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Abstract

A complex quantum system cannot be perfectly isolated from its surround-

ings and is typically subject to incoherent processes. Dissipation and/or

an external drive can move the system away from thermal equilibrium to a

non-equilibrium regime. Often, dissipation is an unwanted feature which is

minimised as much as possible, while in others cases, it can be harnessed

to stabilise interesting phases of matter. The subject of this thesis is the

development of tensor network techniques to probe the dynamics and steady

state properties of many-body open quantum systems.

Our theoretical understanding of many-body open quantum systems is

greatly aided by numerical techniques. However, numerical methods are re-

markably limited by the exponential growth of many-body Hilbert spaces.

Tensor network methods are a class of numerical techniques which aim to

circumvent the exponential growth of Hilbert space by representing the quan-

tum state as a network of tensors. Doing so allows for an efficient represen-

tation and manipulation of the quantum state.

In the first part of this thesis, a tensor network method is presented in

a Cluster Mean Field framework. This method integrates a one-dimensional

Lindblad master equation by dividing the system into finite sized clusters,

each represented by a tensor network. The effective master equation is in-

tegrated in real time using a sweeping Time Evolving Block Decimation



xii

algorithm and the method is used to investigate the steady properties of a

dissipative Jaynes-Cummings-Hubbard model with a two-photon drive where

a finite size scaling of the cluster sizes allows for comparison with equilibrium

models.

The simulation of two-dimensional open quantum lattice models are the

subject of the second part of the thesis. The Infinite Projected Entangled

Pair Operator is used as an ansatz for the density matrix of a system on

an infinite square lattice. The key development is a method to optimise

the truncation of enlarged tensor bonds in a way which is appropriate for

mixed states. The method is tested against exactly solvable cases and liter-

ature results. In the final chapter, the algorithm is applied to a dissipative

anisotropic XY-model and revealing the nature of a transition parameterised

by the strength of dissipation.



Impact Statement

The principal development of this work is an accurate numerical method for simulating

open quantum lattice models in spatial dimensions greater than one. The method,

which is based on tensor network techniques, will open new research directions which

were previously inaccessible in the study of open quantum systems. For instance, the

method will allow for the numerical study of large two-dimensional arrays of atoms which

interact with their environment, a class of system which has applications in quantum

simulation and the modelling of materials.

Tensor networks are a highly compact way of representing a quantum state and are

commonly used in the simulation of one-dimensional systems; for example, a chain of

interacting atoms. They are most commonly applied to systems which are completely

isolated from their environments, an idealised scenario which is difficult to achieve is a

real device. The work of this thesis demonstrates that tensor networks can be used to

accurately simulate open quantum lattice models in two dimensions and will give access

to new out-of-equilibrium phenomena which are expected to emerge in systems of spatial

dimension greater than one.

Efficient and reliable classical numerical simulation tools related to those developed in

this work will push the boundaries of the classical simulation of complex open quantum

systems and become a useful tool in benchmarking and verification of quantum simu-

lation devices. It is expected further high impact research which builds upon the work

presented here will emerge in the near future and that as the methods mature, they will
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be routinely used and become an integral part of the theoretical study of open quantum

lattice models.



Contents

Contents xv

Nomenclature xx

1 Introduction 1

1.1 Open Quantum Lattice Models . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Numerical Methods for Open Quantum Systems . . . . . . . . . . . . . . 14

1.3 This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Tensor Network Methods for One Dimensional Systems 25

2.1 Graphical Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Entanglement and Correlations . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 The Matrix Product State . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 The Matrix Product Operator . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 A Cluster Mean Field Algorithm . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Jaynes-Cummings-Hubbard Model with a Two-Photon Drive 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



xvi Contents

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Tensor Network Methods for Two Dimensional Systems 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 The Projected Entangled Pair State . . . . . . . . . . . . . . . . . . . . . 73

4.3 Calculating the Effective Environments . . . . . . . . . . . . . . . . . . . 82

4.4 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 A Dissipative Transverse Ising Model . . . . . . . . . . . . . . . . . . . . 100

4.7 Comparison with Simple Update . . . . . . . . . . . . . . . . . . . . . . 109

4.8 Driven-Dissipative Hard-Core Bose Hubbard Model . . . . . . . . . . . . 112

4.9 Order to Disorder Transition in the Two Dimensional Classical Ising Model116

4.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5 The Anisotropic Dissipative XY-model on a Square Lattice 125

5.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2 Mean Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3 Keldysh Field Theory Treatment . . . . . . . . . . . . . . . . . . . . . . 132

5.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6 Conclusions and Future Work 151

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154



Contents xvii

References 157

A PT −Symmetry of the Anisotropic Dissipative XY- Model 183





Nomenclature

Roman Symbols

CMF Cluster Mean Field

CTM Corner Transfer Matrix

CTMRG Corner Transfer Matrix Renormalisation Group

DMRG Density Matrix Renomalisation Group

FET Full Environment Truncation

iPEPO infinite Projected Entangled Pair Operator

iPEPS infinite Projected Entangled Pair State

LPTN Locally Purified Tensor Network

MF Mean Field

MPDO Matrix Product Density Operator

MPO Matrix Product Operator

MPS Matrix Product State

NISQ Noisy Intermediate-Scale Quantum



xx Nomenclature

TEBD Time Evolving Block Decimation

TN Tensor Network

TTN Tree Tensor Network

WTG Weighted Trace Gauge



Chapter 1

Introduction

In the twentieth century, the development of quantum mechanics caused a radical shift

in our understanding of the world, so much so that we are still grappling with its im-

plications. To this day, quantum mechanics frequently gives rise to new and unexpected

physical phenomena, challenging our understanding of reality. From a technological

perspective, what has been achieved as a result of our understanding of quantum mech-

anics in the past few decades has been astounding; the first quantum revolution [113] has

given rise to a plethora of new technologies ranging from medical imaging to precision

measurement and semiconductor devices. Catalysts of the Information Age, these tech-

nologies have undergone an unprecedented pace of development, perhaps exemplified

most compellingly by Moore’s law [125] which projected that the number of transistors

in a dense integrated circuit would double approximately every two years; a projection

which device manufacturers have been able to achieve for decades.

There are, however, signals that Moore’s law is coming to an end. As the size of

semiconductor components reach their lower limits, it will be necessary to rethink the

routes forward beyond physical miniaturisation and increasing clock speed. Furthermore,

the physical limits of other conventional technologies such as measurement devices have,

in many cases, already been achieved. A much anticipated and intriguing route forward
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again relies on quantum mechanics. The second quantum revolution [113] shifts the

focus towards exploiting some of the stranger aspects of the theory. Following John

Bell’s famous theorem [10], the field of quantum information emerged and promised

remarkable advances in information science, indeed the burgeoning field of quantum

technologies is moving forward at pace, with the development of technologies such as

quantum enhanced measurement, quantum clocks, quantum simulators and quantum

communication. Moreover, advances towards a many-body quantum simulation devices

and universal quantum computing have gained considerable pace within a short few

years. In particular, a variety of experimental platforms have been developed which

offer exquisite coherent control of quantum systems, these include: cold atoms [19, 71,

146, 153]; trapped ions [17, 18, 34, 124, 163]; superconducting qubits and quantum

electrodynamic circuits [4, 16, 32, 179, 193] and exciton-polariton microcavities [2, 30]

among others.

In dealing with these microscopic systems governed by quantum mechanics, it is typ-

ically found that interesting physical states are extremely fragile. A quantum system

such as an array of coupled two-level systems will invariably interact with its environ-

ment and a process called decoherence [154] will cause the system to lose the quantum

mechanical nature which made it useful for technological applications; for example, the

measurement of a quantum system by an observer will cause a quantum system to col-

lapse to a classical state and the coupling of a quantum system to a noisy environment

tends to introduce decoherence via incoherent processes. Typical quantum systems in

the lab cannot be perfectly isolated from their surroundings and the problem of decoher-

ence is one of the central barriers to building large scale and useful quantum information

processing devices [145].

Different physical platforms experience their own characteristic source of decoher-

ence. Low temperature superconducting qubit architectures (for example [4]) ere rep-
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resentative of the state-of-the-art of quantum computing and the current generation of

devices falls into the category of Noisy Intermediate-Scale Quantum (NISQ) [145]. These

devices undergo decoherence from a variety of sources including: thermal noise from

the environment, noise due to qubit imperfections, residual stray fields between qubits

and even correlated errors from background radiation, among others [4, 115, 160, 189].

Trapped ion systems can experience decoherence from non-uniform and stray electro-

magnetic fields [124] and optical devices such as exciton-polariton microcavities undergo

an incoherent loss of photons to their environments [30]. In the context of quantum

information processing, the coupling of a quantum system to sources of noise is typically

regarded as a nuisance which is to be minimised as far as possible.

However, the coupling of a quantum system to its environment is not always some-

thing to be avoided, indeed there are many ways in which the system-environment

coupling can be utilised for practical purposes and provide opportunities to study fun-

damental physics in a new non-equilibrium paradigm. Recent years have seen a surge

in interest in these areas, driven in part by the prospect of using controlled dissipative

channels to engineer interesting many-body quantum states with possible applications

in quantum state preparation, quantum memory devices and even dissipative quantum

computing [1, 50, 127, 142, 172, 185].

From the perspective of fundamental physics, the prospect of new physics bey-

ond equilibrium has driven a large body of research, a prime example of this is non-

equilibrium criticality. Criticality in classical systems is driven by a competition between

energy and entropy from thermal fluctuations. For a quantum system at zero temper-

ature, critical phenomena can still occur due to a competition between terms in the

Hamiltonian which do not commute. Away from equilibrium, driven dissipative quantum

systems open the possibility for even richer physics: by a careful engineering of driving

and dissipation, is it possible to stabilise phases which have no counterpart at equilib-
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rium [88, 108]. For example, the non-equilibrium setting opens the possibility of having

long range order in two-dimensional systems (see for example the case of flocking [166])

which, in the equilibrium setting, would violate the Mermin-Wagner theorem [120].

Many examples of non-equilibrium criticality have emergent equilibrium physics

where the dissipation can lead to the emergence of an effective temperature and the

critical behaviour is captured by an equilibrium universality class; see for example

[46, 63, 122]. Other systems define new dynamical universality classes which lie beyond

the standard classification of equilibrium and are examples of non-equilibrium quantum

criticality; see for example [116, 161]. While important steps have been taken towards

providing a general framework in which they can be studied; for example, the develop-

ment of a spectral theory of Liouvillians [121], our understanding of these phenomena

is still in its infancy and there is undoubtedly a lot of physics remaining to be explored

in a field which can no longer draw upon the well developed tools of equilibrium ther-

modynamics.

Another area of research which has recently attracted a lot interest is time crys-

tallinity. In analogy to more conventional phase solid state phases associated to spatial

symmetry breaking, in time crystals, a spontaneous breaking of time-translational invari-

ance occurs. The possibility of this happening at equilibrium has been ruled out [181],

however, non equilibrium many-body systems offer a platform on which time crystalline

behaviour can be observed. So called discrete time crystals occur in systems subject to

a periodic driving and are associated to discrete time translational symmetry breaking

characterised by observables which have oscillations at multiples of the driving period

[55, 149]. On the other hand, dissipative time crystals and boundary time crystals have

been also been investigated whereby the emergent time periodicity is associated with

the breaking of time translational symmetry as a result of coupling to an environment;

see for example [20, 25, 84, 93, 106, 167, 196].
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Given the richness of the physics in this out-of-equilibrium many-body setting, how

do we study such systems theoretically? The field of open quantum systems [23, 28] aims

to develop a framework in which out-of-equilibrium systems can be modelled and under-

stood. Although the inclusion of the environment typically impedes a simple solution,

there are a variety of analytical and numerical tools available for investigating few-body

open quantum systems. Small systems can usually be treated by so called exact nu-

merical methods where all degrees of freedom in the model are accounted for in the

numerics. When larger systems are considered, however, one quickly encounters a cent-

ral problem: the number of parameters required to represent the state of the many-body

system—the size of its Hilbert space—grows exponentially with the size of the system.

This phenomenon, an example of the so called curse of dimensionality [11], led Richard

Feynman to propose quantum simulation as a means of simulating many-body quantum

systems in the early 1980s [59]. Even after decades Moore’s law holding fast, exact nu-

merical methods for simulating many-body quantum systems are extremely limited in

the system sizes which can be dealt with. This barrier to exact simulation has prompted

a different approach in which approximate numerical methods have been developed to

try to overcome the curse of dimensionality—see [184] for a recent review.

One such class of approximate numerical method is built upon networks of inter-

connected tensors. Tensor Network (TN) methods [53, 134] are based on the idea

that, although the full space of states which a quantum system can explore—its Hil-

bert space—scales exponentially in the system size, many physically relevant states in

which we might have an interest, tend to live in a very small subspace of the full Hilbert

space. To make use of this, the state vector or density matrix of the system is repres-

ented as a TN and the structure of this TN ansatz restricts the set of states which a

system can explore to a very small subspace of the full Hilbert space. By making use of

the TN structure, the state can often be efficiently represented on a classical computer.
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The long-standing success of numerical TN methods is due to the so called entan-

glement area law, whereby the entanglement entropy of a region of space scales with

the size of its boundary rather than its volume [109, 141, 162, 177, 190, 191]. The area

law essentially specifies the structure of quantum entanglement possessed by a large

class of commonly encountered quantum many body states and, importantly, by the

tensor network representation itself [53, 79, 134]. Underpinned by the strong theoretical

guarantees surrounding the entanglement area law, TN method have become an indis-

pensable tool in the numerical simulation of isolated (closed) quantum systems and the

reasons why they work so well in certain situations are well understood and motivated—

these will be discussed further in Chapter 2. In the context of open quantum systems

the picture is much less clear and, apart from some results surrounding so called rap-

idly mixing systems [21, 92] which will be discussed in Chapter 2, we typically do not

have the same strong theoretical guarantees available as we do for closed systems. For

example, if one is interested in calculating time dynamics or in calculating steady states

via real time evolution, then it is not clear whether the steady state or all of the transient

states visited during evolution can be efficiently represented by a TN. Nevertheless, it

is reasonable to expect that in many cases, if dissipative processes are sufficiently local,

then the growth of entanglement will be curtailed and limit correlations generated by

entangling dynamics. In the absence of theoretical guarantees, a try it and see approach

is often taken by which some intuition can be built up.

Apart form a handful of examples [35, 40, 65, 77, 101, 118, 171, 186, 197], numerical

TN methods intended for the simulation of open quantum systems are much less well de-

veloped than their closed system counterparts. This opens up many research directions

wherein the powerful TN techniques developed for closed systems can be adapted and

incorporated into new simulation methods for open quantum systems. The resulting al-

gorithms will inherit efficiency and representational power of TNs and expand the toolkit



1.1 Open Quantum Lattice Models 7

for exploring the physics of open quantum systems while also providing a new perspect-

ive of the structure of non-equilibrium quantum systems from the viewpoint of quantum

entanglement. This thesis ventures along this research direction. In summary, the thesis

explores the development of numerical tensor network methods for open quantum sys-

tems in one and two spatial dimensions. The central contribution of the thesis is a TN

algorithm for simulating open quantum systems on a square lattice which adapts and

appropriates some existing techniques intended for closed two-dimensional systems to

the open system context. This reliable and efficient new algorithm offers a powerful tool

to explore the physics of two-dimensional many-body non-equilibrium quantum systems,

a paradigm which is relevant in both near term applications in quantum technologies

and fundamental physics.

The following sections will introduce in more detail the particular research area

covered in this thesis. In doing so, it will be helpful to discuss more precisely what is

meant by an open quantum lattice model and to introduce the Lindblad master equation.

Following this, there will be a short discussion covering the various different approaches

to solving open quantum lattice models numerically. Finally, motivation for the use of

tensor network techniques for this purpose will be discussed and the specific contents

and contributions made by this thesis will be presented.

1.1 Open Quantum Lattice Models

In the study of condensed matter, it is natural to encounter collective systems of atoms

forming crystals with highly ordered structure in space. It is therefore common to model

such a system using a lattice structure, where the constituent parts of the system are

located on the lattice points and interact with those on neighbouring lattice points.

In this context it is common to think of the lattice as a graph G = (V,E) composed

of vertices V and edges E. A lattice can be constructed from any arbitrary graph,
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however, regular graphs such as square, triangular and hexagonal lattices are by far the

most commonly studied since they are commonly found in natural condensed matter

systems. In this thesis, all of the discussion is restricted to lattices on simple cubic

graphs of dimension D, V = LD, in fact we will be concerned only with cubic lattices

in D = 1 and D = 2 dimensions. When we speak of a quantum lattice model we refer

to a lattice where each vertex or site hosts a quantum system; for example, a quantum

spin of dimension d, an harmonic oscillator or some more general fermionic or bosonic

degree of freedom. For finite-dimensional spin systems; for example, a two-level system,

the individual local Hilbert spaces Cd associated to each lattice site compose to form a

Hilbert space of the full lattice system H = (Cd)⊗n where n = |V | is the system’s size,

equivalent to its number of vertices. The fact that the size of the Hilbert space H grows

exponentially with the size of the system n lies at the heart of why exact numerical

simulations of these systems very quickly become infeasible as n increases.

Closed Quantum Systems

In quantum mechanics [70, 150], an isolated quantum system undergoes and evolution in

time which is reversible and generated by a Hermitian operator called the Hamiltonian

H. In the so called Schrödinger picture, the time evolution is described by a time

dependent state |Ψ(t)⟩ and a time independent Hamiltonian H. In terms of these objects

the Schrödinger equation takes the form of equation 1.1 where Planck’s constant ℏ is set

to unity (ℏ = 1)

i
d

dt
|Ψ(t)⟩ = H|Ψ(t)⟩. (1.1)

The pure state (|Ψ⟩ or |ψ⟩) representation of the system is appropriate when all

that can be known about the system is accounted for, however, this is not always the

case. For example, if we consider a preparation scheme which prepares the an ensemble
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of pure states |ψj⟩, each with probability pj where ∑
j pj = 1, then, if we have no

knowledge of the particular state prepared by the scheme then the expectation value

of some observable A is an average over all possible states weighted by their respective

probabilities of preparation: ⟨A⟩ = ∑
j pj⟨ψj|A|ψ⟩. Using the cyclic property of the

trace, this can be recast this in a form where the ensemble of states is described by a

density operator or density matrix ρ = ∑
j pi|ψj⟩⟨ψj| and the expectation value simply

becomes ⟨A⟩ = tr[ρA]. The density matrix representation therefore reflects our lack of

full knowledge of the state. In the case where the ensemble is composed of one pure

state; for example, suppose we choose that in our ensemble preparation scheme, only one

of the probabilities is non-zero pk = 1, then the density matrix describes what is called

a pure state ρ = |ψk⟩⟨ψk| which is a rank-1 projection operator such that ρ2 = ρ. On the

other hand, where the ensemble is composed of multiple pure states, the system density

matrix is referred to as mixed and its purity defined as P = tr[ρ2]. The evolution of such

a closed system density matrix in time can be expressed in the Schrödinger picture using

the so called Liouville-von Neumann equation (see for example [23])

d

dt
ρ(t) = −i[H, ρ(t)] (1.2)

where the square brackets denote the commutator. The Liouville-von Neumann equation

will provide a useful starting point for the derivation of the Lindblad master equation

which, rather than describing the evolution of a closed system density matrix, instead

describes the evolution of a density matrix which represents the state of a system which

is coupled to a external reservoir; these so called open quantum systems [23, 28] will be

discussed in the next subsection.

It is useful to specify the kind of Hamiltonians considered this thesis. Even if we

are considering a system which interacts with an external reservoir, we will typically

describe the system’s internal dynamics using a Hamiltonian. This is no different to a
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Hamiltonian describing an isolated quantum system. As discussed previously, we will

typically consider Hamiltonians describing regular quantum lattice models where the

lattice describes the underlying geometry of the system and the Hamiltonian describes

the physics. The focus in this thesis is on systems with short ranged interactions, in

particular, all of the models considered have at most two-local couplings. This means

that the Hamiltonian can be written in the form

H =
∑
j

h
(0)
j +

∑
⟨j,k⟩

h
(1)
j,k j, k ∈ V (1.3)

where, the angular brackets ⟨j, k⟩ denote that the lattice sites j and k are nearest neigh-

bours. This is a very natural description of a typical physical system—each constituent

part interacts only with those other constituent parts which are nearest to it. There

are very many instances of two-local Hamiltonians in the literature and they have been

studied in great depth, while their basic local geometric construction is simple, they give

rise to an astonishingly complex array of phenomena.

Open Quantum Systems

Hamiltonian lattice models describe systems of particles hopping on a lattice which is

isolated from any other external system or reservoir. Often one encounters the situation

where the lattice system is embedded within a larger physical system with which it

may interact. A typical example of such a situation arises in light-matter systems [30].

For example, a polariton lattice is a driven-dissipative system; light form a laser is

resonant with an optical cavity, this light remains trapped in the cavity for a short time

during which it has some probability of creating a matter excitation in the form of an

electron-hole pair in a semiconductor. This excitation will decay after some short time,

releasing the photon back into the cavity where this excitation-de-excitation process can

continue. After some time however, the photon will escape from the cavity back into the
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environment. Clearly, a full description of this systems which includes both gain from

the laser and loss of photons to the reservoir requires more than just the description of

the internal dynamics of the lattice.

In general, an open quantum system S is coupled to another quantum system B

which represents the reservoir—also often called the bath or environment. The system S

is therefore a subsystem of the combined system S+B, in most cases it can be assumed

that the combined system is closed. The subsystem S will therefore evolve according to

both the internal system dynamics of S and as a result of its interaction with B. The

full Hilbert space of the system is described by H = HS ⊗HB on which the Hamiltonian

H = HS ⊗ IB + IS ⊗HB +HI describes the Hamiltonian HS of the system by itself, the

Hamiltonian HB of the bath and the Hamiltonian HI describing the interaction between

the two subsystems S and B. While the combined system S + B evolves according to

unitary dynamics, in general, the dynamics of the subsystem S are no longer unitary.

Suppose that the state of the full system (S+B) is described by the density matrix ρ,

then the state of the system S can be found by tracing over the reservoir leaving a state

which is described by the so called reduced density matrix ρS = trBρ, where the subscript

denotes the partial trace over the subsystem B. In general, the reduced density matrix

can be mixed, even if the state of the combined system is pure. The reduced density

matrix ρS(t) at a time t is obtained by tracing over the combined system’s density matrix

ρ(t), therefore the equation of motion for the reduced system ρS(t) can be expressed as

the Liouville-von Neumann equation of the combined system

d

dt
ρS(t) = −itr[H, ρ(t)]. (1.4)

In principle, one could try to solve equation 1.4 for the reduced density matrix ρS(t)

by accounting for the full S + B system with the tools appropriate for solving closed

quantum lattice models and indeed this is often possible, however, it is common that the
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full description becomes too complicated for this to be efficient; for example, the bath

could represent very many degrees of freedom which may not be possible to account for

exactly. Supposing that we are only interested in observations on the subsystem S, a

widely adopted solution is to develop a simpler description of the subsystem S alone by

discarding detailed knowledge of the reservoir and tracing over it such that the system

S is described by a density matrix. A new master equation for the system alone can

then be derived using various approximating techniques.

The Lindblad Master Equation

Throughout this thesis, the open quantum lattice models considered are described by

the Lindblad master equation, for a thorough introduction the reader is referred to

[23, 28]. The Lindblad master equation describes a form of the generator of the quantum

dynamical semigroup that is derived under a set of approximations which we will refer

to collectively as the Lindblad approximations. This set of approximations remain valid

for a range of physical systems, but are perhaps most commonly appealed to in the field

of quantum optics. To understand the origin and regime of applicability of the Lindblad

master equation, it is instructive to discuss these approximations in turn.

To begin, we rewrite the master equation using the machinery of quantum dynamical

semigroups [28]; in this setting, the evolution of the system at time t = 0 to a later time t

can be described by a dynamical map V (t) which is a map from the space of the reduced

density operator into itself V (t) : S(HS) → S(HS), this allows for a master equation

of the form ρS(t) = V (t)ρS(0). Clearly, the problem is thus recast into that of finding

an appropriate dynamical map V (t) under some set of reasonable approximations about

the character of the system and its environment.

Starting from the Hamiltonian of the full system H = HS + HB + HI , it is first

assumed that the system S is weakly coupled to the reservoir B, where the Hamiltonian
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HI describes the system-reservoir interaction; for this discussion the terms environment,

bath and reservoir are used interchangeably and this is the so called weak coupling limit

or Born approximation. The Born approximation assumes that the influence of the

system on the reservoir is weak and that at any time, the state of the combined system

can be represented as a tensor product ρ(t) ≈ ρS(t) ⊗ ρB.

The next assumption is the so called Markovian approximation, here it is assumed

that the evolution of the state ρS(t) at time t is only dependent on its current state such

that the equation of motion is local in time. At this point, the evolution of ρS(t) may

still depend on the initial state of the reservoir, making it inconsistent with a description

in the framework of dynamical semigroups. To make progress, we must assume that the

timescale, τR over which the system’s state varies appreciably, is large as compared to the

timescale τB over which the correlations in the reservoir decay; τR ≫ τB; the dynamical

behaviour over times on the order of τB are not resolved. Finally, the so called secular

approximation is used to render the master equation in Lindblad form.

