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Abstract—Bio-impedance analysis (BIA) is a non-invasive 

way of assessing body compositions and has been recently used 

for hand motion interpretation using ‘brute force’ pattern 

recognition. To better promote BIA applications in human-

machine interface, this paper develops an anatomically accurate 

3D model towards a sound BIA recording strategy. The model 

is developed based on transient finite element analysis. It can be 

used for precise location of transcutaneous electrical stimulation 

to provide 3D current and potential distributions within the 

skin, fat, muscle, and bone layers of the upper arm, each defined 

by their dielectric properties. With the model, it is possible to 

investigate the impact of the electrode placement on the muscle 

when using, e.g., textile and flexible electrodes. As proof of 

concept for guiding the electrode placement, the electrical 

potential was simulated for two different electrode stimulation 

arrangements. The results showed that when the electrodes were 

shifted towards the upper arm, the electrical potential was 

reduced. This may be related to the anatomical layers' electric 

features and the distance of the electrode to the targeted muscle. 

Keywords—Bio-impedance analysis, human-machine 

interface, transient finite element, upper arm volume conductor 

I. INTRODUCTION 

Over 3 million people worldwide suffer from upper-limb 

loss, and this number is expected to double by 2050. 

Prostheses improve people's quality of life who suffer from 

upper-limb loss. However current myoelectric prostheses 

only offer limited degrees-of-freedom (DOF), far from 

achieving the human-like hand motion [1].  

Surface electromyography (sEMG) is the human-machine 

interface (HMI) method used in myoelectric prostheses [1]–

[3]. Despite offering high recognition accuracy, the 

acceptance of myoelectric prostheses remains low. The 

fundamental challenges relate to the electromyography 

signals. Signal amplitudes of only up to tens of mV with 

frequencies up to about 500 Hz, make recording susceptible 

to noise and low-frequency interference. sEMG has limited 

spatial resolution, and deep muscle activity in the forearm is 

challenging to record [4] and only a limited number of DOFs 

are recognized. Alternative non-invasive ways of recording 

raw bio-signals may provide further advancement in the field. 

Bio-impedance analysis (BIA) is a non-invasive way of 

assessing body compositions. Similar to sEMG, electrodes 

are placed on the skin. Instead of recording spontaneous 

signals like sEMG, BIA injects a current and measures 

resulting voltage potentials. Such current induced voltage 

signals have a better signal-to-noise ratio (SNR) and are 

related to the body compositions that is underneath the 

electrodes. BIA for HMI has been recently reported in [5], 

[6]. In such an HMI system, the forearm is surrounded by a 

flexible band containing an array of evenly distributed 

electrodes. As muscle and bone move inside the arm region 

enclosed by the band, the collected BIA dataset is then ‘brute 

force’ analysed to reflect upper limb movement using e.g., a 

machine learning algorithm.  

However, to further promote the BIA in HMI towards a 

dexterous prosthesis, an optimized BIA recording strategy is 

required. This paper develops an anatomically accurate 

human arm model that can be used to investigate the impact 

of the electrode placement on the muscle for optimal and 

targeted BIA recording strategy using e.g., textile and flexible 
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Fig. 1. The anatomical layers are segmented, and 3D domains are constructed based on the Duke model with associated labeling and smoothing filters in 

ScanIP software. The outermost layers are defined as a sphere model to imitate as the ground at infinity. The electrode is relatively finely meshed to obtain 

more accurate results. 



electrode arrays. The models are implemented in finite 

element (FE) models (FEM) involving a volume conductor 

model representing various anatomical structures and the 

electrodes by their respective dielectric features and 

appropriate boundary conditions [7]. The model allows ready 

investigation of the impact regarding electrode position using 

BIA.  

The paper is organized as follows. Section II presents the 

method used to develop the model; Section III gives the 

results of chosen BIA simulation and the discussion and 

conclusion are given in Section IV and V, respectively. 

