flow 

cytometry in both myeloid-type and lymphoid-type cells as described in the 

materials and methods section. Data was analysed using an ANOVA one-way 

non-parametric Kruskal-Wallis test and Tukey post hoc with statistical 

significance considered as p<0.05 (n=5). 

 

Fig. 3. Mitochondrial membrane potential (m), mitochondrial calcium 

(mCa2+) and mitochondrial ROS (mROS) remains unchanged after six 

weeks of flying restriction. In the second experiment (Cocoyoc), A. jamaicensis 

bats were kept under flying restriction for up to six weeks. m, mROS), and 

mCa2+ were assessed by flow cytometry in lymphoid-, and myeloid-type cells. 

Data was analysed using ANOVA, one-way non-parametric Kruskal-Wallis test 

and Tukey post hoc with statistical significance considered as p<0.05. No 

statistically significant differences were observed (n=6). 
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Fig. 4. Glucose-uptake and total ROS production of A. jamaicensis 

lymphoid and myeloid cells decreases by 6 weeks of flying restriction. In 

the second experiment (Cocoyoc), glucose uptake and total ROS production in 

lymphoid- and myeloid-type cells were assessed by flow cytometry. Data was 

analysed using an ANOVA one-way non-parametric Kruskal-Wallis test and 

Tukey post hoc with statistical significance considered as p<0.05  (n=6). 
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Fig. 2 
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Fig.3 
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Fig. 4 
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