The Lindblad master equation recurs frequently this thesis, therefore, without going

into the mathematical details, we now describe its main features. As discussed in [23],

the most general form of the generator of the quantum dynamical semigroup L is the

Lindblad form and a general Lindblad master equation describing the evolution of the

reduced density matrix ρS can be written as (ℏ = 1)

LρS = −i[H, ρS] +
∑
k

γk

(
LkρSL

†
k − 1

2L
†
kLkρS − 1

2ρSL
†
kLk

)
. (1.5)

The first term is simply the Liouville-von Neumann equation for the evolution of the

reduced density operator ρS with respect to a Hamiltonian H which is Hermitian and

represents the unitary part of the dynamics. In general the Hamiltonian H in equation

1.5 may not be equivalent to the Hamiltonian of the subsystem S, but may instead

include terms relating to the interaction of the system with the reservoir; for example



14 Introduction

a Lamb shift is typically included in H. If the system is under the influence of a

coherent drive, this is usually included as part of its unitary evolution. The second term

is written as a sum over the operators Lk which are referred to as Lindblad operators

or jump operators. These operators are in general non-Hermitian and can always be

chosen to be traceless. The quantities γk are non-negative real-numbers which have the

dimension of inverse time and are related to the rates of relaxation, decay or incoherent

drive corresponding to the respective Lindblad operators.

In equation 1.5, it has been assumed that the terms in the Lindblad master equation

are time independent and although extensions to time dependent situations are possible,

they are not dealt with in this thesis and are therefore omitted from this discussion. Fi-

nally, it often convenient to collect the dissipative terms in the Lindblad master equation

into a dissipator D(ρS) which is defined as

D(ρS) ≡
∑
k

γk

(
LkρSL

†
k − 1

2L
†
kLkρS − 1

2ρSL
†
kLk

)
. (1.6)

1.2 Numerical Methods for Open Quantum Systems

The study of physical phenomena related to open quantum systems is greatly supported

by computational physics. Often, the most interesting phenomena emerge as a result of

complexity, however, this also tends to make them difficult to address either analytically

or numerically. In very many cases, a semiclassical or mean field analysis is sufficient

to understand the salient features of a particular model, however, in the study of large

strongly correlated systems, very few models can be solved exactly and semiclassical or

mean field approximations fail to capture important contributions to the physics.

The numerical investigation of large many-body quantum systems is hindered by

the exponential growth of Hilbert space. Consider a many-body open quantum lattice

model, as the size of the system increases, solving the Lindblad master equation using
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numerically exact methods, such as diagonalisation of the Liouvillian matrix, quickly

becomes infeasible. The development of tractable numerical methods is therefore cru-

cial to make progress in this field. In this section, a few of the many approaches to

numerically treating open quantum lattice models are discussed. In each case, the chal-

lenge lies in dealing with the exponential growth of the many body Hilbert space in a

way which avoids discarding as much of the important information about correlations

in the system as is possible, as well as in facilitating the non-equilibrium nature of the

system. The reader is referred to [184] for a recent review of these methods.

Steady State vs Time Evolution When one is faced with the challenge of investig-

ating an open quantum system, there are, broadly speaking, two different aspects of the

system which can be probed; the properties of one or more of its steady states, and/or

the characteristics of its dynamical evolution in time. This paradigm nurtures, again

broadly speaking, two classes of numerical method or algorithm; those which calculate

time dynamics and those which directly target the steady state. Time evolution al-

gorithms typically involve the representation of the observables of a system or its state,

either as a density matrix or ensemble of pure states. Following this, the state of the

system or the value of its observables are integrated in time according to the master

equation which generates its dynamics. To investigate steady state properties, the full,

long time evolution to one or more steady states is often a good option as it also offers

insight into the relaxation dynamics towards the steady state(s) as well as some loose

guarantees as to the physicality of the solution. Targeting the steady state directly

is also possible using techniques which are not associated with evolution in real time,

for example using a variational or imaginary time evolution algorithm to optimise the

state over the space of some variational manifold and with respect to some appropriate

functional.
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Mean Field Methods To simplify the exponential Hilbert space problem, a very

common and useful approximation is the well know mean field (MF) approximation in

which correlations between small individual subsystems are approximated by an average

field. In its first order approximation, one lattice site is modelled exactly while the in-

fluence of its neighbours is calculated self consistently and approximated by an average

external field. This simple type of MF approximation is a useful tool and often gives

insight into the salient features of the model without having to resort to large scale

numerics, however, it is very often an over simplification and tends to give qualitatively

incorrect results in regions where inter-subsystem correlations become important—for

example, near criticality. Furthermore, key aspects of quantum lattice models; entan-

glement, quantum information and correlations etcetera, cannot be treated at this level.

Progressing beyond MF approximations in this setting is an active area of research; some

works in this direction are mentioned below.

It is clear that taking steps beyond the simplest MF theory should involve the system-

atic inclusion of correlations between subsystems in a controlled and tractable manner.

One conceptually simple way of doing so is to consider solving more than one lattice site

exactly—for example in two dimensions, an nx × ny rectangular cluster of contiguous

sites—then calculating the average field self consistently based upon the state of the

cluster. This is the approach used in the Cluster Mean Field method of [88] and offers a

clear systematic approach to investigating the properties of moderate sized lattices but

also those of large systems via a finite size scaling. In principle, cluster based meth-

ods should work well if the typical length scale of correlations is captured by the size

of the cluster, of course, this is not always guaranteed and unwanted finite size effects

may prevail to large cluster sizes. The method of [103] and the similar approach of

[15] make progress beyond MF theory in a more careful manner by accounting for the

spatial structure of the correlation functions and feeding this back into the associated
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mean-field-like equations. Another notable method is the Linked Cluster Expansion

proposed in [14] which has proved useful for investigating open spin lattice models and

the coherent anomaly approach of [89].

Stochastic Methods Stochastic methods are typically based on the fact that the

density matrix can be represented as a statistical ensemble of pure states. By writ-

ing the initial state of an open system as ρ(t0) = ∑
k pk|ψk(t0)⟩⟨ψk(t0)|, the state at

future times can be found by propagation of the set pure states |ψk⟩ rather than the

full density matrix. Each of these pure state trajectories are less computationally costly

than evolving the full density matrix but this come at the cost of having to average

over many trajectories in order to reconstruct the ensemble average. In a typical situ-

ation, the system is initialised in a pure state |ψ⟩ and M independent simulations are

performed, giving a statistical error which scales as ∼ 1/
√
M. For a Hilbert space of

total dimension d, the computational cost of each trajectory is on the order of O(Md)

which is a considerable improvement over O(d2) required to evolve the full density mat-

rix, furthermore, since each trajectory of the master equation unravelling is statistically

independent the method is trivial to parallelise.

The stochastic nature of these methods comes from the inclusion of incoherent pro-

cesses experienced by each trajectory; a simple routine might proceed as follows. Con-

sider the case of a many-body spin system in a dissipative environment which is described

by a Lindblad master equation, in this setting each of the trajectories will evolve accord-

ing to a non-Hermitian Hamiltonian which does not preserve the norm of the pure state.

Once the norm of the state drops below a previously drawn random number, a randomly

chosen incoherent spin flip—a quantum jump—occurs which models the incoherent spin

relaxation or dephasing [44, 45, 143]. Each trajectory typically has many discontinuous

quantum jumps while the ensemble average will recover the smooth damped evolution.

Alternatively, a quantum state diffusion approach [67, 139] can be used. Here the
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evolution of the trajectory is be governed by a stochastic Schrödinger equation in which

the norm of the state remains at unity but the evolution is accompanied by a noise term

which models random fluctuations associated to continuous measurement or some other

environmental noise.

Stochastic and trajectory methods can offer advantages in situations where the dens-

ity matrix ensemble average masks some of the underlying physics; for example, in so

called bistable regimes [28], the probability distribution is bimodal and the mean field

result typically has two stable solutions. While the ensemble averaged density matrix

solution would have significant weight near these two mean field solutions, the indi-

vidual trajectories can offer insight into switching or tunnelling dynamics between the

two bistable states caused by quantum and/or thermal noise or induced by external

noise. Furthermore, quantum trajectory methods benefit from well established methods

restricting the state in a low entanglement region of the associated Hilbert space, for

example using a Matrix Product State ansatz (see Chapter 2). Using such a repres-

entation allows access to larger system sizes, furthermore this method can benefit from

the presence of incoherent dissipation which often limits the growth of entanglement in

time, this is of course a key requirement for restricting the state to the low entanglement

region of the system’s Hilbert space; see [44] for an extensive review.

Phase Space Methods In phase space methods, the state of the system is repres-

ented represented on a phase space, for example, using a Wigner [188], Positive-P [51]

or Q [26] quasi-probability representation, from there, the goal is to attempt to find

classical stochastic processes for which the hierarchy of couple moments is a good ap-

proximation to that of the quantum problem. The Truncated Wigner Approximation

(TWA) is a commonly used phase space method. TWA has been used very successfully

in the context of driven-dissipative microcavity polariton systems in [29] and later in

the context of a two dimensional BKT transition in a planar polariton microcavity [43]
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and offers a remarkably good description of exciton-polariton experiments. The large

rates of dissipation and relatively weak interaction strength of state of the art polariton

microcavities make them an ideal candidate for treatment using phase space methods,

however, for highly non-linear problems arising from strong interactions, phase space

techniques often fail dramatically [66, 152]. The Positive-P representation is another

phase space representation which finds utility in exploring large driven-dissipative sys-

tems, it has the useful feature that when the associated numerics remains stable, the

resulting values can be considered exact, the regions of applicability of the Positive-P

method in the context of the drive-dissipative Bose-Hubbard model have recently been

explored in [49].

Variational Approaches Variational approaches have been very successful in closed

systems, methods such as density functional theory and ground state TN algorithms

are routinely used. For open quantum systems, variational techniques can also be used,

here it is most natural to construct a variational principle which finds the steady state

of a given model. Towards this end, a typical strategy involves parameterising the state

of the system in terms of a set of variational parameters, for example ρ = ρ({αi}) ,

then optimising those parameters with respect to a suitable functional. Returning to

the example of finding the steady state, defined by ρ̇ = 0, one possible approach is to

minimise ||Lρ|| for an appropriate norm. Clearly choosing the appropriate functional

is of central importance to these methods as discussed in [182, 183]. For example,

if the trace norm is chosen, the evaluation of the variational functional itself is still

exponential in the system size, it is however possible to construct upper bounds on the

variational functional related to the degree of additional correlations that can arise due

to the application of the Liouvillian to states inside the variational manifold, see [183].

Variational methods also find a utility in time evolution algorithms; for example the

Time Dependent Variational Principle employs a variational integration of the master



20 Introduction

equation [99, 137].

Machine Learning Inspired Methods Recently, the success of machine learning

algorithms has made its way into the simulation of quantum lattice models. In the

context of open systems a few methods inspired by machine learning have already been

developed. For example, methods based on neural networks and the variational minim-

isation of an appropriate cost function have provided an exciting proof of concept, see for

example [76, 128, 174, 192]. By representing the state as a neural network, the hidden

layers introduce variational parameters which are associated to the quantum correlations

of the many body state. In principle, long range connectivity possible with the neural

network can allow for the inclusion of long range correlations which may give advantages

over other methods where only short range correlations are retained.

Corner Space Renormalisation The Corner Space Renormalisation Method of [60]

approaches the problem by restricting the Hilbert space of the open system to a corner of

the full Hilbert space. To do so, the method solves the master equation using an iterative

procedure which begins by finding the steady state for a small system, for example by

exact diagonalisation, then, two copies of the small systems are merged and only the most

probable states in the product space of the merged states are retained. Following this,

the steady state of the merged system is found and the process of merging and discarding

least probable state repeated. This iterative procedure can be used to simulate lattices

of increasing size. As highlighted in [184], the structure of the resulting density matrix

is analogous to that of a Tree Tensor Network (TTN) [158] and is therefore tailored to

finite system sizes.
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1.3 This Thesis

As discussed in the introductory paragraphs, recent advances in a variety of quantum

computing and quantum simulation platforms have opened up new opportunities for

the experimental realisation of quantum lattice models. However, for the foreseeable

future, it is likely that these experimental platforms will have to contend with noise.

While this noise is often an unwanted nuisance, there remain opportunities whereby the

coupling of a quantum lattice model to its environment can be harnessed and engin-

eered, leading to new technological applications and providing a new setting in which

to explore fundamental physical phenomena. In these endeavours, the ability to solve

open quantum lattice models on classical computers remains an indispensable tool. To

circumvent the exponential growth of the system Hilbert space and move beyond the

limits of exact numerical techniques, a broad array of creative approximate numerical

methods have been developed, the goal of this thesis is to contribute to this array of

techniques by developing efficient algorithms based on TNs, with a particular emphasis

on the relatively unexplored area of two-dimensional lattice models.

Underpinned by entanglement area laws, TNs have emerged as a standard tool in the

numerical simulation of closed quantum systems. Their development of the past decades

has offered a new lens into the entanglement structure of many-body quantum states

and provided a new framework in which the structure of these states can be understood

and characterised. In the pursuit of quantum computational advantage [144], TNs have

emerged as one of the most compact and powerful classical ansatze for quantum systems,

so much so that the leading classical algorithms pushing at the boundaries of quantum

advantage are based on large tensor network contractions; see for example [69, 82].

For one dimensional systems, the computational efficiency of TNs has already been

carried over to the context of open quantum lattice models, where the handful of al-

gorithms mentioned previously have demonstrated impressive results. In one spatial
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dimension, TN methods benefit from the simple network geometry; efficient contrac-

tion of the network and convenient gauge transformations make for simple and efficient

algorithms. Indeed, like in the case of closed quantum systems, the majority of TN

methods for open quantum systems are intended for to study of one-dimensional sys-

tems.

In the context of two-dimensional systems, tensor network methods incur a large

overhead in both computational and operational complexity such that there are very few

works which are intended for the simulation of two-dimensional open quantum lattice

models. In two dimensions, treatment of open quantum systems using TNs becomes

a lot more challenging. Firstly, the presence of closed loops in the network mean that

those simplifying methodologies associated to one-dimensional systems are no longer

available, secondly, there is very often a much greater computational cost associated to

contracting the two-dimensional TN. Both of these combined add significant additional

complexity which means that TN methods for two-dimensional systems require a more

careful treatment and additional numerical machinery. The central aim of the work in

this this thesis makes progress in this direction.

In Chapter 2 TN methods are introduced from the perspective of one-dimensional

closed quantum systems, in this setting, strong statements can be made in terms of

entanglement and correlations about why TNs allow for an efficient representations of

many-body quantum states. This is followed by a discussion of one-dimensional TNs as

they are applied to open quantum systems, including an overview of the key differences

to closed systems and review of some of the methods in the literature. Chapter 2 con-

cludes with a detailed discussion of a one-dimensional TN algorithm based on the Matrix

Product Operator (MPO) ansatz [171, 197] which integrates the Lindblad master equa-

tion in real time to calculate steady states and which is implemented in the framework

of a Cluster Mean Field (CMF) theory[13, 88]. Chapter 3 presents the results of a brief



1.3 This Thesis 23

study on the Dissipative Jaynes-Cummings-Hubbard model [72, 155] with a two-photon

drive and on a one-dimensional lattice. These results serve as both a demonstration of

the TN method discussed in Chapter 2 and a study of the of the critical properties of

the model.

In Chapter 4, two-dimensional TN methods are discussed and an algorithm to calcu-

late time dynamics and steady states of a Lindblad master equation on a two-dimensional

lattice is presented. In doing so, the Projected Entangled Pair Operator (PEPO) TN

ansatz is discussed along with its infinite system counterpart the Infinite Projected En-

tangled Pair Operator (iPEPO) [101]; by infinite we are referring to a translationally

invariant system in the thermodynamic limit. Details of the iPEPO algorithm form the

bulk of Chapter 4 and includes a discussion of environment calculation, optimisation and

gauge fixing. The chapter concludes with testing of the iPEPO algorithm for integrating

a dissipative Ising model in an efficiently solvable regime and against other algorithms in

the literature. In particular, we take as a starting point the work of [101] which presented

a TN algorithm for calculating steady states of square lattice systems and introduced the

iPEPO as an operator ansatz for the system density matrix. Importantly, the work of

[101] used the so called simple update algorithm to integrate the master equation in real

time and while this procedure is fast and efficient, the simplicity of the method means

that it is not expected to properly account for the influence on spatial correlations on

local dynamics, furthermore, there are concerns over the stability of the simple update

algorithm in this context as outlined in [94]. This thesis introduces a new integration

method which goes beyond the simple update; in particular, the key contribution of

the work is a new method to truncate enlarged tensor bonds while taking into account

the effect of spatial correlations. The new truncation scheme adapts existing techniques

from closed quantum system tensor network literature. A so called corner transfer mat-

rix (CTM) [8, 9, 130, 131] technique is used to calculate the environment of the lattice
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unit cell and the particular CTM variant used here is adapted from [62]. Techniques for

finding optimal tensor bond truncation known as Full Environment Truncation (FET)

is adapted from [56] and a method for fixing the gauge freedom across internal bonds

to the so called Weighted Trace Gauge (WTG) is also adapted from [56]. In practice, it

is found that this new truncation scheme is essential for achieving accurate simulations,

this is particularly true in the context of real time evolution towards a steady state where

the influence of even very small spatial correlations on local dynamics accumulates in

time and can have a considerable impact on the eventual character of the steady state.

Chapter 5 uses the two-dimensional TN algorithm developed in Chapter 4 to probe

the properties of a dissipative and anisotropic XY-model on a square lattice. This

interesting model hosts a transition parameterised by the ratio of the strength of hopping

between nearest neighbour lattice sites and the strength of dissipation which takes the

system from a pure product state in the limit of strong dissipation to a highly mixed

state when the hopping dominates. Furthermore the model serves as an example of how

mean field theories applied to open quantum systems can give qualitatively different

results compared to the case where quantum correlations are accounted for.



Chapter 2

Tensor Network Methods for One

Dimensional Systems

It is natural to begin an introduction to numerical TN methods by discussing their ap-

plication to one-dimensional closed quantum systems. In this setting, the representation

of quantum states as TNs has become an invaluable tool. As well as being a tremend-

ously successful framework for numerical simulation, the representation of states as TNs

has also proven to be a powerful tool in understanding the structure of many body

quantum states. One can therefore approach an introduction from two directions. A

top down approach would first consider the success of numerical methods such as the

Density Matrix Renormalisation Group (DMRG) and the plethora of related algorithms

which have emerged over the years, from there, one can delve into the reasons why it

has worked so well. Alternatively, a bottom up approach would first identify the typical

structure of quantum states associated to the so called physical corner of Hilbert space

[78, 190] and show how representation as a TN exploits this structure and can serve as

an efficient ansatz for these states.

Here we choose the latter approach. Firstly, a brief introduction to graphical TN

notation is given, followed by a short discussion of correlations and entanglement which
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culminates in the identification of the entanglement area law as a key feature linking

TNs to quantum states. Based on these concepts, a short discussion about the prospects

of simulating open quantum systems with TNs is given. The widely used TNs, the

Matrix Product State and Matrix Product Operator are introduced and various types

of algorithm intended for simulating open quantum systems are reviewed. Finally a

simple algorithm for calculating steady states of one-dimensional systems is developed

in more detail. Elements of the discussion are adapted from the various review articles

[33, 53, 134, 156].

2.1 Graphical Notation

The representation of tensors using index notation quickly becomes cumbersome when

more complicated TNs are being dealt with. Graphical notation greatly simplifies the

representation of TNs. Illustrated in Figure 2.1, tensors are represented graphically by

shapes with connected lines or legs, where the rank of a tensor is exposed by its number

of connected legs. Common operations on tensors: tracing of matrices, linear maps and

arbitrary contractions involving many tensors are straightforward to represent by tensors

diagrams. For example, the contracted indices of a pair of tensors share a common leg

and outer products of tensors have an intuitive graphical representation.

The conventions used for the graphical representation of tensor conjugation, Kro-

necker deltas δ, isometries and the reshaping of a tensor are illustrated in Figure 2.2.

Consider the example of a singular value decomposition of a third rank tensor T , de-

composed with respect to one of its legs. In Figure 2.2 (a-c) T is first reshaped such

that two of its legs become one, giving it the form of a matrix. Next, the matrix T

is decomposed giving the unitary matrices U and V and the diagonal matrix S, where

U †U = I and V †V = I where we note that the second rank Kronecker delta—equivalent

to the identity matrix—is represented by a line. Conjugation is represented graphically
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Figure 2.1: Graphical notation of TNs. (a) A vector v has one index and is represented
by a shape with one leg, (b) a matrix M has two legs and (c) a third rank tensor T has
three. (d) Tracing over indices results in a scalar with no legs while (e) the matrix M
maps a vector v to another vector. (f) The outer product of a vector v with its transpose.

by a mirror image, where, by convention, the pointed shape assigned to isometries or

unitaries makes this graphical conjugation clear.

2.2 Entanglement and Correlations

To approach the subject of TNs as they relate to quantum lattice models, it is insightful

to first discuss them in the context of Hamiltonian systems. This is because certain

classes of Hamiltonians are known to have ground states for which a TN ansatz is

an efficient and accurate representation. For example; for the case of one-dimensional,

gapped, local Hamiltonians, the ground state is known to have a particular entanglement

structure, it turns out that this entanglement structure means that the state can be

efficiently represented by a particular type of TN called a Matrix Product State (MPS).

This section explores the connection between the entanglement structure of quantum

states and their representation using TNs.

To make the discussion more concrete it is useful to recount some basic ideas from
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Figure 2.2: Graphical notation, reshaping, decomposition and isometries. (a) T is con-
jugated with respect to the index α and is represented by its horizontal mirror image
T̄ . (b) Reshaping of indices. (c) Singular value decomposition of the matrix T gives the
unitary matrices U and V and the diagonal matrix S. (d) Contraction of isometries give
the identity matrix which is represented by a line. (e) Contraction of T and T̄ is greatly
simplified in graphical notation. (f) Representation of a fourth rank Kronecker delta.

quantum theory. For a Hamiltonian H, the ground state |ψ⟩ is that which minimises

the energy E0 = ⟨ψ|H|ψ⟩ and lives on a ground state manifold G which is a subset of

the full Hilbert space H of the Hamiltonian. The ground state can be either unique or

degenerate and in the thermodynamic limit of an infinitely large system, it can either

be separated by a finite energy gap ∆E to the first excited state, in which case it is said

to be gapped, or, if there is no energy gap separating the ground state and first excited

state, the system is said to be gapless.

The form of spatial correlation functions between different sites on the lattice tells

us a lot about the structure of a state—in both classical and quantum systems. If one

is dealing with a two-local Hamiltonian, then one might intuitively expect correlations

to decay quickly in space; only nearest neighbour lattice sites are directly coupled to

one another such that correlations between sites at a greater distance will become in-

creasingly weak. This does indeed turn out to be the case if the local Hamiltonian is

gapped. In fact, an exponential decay of correlations in gapped Hamiltonians can be
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proven rigorously [111]. This statement is, however, no longer true for gapless systems

where correlations instead decay algebraically. The functional form of spatial correla-

tion functions points to some structural differences between gapped and gapless states.

These differences have far reaching consequences and underpin much of our understand-

ing of phase transitions, critical behaviour and universality. Nevertheless, for quantum

many-body systems, the correlation functions tell only part of the story, to understand

the structure of these states at a deeper level it is necessary to incorporate ideas from

the theory of quantum information.

Quantum information theory gave rise to the notion of quantum entanglement. From

Bell’s inequalities to many body physics and more recently in novel quantum technolo-

gies, this uniquely quantum mechanical phenomenon has become an important concept

throughout quantum physics. The application of the theory of entanglement to many-

body quantum lattice models has resulted in a much more intricate understanding of

the structure of complex quantum systems which are typically observed in nature. The

entanglement structure is of fundamental importance in the classification of many-body

quantum states and allows for the characterisation of states with no classical counter-

part. As we will see, TNs have played a significant role in the development of this

understanding; viewed through the lens of entanglement theory, the suitability of TNs

for describing many body quantum states becomes apparent.

Consider a lattice Hamiltonian which is gapped and prepared in its pure and unique

ground state ρ, a subset of lattice sites A which is separated from the rest of the lattice,

which we will call B, can be described by the reduced density matrix ρA = trB(ρ). The

Von Neumann Entropy S(ρA) = −tr(ρA ln ρA) of the reduced system is a measure which

indicates the degree of entanglement [12] between the subsystem A and the remainder

of the lattice B; note that the Von Neumann entropy of the whole system is zero since

it is a pure state. If the two subsets A and B can be decomposed as a product state,
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then no quantum entanglement exists between the subsystems. A finite Von Neumann

entropy on the other hand, indicates the presence of bi-partite entanglement; for this

reason it is often dubbed the entanglement entropy.

How then does the entanglement entropy scale as the size of the lattice model in-

creases? If ρA represents a subspace consisting of NA spin-1/2 particles (d = 2) then

S(ρA) is maximised if ρA is maximally mixed

S(ρA) = −
∑
j

(ηj ln ηj) = NA ln d.

In general the von-Neumann entropy is upper bounded by S(ρA) ≤ |A| ln d where |A|

denotes the size or volume of the subsystem ρA and d the size of the Hilbert space of each

local system—we assume systems with finite dimensional Hilbert spaces for simplicity.

It is natural to ask whether or not this bound which is extensive in the subsystem

volume |A| is actually reached for a typical system in the lab. Whereas a generic

state chosen randomly from the full Hilbert space state does indeed tend to saturate

the upper bound, more typical physical states, for example ground states of gapped

one-dimensional local Hamiltonians, instead scale with the size of the boundary |∂A|

between subsystems rather than its volume, this is dubbed the entanglement area law.

While the nomenclature comes from the three-dimensional case where the area refers to

that which bounds a volume, in a one-dimensional system the area corresponds to the

boundary between the sites separating the subsystem A from the rest of the state and

for a two-dimensional system, the area corresponds to the perimeter of the connected

subsystem A

S(ρA) ∝ |∂A| (area law).

Some instances of area laws are well known; for example, the statement that the

entanglement entropy obeys an area law can be made rigorously for the case of unique
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ground states of gapped one-dimensional local Hamiltonians [79]. Other instances of

area laws are also known; for instance, free fermionic and bosonic models in which the

Hamiltonian can be written as a quadratic polynomial in the creation and annihilation

operators [37, 141], graph states [81] and free bosonic models in dimensions greater than

one [38]. The reader is referred to the review article [54] for a more complete set of

examples.