 

II. METHODS 

A. Human Arm Model Development 

A realistic three-dimensional (3D) volume conductor 

model of the human arm was constructed from the Duke 

model v.2.0.1, of a healthy adult male subject [8]. Each tissue 

layer was imported from a library of Standard Tessellation 

Language (STL) surface triangulations of human anatomical 

parts. Since the Duke model consists of all tissue layers, it 

was focused on the region of interest to reduce computation 

cost. The arm model was derived using Boolean operations 

to provide a 3D model of the arm. The model is composed of 

the fundamental tissue layers of skin, muscles, and bones. 

The STL models were converted to the image data to generate 

a 3D model using image segmentation. The process of 

segmentation entails the identification and labeling of 

‘regions of interest’ (ROIs) (e.g., skin, muscles, and bones) 

within the greyscale data, creating masks [7], [9]. Each mask 

is then segmented using automatic and manual segmentation 

processes in Simpleware ScanIP v2016.09 (Synopsys, 

Mountain View, USA), as shown in Fig. 1. Image filters were 

used on the masks to smooth these layers (recursive Gaussian, 

median, and mean filters), edit the morphology, or fill the 

cavities (dilate, erode, open and close functions). Lastly, 

Boolean operations were applied to obtain appropriate 

boundaries and remove any overlapping sections between the 

tissue layers. 

B. Electrode Modelling and Boundary Conditions 

The electrodes were defined as equipotential surfaces from 

which the current density distribution was nonuniform. The 

electrodes were designed based on smooth geometric shapes 

(e.g., cylinder) in Scan IP software to prevent any meshing 

problems. The radius of each electrode was set to 5 mm. The 

pitch of electrodes was chosen as 45 mm, as shown in Fig. 1. 

Two different electrode arrangements were designed and 

merged with the 3D arm model shown in Fig. 2. In all the 

simulated cases, the stimulation current was set up to 3 mA 

injected from the electrodes E1 (pink) and received from the 

return electrodes E2 (blue). The simulation was implemented 

in COMSOL Multiphysics v5.2a (COMSOL, Ltd, 

Cambridge, UK) by Terminal current negative for the 

cathodes and positive for the anodes. A square-wave current 

pulse with a pulse duration of 10 µs and different current 

amplitudes (from 1 mApeak to 3 mApeak) was applied to the 

electrodes for each model. The electrode-tissue interface 

contact impedance was assumed zero for simplicity reasons. 

A comparatively large non-conductive (σ = 10e-12 S/m) 

sphere was defined as the external boundary, and the 

Dirichlet boundary condition (V = 0) was applied, which was 

considered an approximation of the ground at infinity as 

shown in Fig. 1. (Note: appropriate continuity conditions 

were implemented at the boundaries of different media to 

obtain accurate solution.) 

C. Finite Element Simulation 

According to Maxwell's equations, the current and 

voltage vectors for arbitrary directions within a volume 

conductor can be calculated using the FEM. The FEM model 

of the upper arm was generated, and the simulations can be 

carried out using COMSOL based on the transient 

approximation of Maxwell equation (1) shown below: 

 

∇ ∙ (𝜎∇𝑉 − 𝜀0𝜀𝑟∇
𝜕𝑉

𝜕𝑡
)    (1) 

Table 1. Tissue conductivities 

Tissue layer Conductivity 

(S/m) 

Relative permittivity 

(F/m) 

Skin 1.7𝑒 − 4 1.4𝑒3 

Muscle 

(longitudinal) 

0.315 1.2𝑒5 

Muscle 

(transverse) 

0.105 4𝑒4 

Bone 0.02 3𝑒3 

Outermost Sphere 10−12 1 

 

 
 
Fig. 2. (a) and (b) shows two different electrode models arrangement placed on the upper arm, for current stimulation, E1/2 represents electrodes; (c) the 

electrical potential (EP) was calculated along the selected muscle length marked by the dotted line; (d) the finite element method (FEM) simulation with the 

appropriate boundary condition and attained electrical parameters defined.  



where σ is the low frequency conductivity of each of the 

tissues (i.e., considered with no frequency dependent 

elements), V is the electrical potential in the representative 

geometry, 𝜀0𝜀𝑟 is the tissue permittivity. In this work, to 

serve as a starting point for muscle targeting using BIA, the 

electrical properties used for the tissues are given in Table 1 

[10]. The wave propagation and inductive effects were 

assumed to be negligible [9]. 