On the other hand, there are known instances of states which violate entanglement

area laws; for example, in one-dimensional Hamiltonians, ground state spatial correla-

tions decay algebraically rather than exponentially when the system is gapless. In this

situation, the strict area law is violated and the entanglement scaling acquires a logar-

ithmic correction. The corrected entanglement scaling remains a sub-volume law, but

is logarithmically divergent in the volume of the subsystem |A|. A strong relationship

between the presence of an exponential decay of spatial correlations and an entanglement

area law has been established [22]; the former implies the latter.

In dimensions greater than one, much less is known rigorously about the entanglement

scaling of Hamiltonian ground states. Clearly, the boundary of a higher dimensional

subsystem A soon becomes non trivial. Through a range of approaches, an intuition has

been developed about area laws in higher dimensional systems: when one has a local

gapped model with a length scale provided by the correlation function, then it is broadly

expected that area laws should hold [54]. Although it is more difficult to prove strict area

laws in this higher dimensional setting, there has been some progress in this direction;

for example, it is possible to show that the entanglement scaling of higher dimensional

models are upper bounded by an area law with at most logarithmic corrections given

a sufficiently fast decay of correlations [117]. To give a more concrete example: it is

known that critical, quasi-free fermionic models on a lattice violate higher dimensional

area laws with logarithmic corrections, but that their bosonic counterparts do not [38].
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The connection between quantum states and their representation as TNs becomes

clear when we note that TN states themselves also obey an area law by construction.

As will be shown in section 2.3, the well known Matrix Product State clearly obeys an

entanglement area law by virtue of it’s TN structure. In light of the above discussion

concerning area laws, the fact that TNs provide an efficient representation of states

obeying an entanglement area law is at the heart of the success of TN algorithms for

numerically simulating low energy quantum states; if one reasonably expects that a

particular state obeys an area law—many physically reasonable ones do—then it should

be possible to find a TN ansatz which can represent that state in an efficient way. This

key point is worth reiterating: although a very small subset of states in the full Hilbert

space satisfy an area law, it is found that very often, states typically encountered in

reasonable physical systems tend to live in and around this low entanglement subspace

of the full exponentially large Hilbert space and this is precisely the subspace spanned

by efficiently representable TN states.

For a long time, it was widely believed that in physically reasonable systems, area

laws could be violated by at most logarithmic corrections, however, more recent studies

[126] have highlighted a class of models which are deemed to be physically reasonable

but violate the area law by a square root factor meaning that they are exponentially

more entangled than a system obeying an area law. This class of supercritically entangled

states could allow for physical system which have a much richer structure than previously

thought possible and their classical simulation is likely far beyond the capabilities of

state-of-the-art techniques.

Correlations and Entanglement in Open Quantum Systems

The previous discussion leading the identification of a relationship between clustering of

correlations, entanglement area laws and TNs drew upon notions related to the closed
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system Hamiltonian. When attempting to numerically simulate a many-body open

quantum system, a natural question is to ask whether tools like TNs can be adap-

ted to this new context. As compared to closed systems, much less is known about the

nature of many-body open quantum systems and under which conditions they can be

simulated efficiently on a classical computer. Drawing inspiration from closed systems

in addressing these questions it is natural to consider the structure of correlations and

entanglement of typical states encountered in open systems. In [190] it was shown that

thermal states of local Hamiltonians obey an area law and while this result extends the

notion of area laws to mixed states, thermal states do not fully cover steady states and

a more tailored analysis is required. In this section, some relevant results pertaining to

so called rapidly mixing many-body open quantum systems are briefly discussed. For a

review on the issue of entanglement in open-systems, the interested reader is referred to

[3].

Much like the discussion in terms of ground states of local Hamiltonians, here, the

discussion is restricted to steady states of local Lindbladians—systems weakly coupled

to a Markovian environment. Of course there are some basic differences between steady

states and ground states to contend with, most notably is the fact that ground states are

pure while steady states can be mixed. This calls for a different measure of entanglement

which is appropriate for mixed states and one typically finds that the mutual information

which measures correlations between two parts of a quantum state is used. The mutual

information is advantageous in that it coincides with the entanglement entropy in the

case of pure states and it upper bounds mixed state operational entanglement measures

such as the distillable entanglement [12, 21].

The stability of the theoretical model defined by a Hamiltonian or Lindbladian with

respect to small perturbations is crucial to its justification as a good model of the associ-

ated physical system; if the Hamiltonian or Lindbladian model depends very sensitively
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on small perturbations, then it is difficult to conclude anything about the actual phys-

ical system. In [39], the authors consider local Lindbladians which correspond to the

generator of the time evolution in the Lindblad approximation and which decompose

into sums of local terms where the interactions decrease in strength with distance. The

motivation for considering this class of system is that they model many of the types of

environmental noise found in nature and therefore provide a realistic model of physical

systems. For local Lindbladians it is shown that local observables and correlation func-

tions are stable to perturbations, as long as the unperturbed Lindbladian has a unique

fixed point and obeys what is a so called rapid mixing condition. Whereas in the case

of the Hamiltonian, the nature of the gap plays a central role, in dissipative systems,

a similar role is associated to the speed of convergence towards the fixed point—the

mixing time. Systems for which the mixing time scales logarithmically with the systems

size are denoted rapid mixing. The stability of such Lindbladians is good news for those

seeking to numerically simulate many-body open quantum systems, however this does

not yet address the structure of correlations or entanglement.

In [92], the authors provide an analysis of the correlation properties of lattice systems

which have dynamics generated by sufficiently local Liouvillians with a unique steady

state; local Lindbladians are a typical example of this. In particular, they show that if

the Lindbladian has a spectral gap which is independent of the size of the system, then

the correlation functions decay exponentially and are therefore strongly clustered and

localised. It is also shown in [92] that in the case of rapidly mixing systems, the mutual

information correlations decay strongly, hinting at the possibility of an entanglement

area law in the presence of rapid mixing. Taking this a step further, the authors of [21]

prove that for rapidly mixing dissipative quantum systems, the associated fixed point

satisfies an area law with logarithmic corrections in the mutual information. If on the

other hand the fixed point is pure, then the state satisfies entanglement area law in
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terms of the entanglement entropy. In either case rapid mixing is the required condition

for an area law and this broadly ties in with the intuition for closed quantum systems

where a gapped Hamiltonian typically admits an area law.

These results seem to suggest that in many cases, fixed points of open quantum

systems with local dissipators should be efficient to simulate classically using TNs. In

particular, this should be the case for steady states of rapidly mixing systems which fulfil

the conditions described in [21, 92]. Given a local Lindbladian for which we might expect

there to be fixed point which satisfies an area law, we could conjecture that a TN such as

a Matrix Product Operator or some higher dimensional network such as the Projected

Entangled Pair Operator with a finite bond dimension will be sufficient to represent its

stationary state to a good approximation. However, even in the case of local Lindbladians

there are regions of the phase diagram where entanglement may be strong and where

the TN ansatze could be pushed to their limits; for example, near critical points of

dissipative phase transitions. Over recent years a variety of numerical algorithms have

been proposed and successfully used to simulate many-body open quantum systems

using TNs. Before reviewing them, it will be useful to introduce two commonly used TN

ansatze for one-dimensional systems, the Matrix Product State and the Matrix Product

Operator.

2.3 The Matrix Product State

The Matrix Product State (MPS) is the most widely used type of TN. It gets its

name from its structure, a one-dimensional array of tensors which, without consid-

ering the local Hilbert space dimensions d, consist of a product of matrices as il-

lustrated in Figure 2.3. Consider a one dimensional quantum system with N sites

which is completely isolated from its environment. A general many-body wavefunction

|Ψ⟩ = cj1j2···jN |j1⟩|j2⟩ · · · |jN⟩ of this system can be expressed in terms a set of local
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Figure 2.3: The Matrix Product State (MPS) is composed of a set of interconnected
tensors with a local Hilbert space dimension d and bond dimensions χ. The left- and
rightmost tensors are row and column vectors respectively.

bases at each site on the chain and an Nth-rank tensor cj1j2···jN . The idea of the MPS

representation is to break c up into a set of smaller rank tensors which are contracted as

illustrated in Figure 2.3. For the case of a one-dimensional system with open boundary

conditions, the left and rightmost matrices are A(1) ∈ C1×D and A(N) ∈ CD×1 while the

remaining tensors are A(n) ∈ CD×D. The uncontracted dimensions shown in Figure 2.3

are associated to the local basis states.

cj1j2···jN =
D∑

α,β,...,ω

A
(1)
α;j1A

(1)
α,β;j2 . . . A

(N)
ω;jN = A

(1)
j1 A

(1)
j2 . . . A

(N)
jN

(2.1)

Each of the individual tensors in the MPS has one physical Hilbert space dimension

d and one or two bond dimensions χ. The physical dimension d has a clear physical

meaning: it represents the space of states of the local subsystem associated to the local

tensors, for example it could represent the space of states of a spin-1/2 particle in which

case d = 2. The bond dimension can be thought of as a variational or refinement

parameters and has no direct physical significance but is instead associated to the ex-

pressibility of the ansatz; it controls how much of the full Hilbert space the MPS can

represent. For an N -body spin system, the number of parameters needed to represent

the state—in the tensor c—is O(dN), the corresponding MPS with bond dimension D

can instead be represented using O(NdD2) parameters, a scaling which is linear rather

than exponential in N.
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The MPS is dense in the sense that if the bond dimension is taken large enough

then the space of states it can represent will be equivalent to the full O(dN) Hilbert

space. In practice, the bond dimension is used as a variational parameter which controls

the accuracy of the ansatz, the larger D, the greater the space of state which can be

represented and the smaller the error of the approximation. In the limit of D = 1,

the matrices become complex numbers and this is equivalent to the MF approximation.

Importantly, as discussed previously, the MPS obeys an area law by construction. This

can be seen by considering a subset A of contiguous sites, then, the entanglement entropy

scales as S(ρA) = O(log(D)) and is therefore bounded from above by a constant in N .

In the context of numerical methods for the simulation of open quantum systems,

the MPS finds utility in stochastic methods. These methods are based on the stochastic

unravelling of the master equation into an ensemble of pure state trajectories. During the

algorithm, each individual pure state trajectory evolves according to a non-Hermitian

Hamiltonian and undergoes a stochastic jump when the norm of the state falls below a

previously drawn random number. Stochastic methods based on the MPS incorporate

the TN ansatz and its associated efficient time evolution techniques into the quantum

trajectories algorithm. The efficiency of the MPS representation thereby extends the

system sizes achievable using stochastic methods. The interested reader is referred to

[44] for a review.

2.4 The Matrix Product Operator

A matrix product operator (MPO) introduced in [171, 197] is a TN representation of

a quantum mechanical operator. The MPO can in principle represent any operator on

the Hilbert space it supports, this includes a representation of the mixed state density

operator ρ, in which case it is often referred to as a matrix product density operator

(MPDO). When considered as a mixed state ansatz, the MPDO can be thought of as
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Figure 2.4: The Matrix Product Operator (MPO) is composed of a set of interconnected
tensors, each with two local Hilbert space dimensions d and one or two bond dimensions
χ.

a natural generalisation of the MPS to mixed sates. The general MPO O is written in

terms of the tensors M (n)
jnkn

∈ CDn×Dn+1 apart from those at the first and last site which

are of size M (1)
j1k1 ∈ C1×D2 and M

(N)
jNkN

∈ CDN ×1 respectively. The labels jn and kn are

associate to the local Hilbert space of the reduced density matrix at site n. An MPO

with open boundary conditions is represented graphically in Figure 2.4 where the pair

of local Hilbert space dimensions d are associated to each local Hilbert space and the

bond dimension χ plays the same role as it does for the MPS; a variational or refinement

parameter.

O =
d∑

j1,...,jN

d∑
k1,...,kN

M
(1)
j1k1M

(2)
j2k2 . . .M

(N)
jNkN

|j1, . . . , jN⟩⟨k1, . . . , kN | (2.2)

A straightforward way to construct a MPDO for which the positivity of the resulting

density matrix is ensured is to use a purification form as explained in [171]. To do so,

the individual MPO matrices M (n)
jnkn

which are of size D2
n×D2

n+1 are constructed as sums

over the tensor products

M
(n)
jn,kn

=
dn∑
a=1

A
(n)
jns ⊗ (A(n)

kns
)∗ (2.3)

where dn is at most dDnDn+1 and the matrices A(n)
jnsn

are of size Dn × Dn+1. The

condition of equation 2.3 is a semidefinite condition—sufficient but not necessary—
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which guarantees that the associated map is completely positive and therefore represents

a physical state.

A major drawback of using the more general MPO as a representation for a mixed

quantum state is that the problem instance of detecting locally whether the state of

the global quantum system is positive semidefinite is NP-hard—it is undecidable in the

thermodynamic limit [96]. Nevertheless, the MPO representation has been used in a

number of numerical algorithms to great effect; while the positivity of the global state is

not possible to guarantee efficiently, the eigenvalues of sufficiently small reduced density

matrices can be checked efficiently and while the truncation of enlarged bonds can in

principle cause the state to become unphysical these algorithms often work well enough.

Although the purified MPDO form appears to be a neat solution to this positivity

problem, the authors of [104, 105] show that there are fundamental limitations on the

representational power of the purification form; note that the A tensors in equation

2.3 are “the purification” of the M tensors. In particular, they show that there exist

translationally invariant MPOs which do not possess purification MPDO forms which

are valid for all system sizes [104]. Moreover, authors of [105] consider the problem

of representing a MPO (represented by a set of M operators) with bond dimension D

with a MPDO in purification form (represented by a set of A operators) with dimension

D′ and ask whether D′ can be upper bounded by a function of D. They find that

D′ may need to be arbitrarily larger than D to represent the same state. In other

words, to gain positivity guarantees via the purification form it may be necessary to pay

for an arbitrarily larger bond dimension [33], nevertheless, while the purification form

can be problematic for infinite systems, it is always possible to at least formally find a

purification for finite size systems by diagonalising the density matrix [171].

In terms of the expressivity as an ansatz for mixed quantum states MPOs satisfy

an area law by construction and it is conjectured [31] that a generic MPDO in purific-
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ation form can be written as the Gibbs state of a quasi-local parent Hamiltonian and

therefore will have exponentially decaying mutual information in space. In terms of

representations of Hamiltonian operators, it is possible to represent Hamiltonians with

up to exponentially decaying interactions using an MPO and that Hamiltonians with

interactions decaying as a power law can be represented by sums of MPOs [140]. The

question of the expressivity of both classical and quantum correlations of the different

tensor network operator ansatze has been explored with respect to the so called op-

erator Schmidt rank—the minimum bond dimension of the MPO—and its associated

purification’s Schmidt rank [48]. In particular, one of the issues with MPO is that the

amount of classical correlations—measured by the entanglement of purification[165]—is

not upper bounded by the operator Schmidt rank but by the rank of its purification

[48, 105]. This throws up some issues around the interpretation of the operator Schmidt

rank; for example, it can be shown [47] that any bipartite mixed state represented my a

MPO with operator Schmidt rank two is separable such that it cannot describe quantum

correlations. Moreover, in the case of multipartite systems it can also be shown [47] that

MPOs of operator Schmidt rank two can also contain only classical correlations but that

MPOs of bond dimension three can contain an unbounded amount of classical correla-

tions; as measured by the Schmidt rank of their purification. The expressive power of

various tensor network factorisations has recently been explored in [68].

The authors of [197] demonstrate a numerical algorithm based on the MPO ansatz

to simulate thermal systems or integrate a generic master equation in time using a

superoperator renormalisation algorithm for nearest neighbour Liouvillians. A central

feature of the algorithm of [197] is the representation of the mixed state using the useful

Choi isomorphism which defines a correspondence between superoperators and operators

on a tensor product. In this framework, the density matrix is reshaped into a vectorised

superket ρ → |ρ⟩ while the superoperators acting on the superket become matrix-vector
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products L(ρ) → L|ρ⟩. The representation in this vectorised form is convenient from

an operational perspective as it fits easily into time evolution algorithms such as Time

Evolving Block Decimation (TEBD), for example the master equation can be integrated

in real time using TEBD.

Some algorithms based on the MPO ansatz directly target the steady state. The

authors of [40] make use of the fact that the steady state |ρs⟩ of a Lindbladian defined

by the superoperator L which satisfies the equation L|ρs⟩ = 0 will also be the ground

state of the Hermitian operator L†L, therefore a variational ground state search method

can be used to directly find |ρs⟩ where it will be the lowest energy eigenstate of L†L.

An advantage of ground state search methods over a real time evolution methods is

that the ground state search algorithm need not pass through the sequence of transient

states visited by the real time evolution, some of which could be highly entangled and

would therefore require a MPO with very large bond dimension to represent. This

can happen even if the eventual steady state is well represented by an MPO with a

small bond dimension, see for example [27]. One drawback of using the L†L ground

state search method is that this operator is in general highly non-local even if the

Liouvillian L itself is not. A related approach was taken in [118] where the authors

used an MPO based algorithm to directly search for the null vector of the Liouvillian

L|ρ⟩ = 0 using DMRG-like sweeps along the system. More recently, the authors [65]

used a hybrid approach for targeting steady states of infinite one-dimensional systems

based on an iMPO ansatz which represents one-dimensional systems directly in the

thermodynamic limit. Their hybrid approach first uses a ground state search procedure

to converge towards an approximate steady state which is the ground state of some

auxiliary Hamiltonian which approximates L†L, then, starting with the resulting ground

state, it uses real time evolution according to the local Liouvillian to fine tune the

steady state. This two-stage approach bypasses highly entangled states associated to
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the transient entangling dynamics and in some cases results in much faster convergence

to the steady state.

An alternative approach to simulating thermal systems is to unitarily evolve a pure

state containing an ancilla directly and then trace over that ancilla to compute the mixed

state. This is achieved by attaching a local environment at each MPO site such that its

purification is written as a MPS |Ψ⟩. Consider for example a one-dimensional system

with open boundary conditions, the purified state |Ψ⟩ can be written as

|Ψ⟩ =
∑

j1,...,jN

∑
k1,...,kN

A
(1)
[j1e1]A

(2)
[j2e2] · · ·A(N)

[jLeL]|j1e1j2e2 · · · jNeN⟩.

where the contraction over internal bonds is implicit. The MPS can be evolved using

standard MPS techniques and mixed state can then be recovered by tracing over the

environmental degrees of freedom of the purification, giving a density matrix ρ which is

positive semidefinite by construction ρ = tre1e2···eL
|Ψ⟩⟨Ψ|.

In [5, 58] the authors use this method to calculate spectral functions of finite tem-

perature systems. In [80] the authors prescribe a method to find a minimally entangled

representation as an MPS by iterative minimisation of the second Rényi entropy, for a

given mixed state, the purification is not unique and it is therefore important to remove

unnecessary entanglement.

In a slightly different but related direction, the authors of [186] present an algorithm

for open quantum systems based on what they call a locally purified tensor network

(LPTN). In this case, the state is decomposed as ρ = X†X and the so called purification

operator X is represented using a TN. The integration method is similar to TEBD

and acts only on the purification operator, meaning that the state remains positive

throughout and the mixed state ρ can be recovered at any point by contraction X with

its conjugate X†. This method allows for the efficient simulation of open quantum lattice

models of a finite size.
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2.5 A Cluster Mean Field Algorithm

The important features of a typical TN algorithm are best explained by giving a detailed

example of an algorithm. In this section, a simple algorithm for calculating the steady

state of a one-dimensional system is discussed in detail. The method makes use of the

cluster MF approach inspired by [88] and the underlying DRMG-like sweeping TEBD

real time evolution algorithm incorporates a methodology similar to [197]. The method

is well suited to calculating steady state properties and is used in Chapter 3 to calculate

the steady state properties of a dissipative Jaynes-Cummings-Hubbard model with a

two-photon drive.

The Ansatz

We represent the mixed state of the system as a MPO in vectorised form. Consider a

one-dimensional chain of N sites. The local Hilbert space at each site is spanned by the

set of operators {σ(n)
jn,kn

} ; for example, for a chain of two level systems, these operators

are the Pauli spin operators σ0 = I, σ1 = σx, σ2 = σy and σ3 = σz. The unvectorised

MPO can be written in terms of the matrices M (n)
jn,kn

and the operators σ(n)
jn,kn

as

ρ =
d∑

j1,...,jN

d∑
k1,...,kN

M
(1)
j1k1M

(2)
j2k2 . . .M

(N)
jNkN

σ
(1)
j1,k1σ

(2)
j2,k2 . . . σ

(N)
jN ,kN

, (2.4)

where the sum over operator basis states is suppressed, this is illustrated in Figure

2.5. The MPO is written in its vectorised form by vectorisation of the basis matrices

σ
(n)
jn,kn

→ σ
(n)
[jn,kn] where it useful to further compress the notation such that [jn, kn] → µn

giving

ρ =
∑

µ1,...,µN

M (1)
µ1 M

(2)
µ2 . . .M

(N)
µN

σ(1)
µ1 σ

(2)
µ2 . . . σ

(N)
µN
, (2.5)
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Figure 2.5: The mixed state is represented with a Matrix Product Operator (MPO) of
bond dimension χ and a d × d local Hilbert space. In the vectorised form, the local
Hilbert spaces are vectorised giving the superket |ρ⟩ which is represented by a vectorised
MPO with bond dimension χ and a local Hilbert space d2.

which is illustrated in Figure 2.5. The vectorised form is very useful from an operational

perspective since it has the same form as an MPS.

Mixed Canonical Form

On every internal bond of a TN, for example the TN representing |ρ⟩ there exists a gauge

freedom. This can easily be seen by resolving the identity matrix across each internal

bond—represented graphically by a line—into a pair of isometries I = x−1x, the gauge

freedom arises from the freedom to choose x. This gauge freedom allows the network to

be cast in various canonical forms which often simplify algorithms considerably.

A useful canonical form which is widely used in algorithms such is the mixed canonical

form or multi-canonical form. The idea is to choose an orthogonality centre which lies

between two sites on the chain. All tensors to the left of the orthogonality centre are

transformed to their so called left-canonical form while those to its right are set to their

right-canonical form. As we will see, the mixed canonical form corresponds to performing

a Schmidt decomposition across the two sites which flank the orthogonality centre, for

this reason it is also often referred to as the Schmidt form. The mixed canonical form

is widely used in numerical methods since it allows for efficient and numerically stable

algorithms, furthermore it provides a clear prescription for the truncation of the Hilbert

space in terms of the Schmidt components across a bipartition of the chain.
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Figure 2.6: The matrix product operator can be expressed in mixed canonical form with
the orthogonality centre at the location of the bond matrix s. Note that the vectorised
form is used such that the pairs of vertical legs at each tensor correspond to the vectorised
operators σµn which span the local Hilbert space at each site.

The MPO describing the full density matrix of the chain ρ is written in mixed

canonical form with orthogonality centre located between sites j and j + 1

ρ =
χ−1∑
α,β=0

[A(1)
µ1 . . . A

(j)
µj

]α︸ ︷︷ ︸
xLα

sαβ [B(j+1)
µj+1

. . . B(N)
µN

]β︸ ︷︷ ︸
xRβ

σ(1)
µ1 . . . σ

(N)
µN
, (2.6)

where A(j)
µj

and B(j)
µj

are χ×χ matrices apart from those at the left and right ends of the

chain, A(1)
µ1 and B(L)

µj
, which are 1×χ and χ×1 matrices respectively. The χ×χ matrix s

is a diagonal matrix containing Schmidt components. Note that the sum over the basis

operators at each site labelled by µj has been suppressed in equation 2.6. In Figure

2.6, the MPO expressed in mixed canonical form is shown in graphical notation—note

that the vectorised form of the MPO is used and the dots imply an arbitrary number of

intermediate sites.

In the following discussion it will be useful to express the tensors which are located

to the left of the orthogonality centre as x̂[j]
Lα and those to its right as x̂[j+1]

Rα as shown

in equation 2.8, note that by writing x̂L and x̂R with hats, contraction with the basis

operators is implied. Importantly, the Hilbert-Schmidt (or equivalently Frobenius) inner

product of both x̂[j]
L and x̂[j]

R gives the identity as shown in Figure 2.7 (a-c). Writing the

Left ad Right tensors in this way results in a concise expression of the density matrix
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Figure 2.7: The Frobenius (or Hilbert-Schmidt) inner product of the left and right
tensors x̂[j]

L and x̂
[j]
R give the identity ∀j. This can be shown by considering that the

tensors on the left (a) and right (b) of the chain fulfil the same condition and therefore
it must be fulfilled for any site along the chain (c).

in equation

ρ =
χ−1∑
α=0

x̂
[j]
Lαsα,βx̂

[j+1]
R,β , (2.7)

where

x̂
[j]
Lα = [A(1)

µ1 · · ·A(j)
µj

]ασ(1)
µ1 · · ·σ(j)

µj
, x̂

[j+1]
Rα = [B(j+1)

µj+1
· · ·B(L)

µL
]ασ(j+1)

µj+1
· · ·σ(L)

µL
. (2.8)

Often one is required to move the orthogonality centre, for example when manip-

ulation the TN according to some real or imaginary time evolution algorithm or to

efficiently measure some local observable. A method of moving the orthogonality centre

while maintaining the mixed canonical form is therefore necessary. To do this, the

strategy is to define a method for moving the orthogonality centre one site to the left or

one site to the right, repeated application of these left or right moves allows for the or-

thogonality centre to be shifted to any location along the chain. An example of method

to perform a right move is given graphically in Figure 2.8.

In this work the mixed canonical form is used, however, alternative canonical forms

can be used, for example, one can bring the MPS of MPO to the canonical form as

prescribed by Vidal [175]. In that case, the state is decomposed by successive SVDs
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Figure 2.8: Right move of the orthogonality centre. (a) For an MPS in mixed canonical
form with orthogonality centre left of site j, contract s with B(j)

µj
, reshape the resulting

tensor and perform an SVD as shown. (b) The orthogonality centre is now located left
of site j + 1, to its right is the new tensor B′(j+1)

µj+1
and (c) to its left is A(j)

µj
.

starting at one end of the chain and progressing to the end site-by-site until the state

is in a form which is represented by N tensors {Γ[1], . . . ,Γ[L]} and n− 1 diagonal bond

matrices {λ[1], . . . , λ[L−1]}. The Γ[j] at each site correspond to changes of basis between

the Schmidt basis and the basis of the local Hilbert space while the entries of the diagonal

bond matrices λ[j] are the Schmidt coefficients.

The canonical form of Vidal is useful from the perspective of time evolution al-

gorithms, in particular the TEBD algorithm of [175, 176]. More precisely, the update

of the state represented in canonical form by the set of Γ and λ according to a map

which acts on sites l and l+ 1 only involves the update of the tensors Γ[l], λ[l] and Γ[l+1]

meaning that maps can be applied in parallel rather than in left to right sweep.

A closely related canonical form for infinite one-dimensional systems can be repres-

ented by a single tensor Γ and a single diagonal bond matrix λ forming a unit cell which

repeats and are referred to as infinite Matrix Product States (iMPS) or infinite Matrix

Product Operators (iMPO). The various canonical forms are of central importance to

any numerical TN algorithm and have been widely reviewed, see for example [134, 156].

Time Evolution and the Cluster Mean Field

The state is evolved in real time with respect to a Lindblad master equation defined by

the Hamiltonian H and the set of Lindblad jump operators L using a simple sweeping

Time Evolving Block Decimation (TEBD) algorithm. Starting from some initial state
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ρ0 the state at a time t is obtained by direct integration of the master equation which is

equivalent to the application of the dynamical map ρt = etLρ0. Lindbladians L with up

to two-local interactions are considered; they decompose as a sum of terms with at most

nearest neighbour interactions L = ∑L−1
j=1 L⟨j,j+1⟩. Since we are using the vectorised form

of the MPO, we used the vectorised form of the Lindbladian superoperator where each

of the two-site operators decompose into the coherent part of the evolution defined by

the vectorised Hamiltonian Hj,j+1 and the dissipative part Dj,j+1 such that

L =
L−1∑
j=1

Lj,j+1 =
L−1∑
j=1

Hj,j+1 + Dj,j+1 (2.9)

where we note that when the vectorisation of the matrix is performed column-by-column,

the resulting vectorised terms are

Hj,j+1 = −i
(
Ij,j+1 ⊗Hj,j+1 −HT

j,j+1 ⊗ Ij,j+1
)
, (2.10)

and

Dj,j+1 = 1
2

(
2L∗

j,j+1 ⊗ Lj,j+1 − Ij,j+1 ⊗ L†
j,j+1Lj,j+1 − LTj,j+1L

∗
j,j+1 ⊗ Ij,j+1

)
. (2.11)

The full dynamical map eLt is first discretised into small time steps δt as eLt =

[eLδt]t/δt and then a second-order Trotter decomposition of the incremental gates is made

giving

eiLδt ≈
L−1∏
j=1

[
eLj,j+1δt/2

] 1∏
j=L−1

[
eLj,j+1δt/2

]
. (2.12)

The terms in the first product form the rightward sweep while those in the second product

contains terms in the leftward sweep. After each pair of left-right sweeps the state
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Figure 2.9: (a) Contraction of the Trotter gate with the pair of nearest neighbour tensors
A
µj

j and Bµj+1
j+1 with the orthogonality centre located between them, as indicated by the

bond matrix s. (b) The contracted tensor is initially decomposed using a SVD giving,
after reshaping, (c) the updated tensors A′µj

j , B′µj+1
j+1 and a new bond matrix σ′where

in general the bond dimensions will be enlarged. (d) The enlarged bond dimension is
truncated, for example by discarding singular values below some tolerance.

evolves by an amount δt with an error of order L||hj,j+1||3δt3 where ||hj,j+1|| estimates

the typical magnitude of the terms of L. Each of the dynamical maps is calculated

by direct exponentiation of the vectorised matrices δt/2Lj,j+1 using a standard linear

algebra matrix exponentiation routine.

Having constructed the sequence of dynamical maps, we now discuss how each of

the two-site maps is applied to the state. Consider the update of the sties j and j + 1

according to the map or “gate” e(δt/2)Lj,j+1 . To begin the orthogonality centre is moved

to site between sites j and j + 1, then the dynamical map is contracted with the pair

of tensors Aµj

j and Bµj+1
j+1 as well as the bond matrix s as illustrated in Figure 2.9 (a-b).

Following the contraction, the resulting tensor is decomposed using a SVD, this can be

achieved by reshaping the tensor into a matrix and applying a standard routine from a

numerical linear algebra library then reshaping the decomposed matrices back to their

original shape. The resulting tensors are the updated A
′µj

j and B
′µj+1
j+1 as well as the

diagonal bond matrix σ′ as illustrated in Figure 2.9 (c). In general, the bond dimension

across the newly decomposed bond will be enlarged and needs to be truncated in order for

the algorithm to remain efficient. Given that the update method described above leaves

the network in the mixed canonical form, the diagonal entries of σ′ are equivalent to

the Schmidt coefficients across the associated bipartition. A straightforward truncation
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scheme is therefore to retain only the χ largest terms of σ′ or alternatively to discard

those below some preselected tolerance. After the truncation we are left with the updated

pair of tensors and the new bond matrix s′ as shown in Figure 2.9 (d). In the language

of equation 2.7 the truncation step is expressed as

ρ′ =
χ′−1∑
α=0

x̂
′[j]
L,αs

′x̂
′[j+1]
R,β → ρ =

χ−1∑
α=0

x̂
[j]
Lαsα,βx̂

[j+1]
R,β χ < χ′ (2.13)

and minimises the Frobenius norm distance between the untruncated and truncated

states. Other norms can also be used as discussed in [187], there the truncation scheme

is more involved but choosing an alternative norm can ameliorate some of the issues

associated with the MPO ansatz such as the loss of positivity and can allow for preser-

vation of local conserved quantities. Here we use the simple Frobenius truncation since

it is efficient and gives satisfactory results for our purposes.

A single left-right sweep is illustrated graphically in Figure 2.10. Ignoring the CMF

effective fields for the moment, the left-right sweep is applied to a one-dimensional chain

of L sites. Initialised in the mixed canonical form with orthogonality centre between sites

j = 1 and j = 2, the first dynamical map is applied and any enlarged bonds truncated.

Next the orthogonality centre is moved one step the right and the next dynamical map

in the sequence given in equation 2.12 is applied. This rightward sweep of dynamical

maps continues until the end of the chain is reached where the leftward sweep begins

implementing the series of dynamical maps in the second product of equation 2.12. The

process is repeated until the end of the end of the predefined time t is reached. One

left-right sweep constitutes the evolution of the state by a time δt. For modelling finite

sized systems this is all that is required, however, if we wish to perform a finite size

scaling and make predictions about the behaviour in the thermodynamic limit, it can

be useful to supplement dynamical evolution using a cluster MF approach.

The central idea of the Cluster Mean Field (CMF) is to expand upon the usual
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Figure 2.10: Diagram of the cluster MF approach combined with time evolving block
decimation. The cluster is represented as an MPO and time evolution performed using
TEBD, at the end of each left-to-right and right-to-left sweep of the time evolution, the
action of the appropriate average field Beff

1 or Beff
L is accounted for by the contraction of

a single site gate at the boundaries of the cluster.
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MF theory by exactly solving a cluster of sites and self consistently applying a field

to the edges of the cluster. More precisely—borrowing much of the notation of [88]—

considering an infinite lattice in one dimension, a subset of contiguous spins C (the

“cluster”) is isolated from the rest of the lattice, this is demonstrated in Figure 2.10,

with the cluster of sites 1 . . . L inside the dashed bounding box. Next, the decoupled

Hamiltonian of the CMF HCMF is written as the sum of the Hamiltonian of the isolated

cluster HC and the Hamiltonian HB(C) which describes the action of a field on the sites

at the boundary of the cluster B(C). Consider for example a chain of spin-1/2 particles,

then, HB(C) consists of an effective field Beff
j acting on the boundary spins

HB(C) =
∑

j=B(C)
Beff
j · σj. (2.14)

The effective field Beff
j (t) = tr[σj′ρ(t)] is identified as the magnetisation of the spin j′

which is adjacent to j and is part of the neighbouring cluster C ′. Of course, this adjacent

spin is being modelled by the spin at the opposite boundary of the cluster C. The density

matrix of each cluster ρC is a factorisation of the global density matrix in much the same

way as the usual single-site MF approach, with the only difference that each cluster may

contain more than one site.

ρ =
⊗

C
ρC (2.15)

The effective master equation describing the evolution of ρC can then be expressed in

terms of HCMF as (ℏ = 1)

ρ̇C = −i[HCMF , ρC] +
∑
j∈C

Dj[ρC] (2.16)

In a similar way to the approach used in [88], we combine the cluster MF approach

with a TN. In particular, we represent the state of the cluster ρC as a MPO and evolve
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the state in time using the TEBD algorithm with Frobenius truncation described above.

The method is neatly summarised in Figure 2.10. We initialise the state in mixed

canonical form with the orthogonality centre located between the first an second sites.

A discretisation and Trotter decomposition of exp(tLC) = exp(tLCMF ) is performed and

the first Trotter gates in the left-to-right sweep is applied. Before subsequent trotter

gates are applied, the effective field Beff
1 is measured. After the rightmost Trotter gate

of the rightward sweep has been applied, the single site map describing the action of

HB(C) on the Lth lattice site—dependent on Beff
1 —is applied. The right-to-left TEBD

sweep then commences, with the effective field Beff
L measured after application of the

first Trotter gate of the leftward sweep. Once the right-to-left sweep is complete the

action of HB(C) on the 1st site of C—dependent on Beff
L —is applied. This completes

one time-step δt of the sweeping TEBD algorithm combined with CMF. This approach

ensures that the effective fields reflect the current state of the adjacent spins from which

they are measured and avoids unnecessary movement of the orthogonality centre when

measuring the effective fields.

Measurement

With the MPO representation of the density matrix at hand, the measurement of ex-

pectation values of observables is straightforward. For local observables, it is convenient

to calculate the reduced density matrix as illustrated in Figure 2.11. An efficient method

to calculate the reduced density matrix at site j is to first trace over the local Hilbert

space dimensions of the tensors M (n)
jn,kn

of all other sites—j’s complement. Doing so

results in the vectors m(1) and m(N) at each end of the chain and the matrices m(j) in

the middle which can be efficiently contracted from the left and right leaving ρj. Correl-

ations such as ⟨σjσj+2⟩ demonstrated in Figure 2.11 can also be calculated efficiently. In

this case, the tensors m(j) are again calculated by tracing over the local Hilbert spaces
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Figure 2.11: Construction of the local density matrix at the site j is done by tracing
over all other sites j∁. The train of traced matrices m(j) and the vectors m(1) and m(N)

at each end allow for efficient contraction of the network to calculate ρj. Correlations
are efficiently found by calculating the σm(j) = tr(σM (j)) and contracting with the rest
of the traces tensors m(j) as shown for the example ⟨σj, σj+2⟩.

where at sites j and j + 2 the operator σ is inserted in the trace giving the matrix

σm(j) = tr(σM (j)) and allows for a very efficient contraction resulting in the scalar ob-

servable. In each case it may be necessary to normalise the result by dividing by the

trace of the full density matrix.

2.6 Discussion

In this chapter TNs have been introduced from the perspective correlations and entan-

glement in closed quantum systems. The MPS was identified as an efficient paramet-

erisation of low energy states of one-dimensional gapped Hamiltonians. Clustering of

correlations and the entanglement area law were introduced as key structural compon-

ents of the MPS and central to its success as an ansatz for closed quantum lattice models.

Moving to open quantum systems, the prospects for simulation of open systems was dis-

cussed in terms of rapid mixing and entanglement. A variety of methods to represent

a mixed state as a TN were discussed, these included purification ansatze, the LPTN,

MPDO and MPO and a selection of the associated algorithms in the literature were

then reviewed. The remainder of the chapter was devoted to a more detailed account of

a one-dimensional TN algorithm in the framework of a cluster mean field theory. The

presentation of the algorithm served to demonstrate many of the key features of a typical
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TN algorithm: canonical forms, optimisation (in this case using a DMRG-like TEBD

method) and measurement.

Not discussed in detail in this chapter were the various translationally invariant

formulations of one-dimensional TN algorithms, for example those based on the iMPS

or the iMPO where the prefix “i” denotes “infinite”. In this setting the system is thought

of as the infinite repetition of a unit cell along the single dimension, while the unit cell

itself is represented using one or more MPSs or MPOs, the “rest” of the system outside

the unit cell to the left and right is dubbed its environments which can be thought of as

the solutions to fixed point tensor equations representing the left and right environments.

In mean field based methods the role of the environment is played by a classical field

whereas in infinite TN methods the fixed point tensors representing the environment can

encode more complex correlations in their virtual indices. Infinite TN algorithms allow

for direct access to the thermodynamic limit and particularly efficient in one dimension.

As mentioned in the details of the integration scheme, the truncation of enlarged

bonds in the network is a key step in any TN algorithm. Here the simplest case of

Frobenius truncation was used, however there are alternative methods for finding trun-

cations. Two notable examples are the Time Dependent Variational Principle (TDVP) of

[74, 75] and the truncation with respect to alternative norms as discussed in the Density

Matrix Truncation (DMT) routine of [187]. Both of these methods have the additional

benefit of preserving conservation laws, at least locally and it would be interesting to

consider alternative truncation schemes in the context of open quantum systems.





Chapter 3

Jaynes-Cummings-Hubbard Model

with a Two-Photon Drive

3.1 Introduction

Coupled resonator arrays (CRA) are systems composed of a set of resonators which are

connected to each other allowing excitations to travel between resonators. In optical

CRAs photons are trapped in arrays of cavities which are naturally dissipative, without

being driven by an external source any photons inside the resonator will eventually escape

into the environment, the equilibrium state is therefore that of an empty resonator.

There are a broad range of physical phenomena associated to optical CRAs, they tend

to be inherently non-equilibrium in nature and range from fermionisation of photons to

out-of-equilibrium quantum-Hall physics, see [132] or for a review.

Two closely related models of CRAs are the driven-dissipative Bose-Hubbard and

Jaynes-Cummings-Hubbard models. In the context of photonic systems, the former

describes an optical CRA with nearest neighbour hopping between cavities and an on-

site photon-photon interaction mediated by an artificial atom or a Kerr non-linearity. In

the case where the non-linearity is provided by a two level system, the model is known
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as the Jaynes-Cummings-Hubbard model [72, 159]. Typically, the spontaneous emission

of photons from the coupled resonator arrays of both types are replenished by a coherent

or incoherent external drive. The cases of incoherent and single-photon coherent drive

have been well studied and they give rise to a variety of interesting phenomena, see [132]

and references therein. More recently, the case of a two-photon coherent drive, often

referred to as a quadratic drive, has been considered.

Before discussing the Jaynes-Cummings-Hubbard model with a two-photon drive it

is useful to briefly discuss some of the literature related to the dissipative Bose-Hubbard

model with a two-photon drive. The single site version of the Bose-Hubbard model—

often referred to as a Kerr resonator—has been studied in the context of a two-photon

drive in [6, 7, 121]. In extended lattice systems, the quadratically driven dissipative

Bose-Hubbard model, was studied in from a MF perspective [151] and later beyond MF

in [147, 170]. In the usual case of a single-photon coherent drive, the U(1) symmetry

associated to the Bose Hubbard Hamiltonian is lifted by the drive, which rules out any

spontaneous symmetry breaking in the driven-dissipative setting. The two-photon drive

however, does not completely lift the symmetry, instead, the drive sets the phase of the

square of resonator field leaving a discrete Z2 symmetry. This Z2 symmetry is the origin

of a steady state which is characterised by a statistical mixture of Schrödinger cat-like

states (see [6]) and opens the possibility for spontaneous symmetry breaking, indeed this

is observed in theoretical studies of the single site Kerr resonator in for example [121]

and in the MF treatment of the associated lattice system in [151].

Going beyond the MF theory of [151] the nature of the phase diagram of the dis-

sipative Bose-Hubbard model with a two-photon drive was studied in [147]. There the

authors found that the system displays critical behaviour akin to that of the finite tem-

perature quantum Ising model suggesting that the dissipative Bose-Hubbard model with

a two-photon drive can act as a quantum simulator of the quantum Ising model. In par-
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ticular the authors of [147] numerically calculate steady state properties of finite size

systems in one and two dimensions using the Corner Space Renormalisation method first

introduced by [60]. There, a direct comparison is made with the quantum Ising model at

finite temperature, a model which hosts critical phenomena. Using a finite size scaling

analysis based on the critical exponents of the quantum Ising model, it is found that in

the Bose-Hubbard model with two-photon drive a quantum critical point emerges in the

regime of small single-photon dissipation, as long as the model is on a two-dimensional

lattice. For larger rates of single-photon dissipation and for one-dimensional systems, the

accompanying classical fluctuations compete with long ranged quantum correlation and

the simulated system sizes are large enough to allow for sufficient classical fluctuations

such that the scaling properties deviate from the universal Ising behaviour. The sys-

tem therefore mimics a quantum Ising model at a finite temperature where the effective

temperature is associated to the single-photon dissipation.

While it should be expected that the similarity of the two models will give rise to

similar physics, the Jaynes-Cummings-Hubbard model remains qualitatively different

to the Bose-Hubbard and by virtue of the extra “handle” provided by the details of

the two-level system it tends to have richer physics [132]. By explicitly modelling the

spin degree of freedom, the nature of the system can be explored in greater detail. For

example the behaviour of defects, photonic and atomic, could be explored in the context

of a quench across the transition point or in transport phenomena.

In this short chapter, a similar analysis to that of [147] is undertaken for the dissipat-

ive Jaynes-Cummings-Hubbard model with two-photon drive and on a one-dimensional

lattice. Instead of using the Corner Space Renormalisation method, the CMF+MPO

method described in Chapter 2 is used to calculate steady states and the work serves as

a demonstration of the viability of this method for this task.
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The Model

They Jaynes-Cummings-Hubbard models describes an array of optical resonators which

allow photonic resonator excitations to hop to nearest neighbours. A two-level system

is located in each resonator and is coherently coupled to bosonic mode of the resonator.

Considering a homogeneous system where all cavities and two-level systems are the same,

in the laboratory reference frame, the Jaynes-Cummings-Hubbard Hamiltonian with a

two-photon drive reads

Hlab =
∑
j

ωca
†
jaj + ωqσ

+
j σ

−
j + g(a†

jσ
−
j + ajσ

+
j ) + G

2 (ajaje2itωp + a†
ja

†
je

−2itωp)

−J

z

∑
⟨i,j⟩

a†
iaj

(3.1)

where ωc is the bare resonator frequency at each site, ωq is the frequency of the two-

level system (qubit), g is the coupling between the resonator and the qubit and G is

the strength of the coherent two-photon drive of frequency ωp. Finally the photons hop

between cavities at a rate J which is homogeneous on the lattice of coordination number

z. In a reference frame rotating at the frequency of the drive ωp the Hamiltonian takes

the time independent form

HJCH =
∑
j

−∆ca
†
jaj − ∆qσ

+
j σ

−
j + g(a†

jσ
−
j + ajσ

+
j ) + G

2 (ajaj + a†
ja

†
j)

−J

z

∑
⟨i,j⟩

a†
iaj

(3.2)

where the ∆c = ωp − ωc and ∆q = ωp − ωq are the detuning between the frequencies

of the drive and resonator and that between the drive and qubit respectively. In the

model both one- and two-photon incoherent losses to the environment are modelled by
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a Lindblad master equation with local dissipators D[aj] and D[ajaj] on each resonator

ρ̇ = −i[HJCH , ρ] + γ
∑
j

D[aj](ρ) + η
∑
j

D[ajaj](ρ) (3.3)

where the rates γ and η and the one- and two-photons dissipation rates respectively.

The Hamiltonian is invariant with respect to the action of the excitation number

parity operator Π = exp(iπ∑
j a

†
jaj + σ+

j σ
−
j ) such that the Lindblad master equation

3.3 is invariant under a global change of the sign of the field operators aj → −aj ∀j

accompanied by a global change of the sign of the spin raising and lowering operators

σ+
j → −σ+

j ∀j and σ−
j → −σ−

j ∀j. This is the discrete Z2 symmetry of the system. As

will be discussed in subsection 3.1, under a MF approximation the model is expected to

undergo a dissipative phase transition which is associated with a spontaneous breaking

of this Z2 symmetry.

Single Site Picture

To form a picture of the nature of the steady state it is useful to first to solve the

quadratically driven dissipative Jaynes-Cummings model achieved by setting J = 0 in

equation 3.3. For the case of zero detuning between the resonator and the two level

system, ∆c = ∆q in equation 3.2, above the zero energy E = 0 ground state |g, 0⟩ the

eigenstates of HJCH are dressed atoms or polaritons |n,±⟩ = 1/
√

2(|G, n⟩ ± |E, n− 1⟩)

where n labels the number of photons in the resonator and G and E are the ground and

excited states of the two level system. The associated eigenenergies are characterised by

the
√
n splitting of the model which, in the lab frame, take values En,± = ωcn± g

√
n for

n = 1, 2, 3 . . . [72].

The character of the steady state is investigated by numerically solving for the single

site steady state which we label ρss. To do this, a cutoff for the number of photons in

the resonator Nc = 20 is introduced and the steady state of the system ρss is calculated
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using the standard numerical techniques of quantum optics, for example using the Quan-

tumOptics.jl package of [98]. The detuning is chosen such that the two-photon driving

is resonant with lowest energy excited state ∆c = ∆q = −g and the coupling between

the resonator and two-level system is set to g/γ = 4.0. This choice of detuning means

that as the system is driven and the nonlinearity causes a blueshift of energy levels, the

drive will remain at or below resonance for all drive strengths and therefore avoid any

bistable behaviour which would complicate matters [102].

With ρss in hand, the Wigner function W (z) (see [6]) associated the resonator mode

of the steady state ρcss = trqρss is calculated where

W (z) = 2
π

tr(Dze
iπa†aD†

zρ
c
ss) (3.4)

and Dz = eza
†−z∗a is the displacement operator. The Wigner function plotted in Figure

3.1 (a) is bimodal in character and symmetric around z = 0. To get a better understand-

ing of the nature of the state we perform a spectral decomposition of the steady state

resonator mode ρcss = ∑
pi|ψi⟩⟨ψi| and plot the Wigner functions of the |ψi⟩ associated

to the four largest eigenvalues pi in Figure 3.1 (b-e). The state is dominated by two

cat-like states [159] which are identified by their characteristic interference pattern and

are associated to the two largest eigenvalues p1 and p2 while the lower probability states

associated to p3 and p4 etcetera, contribute much less to the overall resonator mode.

Mean Field Picture

Next, the MF solution to 3.3 with a non-zero hopping J > 0 is addressed. To do this,

a cluster MF (CMF) method with a cluster size of nx × ny = 1 × 1 is used, where a

single site of the system is solved using exact numerics again by introducing a photon

number cutoff Nc and the effect of the hopping term J is calculated self consistently by

introducing an effective field Beff into the Hamiltonian in the same manner as described
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Figure 3.1: (a) Wigner function W (z) of the steady state resonator mode ρcss = tr(ρss) of
the dissipative Jaynes-Cummings model with two-photon drive for parametersG/γ = 20,
g/γ = 4.0, ∆c = ∆q = −g and equal rates of one- and two-photon loss η/γ = 1. (b-e)
The Wigner functions W (z) associated to the four largest eigenvalues of the spectral
decomposition of ρcss = ∑

i pi|ψi⟩⟨ψi|, the state is dominated by the two cat-like states
identified by their typical interference pattern in (b) and (c).

in Chapter 2.

The introduction of the hopping terms causes a shift of the energy of the resonator

ωc → ωc − J , therefore in order to match the resonator and qubit resonances, the

detunings are set to ∆c = −g− J and ∆q = −g. The CMF Lindblad master equation is

integrated in time until good convergence of the expectation values of the field operators

⟨a⟩ is achieved. The photon number cutoff Nc is chosen large enough such that the

operators ⟨a†a†aa⟩ are well converged, in practice we find that choosing Nc = 12 is

sufficient for the parameter range of the phase diagram plotted.

The phase diagram for g/γ = 4.0, J/γ ∈ [0, 3] and G/γ ∈ [0, 5] is plotted in Figure

3.2. The results show a breaking of the Z2 symmetry in a region of the phase space

indicated by a non-zero value of the local fields |⟨aj⟩| or equivalently, a non-zero value of

local spins ⟨σxj ⟩ and ⟨σyj ⟩. In the Wigner function picture, the symmetry breaking chooses

one of the two lobes symmetric about z = 0. A linear stability analysis (not discussed)

around the symmetric solution shows that it is indeed unstable in the symmetry broken

regions indicated in Figure 3.2, this is also checked numerically by briefly introducing a

very small one-photon drive on top of the symmetric solution and checking whether it

remains stable or not.
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Figure 3.2: Phase diagram of the quadratically driven dissipative Jaynes Cummings
Hubbard model calculated using a 1×1 CMF method. (a) The symmetry broken region
is indicated by a non-zero value of the expectation value of the local field operator
|⟨a⟩|. The convergence in time of the results are shown in the plot of ||⟨a⟩|T − |⟨a⟩|T−δt|
which tends to zero in the steady state. The transition to the symmetry broken phase
is accompanied by a sharp increase in the resonator photon number ⟨n⟩ = ⟨a†a⟩ as a
function of G/γ. The spin expectation values show that in the symmetry broken phase
⟨σx⟩ and ⟨σy⟩ are non-zero while ⟨σz⟩ displays similar behaviour to ⟨n⟩. The data plotted
are for model parameters: g/γ = 4.0, ∆c = −g − J , ∆q = −g and η/γ = 1.
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3.2 Research Questions

Given the close relationship between the Jaynes-Cummings-Hubbard and Bose-Hubbard

models one might expect that similar behaviour to that observed for the dissipative Bose-

Hubbard Model with a two-photon drive beyond MF theory in [147] should carry over to

the case of the dissipative Jaynes-Cummings-Hubbard model with a two-photon drive.