The model domain was discretized using the tetrahedral 

finite elements with the partial differential equations in 

COMSOL to solve the numerical solutions. In FEM 

modeling, the mesh elements need to be discretized small 

enough to ensure an accurate solution. The mesh-size was 

refined until no significant change could be found in the 

transient solution. Since the model comprises fundamental 

tissue layers, the domains can be meshed with finer 

discretization settings to obtain optimum mesh quality 

(without increasing computation cost significantly). The 

number of tetrahedral finite elements was about 1.5 million 

(about 1.8 million degrees of freedom), and the simulation 

time was approximately 20 minutes. Once the anatomical 

upper arm volume conductor model and electrode array 

settings are completed, each tissue layer's electrical 

characteristics (as shown in Table 1) are assigned to perform 

the electrical potential measurements. Each layer was 

described using conductivity and relative permittivity. It is 

noted that the anisotropic conductivity of a muscle was 

considered using the diagonal matrix of the conductivity. 

 

III. RESULTS 

The electrical potential (the peak voltage value) variation 

along the targeted muscle length (as marked by the dotted line 

in Fig. 2) is shown in Fig. 3. The results showed that the 

electrical potential variation is proportional to injected 

current levels. The induced electrical potential along the 

muscle length is relatively higher for model 1 electrode 

arrangement compared to model 2. At 3 mA current injection, 

the maximum voltage value is 4 V for model 1, and this is 

about 1.6 V for model 2 at the point of E1 electrode. After a 

certain muscle length after E1, the electrical potential is 

decreased to zero levels due to the existing of cathode (the E2 

electrode) in the volume conductor for both models. It is also 

noted that the induced electrical potentials on the muscle 

length at E2 electrode position is at a similar level for both 

models, around -2 V. 

IV. DISCUSSION 

Bio-computational models can be used in the design and 

development of biomedical devices. Specifically, the 

electrode arrangement placement within the anatomical layer 

can be readily investigated using these models. The electrical 

potential is simulated within the volume conductor using 

appropriate boundary conditions and with attained associated 

tissue and electrode electrical parameters in such models. 

These models have been used in a variety of applications [7], 

[11],[12]. 

In this study, transient FE models were developed to 

simulate the electrical scalar potential's evolution inside the 

human body. The potential electrical distribution for two-

electrode models placed on the human upper arm was 

simulated, and results were recorded. It was shown that the 

electrode's placement along the upper arm is vital based on 

electrical potential distribution along the selected muscle 

length. It was noted that this variation for model 1 was 

relatively higher when compared to model 2. This may be due 

to the difference between the electrical parameters of the skin 

and muscle layers. Also, the thickness of the skin is not 

constant along with the muscle. Thus, electrical potential 

distribution on the muscle may be higher at lower thickness. 

Overall, more detailed electrode features (e.g., size, shape, 

gap) parameterization are required to analyse the different 

electrode impacts on BIA using sophisticated upper arm 

models. The results in Fig. 3 which include surrounding 

tissues, show a useful difference in electrical potential 

distributions with electrode models. This suggests that the 

placement of the electrode variations in impedance can be 

vital for induced electric potential on the target muscle. 

V. CONCLUSION 

In this study, the multilayer FEM models of the human arm 

were developed to investigate the impact of electrode 

placement on electric potential distribution along the selected 

muscle. As proof of concept, the electrical potential was 

simulated for two different electrode stimulation 

arrangements. The results showed that the electrical potential 

decreases as the electrode is shifted towards the upper arm. 

This may be related to the anatomical layers' electric features 

and the electrode's distance to the muscle. With further 

optimization, the model can be used to investigate the impact 

regarding electrode position for guiding, e.g., large-scale 

flexible printed electrode placement in BIA. 
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