However, in [72], the authors compare these models under single photon coherent drive

and find that even when the respective non-linearities are of similar strength and find

that the behaviour of the models differs in most parameter regimes. This chapter in-

vestigates whether the quadratically driven dissipative Jaynes-Cummings-Hubbard and

Bose-Hubbard models share the features of the former inasmuch as it can, in principle,

act as a quantum simulator of the quantum Ising model. In addressing this question,

the feasibility of the CMF+MPO tensor network technique for simulating such systems

is also tested.

3.3 Methods

To investigate the one-dimensional phase diagram beyond MF theory we utilise the

CMF+MPO method. Inspiration is taken from the work of [147] on the driven-dissipative

Bose-Hubbard model with two-photon drive and we perform a finite size scaling analysis

of steady state parity expectation value based on the critical exponents of the Ising

model.

In particular we calculate the steady state ρLss for clusters of sizes L ∈ [16, 20, 24, 28, 32]

and examine the finite size scaling curves as outlined in the following subsection. The

model parameters are chosen as J/γ = 2.0, g/γ = 4.0 ∆c = −g − J , ∆q = −g and

η/γ = 1 with a two-photon drive strength in the range G/γ ∈ [0, 1] which coincide with

a region of the MF phase diagram of Figure 3.2. For each value of G/γ, the MPO is
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initialised in the product state where each resonator is in its vacuum state |0⟩ and the

qubits are in their |↓z⟩ configuration ρ0 = ⊗
j|0j, ↓zj⟩⟨0j, ↓zj |. The local dimension d of

the field operators a, related to the maximum number of photons by Nc = d− 1, is set

to either d ∈ [3, 4] for the simulations. The master equation 3.3 is integrated in time

using the CMF+MPO method described in Chapter 2 until the system has converged in

time and with respect to the MPO’s bond dimension labelled D. For each value of the

two-photon drive strength G/γ, each lattice size L and each value of d, an independent

simulation starting from ρ0 is run and the bond dimension increased until convergence,

in particular it is demanded that the norm of the discarded Schmidt coefficients falls

below a threshold value ϵD = 10−6. A time step of τγ = 0.01 is chosen for all numerical

results shown.

Finite Size Scaling

The scaling analysis follows the principle of Fisher and Barber [61] and the methodology

of [147] and is based on a standard finite size scaling analysis in terms of the parity

operator Π and the size of the MPO cluster L. The rescaled parity ΠLβ/ν where Π =

tr(eiπ(
∑

j
a†

jaj+σ+
j σ

−
j )ρss) is plotted as a function of the two-photon drive strength G/γ

and the emergence of a critical point is indicated by the crossing of rescaled curves at

a common critical point Gc. The parity expectation value decomposes as a product of

local terms making its evaluation very efficient using the MPO ansatz. In the present

case, the chosen critical exponents β = 1/8 and ν = 1 are related to the magnetisation

and correlation length of the one-dimensional quantum Ising model. Furthermore, any

universal scaling of the system is investigated by observing the rescaled curves of ΠLβ/ν

plotted as a function of (G − Gc)/γL1/ν , where universal behaviour is indicated by the

collapse of the data on to a single curve.
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Figure 3.3: For a range of lattice sizes L ∈ [16, 20, 24, 28, 32] the expectation value of
the parity operator Π = exp(iπ∑

j a
†
jaj + σ+

j σ
−
j ) is plotted as a function of the strength

of the two-photon drive G. The values are rescaled using the critical exponent of the
one-dimensional quantum Ising model: β = 0.125 and ν = 1. (a) & (c) The critical drive
strength is identified as the crossover point of the rescaled value ΠLβ/ν as a function of
G/γ and is estimated as Gc ≊ 0.198. (b) & (d) A rescaling of the drive strength shows
a partial collapse of the data in a region surrounding Gc. In (a) & (b) the local Hilbert
space dimension is d = 3 while in (c) & (d) it has a value of d = 4.

3.4 Results

In Figure 3.3 the results of the CMF+MPO numerics are shown. In the left subfigure,

the rescaled parity operators for the steady state density matrices of varying length L

are plotted as a function of G/γ. The rescaled parity ΠLβ/ν show a common crossing

point at a critical drive strength Gc ≈ 0.198. In the right subfigure, the rescaled parity

is plotted as a function of (G−Gc)/γL1/ν , this data shows only a partial collapse of the

curves in a small region of the drive strength surrounding Gc.
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Figure 3.4: Convergence of the numerics with respect to the local Hilbert space dimen-
sion d = Nc − 1 for lattice sizes L ∈ [16, 20, 24, 28, 32] and a bond dimension D = 20.
For a boson cutoff of Nc = 2 (d = 3) the data appear well converged for drive strengths
below G/γ ⪅ 0.3.

In Figures 3.4 and 3.5 the convergence properties of the numerical results are shown.

In particular, in Figure 3.4 the values of the parity expectation value as a function

of the local Hilbert space dimension d is plotted for d ∈ [3, 4] and for system sizes

L ∈ [16, 20, 24, 28, 32]. These data appear well converged for drive strengths G/γ ⪅ 0.3,

for larger drive strengths the greater number of photons in each resonator demands a

larger Hilbert space cutoff, nevertheless the difference between d = 3 and d = 4 is not

too large for the drive strengths shown. In Figure 3.5 the convergence with respect to

the bond dimension D is shown for a local Hilbert space size of d = 3, lattices of size

L ∈ [16, 20, 24, 28, 32] and for a range of bond dimensions D ∈ [1, 10, 20, 30]. While the

correction to the MF D = 1 solution is significant, the data for the parity operator Π

appear well converged for a very moderate bond dimensions. It is important to note that

the parity operator factors into a product of local observables which tend to converge

more quickly than non-local observables, nevertheless the data appear to be well enough

converged for the present purpose.

3.5 Discussion

In this Chapter the CMF+MPO numerical simulation technique explained in Chapter

2 was demonstrated by solving the dissipative Jaynes-Cummings-Hubbard model with

a two-photon drive on a one-dimensional lattice. It was shown that, in a similar way to
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Figure 3.5: Convergence of the numerics for a lattices of size L with respect to the bond
dimension D. The data for the observable Π appear well converged for the modest bond
dimension of D ⪆ 20 and for drive strengths below G/γ ⪅ 0.3.

the Bose-Hubbard model, the dissipative Jaynes-Cummings-Hubbard model with a two-

photon drive on a one-dimensional lattice can in principle act as a quantum simulator of

the Ising model’s quantum critical point at a finite temperature. It is important to note

here that these results—and also those of [147]—have assumed prior knowledge of the

critical exponents and used them to fit the finite size scaling data, thereby verifying the

nature of the critical behaviour. A more typical situation is where the critical exponents

are not know a priori and this would require a much more careful analysis protocol for

the results produced by the quantum simulation device. In practice, the results and

conclusions drawn from quantum simulation experiments which lie beyond the reach of

classical computation typically benefit from techniques such as cross platform verification

which test the conclusions of quantum simulations across multiple platforms and serve

to increase (or decrease) confidence in those results.

A critical drive strength is estimated at Gc/γ = 0.198 which is indicated by a com-

mon crossover point of the rescaled parity expectation value. In a small region of drive

strengths surrounding Gc/γ the rescaled parity curves partially collapse, however more

generally, the scaling properties of the system depart from the universal behaviour re-

flecting the influence of the one-photon losses on the system, an incoherent process which

mimics the effect of temperature in an equilibrium system.

Given the MPO steady state representation, it would be straightforward to calculate

non-local observables such correlation functions and spin structure factors which would
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give more insight into the nature of the system. Interesting future directions for this work

would be to examine the behaviour of the system as the rates of single photon dissipation

are reduced, akin to reducing the temperature of the analogous thermal system. It would

be interesting to study the system in the atomic limit of the Jaynes-Cummings-Hubbard

model where the qubit component of the polariton dressed states are dominant; having

this control over the qubit-resonator detuning may make the Jaynes-Cummings-Hubbard

a more versatile platform for such quantum simulations. Extensions to higher photon

driving fields would introduce higher order symmetries and open the possibilities of

quantum simulation of spin models with larger spins S > 1/2. The introduction of

disorder or spatial inhomogeneity of the drive could allow for studies of localisation and

spin transport. Finally it would be of interest to study the properties of quenches across

the transition point where defects associated to spins and bosons could be investigated.



Chapter 4

Tensor Network Methods for Two

Dimensional Systems

4.1 Introduction

In Chapter 2 TNs as ansätze for one-dimensional systems were discussed. However,

the idea can be generalised to higher dimensions and more complex geometries. Con-

ceptually, the idea is simple, rather than tensors located on the vertices of a simple

one-dimensional graph, arbitrary TNs can be constructed by considering tensors located

on the vertices of arbitrary graphs and connected by an arbitrary set of edges. In this

chapter we are concerned with TNs representing two-dimensional quantum systems and

in particular TNs on cubic lattices V = LD where D = 2. Some of the discussion draws

on the review articles of [53, 134].

The Projected Entangled Pair State (PEPS) can be though of as the natural gener-

alisation of the MPS to two dimensions. Numerical algorithms using the PEPS as an

ansatz are typically less commonly used than those based on the one-dimensional MPS

ansatz, this can be attributed to two main factors, the first is that the computational cost

associated with representing and manipulating the PEPS ansatz is, in general, larger
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than for the MPS. This is most noticeable if we compare the computational complexity

of contracting a PEPS network to contracting an MPS, whereas contraction of a MPS is

efficient, contraction of a PEPS is a very computationally costly problem in the general

case. The second reason is that the PEPS ansatz contains closed internal loops which

mean that many of the very convenient features of the MPS, for example, the ability

to define a simple canonical form, need to be revised. In the context of TN methods,

the increase in spatial dimension form one to two or more is accompanied by significant

additional operational complexity and tends to require more elaborate numerical ma-

chinery. Nevertheless, the PEPS ansatz has been used widely for calculating properties

of two-dimensional closed quantum systems and the pace of improvements in the asso-

ciated algorithms mean that the PEPS ansatz has become a valuable tool in many body

physics, see for example the review article of [134].

In the context of open quantum systems, two-dimensional TN methods are much

less well developed than those in one spatial dimension. This can perhaps be attrib-

uted to the same reasons that PEPS are a less commonly used ansatz: the increased

complexity of contraction and more elaborate machinery required. However, these are

also compounded by the extra considerations required to simulate mixed states. To our

knowledge, prior to the work undertaken in this thesis, there was only one TN algorithm

in the literature which dealt with two-dimensional open quantum systems. In particular

the work of [101] introduced an algorithm which we will call Simple Update (SU) based

on the Infinite Projected Entangled Pair Operator (iPEPO) TN ansatz for simulating

steady states of two-dimensional open quantum systems. While that pioneering work

provided an excellent proof of principle, issues surrounding the convergence and stability

properties of the Simple Update algorithm emerged and were discussed recently in [94].

It is important to note that algorithms addressing two-dimensional thermal states also

have been developed—see for example [41, 42, 100]—however, for the purposes of this
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discussion we distinguish these from algorithms intended for open quantum systems of

a driven-dissipative nature.

The goal of this chapter is to introduce and demonstrate a TN algorithm for two-

dimensional systems based on the iPEPO ansatz which overcomes some of the limitations

of the Simple Update algorithm. The chapter begins with a discussion of the Projected

Entangled Pair State and its operator equivalent, the Projected Entangled Pair Operator.

Following this, details of how the translationally invariant nature of the iPEPO ansatz

is dealt with, in particular, the effective environments which account for the extended

system are discussed. Optimisation of the iPEPO is then discussed by elaborating

on a real time evolution algorithm which integrates the Lindblad master equation, this

section includes many of the key developments of this work including the details of how to

optimise truncation of enlarged network bonds by taking into account the influence of the

effective environment. The details of how measurements are performed are given before

the final section which tests the accuracy of the algorithm for calculating dynamics of a

dissipative quantum Ising model and steady states of a drive-dissipative Bose-Hubbard

model as well as comparing its performance to the Simple Update approach.

4.2 The Projected Entangled Pair State

The PEPS is a TN representation of a two-dimensional quantum state and can be

represented graphically as in Figure 4.1. Each of the individual PEPS tensors are fifth-

rank A(j)
α,β,γ,δ;j (Figure 4.1 (a)) with four bond dimensions D and one local Hilbert space

dimension d. In the finite lattice of Figure 4.1 (b) all of the A(j) can be chosen to

be different, or in the case of a translationally invariant system, the unit cell can be

represented by one or more PEPS with the full system—the infinite PEPS (iPEPS)—

formed by the repetition of the unit cell to span the plane. The PEPS gets its name

from a common way of constructing the tensor: each square lattice vertex shares an
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Figure 4.1: (a) Graphical representation of a PEPS tensor. (b) Finite size lattice rep-
resented as a PEPS. (c) The entanglement area law on a two-dimensional lattice, the
region A is bounded by ∂A.

entangled pair with each of its neighbours. The map P (k) where

P (k) =
D∑

α,β,γ,δ=1

d∑
j=1

A
(k)
α,β,γ,δ;j|j⟩⟨α, β, γ, δ| (4.1)

can be said to “project the entangled pairs” shared by each site k. Many of the properties

of the MPS carry over into the PEPS, for example it satisfies an entanglement area law

where the boundary ∂A of a subset of sites A is proportional to the number of bonds

connecting A to to its complement as demonstrated in Figure 4.1 (c). Like the MPS, the

PEPS is also dense such that for a finite system, if the bond dimension D is taken large

enough then the PEPS can represent any state on the full Hilbert space. One notable

difference between PEPS and MPS is that a PEPS can be constructed with algebraically

decaying correlations rather than just exponential [173].

Different also to the case of MPS is a lack of a strong statement about the ability

of a PEPS to represent a typical physically reasonable states; for example, while we

do have a strong statement about the ability of a MPS to represent ground states of

gapped Hamiltonians, to our knowledge, no rigorous statement exists in two dimensions,

although it is widely expected that PEPS will provide an efficient representation for

ground states of gapped Hamiltonians [173]. Furthermore, the success of numerical

algorithms based on the PEPS ansatz suggests that it is indeed capable of representing
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Figure 4.2: Internal correlations in a TN with closed loops. (a) The three-index tensor
A forms the “sites” of a state |ψ⟩ (c) for which there are internal correlations. (c) The
three-index tensor B forms the state |ψ̃⟩ (d) which has no internal correlations. Figure
is adapted from [56].

a broad class of strongly correlated many body pure states.

One major complication generated by the two-dimensional topology of the network is

that, in general, the problem instance of contracting a PEPS is contained in the compu-

tational complexity class ♯P [157]. This means that the calculation of a local observable

of a state represented by a PEPS is in general very inefficient. Nevertheless, approxim-

ate contraction schemes have been developed which circumvent this problem to a large

extent. Of course this is particularly relevant for infinite systems represented by the in-

finite Projected Entangled Pair State (iPEPS) where exact contraction is impossible. In

this setting various approximate contraction techniques exist, for example tensor coarse-

graining methods [73, 87], boundary MPS methods [90] and Corner Transfer Matrix

(CTM) methods which will be introduced later in Section 4.3.

Internal Correlations and the Cycle Entropy

For a one-dimensional systems with open boundary conditions, described for example

by a MPS or MPO, the TN ansatz has no closed loops, this is referred to as an acyclic

TN. On the other hand, in higher dimensions, for example in the case of the PEPS, the

TN has many closed loops; each plaquette of the square lattice forms a loop. TNs with

closed loops are referred to as cyclic TNs.

Cyclic TNs host so called internal correlations. These are correlations which exist
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in the internal structure of cyclic TN but which do not contribute to any property of

the quantum state. To neatly illustrate this, the discussion from [56] is recounted as

follows: Consider the three-index tensor A[i,i′],[j,j′],[k,k′] of bond dimension χ = 4 where

each of the indices is a product of two smaller indices; the primed and unprimed. A

can be constructed as an outer product of delta functions A[i,i′],[j,j′],[k,k′] = δi,i′δj,j′δk,k′

as illustrated in Figure 4.2 (a). In a similar way, the tensor B can be constructed as

an outer product of two Kronecker deltas Bi,[j,j′],k = δi,jδj′,k giving a bond dimension

χ = 2 as illustrated in Figure 4.2 (b). To elucidate the role of internal correlations it is

useful to arrange the tensors A and B such that they represent the states |ψ⟩ and |ψ̃⟩

which are described by the TNs T and T̃ respectively as illustrated graphically in Figure

4.2. Clearly, the state described by these networks is the same, however, the networks

themselves are fundamentally different. The string of internal correlations demonstrated

in Figure 4.2 (b) does not contribute to any property of the state |ψ⟩ yet remains present

in the internal structure of the network. Cutting the network T along one of its bonds

would reveal a set of coefficients in the bond matrix which are not physically relevant

since they contain information about the physically irrelevant internal correlations as

well as the physical correlations associated to the quantum state. The fact that cyclic

TNs host internal correlations marks a clear distinction between cyclic and acyclic TNs

and is one of the sources of complexity encountered when moving from one- to two-

dimensional TN algorithms.

A further complication is that the gauge of a cyclic TN cannot be fixed uniquely

since it cannot be brought to a Schmidt form across a bipartition where each side of

which represents an orthogonal basis, in fact a cyclic TN simply cannot be bi-partitioned

across a single bond due to its topology. While a unique gauge does not exist, the author

of [56] demonstrated a method of fixing the gauge of an internal bond of an arbitrary

cyclic TN. The so called Weighted Trace Gauge (WTG) reduces to the Schmidt gauge
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in the case of a cyclic TNs and is discussed in section 4.4.

When developing numerical algorithms based on cyclic TNs it is important to keep in

mind the possible accumulation of internal correlations, while these will occupy some of

the representational capacity of the TN ansatz, they do not contribute to any property

of the state and should therefore be removed or reduced as fas as possible. A build up

of internal correlations can lead to problems in computation and even the breakdown of

algorithms, see for example [110]. The removal or minimisation of internal correlations

can be done using so called disentanglers, see for example [57], however, the approach

used in this work is based on the work of [56] where a method of both quantifying

and removing internal correlations is prescribed. This method will be discussed more

thoroughly later in this chapter.

The iPEPO Ansatz

Similar to the generalisation of the MPS the MPO, the natural generalisation of the

PEPS to representing operators is the Projected Entangled Pair Operator (PEPO)[78,

94, 95, 100, 101, 123] and its translationally invariant infinite system counterpart, the

iPEPO. Like the PEPS, the PEPO is in principle capable of representing algebraically

decaying correlations, at least for classical models. This can be shown by observing

that an exact representation of the classical thermal Ising model on a square lattice

can be represented by a PEPO with bond dimension D = 2 [100] where, at criticality,

the correlations decay algebraically [173]. Due to its geometry, the PEPO inherits the

area law properties and complexity of contraction associated to the PEPS and is know

also that PEPOs prove an efficient representation of Gibbs states of local quantum

Hamiltonians [123].

The density matrix ρ of an infinite two-dimensional system can be represented by

an iPEPO. The iPEPO is composed of a set of of tensors {Aj}, where we associate a
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Figure 4.3: (a) The density operator ρ of a two-site unit cell of a square lattice represen-
ted by an infinite projected entangled pair operator (iPEPO). The iPEPO is composed
of a set of unique tensors, in this case Aj and Al and four unique bond matrices which
are located on the bonds liking the As. (b) It is useful to work in the vectorised nota-
tion which, from an operational perspective transforms the iPEPO into the form of an
iPEPS. (c) Scheme to initialise PEPO in the product state with Bloch vector a⃗ where σ⃗
is the matrix of Pauli operators.

tensor to each vertex of a square lattice. Assuming a translationally invariant system,

it is convenient to represent only the tensors which form one unit cell of the lattice; this

is demonstrated in Figure 4.3 (a). In this thesis, as a way of simplifying the algorithm,

a pair of independent tensors Aj and Al are used to represent the unit cell, although

larger unit cells can also be considered via straightforward generalisations. The full

system is then thought of as the repetition of this unit cell over the two-dimensional

plane. Each of the sixth-rank tensors A has a pair of physical indices of dimensions d

and a set of four bond indices of dimension D, which reflects the coordination number

z = 4 of a square lattice. The physical dimension d corresponds to the dimension of the

local Hilbert space at each lattice site, for a lattice of two-level spins d = 2. Like in the

MPO, the bond dimension D is a variational parameter which controls the accuracy of

the ansatz. For the purposes of the numerical algorithm, it is convenient to work with

the vectorised form of the density operator. At the level of the iPEPO, this corresponds

to vectorisation of the pair of local Hilbert space indices as demonstrated in Figure 4.3

(b) and has the effect of transforming the iPEPO into the form of an iPEPS. It is also

useful to associate to each unique bond a bond matrix σ which is a diagonal matrix

similar to that used in one dimensional MPS representations.

Similar to Matrix Product Operators (MPOs), the PEPO ansatz is not inherently



4.2 The Projected Entangled Pair State 79

Figure 4.4: A method of initialising a PEPO in the product state with Bloch vector a⃗
where σ⃗ is the matrix of Pauli operators. The PEPO is constructed by contraction of
four copies of the tensor.

positive and therefore not all PEPOs represent physical states. This is of particular

relevance for the present case of an infinite PEPO where we do not have access to the

full spectrum of its eigenvalues. It has been shown in the case of MPOs and discussed

in chapter 2, that deciding whether a given MPO represents a physical state in the

thermodynamic limit is provably undecidable, see [96]. It therefore necessary to rely on

the positivity of the initial state and the dynamical maps to maintain the physicality of

the iPEPO throughout the time evolution. In practice we find that, in most cases, the

reduced density matrices calculated from the iPEPO, which can easily be diagonalised

to check their eigenvalues, typically remain physical for larger bond dimensions.

A simple method to initialise the PEPO as a product state of spins with Bloch vector

a⃗ is shown in Figure 4.3 (c), the bond matrices σ, not to be confused with the vector

of Pauli operators σ⃗, are initialised as the identity matrix of size D = 1 and are not

shown in the diagram. The PEPO is constructed by contraction of four copies of the

same tensor.

Effective Environments

All of the spins in the system which do not form part of the unit cell are referred to as

its environment (see Figure4.5). Importantly, this environment should not be confused
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Figure 4.5: (a) The two-site unit cell of the iPEPO tiles the plane. (b) The corner
transfer matrices (green) and the half-row and half-column tensors (blue) encapsulate
the environment at each lattice site. (c) A single site on the lattice is surrounded by its
environment.

with system’s bath or reservoir, which is accounted for in the Lindblad master equation.

In the thermodynamic limit of an infinite system, the unit cell tiles the plane as shown

in Figure 4.5 (a), the environment is therefore all other spins on the plane which are not

in the unit cell. Of course, representing this infinite set of spins exactly is not possible.

A solution is to represent the environment approximately by associating to each tensor

in the unit cell an effective environment which is denoted E . The effective environment

of each unique tensor in the unit cell Ej consists of a set of tensors which include four

corner transfer matrices Cµν and four half row or half column tensors Tµ, where the

labels µ and ν take the appropriate first letter of left, right, up and down as illustrated

in Figure 4.5 (c). These corner transfer matrices and half row and column tensors can

be thought of as encapsulating the “rest” of the lattice as illustrated in Figure 4.5 (b).

For the purposes of the algorithm, it is useful to consider two different types of effective

environment, each playing an important role in the method, these are the trace effective

environment E trand the Hilbert-Schmidt effective environment Ehs.

Trace Effective Environment

The trace effective environment E tr illustrated in Figure 4.6 (d) is constructed by first

tracing over the local Hilbert space dimensions d of each of the tensors in the unit cell.
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Figure 4.6: (a) At each site of the unit cell, the tensors atrj = trdAj are found by tracing
over the physical dimensions of Aj. (b) It is useful to split the bond matrices in half by
taking the square root of the diagonal matrix σ. (c) At each site of the unit cell, the
tensors ahsj = trA†

jAj are found by taking the Hilbert-Schmidt inner product of Aj. (d)
The unit cell tensor Aj contracted with its trace effective environment E trj results in the
reduced density matrix ρj at site j.

This gives the set of fourth-rank tensors atrj where atrj = trdAj as shown in Figure 4.6

(a) where the diamond shaped matrices are square roots of the bond matrix Figure 4.6

(b). The trace effective environment is used to calculate the reduced density matrices

of the system. For example, Figure 4.6 (d) corresponds to the reduced density matrix

ρj at the lattice site j.

Hilbert-Schmidt Effective Environment

The Hilbert-Schmidt effective environment Ehs is formed by first contracting ahsj =

trAjA†
j as shown graphically in Figure 4.6 (c) which gives the Hilbert-Schmidt inner

product of the tensor Ai with itself. The resulting tensors ahs are of eighth-rank, where all

bond indices D have been left uncontracted. The Hilbert-Schmidt effective environment

is used to calculate an optimal truncation of enlarged bond dimensions. The proper

calculation of the effective environments is of central importance to the algorithm and

indeed is usually the most numerically expensive subroutine contributing most to the

overall complexity of the algorithm.
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4.3 Calculating the Effective Environments

The effective environments E tr and Ehs are calculated using a variant of the corner

transfer matrix renormalisation group (). The basic idea of this approach originated

with the work of [8, 9] and has undergone development through the years, most recently

used in the context of classical [130, 131] and quantum [36, 62, 136] lattice systems. There

are now many variants of the CTMRG algorithm which differ in their precise details.

The particular variant used throughout this thesis is the one which, to our knowledge,

was first developed in the work of [62]. This variant makes use of an intermediate SVD to

improve the numerical stability an convergence properties. We will refer to this variant

as CTMRG-SVD and give a detailed account of it in this subsection.

Consider the iPEPO consisting of the set of tensors Aj making up the unit cell, then,

the idea is to find an effective environment E which obeys the fixed point equation

E × {Aj}j∈unit cell ≈ E

up to some tolerance of convergence. In other words, we wish to find an environment

E which represents a fixed point of a coarse graining and renormalisation procedure

whereby a unit cell of the system is absorbed into the environment. This is illustrated in

Figure 4.8 which shows one iteration of the coarse graining; an absorption step contracts

the unit cell with the left part of the environment and a renormalisation step results in

an updated representation of the environment.

The basic steps of the algorithm can be divided into three parts. First, the envir-

onment is initialised, next an absorption step is performed in one of the four directions

left, right, up or down. This is followed by renormalisation of the enlarged environ-

ment tensors along the absorption direction. The absorption-renormalisation steps are

repeated in all directions until the environment converges to a fixed point.
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Figure 4.7: Initialisation of the half-row tensors T lhsand Trhs using the iPEPO tensors
Aj, two of the uncontracted bonds of ahsj are traced over. Initialisation of the half-row
tensors T ltr and Trtr using the iPEPO tensor Aj, by defining a vector v one of the four
uncontracted bonds of atrj is contracted over.

Initialisation

An initial guess for the environment tensors can in principle be a set of random tensors

of the appropriate dimensions, however this can slow done the speed of convergence, it

is useful to initialise the environment tensors using the tensors of the iPEPO unit cell.

Consider a set of tenors {Aj} representing a two site unit cell as an iPEPO, arranged in

a checkerboard lattice as in Figure 4.5 (a). The effective environments can be initialised

using the {Aj}; for example, to initialise T lhsj , simply contract over the left indices of

ahsk as shown in Figure 4.7 (a) and normalise. The tensor Trhsj can be initialised by

tracing over the right bond and so on. To initialise E tr one can simply contract over

all but the first components of atr along the appropriate directions and normalise. For

example, to initialise T ltr, retain only the first component of atr in the left direction,

ie. set T ltrj = ∑
d v[l]a

tr[d,r,u,l]
k where the vector v = (1, 0, . . . , 0) as shown in Figure 4.7

(c), the other half-row tensors are calculated in a similar way. Alternatively, one could

choose the vector v = (1, 1, . . . , 1), however, we find that retaining the first component

only works well enough to create an initial guess. Similarly, the corner transfer matrices

can be constructed by setting for example Clutrj = ∑
l,u v[l]v[u]a

tr[d,r,u,l]
k k ̸= j etcetera.

During the course of a typical algorithm where the environment is calculated at each

step of the optimisation, it is very useful to re-use the effective environment from the
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Figure 4.8: The left-move coarse graining step updates the tensors associated to the left
of the environment by inserting one column of the unit cell a and b, contracting and then
renormalising to find Clu′

a, Cld′
b, T l′a and T l′b. An analogous diagram made by swapping

a ↔ b is used to find Clu′
b and Cld′

a.

nth optimisation step to initialise the effective environment of the n+ 1th, this becomes

possible if the gauge of the network is properly fixed, a topic will will be discussed later.

Left-Move

After initialisation, the CTMRG-SVD algorithm proceeds by performing a so called

left-move, which updates those tensors associated with the left part of the environ-

ment Clu, Cld and T l, as illustrated graphically in Figure 4.8. The left-move can be

thought of as inserting a column of the unit cell tensors a and b, absorbing them into

the left environment tensors Clu′, Cld′ and T l′ before renormalising them by project-

ing the dimension of the enlarged bonds back to their original size and normalising the

magnitude of the each tensor’s components. To aid the presentation of the left-move

subroutine, Figure 4.9 shows the basic steps involved in the left-move graphically. In

particular the following steps are associated to the left-move routine used to calculate

Ehs, the calculation of E tr is almost identical.

1. Label the tensors ahsj → a and ahsk → b.

2. By means of tensor contraction, construct the upper and lower half system transfer

matrices and decompose using a SVD to find the upper and lower decompositions

UuaSuabV u
†
b and UdaSdabV d

†
b; Figure 4.9 (a).
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Figure 4.9: Steps involved in the left-move subroutine of the CTMRG algorithm with
an intermediate SVD. (a) The upper and lower half-system transfer matrices are con-
structed and the first (intermediate) SVD is performed as shown. (b) The tensors
Flua ≡ UuaSu

1/2
ab , Frua ≡ Su

1/2
ab V u

†
a, Flda ≡ UdaSd

1/2
ab and Frda ≡ Sd

1/2
ab V d

†
a are cal-

culated. (c) Next, the matrices Wla, Qla and the diagonal matrix Σl2a are found. (d)
and (f). The projectors Pla = FluaQlaΣl+a and Pl−a = FldaWl†aΣl+a are found and used
in (e) (g) and (h) to find the updated environment tensors.



86 Tensor Network Methods for Two Dimensional Systems

3. Define the tensors Flua ≡ UuaSu
1/2
ab , Frua ≡ Su

1/2
ab V u

†
a, Flda ≡ UdaSd

1/2
ab and

Frda ≡ Sd
1/2
ab V d

†
a, where singular values of some small relative tolerance are trun-

cated; Figure 4.9 (b).

4. Use the so called biorthogonalisation procedure (see [62] for further details) to

calculate Pl and Pl−. The first step is to contract Flua with Flda and perform a

SVD to find Wla, Qla and the diagonal matrix Σl2a; Figure 4.9 (c).

5. Calculate the projectors Pla = FluaQlaΣl+a and Pl−a = FldaWl†aΣl+a . Here the +

notation in Σl+ denotes the Moore-Penrose pseudoinverse of Σl with a tolerance ;

Figure 4.9 (d) and (f).

6. Repeat steps (d-j) to calculate Plb and Pl−b by replacing a ↔ b in the upper and

lower half system transfer matrices.

7. Using all of the projectors found, calculate the updated environment tensors T l′b,

T l′a, Clu′
a, Clu′

b, Cld′
a, Cld′

b and normalise; Figure 4.9 (e), (g) and (g).

This completes on iteration of the left-move subroutine.

right-, up- and down-move

After the left-move subroutine is complete, the next step is to perform a right-move

subroutine. The right-move involves inserting a column of tensors and absorbing from

the right in order to update the tensors associated to the right side of the effective

environment. Similarly, there are up-move and down-move subroutines. These four

subroutines are repeated in sequence until convergence of the corner transfer matrices

is achieved. In particular, the criterium for convergence used here is to demand that

the norm of the difference between the vectors of singular values of all of the corner

tensors between steps falls below some small tolerance . More precisely, after step s+ 1,

test the inequality |cs − cs+1| < ϵχ where the cs denote the vectors of singular values
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of the corner transfer matrices at step s and the inequality is tested over all unique

corner transfer matrices. We have found that it is useful to set ϵsvd ≈ 10−3ϵpinv and is

is convenient to perform right-move at the same time as left-move by following the

biorthogonalisation routine starting with Frub and Frdb calculated in step (b) above,

similarly for up-move and down-move. A similar sequence of steps is used to perform

the right-move, up-move and down-move steps in CTMRG-SVD.

Larger Unit Cells

The above presentation of the CTMRG-SVD algorithm is based on a iPEPO with a two

site unit cell. It is straightforward to extend the algorithm to larger unit cells with a

few modifications. For a unit cell of size Lx × Ly there will be N = Lx × Ly unique

environment tensors of each type; 4N corner transfer matrices and 4N half-row and half-

column tensors, one unique environment for each independent tensor in the unit cell.

The associated left and right-moves will correspond to the insertion, absorption and

renormalisation of one full Lx ×Ly unit cell, resulting in Lx absorption steps. Similarly,

the up- and down-moves will have Ly absorption and renormalisation steps.

Complexity

For a typical algorithm based on iPEPS or iPEPO, the principal contribution to the

computational complexity comes from the calculation of the effective environment. This

is particularly true if it is calculated at each optimisation or time evolution step. The

leading cost of the version of the CTMRG-SVD used here arises from a singular value

decomposition of order O(χ3D6) in step (a) of Figure 4.9. Improvements in performance

can therefore be achieved by optimising this step, for instance making sure that the

optimal contraction pattern is used can help here. Alternatively, one can consider using

another renormalisation algorithm or a fixed point method such as the FPCM of [62].
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Lastly it is noted that there are other ways of representing the effective environment such

as approximating the effective environment by using a boundary MPS to represent the

boundary of the system. In this vain, a number of algorithms can be used to calculate

the fixed point of an MPS, for example using time-evolving block decimation (TEBD)

[135, 175] or the more advanced variational MPS-tangent space methods (VUMPS) [62,

75, 129, 168, 195]. Fixed point methods can lead to a significant speed up, particularly

for systems which are close to being critical [62].

4.4 Optimisation

The optimisation of the network is performed using a Time Evolving Block Decimation

(TEBD) algorithm. This algorithm is commonly used to fine ground states of Hamilto-

nians via imaginary time evolution or to generate dynamics via real time evolution.

In the current setting of open systems we are either interested in evolving the system

from some initial state towards a steady state via real time evolution or using imaginary

time evolution to anneal an infinite temperature maximally mixed state down to low

temperatures using imaginary time evolution. In principle it is also be possible to find

the steady state directly by searching for the ground state of the Hermitian operator

L†L, for example, via imaginary time evolution, however the object L†L tends to be

highly non-local and more difficult to use in the context of a standard TEBD algorithm.

To make the discussion concrete, we will consider the case of an open quantum system

with dynamics generated by two local Liouvillian L and restrict the discussion to real

time evolution, imaginary time evolution for the calculation of thermal states can be

considered a simplification of this.
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Dynamical Map

Starting from some initial state ρ0, time evolution is obtained by the application of the

dynamical map ρt = etLρ0 where t is a real number in the case of real time evolution.

The Liouvillian superoperator L is assumed to be two-local and can therefore be written

as a sum of superoperators which act on nearest neighbours of the square lattice. In

particular, L can be decomposed as

L =
∑

⟨α,β⟩
Lα,β =

∑
⟨α,β⟩

Hα,β + Dα,β. (4.2)

where the labels α and β correspond to the coordinates of the lattice site j and l

respectively. Specialising to the case of a superoperator in Lindblad form, Lαβ can

be further decomposed into the coherent part governed by the Hamiltonian H and the

dissipative part, which is governed by the set of Lindblad operators L. The Hamiltonian

part of the evolution is included in the superoperator H and the dissipative part in

the superoperator D. If the convention for matrix vectorisation is to stack the matrix

column-by-column, then, these are are constructed as shown in equations 4.3 and 4.4

respectively:

Hα,β = −i
(
Iα,β ⊗Hα,β −HT

α,β ⊗ Iα,β
)
, (4.3)

Dα,β = 1
2(2L∗

α,β ⊗ Lα,β − Iα,β ⊗ L†Lα,β − LTL∗
α,β ⊗ Iα,β). (4.4)

The vectorised operators in the exponent are then split into those acting on even and

odd pairs of lattice sites along both the x and y lattice dimensions. This gives four sets

of vectorised operators Le
x, Lo

x, Le
y and Lo

y which are defined in terms of Lαβ as

Le
r =

∑
L2r,2r+1, Lo

r =
∑

L2r−1,2r. (4.5)
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As is common in algorithms based on TEBD, the full time evolution etL is decomposed

into a set of layers via a Trotter decomposition with τ = t/n where n ≫ 1 is the Trotter

number. Each Trotter layer is given by

eτL = eτLe
xeτLo

xeτLe
yeτLo

y + O(τ 2). (4.6)

where each of the four dynamical maps in the decomposition is applied to pairs of nearest

neighbour tensors Aj and Al in turn.

Consider one of these dynamical maps eτ L̃, a useful method to calculate its action on

the pair of tensors AjAl is to use Krylov methods. To do this, the linear map L̃(AjAl)

is defined, where the linear operator L̃j′,l′

j,l acts on the pair of tensors Aj and Al such

that AjAl behaves as a vector in the linear map as illustrated in Figure 4.10 (a). By

repeated application of this map, an approximation to the tensor eτLAjAl Figure 4.10

(b) is calculated using a Krylov subspace algorithm. This method eliminates the need

for explicit exponentiation of eτL.

Truncation

To complete the update, the resulting tensor eτLAjAl needs to be decomposed into a

new pair of tensors A′
j and A′

l as illustrated in Figure 4.10 (b-d). This is typically

achieved via a singular value decomposition (SVD), where in the general case, the new

bond dimension D′—which is equal to the number of singular values associated with

the SVD—will be enlarged such that (D′ > D). In principle one could keep all singular

values, however, the complexity of the algorithm would very quickly increase after only

a few time steps and the benefits of using the TN ansatz diminished. Therefore, the

enlarged bonds need to be truncated in an appropriate way for the algorithm to remain

efficient. The number of singular values to retain could be chosen by keeping singular

values above some relative tolerance, in the present case however, we choose to truncate
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Figure 4.10: (a) Two site Trotter map L is applied to the nearest neighbour tensors
Aj and Al, repeated application of this map is used to find exp(τL)AjAlusing Krylov
methods. (b) The resulting contracted tensor is decomposed using a SVD resulting in
(c) A′

j , A′
l and a new D′×D′ bond matrix σ′ . (d-e) The enlarged bonds D′are truncated

back to their original dimension D via the isometries ũ and ṽ. The isometries giving an
optimal truncation with respect to the surrounding environment can be found using full
environment truncation (FET).

D′ back to its original size D after the action each dynamical map and subsequent

decomposition.

For TNs without closed loops—also known as acyclic, TNs—finding the basis which

results in the optimal truncation of singular values benefits greatly from the ability to

efficiently apply a gauge transformation and transform the network to a canonical form,

for example, for an MPS in mixed canonical form, the singular values have a clear corres-

pondence to the Schmidt coefficients associated to the bipartition at the orthogonality

centre. For TNs with closed loops—also called cyclic TNs—such a canonical form can-

not be defined uniquely and finding the basis in which the truncating the enlarged bond

is optimal is much less straightforward. Furthermore, cyclic TNs can host so called in-

ternal correlations, these correlations have no influence on the properties of the quantum

state but may cause computational problems if they are allowed to accumulate, see for

example the discussion in [56]. Given that the present case of a square lattice is clearly

a cyclic TN, we must be careful about how the singular values are truncated.
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We proceed in the usual way: after the contraction of the dynamical we decompose

the tensors using SVD and truncate the bond irrespective of the state of the environment,

leaving a new enlarged dimension D′ ≥ D which is chosen such that only those singular

values greater than some small relative tolerance ϵD′ ≪ 1 are retained as in . We are

left with a bond matrix σ with the remaining D′ singular values along its diagonal and

the tensors Ai and Aj as shown in Figure 4.10 (c). To perform the truncation, the bond

matrix σ is replaced with the product ũσ̃ṽ† where ũ and ṽ are isometries of dimension

(D′, D) such that ũũ† = ṽṽ† = I and the matrix σ̃ is a new D dimensional diagonal

bond matrix. The enlarged bond is then truncated by contracting Aj and Al with ũ and

ṽ as illustrated in Figure 4.10 (d). This truncation method shifts the problem to that

of calculating an optimal ũ , ṽ and σ.

To calculate the set ũ, σ̃ and ṽ we adapt the Full Environment Truncation (FET)

algorithm of [56]. FET prescribes a neat method to find an optimal truncation of an

internal index of an arbitrary cyclic TN for closed systems. In [56], the truncation

is optimised with respect to a fidelity measure for pure states. Here, we are dealing

with an open quantum system for which a pure state fidelity measure no longer holds,

we therefore optimise the truncation with respect to an objective function suitable for

mixed states. More precisely, the goal of the optimisation routine is to maximise a mixed

state fidelity measure between the state ρ for which the enlarged bond dimension is left

untruncated and the state ϕ in which the same bond has been truncated by ũ, σ̃ and ṽ.

Assuming that a global maximum is found, this procedure will find the isometries which

leave the state ϕ as close as possible to ρ with respect to the chosen fidelity measure.

To this end, we choose to maximise the fidelity F (ρ, ϕ), which has the Hilbert-

Schmidt inner product of ρ and ϕ in its numerator and the geometric mean of their
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purities tr(ρ2) and tr(ϕ2) in its denominator discussed in [180]

F(ρ, ϕ) = tr(ρϕ)√
tr(ρ2)tr(ϕ2)

. (4.7)

If we note that squaring F is convex, then the ρ and ϕ which maximise F2 (ρ, ϕ) also

maximise F (ρ, ϕ). In practice it is easier to construct F2 (ρ, ϕ) tr (ρ2) as a Rayleigh

quotient of tensors which can then be maximised to find an optimal ũ, σ̃ and ṽ.

Full Environment Truncation

The FET algorithm adapted from [56] is used to truncate enlarge bonds of the iPEPO

as follows.

1. Let the state of the full system—the unit cell plus its environment—at a time t be

ρt .

2. Calculate the Hilbert-Schmidt effective environment Ehs of the iPEPO representing

ρt.

3. Find A′
j and A′

l by applying the dynamical map to the pair of iPEPO tensors Aj

and Al before decomposing and retaining the D′ singular values with a magnitude

(relative to the largest singular value) greater than ϵD′ .

4. Contract A′
j and A′

l with the effective environment Ehs leaving only the enlarged

bonds uncontracted as illustrated in Figure 4.10 (b). This leaves us with the

fourth-rank bond environment tensor Υjl.

5. Use the bond environment Υij to calculate the tensors tr (ρϕ), tr (ϕϕ) and tr (ρρ)

which depend on the isometries u and v, the bond matrix σ and the bond envir-

onment Υij as illustrated in Figure 4.10 (c-e)
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6. Use tr (ρϕ), tr (ϕϕ) and tr (ρρ) to construct the Rayleigh quotient proportional to

F2 , illustrated graphically in Figure 4.12, where we note that the term tr (ρρ) is

independent of u, σ and v.

7. The alternating optimisation of u, v and σ then proceeds as follows, see Figure

4.12.

8. Define R ≡ σv. Find the Rm which maximises F2 (ρ, ϕ) tr (ρ2) by first keeping v

fixed and solving the resulting generalised eigenvalue problem in R.

9. Calculate the updated tensors σ′ and u′ using a SVD.

10. Defining L ≡ v′σ′. Find the optimal Lm by solving the generalised eigenvalue

problem in L

11. Use a SVD to find u′′, σ′′ and v′′.

12. The alternating procedure of steps 9-12 is repeated n times, until the trace dis-

tances 1/2||u(n) −u(n−1)||1 and 1/2||v(n) −v(n−1)||1 are both below a small tolerance

. Supposing that a global minimum is reached, this gives the optimal set ũ, σ̃ and

ṽ.

Rayleigh Quotient

A Rayleigh quotient F (R) in terms of the matrices R, A, and B

F (R) = R⃗†AR⃗

R⃗†BR⃗
(4.8)

is maximised by the eigenvector R⃗m, which corresponds to the largest eigenvalue λm of

the generalised eigenvalue problem AR⃗i = λiBR⃗i. Given that in the above case, the

matrix A is constructed as an outer product A = P⃗ †P⃗ of vectors P⃗ , then the R⃗m which
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Figure 4.11: The environment of the unit cell. (a) The trace effective environment E trj
of the iPEPO tensor Aj used to calculate the d × d reduced density matrix ρj. (b)
The Hilbert-Schmidt effective environment Ehsj of the tensor ahsj used in constructing
the bond environment. (c) The effective environment Ehsj,l of the tensors at neighbouring
sites j and l. (d) The bond environment Υj,l is the contraction of Ehsj,l and the updated
tensors A′

j and A′
l with enlarged bonds {D′

j} ≥ D. (e-g) Using Υj,l the terms in the
fidelity between the truncated (ϕ) and untruncated (ρ) density matrices are calculated
by contracting with the isometries u, v and the bond matrix σ.

Figure 4.12: Tensor diagrams representing some of the steps involved in finding the
isometries ũ and ṽ and the bond matrix σ̃ which maximise the fidelity between the
truncated and untruncated bonds. (a) The Rayleigh quotient in R is proportional to
F2. (b) P is the contraction of the bond environment ϵj,l and the isometry v. (c) R is
the contraction of the bond matrix σ and the isometry u. (d) B is the contraction of
Υjl with the isometry v. (e) The new (primed) isometries are found by singular value
decomposition of the contraction of the maximal eigenvector Rm and v.



96 Tensor Network Methods for Two Dimensional Systems

maximises the Rayleigh quotient is also given directly by R⃗m = P⃗B−1. In practice there

are a number of ways to find the maximum eigenvector. Firstly it is possible to calculate

R⃗m directly by inverting B using a matrix inversion function. Secondly, R⃗m can be found

by solving the system of linear equations R⃗mB = P⃗ using, for example, a linear regression

algorithm. Lastly, one can solve the generalised eigenvalue problem AR⃗ = λBR⃗ using

an eigenvalue solver via full diagonalisation of an iterative solver. Care must be taken

at this stage to maintain the stability of the algorithm. If solving by direct inversion, it

useful to either use a Moore-Penrose pseudoinverse [138] or to solve via linear regression

with an intermediate truncated singular value decomposition. All of the above methods

give acceptable results. Note also that it is useful for the stability of this stage of the

algorithm to symmetrise the bond environment such that Υjl = 1/2(Υ†
jl + Υjl) and

furthermore it is favourable to use the so called positive approximant of Υjl in which

any small negative eigenvalues are set zero.

Simple Update

The Simple Update (SU) method can be thought of as discarding the effect of the

environment on local dynamics by truncating enlarged bonds in a simplified way and also

bypassing the gauge fixing step. Instead of keeping relative singular values above a small

tolerance ϵD′ in step 3 above (Figure 4.10 (c)), the tensors A′
j and A′

l are immediately

truncated back to their original dimension D. This is equivalent to choosing both ũ →

ũsu and ṽ → ṽsu as D′ × D matrices with all diagonal entries equal to one and all

other entries equal to zero and retaining only the D largest singular values of σ′ in the

truncated σ̃su. In general, we observe that the set of ũ, ṽ and σ̃ found using FET are

inequivalent to ũsu, ṽsu and σ̃su. This suggests that, in the general case, SU does not

yield a truncation which is optimal with respect to the objective function we use.
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Figure 4.13: (a) The left boundary matrix ρL is constructed by left contraction of the
bond environment with the bond matrices. (b) The right boundary matrix ρR is calcu-
lated by right contraction of the bond matrices. (c) The Weighted Trace Gauge is that
for which the environment matrices ρ̃Land ρ̃R are proportional to the identity matrix.
Figure adapted from [56]

Gauge Fixing

There exists a gauge freedom across the internal bond in the network. This can be

seen by inserting a resolution of the identity across across any internal bond I = xx−1,

the gauge freedom arises from the freedom in choosing the isometry x. For the iPEPO

algorithm, fixing the gauge plays two important roles, firstly, it fixes the basis in which

the enlarged bonds are truncated making this basis consistent across all truncations

secondly it allows for the recycling of the environments Ehs and E tr calculated for use

at each FET step of the algorithm as an initial guess for the CTMRG renormalisation

procedure which precedes the following FET step. Recycling the effective environments

in this way reduces the number of renormalisation iterations required at each time step

which can significantly reducing the total runtime of the algorithm.

Following [56], the gauge is fixed to so called Weighted Trace Gauge by demanding

that the so called left and right boundary matrices demonstrated graphically in Figure

4.13 are proportional to the identity matrix. A method for fixing an internal index to

the WTG is given in [56] and requires only the bond environment and bond matrix as

input making the procedure easy to generalise to arbitrary networks so long as the bond

environment can be calculated efficiently. For a bond in WTG, the associated diagonal

bond matrix contains the Weighted Trace Gauge Coefficients which reduce the Schmidt

coefficients in the case where the network is acyclic or there are no internal correlations
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across the bond.

Quantifying Internal Correlations

A convenient method of quantifying the extend of internal correlations was introduced

in [56]. The so called cycle entropy across a bond in the cyclic TN joining sites i and

j is defined in terms of the bond environment Υi,j. The cycle entropy is defined as

the von-Neumann entropy of the normalised spectrum of the bond environment left-

contracted with the bond matrix. More precisely, defining Ῡ ≡ (σ ⊗ σ)Υ—similar to

Figure 4.13 (a) without contracting over the left bonds—then the cycle entropy is given

by Scycle = − ∑
α λ̄α log2 λ̄α where the λ̄α are the normalised eigenvalues of Ῡ. If the cycle

entropy is zero then no internal correlations are present across the bond, furthermore,

if the gauge is fixed to WTG then the associated coefficients are equal to the Schmidt

coefficients.

4.5 Measurement

Measurement of local observables is done by first constructing local reduced density

matrices. For example, Figure 4.14 shows graphically, the tensor contractions required

to calculate (a) the local density matrix ρj, (b) the nearest neighbour density matrix ρjk

and (c) a longer range density matrix where intermediate spins are traced out ρjm. There

is a unique single site reduced density matrix for each site in the unit cell. They are

constructed by contracting the iPEPO tensors at each site Aj with its its trace effective

environment E tr. Similarly, there is a unique two-site nearest neighbour tensors between

each pair of unique lattice sites in the unit cell, constructed by contracting the pair of

iPEPO unit cell tensors Aj and Ak with their trace effective environment E tr
jk. When

calculating longer range correlations, say between a site j and some distant site m,

rather than constructing the full density matrix, it is useful to trace out intermediate as
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Figure 4.14: Calculation of the reduced density matrices via contraction of the trace
effective environment E trwith the iPEPO tensors Aj. Correlations between distant sites
can be calculated efficiently by sandwiching atrbetween measurement sites as shown.

shown in Figure 4.14 (c). During the runtime of the algorithm, all tensors are normalised

by their component with maximum absolute value, it is therefore usually necessary to

normalise all density matrices calculated as shown in Figure 4.14 by dividing by their

trace, i.e. ρ ⇐ ρ/trρ.

In principle, once the iPEPO representation is obtained one can construct arbitrar-

ily large two-dimensional reduced density matrices, however the size is limited by the

complexity of contracting the associated TN. For the full infinite system, we do not have

access to the full eigenspectrum and deciding whether or not the full system repres-

ents a physical state is a difficult problem. For reduced density matrices of a small to

moderate size, the full eigenspectra can be calculated exactly and the positivity of their

eigenvalues checked explicitly—this is an import check to perform after constructing the

density matrices. We have found that in the majority of cases there are no negative

eigenvalues for small reduced density matrices on the order of a few lattice sites. If any

negative eigenvalues do appear, then they tend to be found for the multisite density

matrices and often disappear as the bond dimension is increased. While the possibility

of having negative eigenvalues in the reduced density matrices is a potential drawback

of the method, we find that for most of the use cases we are interested in, significant

problems do not arise.
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4.6 A Dissipative Transverse Ising Model

As a first benchmark of the algorithm we calculate the dynamics of a dissipative trans-

verse quantum Ising model with Hamiltonian

HTI = V

z

∑
⟨j,l⟩

σzjσ
z
l +

∑
j

hx
2 σ

x
j , (4.9)

where V is the rate of hopping between sites, hx is the strength of a transverse field and

z is the coordination number of the lattice. The spins undergo dissipation at a rate γ

which is described by the local Lindblad jump operators Lj = √
γ 1

2

(
σyj − iσzj

)
, which

are equivalent at each lattice site. We refer to the resulting Liouvillian as L[HTI , Lj].

The purely dissipative dynamics D (ρdis) = 0 drive the system towards a steady state

ρdis = ⊗|↓x⟩⟨↓x| which does not commute with the Hamiltonian HTI , therefore, the

ordered phases of the Hamiltonian can be frustrated by the dissipation.

Efficiently Solvable Model

To facilitate a quantitative test of accuracy for the FET+WTG method it is useful to

compare to an exactly solvable model. In two-dimensional open quantum lattice models

exacly solvable systems are difficult to find. However the work of [64] identifies a family

of models which are efficiently solvable under certain conditions. In the case of zero

transverse field hx/γ = 0, the Liouvillian L[HTI , Lj] belongs to the family of efficiently

solvable dissipative models described in [64]. In particular, the Liouvillian has a structure

such that coherences are not mapped to populations (and vice versa) therefore as shown

in [64] correlations remain localised. If some local observables of interest initially have

support on a suitably small sublattice, then, the numerically exact time evolution of

those observables can be calculated efficiently.

An observable O(t), which initially has support on a set of lattice sites A, can be
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Figure 4.15: An efficient solution can be obtained if the initial state has support on
a small subset of spins A and one can numerically calculate the solution of the subset
A ∪ B. Here we choose A as a set of three contiguous spins in the lattice and since the
Liouvillian is two-local, we identify B as the set of eight lattice sites which are nearest
neighbours of A. The set A ∪ B ∪ C represents the full system.

calculated to all times by solving, in the Schrödinger picture:

⟨O⟩(t) = TrA∪B [Oexp (tLAB) ρAB] , (4.10)

where where the sublattice B is the set of lattice sites which are nearest neighbours of the

sublattice A and for which the Hamiltonian has simultaneous support on both A and B.

To test the accuracy of local observables up to next-nearest neighbour (along a lattice

row or column) correlations Sxxjl (t) in time, we choose as A the set of three contiguous

lattice sites in a row in either the x or y lattice dimension. For the two-local Liouvillian

L[HTI , Lj], the sublattice B is identified as the eight nearest-neighbour lattice sites of A,

shown in Figure 4.15. Starting from an initial product state, the observables O(t) are

calculated efficiently by solving equation 4.10 using standard techniques from quantum

optics; we use the Julia package QuantumOptics.jl [98] . Results calculated using this

method are labelled EXACT .
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Method

The system is initialised in the product state of spins ρ0 = ⊗|↑z⟩⟨↑z| and the evolution

in time is calculated at four different pairs of the parameters (V/γ, hx/γ). These are in

a strongly dissipative regime with V/γ = 0.2, hx/γ = 0, a moderately dissipative regime

with V/γ = 1.2, hx/γ = 1.0 and a weakly dissipative regime where the hopping term is

larger V/γ = 4.0, hx/γ = 0, the fourth pair of parameters V/γ = 0.5, hx/γ = 1.0 model

a regime which has a nonzero transverse field and no longer admits an efficient solution

via the method of [64].

For all results pertaining to this transverse Ising model the parameters of the FET+WTG

method are chosen as: ϵD′ = 10−8 , ϵχ = 10−10, ϵFET = 10−10, ϵsvd = 10−10. The time

step is set to τγ = 0.01 in all instances cases except for the calculation of the weakly

dissipative regime where a value of τγ = 0.005 is chosen.

In each regime, the reduced density matrices ρj and ρl for each lattice site—labelled j

and l—in the two-site unit cell as well as the set of four nearest neighbour reduced density

matrices ρjl across each unique bond in the unit cell as well as the four next nearest

neighbour reduced density matrices ρjj′ where j and j′ are at a distance of two lattice

constants rather than
√

2, the sites j and j′ are in the same row or column. Although

it is found that all of the reduced density matrices within each set are equivalent to

a high precision, it is convenient to plot expectation values averaged over each set.

More precisely, the average magnetisation is given by mx = 1
2 (tr (σxρj) + tr (σxρl)) , the

average purity of the single site reduced density matrices by Π1 = 1
2

(
tr

(
ρ2
j

)
+ tr (ρ2

l )
)
.

The non-local reduced density matrices are used to calculate Sxx12 and Sxx13 , where Sxxjl (t) =

tr(σxj ⊗ σxl ρ
t), where once again, these are averaged over the four possible choices for j

and l in each case. Lastly, the infidelity of truncation I(t) = 1 − F(t) averaged over the

four trotter layers which make up every time step τ is calculated, here F is the mixed

state fidelity given in equation 4.7. The results are given for a range of bond dimensions
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D and choose χtr = χhs = χ in each case where we have confirmed the convergence of

the results with respect to increasing χtr and χhs in all results shown.

Strong Dissipation

In Figure 4.16 the results pertaining to the strongly dissipative regime are plotted.

The EXACT behaviour of the calculated observables can be summarised as follows.

Starting from an initial product state, as time progresses, the average magnetisation

mx(t) varies monotonically towards a stationary state reflecting the strong spin damping.

Each spin is initially a pure product state with Π1 = 1.0 which becomes mixed during

the time evolution and tends towards Π1 ≈ 0.88 after the transient evolution. Initially

uncorrelated, the spin-spin correlations Sxx12 and Sxx13 become non-zero and remain finite

after the short transient phase.

Comparing the results of the EXACT method with the FET+WTG solution, excel-

lent convergence is achieved for bond dimensions D = 4 and D = 5 . The results for

D = 2 and D = 3 lie somewhere between the D = 1 MF solution and the EXACT

solution. The D = 1 solution tends towards an uncorrelated product state of spins in

the |↓x⟩ phase which reflects the dominance of the dissipative processes in the solution

of the MF theory. Increasing the bond dimension to D = 2 and D = 3 it is found that

Sxx12 and Sxx13 become non-zero and for D = 3 the solution tracks the EXACT dynamics

closely at early times (tγ ⪅ 1), however, after the transient stage the spins again tend

towards an almost pure steady state in the |↓x⟩ phase, similar to the MF solution. By

increasing the bond dimension to D = 4 and D = 5 it is found that the FET+WTG

method reproduces the EXACT dynamics to and excellent precision for all observables

calculated.

In the bottom right panel of Figure 4.16, the infidelity of truncation as a function

of time I(t) is plotted and its behaviour is similar for all values of D. A the dynamics
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Figure 4.16: Strong damping regime of the dissipative transverse Ising model with para-
meters: V/γ = 0.2, hx/γ = 0. The D = 1 results show that the MF theory give incorrect
results. For bond dimensions D ∈ [2, 3] the results fall somewhere between the EXACT
and MF results while for D ∈ [4, 5] the FET+WTG algorithm reproduces the EXACT
dynamics to excellent precision.

progress from the initial product state and the correlations begin to deviate from zero,

I(t) increases from I ≪ 1 where the error which is introduced by truncation of enlarged

bonds is negligible, to a nonzero value indicating that the truncation causes the state

to deviate from the case in which bonds are left untruncated. Nevertheless, for bond

dimensions of D = 4 and D = 5, I(t) remains below ≈ 10−10 throughout the dynamics.

This indicator of the accuracy of the results. Note that I(t) has a dependence on the

time step τ—a smaller time steps will tend to induce smaller correlations per step that

a large one.
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Moderate and Weak Dissipation

Displayed in Figure 4.17 are the results in the moderate damping regime with model

parameters V/γ = 1.2, hx/γ = 1.0. In this case, the hopping strength is comparable to

the rate of dissipation and therefore the EXACT dynamics of local observables display

some transient oscillations which are quickly damped by the dissipation. The EXCAT

solution again contrasts significantly to the D = 1 solution where the system tends

towards a pure steady state with all spins in the |↓x⟩ state. The FET+WTG method

reproduces the EXACT dynamics to good precision for the single site observables for

D > 3. For the non-local observables, Sxx12 and Sxx13 also show good agreement with

EXACT particularly for D = 7.

The case of weak dissipation V/γ = 4.0 and hx/γ = 0.0 is plotted in Figure ??. In

the EXACT results, weakly damped oscillations at early times reflect the dominance of

the hopping term. The D = 1 solution clearly gives incorrect results, while the results

for D ∈ [5, 6] reproduce the EXACT solution at early times but begin to deviate after

approximately tγ = 2 − 3, although still retaining similar qualitative behaviour. The

D = 7 results again reproduce the EXACT results at early times but start to deviate

significantly at later times. That larger bond dimension are required to reproduce the

exact results for early times is indicative of the greater role played by correlations in this

coherent hopping dominated regime.

Beyond Efficiently Solvable Regime

For nonzero transverse field hx, the Liouvillian does not fulfil the conditions for an

efficient solution using the EXACT method. Of course, the FET+WTG method makes

no assumption as to extent of correlations and should therefore be applicable for these

parameters. As an example, the case of V/γ = 0.5 and hx/γ = 1.0 is presented in

Figure ??. Using FET+WTG, the values of local observables as a function of time are
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Figure 4.17: Moderate damping regime of the dissipative transverse Ising model with
parameters: V/γ = 1.2, hx/γ = 0. The MF D = 1 results are qualitatively incorrect
while the EXACT results are well approximated using the FET+WTG method for
D ∈ [6, 7].
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Figure 4.18: Weak damping regime of the dissipative transverse Ising model with para-
meters: V/γ = 4.0, hx/γ = 0. The EXACT results are well approximated at early times
using a bond dimension D ∈ [5, 6, 7] however they begin to deviate after tγ ∼ 2 − 3
which suggests that the system quickly becomes correlated. The large deviation seen for
D = 7 is due to numerical instability.
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Figure 4.19: Beyond efficiently solvable regime of the dissipative transverse Ising model
with parameters: V/γ = 0.5, hx/γ = 1.0. For bond dimensions D ∈ [5, 6] the dynamics
appear well converged. In this case there is no EXACT with which to compare, however
the behaviour is broadly similar the efficiently solvable cases with strong and moderate
dissipation.

found to converge as the iPEPO bond dimension is increased. Results for D ∈ [1, 4, 5, 6]

converge well for D ≥ 5. Considering the converged results, the behaviour of the system

remains similar to the efficiently solvable cases: after after transient phase with damped

oscillations, the initial pure product state tends towards a correlated mixed state, the

converge results are qualitatively different from the D = 1 mean field solution. The

infidelity of truncation remains well below I(t) < 10−8 for the converged results, a value

which is consistent with the other benchmarking results.



4.7 Comparison with Simple Update 109

Figure 4.20: Convergence with respect to χhs in (a) the strongly damped (b) weakly
damped and (c) outside the efficiently solvable regime. In each case there is no significant
change upon increase of χhs suggesting that the Hilbert-Schmidt effective environment
is well approximated.

Convergence with Respect to Environment

In Figure 4.20 the results for the averaged purity Π1(t) as a function of time of the one-site

reduced density matrices are plotted for the three regimes which show good convergence:

the strongly damped, moderately damped and beyond the efficiently solvable regime. In

each case, results calculated for a bond dimension for which Π1 appears well converged

is plotted for a number of values of the environment bond dimensions χhs = χtr = χ.

In all cases, the purity shows almost no dependence on χ, confirming that the results

are well converged with respect to χ. This is not surprising in the cases which admit an

efficient solution using the EXACT method since we know a priori that the length scale

of correlations remains small. It is likely that convergence with respect to χhs will be

more important when correlations are longer ranged.

4.7 Comparison with Simple Update

In this section we compare and contrast the FET+WTG algorithm with the Simple Up-

date (SU) algorithm. To do so, we focus on the moderate damping regime of the trans-

verse Ising model discussed in the previous section. Using each method the dynamics in

time of local observables are calculated for the parameters V/γ = 1.2 and hx/γ = 0 for a
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Figure 4.21: Comparison between FET+WTG and SU. (a) Trace distance between
the EXACT two-site density matrices an those calculated using each method, SU and
FET+WTG. inset: Trace distance at tγ = 10 clearly showing the scaling of the accuracy
of results as the bond dimension is increased. (b) Magnetization mx(t) calculated using
the SU method as compared to the EXACT results. (c) Nearest neighbour correlations
Sxx12 (t) calculated using the SU method and compared to the EXACT results.

range of bond dimensions. All parameters are the same for both methods; we use a time

step of τγ = 0.01 and the parameters related to the CTMRG algorithm are ϵχ = 10−10.

For the FET+WTG algorithm we choose ϵFET = 10−8. The only difference between the

results is in how ũ, ṽ and σ̃ are calculated and the SU method does not fix the gauge.

In Figure 4.21, the observables mx(t) and Sxx12 (t) are compared directly with the

results of EXACT, furthermore we provide a quantitative measure of the accuracy of

each method by calculating the trace distance between the two-site reduced density

matrices form the EXACT method at each time step and the corresponding reduced

density matrix calculated using either the SU or FET+WTG methods. In particular,

the trace distance T2(t) of the nearest neighbour reduced density matrices T2 (ρjl, ϕjl) =
1
2tr

(√
(ρjl − ϕjl)†(ρjl − ϕjl)

)
is calculated, where T2(t) is averaged over the four unique

nearest neighbour reduced density matrices given by the two-site unit cell.

It is clear from Figure 4.21 (a-c) that the SU method does not reproduce the EXACT

results to the same accuracy as FET+WTG. Figure 4.21 (a) and its inset demonstrate

that FET+WTG undergoes a clear systematic improvement in accuracy as D is in-

creased. On the other hand, SU shows only a minor improvement in T2(tγ = 10) which
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is not systematic, even if D is increased well beyond that for which FET+WTG already

demonstrates good convergence. For values of D > 3, T2 is consistently approximately

an order of magnitude smaller for FET+WTG than it is for SU, this illustrates the much

improved compression and greater accuracy of WTG+FET. The observables in Figure

4.21 (b-c) calculated using SU tend to deviate from the EXACT dynamics considerably

when compared to FET+WTG (compare to Figure 4.17), it is observed that at times

tγ ⪆ 2, the SU method struggles to capture the EXACT results for all of the bond

dimensions shown.

It is instructive to investigate how each algorithm deals with internal correlations

in the network. The cycle-entropy Scycle plotted in Figure 4.22 (a) and quantifies the

extent of internal correlations as a function of time. Initially the network representing

the product state, has no cycle entropy. In time however, Scycle grows and saturates

at a finite value. Importantly, Scycle grows more slowly and saturates at a lower value

if using FET+WTG than it does is using SU. This clearly illustrates that the more

optimal truncation of bonds curtails the growth of internal correlations in the network.

While the growth of Scycle in the present case remains relatively benign throughout the

time evolution, the failure of SU to curtail the accumulation of internal correlations may

contribute to instabilities in the algorithm in some circumstances.

As a final comparison, the infidelity of truncation I as a function of time is plotted in

Figure 4.22 for the two different methods. It is clear that FET+WTG outperforms SU;

the infidelity between truncated an untruncated bonds is improved by approximately an

order of magnitude. To summarise: the variational degree of the ansatz is equivalent

in each case, they have same D and χ, however, the method by which the enlarged

bonds are truncated is crucial in finding the optimal representation and reducing the

accumulation of errors due to inadequate truncation and ultimately giving the most

accurate results.
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Figure 4.22: Comparison between the cycle entropy produced using the SU and
FET+WTG methods during the time evolution in the moderately damped regime of
the dissipative transverse Ising model for a bond dimension D = 4. The FET+WTG
method curtails the growth of internal correlations producing a more efficient compres-
sion of the state.

4.8 Driven-Dissipative Hard-Core Bose Hubbard Model

An important class of open quantum system are those which are driven by an external

source to counteract losses to the environment. For example, these systems are frequently

encountered in quantum optics; a coherent or incoherent light source replenishes photons

lost to the environment, see [30] for a review. Driven-dissipative systems are often well

described by the Markovian approximation of the Lindblad master equation. In this

section we test the FET+WTG method in this context by calculating steady state

properties of a driven-dissipative hard core boson model. In this model, the on-site

interactions between bosons hopping on the lattice are taken to infinity such that no

two bosons can occupy the same lattice site. The model can therefore be mapped to a

lattice of interacting spin-1/2 particles. In the reference frame rotating at the frequency

of a coherent drive, the Hamiltonian is written as
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Table 4.1: Expectation values in the steady state of a hard core boson model on an
infinite square lattice. The model parameters are ∆/γ = 5.0, F/γ = 2.0 and J/γ =
1.0 and are calculated using the iPEPO FET+WTG method. A time step of τγ =
0.0025 is used in all results. To facilitate a comparison, equivalent results for the same
parameters calculated using the Corner-Space Renormalisation Method introduced in
[60] for different sizes Nx ×Ny are tabulated below.

J/γ = 1.0 F/γ = 2.0 ∆/γ = 5.0

D χ ϵD′ n ℜ(⟨σ−⟩) g
(2)
⟨j,l⟩

1 1 10−6 0.09482 0.27619 1.0

3

9 10−4 0.09545 0.27674 1.06243
9 10−5 0.09534 0.27680 1.06353
9 10−6 0.09534 0.27681 1.06360
9 10−7 0.09535 0.27680 1.06344
15 10−7 0.09535 0.27680 1.06344

4 8 10−7 0.09548 0.27670 1.06440
12 10−7 0.09548 0.27670 1.06443

5 10 10−7 0.09548 0.27670 1.06443
15 10−7 0.09548 0.27670 1.06443

Nx ×Ny Corner Space Renormalization Method
4 × 4 0.0954(1) 0.2764(2) 1.0643(3)
8 × 4 0.09527(2) - 1.0436(3)
8 × 8 0.0948(2) - 1.0237(6)

H =
∑
j

[−∆σ+
j σ

−
j + F (σ+

j + σ−
j )] − J

z

∑
⟨j,l⟩

σ+
j σ

−
l

where ∆ = ωp−ωc is the detuning between the drive frequency ωp and the on site energy

ωc of the cavity. The term F is the drive field strength, J is the rate of hopping between

nearest neighbour lattice sites and the sum ∑
⟨j,l⟩ runs over nearest neighbours in the

lattice of coordination number z. The spins undergo local dissipation at a rate γ which

is modelled by a local Lindblad jump operator Lj = √
γσ−

j which is the same at each

lattice site. The operators σ± ≡ 1
2(σx ± iσy) are the spin raising and lowering operators.

A challenge which arises when trying to benchmark and test the accuracy of al-
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gorithms for open quantum lattice models is that there are very few exactly or efficiently

solvable models to compare to. Furthermore, there are only a handful of numerical

techniques which are capable of simulating two-dimensional systems. In the follow-

ing, we compare the steady state expectation values of the driven-dissipative hard-core

Bose Hubbard model, calculated using the iPEPO method to those calculated using the

Corner-Space Renormalisation Method (CSRM) first introduced in [60]. The CSRM

simulates finite sized systems. In order to access lattices of increasing size it merges

pairs of smaller lattices and retains only the most probable states, thereby restricting

the system to a small subspace of the full Hilbert space. By systematically increasing

the size of the finite system and hoping for convergence the results corresponding to

large systems sizes are approached.

In order to facilitate a clear comparison, the steady of a square lattice hard core

bosons with ∆/γ = 5, F/γ = 2 and J/γ = 1 is simulated and the average single site

density n = 1/2(nj + nl) and nearest neighbour (⟨j, l⟩) correlation functions g(2) are

calculated and averaged over all combinations of (⟨j, l⟩), where

g
(2)
j,l =

⟨σ+
j σ

+
l σ

−
j σ

−
l ⟩

⟨σ+
j σ

−
j ⟩⟨σ+

l σ
−
l ⟩
, nj = tr(σ+

j σ
−
j ρss)

For completeness, the average real part of ℜ [tr (σ−ρss)] at each lattice site is also shown.

The steady state values are found as follows. Initialising the system in maximally mixed

product state, the iPEPO steady state for one set of parameters D, χ and ϵD′ are

found. Convergence in time is achieved when all expectation values o up to next nearest

neighbour terms meet a convergence criterion of ϵt < 10−6 where

ϵt = |tr (oρt+τ ) − tr (oρt)|
|tr (oρt)|τ

.

For higher bond dimensions the steady state iPEPO calculated for one set of parameters

is used as an initial state for the next set until convergence to the desired precision is
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achieved.

The results generated using this procedure are presented in TABLE 4.1 alongside

the results for the same model for the same parameters calculated using the CSRM.

As the variational parameters of the iPEPO algorithm are increased, the steady state

values converge well. In particular, good convergence is observed in the results for

D = 4 and D = 5. The on-site average expectation values n and ℜ(⟨σ−⟩) change only

slightly from their MF D = 1 values as the bond dimension is increased. The nearest

neighbour correlation function g
(2)
⟨j,l⟩ is unity for the case of D = 1 whereas the system

exhibits nearest neighbour bunching (g(2)
j,l > 1) for D > 1 which is in agreement with

the predictions of CSRM.

Although the values calculated using the iPEPO algorithm converge as the variational

parameters are increased and are close to the results of the CSRM, there is a small

discrepancy between the two sets of results. We might expect that increasing the CSRM

lattice size Nx × Ny will converge towards the iPEPO method which represents the

thermodynamic limit directly, instead it is found that the opposite is true; a lattice size

of 4 × 4 is in closer agreement to the converged iPEPO results than a lattice size 8 × 8.

The source of the discrepancy is not clear however it could arise from a few different

areas. For example it may result from finite size effects or a translational symmetry

breaking, which could be present in the Nx × Ny results which are averaged over the

lattice, such edge effects would not arise in the iPEPO solution. By choosing an iPEPO

ansatz with a two-site unit cell a two-site translational invariance has been enforced.

However, translational symmetry breaking can arise due to tunnelling induced instability,

for example this has been observed in the work of [88, 107]. The presence, or otherwise, of

any translational symmetry breaking could be investigate using the iPEPO FET+WTG

method by increasing the size of the iPEPO unit cell.

An alternative source of the discrepancy might be lack of true convergence in the fi-



116 Tensor Network Methods for Two Dimensional Systems

nite system size of the CSRM. The steady state expectation values of a driven-dissipative

Bose-Hubbard model on a two-dimensional Lieb lattice were addressed in TABLE II of

[49]. Those results were calculated using an algorithm based on the Positive-P repres-

entation; a method which gives the numerically exact solution provided the associated

numerics remain stable. The results of [49] demonstrate that quite large lattices—on the

order of 10×10 unit cells of the Lieb lattice—are necessary to achieve good convergence,

particularly with respect to the correlations like g(2). A full investigation of the precise

origin of this discrepancy is, however, a topic for future exploration.

4.9 Order to Disorder Transition in the Two Dimen-

sional Classical Ising Model

The iPEPO algorithm for Lindblad dynamics can easily be extended to exploring two-

dimensional thermal systems using an annealing approach. To our knowledge this was

first implemented by the authors of [100] using the SU algorithm. The central idea is that

one can describe a thermal state of a Hamiltonian system H in the canonical ensemble as

ρ ∝ eβH up to some normalisation, where β = 1/T is an inverse temperature. Noticing

that the thermal state can be written as

ρ ∝ e−βH = e−βH/2Ie−βH/2,

the maximally mixed state I can be decomposed as a tensor product and is therefore

straightforward to represent exactly as an iPEPO on a two dimensional lattice. Then, by

representing the infinite temperature maximally mixed state as ρ = I, one can “anneal”

the infinite temperature state down to a temperature T .

The optimisation—or annealing—from the infinite temperature state I is achieved

via imaginary time evolution applied to vector space “ket” of state and to its dual “bra”
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space. To reach the desired temperature T , one divides the inverse temperature β into

an integer m number of slices, each of which cools the system by some small amount

∆β = β/m, then by repeated application of the vector and dual space operators e∆βH/2,

the state at temperature T can be written as

ρ = (e∆βH)m/2I(e∆βH)m/2.

If we consider a two-local Hamiltonian, then the operator e(∆β/2)H can be well approx-

imated by a Suzuki-Trotter decomposition. Like the case of Lindblad dynamics, it is

convenient to work in the vectorised description of the iPEPO such that the propagator

in the vectorised space takes the form

|ρ(T )⟩ = (e−∆β(H⊗I+I⊗HT ))m/2|I⟩. (4.11)

Note that if we compare this to the propagator use for Lindblad dynamics in equation

4.2 and 4.3, the modifications in equation 4.11 simply involve setting all dissipation rates

to zero and changing the sing of the dual space operator. While in [100], the authors

use the SU time evolution scheme, here we test whether the method remains accurate

using the FET+WTG update scheme.

As a simple example we repeat the numerical experiment of [100] and calculate the

order disorder transition in the two-dimensional classical Ising model which was solved

exactly by Onsager [133]. In the model, classical spins σj reside on a square lattice

interact via a homogeneous nearest neighbour interaction governed by the Hamiltonian

H = −J
∑
⟨j,k⟩

σjσk.

The exact solution shows that there is a first order phase transition from a high temper-

ature disordered phase to a low temperature phase in which the spins are ordered at a
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critical temperature Tc which obeys the equation sinh(2J/κTc)2 = 1, where βc = 1/κTc.

The magnetisation as a function of inverse temperature takes the for m = (1 − k2)1/8

where k = 1/ sinh(2J/κT )2 , valid for T < Tc. Below the critical temperature, the

magnetisation is zero.

This thermal transition offers a useful—albeit classical—testbed for the iPEPO an-

nealing algorithm. In particular, it serves as a test of whether the algorithm is working

as expected. To test the accuracy of the iPEPO annealing algorithm we set J = 1,

where the critical point is βc = sinh−1(1)/2 ≈ 0.44. It is known a priori (see [100] ) that,

the exact solution can be represented as an iPEPO with bond dimension D = 2, we

therefore chose this value in all of the following numerical experiments. To begin, the

maximally mixed state is represented as an iPEPO with a two site unit cell and a bond

dimension D = 2. Then, the state is annealed at a rate of ∆β until the system reaches

an inverse temperature β = 1. The annealing process is repeated using an environment

bond dimension χ = 16 and ∆β ∈ [0.01, 0.002, 0.001, 0.0005]. The other parameters as-

sociated to the FET and CTMRG algorithms are;ϵD′ = 10−10, ϵsvd = 10−10, ϵpinv = 10−8,

ϵχ = 10−10 and ϵFET = 10−10.

In Figure 4.23 the results of the iPEPO annealing routine are plotted alongside the

exact result. In particular, in Figure 4.23, the magnetisation mz is found to match

the exact result for the majority of the phase diagram. The results show the largest

deviation from the exact solution just above the critical temperature β ⪅ βc the likely

arises form the difficulty of approximating a discontinuous transition using the imaginary

time evolution algorithm which is composed of a sequence of small dynamical maps.

Decreasing the time-step makes little difference to the results as observed in Figure 4.23

inset. We have also confirmed that increasing the environment bond dimension do not

change the value of the magnetisation, this is because the Hamiltonian is classical and

the FET routine—bond truncation optimisation with respect to the environment—is



4.9 Order to Disorder Transition in the Two Dimensional Classical Ising Model 119

Figure 4.23: Order disorder transition in the two-dimensional classical Ising model calcu-
lated using the iPEPO annealing algorithm superimposed with the exact phase diagram.
The iPEPO bond dimension D = 2 with the environment bond dimension is χ = 16.
Above the critical temperature βc (dashed line) the magnetisation calculated using the
iPEPO method agrees well with the exact solution. At temperatures just above the
transitions point β ⪅ βchowever, the iPEPO solution deviates from the exact value
(mz = 0) more significantly.
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not required.

We have verified that the annealing method accurately captures this classical first

order phase transition and is able to plot a phase diagram which is very close to the

exact solution. For this classical Hamiltonian, the full machinery of the iPEPO method

with gauge fixing and full environment truncation is not necessary, indeed we find that,

the FET subroutine is never actually triggered during the annealing process since the

Hamiltonian is classical and the enlarged bond dimension does not grow beyond D =

2 to warrant its use. The principal sources of error are therefore the Trotter error

and any error in calculating the trace effective environment E tr, particularly near the

transition point where correlations can be long ranged. One could attempt to decrease

the Trotter error by using a higher order decomposition. In the simplest case this can be

achieved by reversing the order of the application of two-local trotter gates at each step

in the time evolution. Improvements near the phase transition point could potentially

be achieved by using an alternative time evolution method based on MPOs or Runge-

Kutta stepper algorithms or moving to a variational approach. The error in calculating

E trcan be improved by increasing the environment bond dimensions χ, or using a more

sophisticated renormalisation algorithm, however, we find no improvement above χ = 16.

4.10 Discussion

This chapter concerned TN algorithms for simulating two-dimensional open quantum

lattice models. In sections 4.2 and 4.2 the preexisting ansätze, the Projected Entangled

Pair State and the Projected Entangled Pair Operator were discussed. In section 4.3

the methods used to calculate effective environments by contracting the two dimensional

network using a variant of the Corner Transfer Matrix method given in [62] was discussed

in detail. In section 4.4 details of a new algorithm for integrating the Lindblad master

equation on an infinite square lattice—which is referred to as FET+WTG—was then
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discussed; the key improvement over the existing Simple Update integration technique

of [101] was the adaptation of the Full Environment Truncation and gauge fixing to

Weighted Trace Gauge presented in [56] to the context of open systems and the iPEPO

ansatz. The new algorithm was tested for accuracy against an efficiently solvable model

in section 4.6 and it was compared to the Simple Update method of [101]in section 4.7.

In section 4.8, the new algorithm was compared to the Corner Space Renormalisation

method [60] and in section 4.9, the ability of the method to simulate thermal states

using the annealing algorithm of [100] was demonstrated for the simple case of a classical

thermal Ising model.

The PEPS was introduced as an example of a two-dimensional TN ansatz, its proper-

ties were discussed and important differences distinguishing two-dimensional TNs form

one-dimensional TNs were discussed, in particular the additional considerations which

arise when using cyclic rather than acyclic tensor networks were addressed. With a view

to developing a TN algorithm for two dimensional open quantum systems, the operator

analogue of the PEPS, the PEPO was discussed. The PEPO, and its translationally in-

variant infinite version, the iPEPO, inherit many of the features of the PEPS and iPEPS,

in particular the complexity of contraction which arises from the two-dimensional geo-

metry as well as features of operator TN ansätze in one-dimensional systems such as

the lack of inherent positivity of the associated density matrix. While the positivity

problem is difficult to overcome, it may be possible to use a two-dimensional analogue

of a purification ansatz such as locally purified tensor network [186] to guarantee pos-

itivity of the density matrix, however, this is likely to come at the cost of larger bond

dimensions which are already severely restricted by the complexity of the algorithm.

The role of the effective environments was discussed in some detail, in particular

the Hilbert-Schmidt and trace effective environments were introduced and details of a

particularly numerically stable variant of the CTMRG algorithm for calculating them
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was discussed. Calculation of the effective environments is the most numerically costly

step in the FET+WTG algorithm and any significant speedup of the overall algorithm

is likely to come from improving the efficiency of this step. There are a range of existing

algorithms which could be used to calculate the effective environments including those

based on the calculation of fixed points and boundary MPS methods as discussed. The

merits of using an alternative algorithm for this step would be an interesting area for

exploration. Moreover, it could be interesting the incorporate the Neighbourhood Tensor

Update method of [52] which lies somewhere between Simple Update and calculation of

the full environment using CTM or boundary MPS methods. Moreover, is likely that

any environment calculation algorithm would benefit greatly form implementation on a

graphical processing unit (GPU).

The integration of the master equation using a TEBD algorithm was discussed in

detail. The key step in the integration is the truncation of enlarged bonds and a Full En-

vironment Truncation (FET) method based on the maximisation of a the fidelity between

states with truncated and untruncated bonds was used for this purpose. This frame-

work relied on a very general construction in terms of the so called bond environment

introduced in [56]. In our implementation, the FET method required the calculation of

the full Hilbert-Schmidt effective environment before each truncation took place. How-

ever, it may also be possible to consider alternative bond environments which may be

less numerically costly to calculate. For example, one could think of constructing the

bond environment from a local cluster of lattice sites, a kind of Partial Environment

Truncation similar to [52] with analogies to cluster based algorithms. A very convenient

aspect of performing the truncation of enlarged bonds in terms of the bond environment

is that the method can easily be generalised to arbitrary networks, so long as the bond

environment can be calculated efficiently.

The transverse dissipative Ising model dynamics were compared to those calculated
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in an efficiently solvable regime using the method of [64]. The FET+WTG algorithm

performed very well in regimes of strong and moderate dissipation and was able to re-

produce both local and non-local observables to a high accuracy. For cases of weak

dissipation dominated by coherent hopping between lattice sites, the FET+WTG al-

gorithm performed well only at early times but began to deviate from the exact solution

later in the time evolution. Furthermore it was possible to solve for the dynamics of

the model beyond the narrow efficiently solvable regime necessary for using the method

of [64] which would allow allow for a fuller exploration of the phases of the model. An

interesting topic of research would be to quantify the dynamical growth of entangle-

ment in this model, particularly in cases for which the FET+WTG method deviates

significantly from the exact solution.

To facilitate a comparison between the FET+WTG and SU algorithms, the trans-

verse dissipative Ising model was solved in the regime of moderate dissipation using

both algorithms. It was found that the optimal truncations of the FET+WTG method

are of central importance in achieving accurate results. Furthermore, by investigating

the extent of external correlations by calculating the cycle entropy, it is found that the

FET+WTG algorithm curtailed the growth of internal correlations.

For steady states of the driven-dissipative hard core boson model the FET+WTG

method the results were found to be comparable to those of the Corner Space Renormal-

isation method [60], with some small deviations, the origin of which is a topic for future

research. In principle it should also be possible to simulate the driven-dissipative Bose-

Hubbard model with strong on-site interactions by introducing a local Hilbert space

cutoff for the number of bosons allowed on each lattice site.

Inspired by the work of [100] the ability of the FET+WTG method to calculate

thermal states was investigated and results were compared to the classical Ising model

in two dimensions. In this vein it would be interesting to compare the results of the SU
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method to the FET+WTG for calculating thermal states of systems with non-classical

correlations such as a transverse quantum Ising model. In this setting it is likely that

the FET+WTG method will give more optimal truncations and therefore result in more

accurate phase diagrams.



Chapter 5

The Anisotropic Dissipative

XY-model on a Square Lattice

Two dimensional systems host a unique set of phenomena in which the dimensionality

plays a crucial role in the physics. Consider for example the topological phase transitions

mediated by binding and unbinding of vortex-antivortex pairs [97] or phase transitions

in the Ising model [133] which have a lower critical dimension of D = 2. In this chapter,

aspects of a dissipative anisotropic XY-model on a square lattice are addressed. This

model is interesting for a number of reasons. A simple MF solution [108] shows the

stabilisation of a spontaneously symmetry broken staggered-XY (sXY) phase in the

stationary state, however it is not clear whether the sXY phase remains accessible in a

two-dimensional system if fluctuations at the microscopic level are accounted for or if

any (quasi-)long range order associated with the sXY phase is present. Furthermore,

the model satisfies the criteria of PT -symmetry in the sense of [83] which suggests a

transition from a pure state at strong dissipation to a maximally mixed state at very weak

dissipation, the character of the transition between the opposite limits of dissipation as

dictated by the PT -symmetry is an open question for the spin-1/2 model on a two-

dimensional lattice.



126 The Anisotropic Dissipative XY-model on a Square Lattice

The aim of this chapter is to address these questions by solving the model using the

FET+WTG algorithm based on the iPEPO ansatz. Firstly, the model is introduced and

its symmetries including its identification as being PT -symmetric are discussed. The

results of the MF analysis are reviewed in Section 5.2. The findings of other works on

the model which use a Keldysh field theory approach are discussed in Section 5.3. The

methodology used to address these questions using the iPEPO tensor network method

is given in section 5.5 and the results are presented in Section 5.6.

5.1 The Model

The model describes an array of spin-1/2 particles arranged on a a square lattice span-

ning the plane. The spins interact with their nearest neighbours and with a bath or

reservoir via an incoherent dissipation process. The dynamics of the system are mod-

elled using a Lindblad master equation for the system’s density matrix ρ

ρ̇ = −i[H, ρ] + Γ
∑
j

[σ−
j ρσ

+
j − 1

2(σ+
j σ

−
j ρ+ ρσ+

j σ
−
j )]. (5.1)

The Liouvillian which generates this map is referred to succinctly as L[HXY ;
√

Γσ−],

where the Hamiltonian has the form

HXY = J

z

∑
⟨j,k⟩

σxj σ
x
k − σyjσ

y
k = 2J

z

∑
⟨j,k⟩

σ+
j σ

+
k + σ−

j σ
−
k , (5.2)

where σxj , σ
y
j and σzj are the Pauli spin operators at each lattice site and the Hamiltonian

is parameterised by the nearest neighbour hopping J and coordination number z. The

dissipator in 5.1 is written in terms of the local spin raising and lowering operators σ±
j =

1
2(σxj ±σyj ) and describes incoherent dissipation at a rate Γ. The model is parameterised

in terms of the dissipation rate by the single parameter J/Γ.

The anisotropy has an important influence on the steady state which can be under-
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stood as follows. Each of the spins will experience an effective magnetic field dependent

on the orientation of its neighbours. Since the coupling is anisotropic—the σxj σxk and

σyjσ
y
k terms have opposite sign—the effective field experienced by a spin will be perpen-

dicular to the magnetisation of its neighbouring spins. While spins decaying towards |↓z⟩

at a rate Γ, the precession from the effective field may be strong enough to counteract

the dissipation pointing the spin away from |↓⟩ and exotic forms of magnetism may arise

[108].

It is straightforward to solve the simple MF equations for these kinds of dissipative

spin models and doing so has shown a wealth of unconventional magnetism, however,

studies which include correlations beyond MF show that a qualitatively different picture

can emerge. For example, the MF phase diagram of the dissipative XYZ model has been

shown [108] to host a range of exotic phases such as ferromagnetic, anti-ferromagnetic

and spin density waves. Beyond the basic MF approximation the phase diagram be-

comes qualitatively different [88]; for example, a transition from a paramagnetic to a

ferromagnetic phase, followed by a re-entrance to the paramagnetic phase not predicted

by the MF theory has been shown. Furthermore, for the case of a coherently driven

dissipative XY-model where the MF theory predicts bistable behaviour coupled with a

sharp transition between high- and low-density states, the full solution, where correla-

tions are taken into account, shows that this sharp MF transition is instead replaced by

a smooth bunching to antibunching transition [119].

Symmetries

The Liouvillian L[HXY ;
√

Γσ−] 5.1 has a weak—in the sense of [24]—continuous U(1)

symmetry between the A and B sublattice spin orientations. This can be shown by

defining U z
ϕ = e−iϕ

∑
uc

(σz
A−σz

B) where the sum is over the two-site unit cell and showing

that
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Figure 5.1: A possible spin configuration of a square lattice plaquette in the staggered
XY (sXY) phase of the anisotropic dissipative XY-model. In the sXY phase the lattice
arranges in a checkerboard patter with two sublattices A and B. In the x − y plane,
the spins are staggered by an angle ϕ about the x = y line (dashed red). Spins in the
uniform phase (U) which is not shown, have no component along the x or y directions.

L(U z
ϕρU

z†
ϕ ) = U z

ϕL(ρ)U z†
ϕ .

As observed by the authors of [108], in the MF theory steady state solution this continu-

ous symmetry is spontaneously broken and the spins on the A and B sublattices acquire

an angle of ϕ and −ϕ relative to the x = y line on the Bloch sphere as shown in Figure

5.1. As dictated by the continuous symmetry, any value of ϕ corresponds to a possible

solution and this gives rise to topological defects similar to vortices and around which

the relative orientation of the two sublattices rotates by 2π.

Recently the authors of [83] generalised the notion of parity-time PT -symmetry to

arbitrary open quantum systems for which its definition in terms of a non-Hermitian

Hamiltonian is not applicable. The idea is to note that the physical effect of the T

operator is to interchange the role of loss and gain rather than to implement time reversal.

For example, in the case of a quantum harmonic oscillator with loss described by a jump

operator c =
√

Γa, the transformation between loss and gain is achieved by replacing c

with its adjoint c → c† =
√

Γa†. Using this as a guide they consider generic bipartite
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quantum systems with a total Hamiltonian H composed of two subsystems A and B

which have the same Hilbert space dimension d and which are under the influence of an

incoherent dissipation described by local jump operators. Such a system can generically

be written a L[H; cA, cB]. With this in mind, a definition of PT -symmetry can be

written in terms of the anti-unitary transformation for operators,

PT(O) = PO†P−1 (5.3)

where the parity operator P has the effect of swapping subspaces such that P(A ⊗

B)P−1 = B ⊗ A. A Liouvillian is then PT − symmetric if it satisfies the equation

L[PT(H);PT(cA),PT(cB)] = L[H; cA, cB], (5.4)

which can be generalised if the Liouvillian remains invariant under a unitary U , in which

case the parity operator is given by P → PU . In Appendix A we follow [83] to show

that equation 5.4 is satisfied for the Liouvillian L[HXY ,
√

Γσ−
A ,

√
Γσ−

B ].

Invariance of L[HXY ,
√

Γσ−
A ,

√
Γσ−

B ] with respect to this PT -symmetry implies the

existence of stationary states that have parity symmetry which can either be broken

or preserved. If the spectrum of HXY is non-degenerate, then the system should tend

towards a highly mixed stationary state in the limit of Γ → 0+—i.e. in the limit of

vanishingly small but finite dissipation ρss(Γ → 0+) ∝ I. To show this, the arguments

form [83] is recounted here: Consider the Liouvillian L[H; cA, cB], by writing the density

operator in the Hamiltonian eigenbasis ρ = ∑
n,m ρn,m|En⟩⟨Em| where H|En⟩ = En|En⟩,

we find that for Γ = 0,any diagonal state with ρn,m = 0 for n ̸= m is a stationary solution

of the master equation with populations pn = ρn,n not uniquely determined. It can be

shown that for small but finite Γ only the fully mixed state is dynamically stable by

writing pn = 1/d2 +δpnwhere d is the Hilbert space dimension and expanding the master

equation up to first order in Γ which gives ˙δpn = 2
d2 ⟨En|[cA, c†

A] + [cB, c†
B])|En⟩. Making
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use of the relation PcBP−1 = c†
A and that the eigenstates of the Hamiltonian are also

eigenstates of the parity operator P|En⟩ = ±|En⟩ allows to show that ⟨En|[cB, c†
B]|En⟩ =

⟨En|P [cB, c†
B]P−1|En⟩ = −⟨En|[cA, c†

A]|En⟩ which means that ˙δρn = 0. Therefore, in the

presence of a small amount of dissipation, the fully mixed state is the stable stationary

state. For a more detailed proof which includes a treatment of degenerate eigenstates,

the reader is referred to [83].

Of course in many cases, in the limit of strong dissipation Γ → ∞, the stationary

state will clearly not be anything like the maximally mixed state, consider for example

the present case of the anisotropic XY-model where a strong dissipator drives the system

to the uniform |↓z⟩ configuration. The existence of both the pure and maximally mixed

phases as limiting cases of J/Γ provides a framework for the investigation of the system’s

phase diagram and suggests that there should be a transition at intermediate values of

J/Γ from a pure to a highly mixed phase. With this in mind, a natural question to ask is:

What is the character of this transition for the case of the two-dimensional anisotropic

XY-model on a square lattice?

5.2 Mean Field Theory

It is insightful to recount and reproduce the results of the MF theory for the anisotropic

dissipative XY-model. The MF (MF) equations for the expectation values Xj = ⟨σxj ⟩,

Yj = ⟨σyj ⟩ and Zj = ⟨σzj ⟩ of a spin at lattice site j can be written as a set of coupled

nonlinear Bloch equations. For a hopping rate J and dissipation rate Γ, these equations
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Figure 5.2: MF steady state phase diagram of the anisotropic dissipative XY-model. A
phase transition from a uniform (U) phase to a staggered-XY (sXY) phase occurs at a
critical field strength of J/Γ = 1

4 above which spins arrange into A and B sublattices
which form a checkerboard pattern. The mean field magnetisation (mx

MF) and (mz
MF)

across the transition are shown subfigures (a) and (b) respectively. Results are calculated
by solving the six coupled MF equations 5.5.

take the form

dXj

dt
= − Γ

2Xj − J

D
∑
m

[ZjYm],

dYj
dt

= − Γ
2Yj − J

D
∑
m

[ZjXm],

dZj
dt

= − Γ(Zj + 1) + J

D
∑
m

[YjXm +XjYm].

(5.5)

Here, the integer D = z/2 is the dimension of the cubic lattice and the sum over m

runs over the nearest neighbours of the spin at site j. There is always a paramagnetic

(PM) solution with Xj = Yj = 0 and Zj = −1, which, via a linear stability analysis

(see [108]), is found to be unstable to D−dimensional perturbations with wave vector

k⃗ = (k1, k2, . . . , kD) for J/Γ > 1/4.

Given that it is known from [108] that this model hosts an sXY phase in which the

spins divide into two sublattices A and B with angles ±θ relative to the x = y line on

the Bloch sphere, the two site spatial inhomogeneity is accounted for by solving a set

of six coupled differential equations for the two sets of expectation values XA, YA, ZA
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and XB, YB, ZB which reside on A and B sublattices respectively, in two dimensions

this becomes a checkerboard pattern of A and B sites. To observe this phase in the

numerical MF results, we choose initial conditions such that this symmetry is explicitly

broken, in particular XA = 1 and XB = −1, and solve for the long time limit of the

Bloch equations. The results for a range of J ∈ [0, 1] are plotted in Figure 5.2.

In Figure 5.2 the magnetisations mx and mz are plotted as a function of J/Γ. The

transition from the PM phase to the sXY phase at J/Γ = 1/4 is clearly visible. Above

J/Γ = 1/4, the two sublattice magnetisations mx
A and mx

B take equal and opposite values

as the lattice splits into two sublattices in an checkerboard pattern as has been shown

in Figure 5.1. Also shown are the magnetisations mz
A and mz

B. At zero hopping, the

dissipation drives the system to the pure product state with mx
A = mz

B = −1. Above

J/Γ = 1/4 the magnetisation mz begins to move towards mz = 0 and remains equal

across both sublattices for all values of J/Γ.

5.3 Keldysh Field Theory Treatment

The question of whether or not the sXY phase remains stable in a two-dimensional sys-

tem if corrections beyond MF theory are accounted for has previously been studied using

a Keldysh field theory approach in [114]. In that work, an effective model is constructed

by mapping the spins to bosons. This approach does not capture the microscopic phys-

ics of the spin lattice model, but instead addresses the behaviour of the system in the

limit of long wavelengths. Under that approximation it is found that the steady state

physics of the effective model is described by a partition function which is in the same

universality class as the classical XY-model and therefore, one should expect that there

will be a Kosterlitz-Thouless transition if the system is two-dimensional. However it is

also predicted by the same authors—based on a simple MF theory analysis which we

recount below—that the effective temperature of the system in the steady state will be
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greater than the effective Kosterlitz-Thouless temperature associated to the dissipation.

Due to this high effective temperature, the ordered phase is predicted to be inaccessible

when quantum fluctuations are included and therefore any long range algebraic order

which might have been associated to a symmetry broken phase is likely to be absent or

at least significantly diminished.

To illustrate the findings of [114] in some more detail, the basic thread of their

argument is recounted here, for a detailed derivation we refer the reader to the original

publication. After mapping spins to bosons and retaining only the relevant terms, the

Keldysh Lagrangian has a partition function of the form

∫
D [ψ(x)] exp

[
− 1
Teff

∫
x

1
2 J̃ |∇ψ|2 + r|ψ|2 + u|ψ|4

]
, (5.6)

where the effective temperature is Teff = Γ+· · · and the ellipses represent corrections are

due to renormalisation. The important points are that this partition function belongs

to the universality class of the classical XY-model and that the effective temperature

is of the order of the dissipation rate Teff ∼ Γ up to some corrections. In the classical

XY-model, a finite temperature transition between a high temperature disordered phase

and a low temperature phase with quasi long-range order is possible; the disordering

mechanism arises due to the possibility of having topological defects in the form of

vortices [91].

The quasi long-range order is realised below a critical temperature Tc which is related

to the balance between the energy and entropy cost of forming a vortex; if Teff is the

effective temperature then the ordered phase is stable for J̃ |ψ|2
Teff

> 2
π

[91]. This condition is

normally well satisfied at sufficiently low temperatures, however, in this case as Teff → 0

so does |ψ|. In particular from the MF analysis, it is found that ψ → 0 in as Γ → 0.

To see this, consider that ψ = 1/
√

2(σx + σy) and using |⟨σx⟩| = |⟨σy⟩| the density term

takes the value |ψ|2 = 2|⟨σx⟩|2 which is a quantity which we know from the MF analysis
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and takes the value of |⟨σx⟩| =
√

4JΓ − Γ2/4Γ. Putting this together, the condition

for the KT transition then takes the form 1
4 − 1

16j >
1
π

where j ≡ J/Γ. Again from

the MF theory we have that j = J/Γ > 1/4 in the symmetry broken sXY phase, the

transition condition is therefore never satisfied. One should expect that any algebraic

quasi long-range order in two dimensions will be significantly diminished or completely

disappear with the addition of fluctuations.

Clearly all of the above analysis relies heavily on the MF theory. Of course, the

MF results are unlikely to remain a good description when quantum fluctuations are

properly included, particularly near the transition point. It is therefore interesting to

asses whether this simple analysis captures all of the relevant physics or whether properly

accounting for microscopic fluctuations by directly solving the microscopic lattice model

will give an alternative picture.

5.4 Research Questions

The discussion of the anisotropic dissipative XY-model in terms of its MF solution, its

treatment using a Keldysh formalism and its symmetries raises a few open questions.

The first question is whether or not the sXY phase remains stable in the two-dimensional

model if microscopic quantum fluctuations are included and the spin model is solved dir-

ectly and without appealing to a long wavelength approximation. The Mermin-Wagner

theorem does not hold in this out of equilibrium context and while it is expected that

in one dimension there will be no symmetry breaking, whether or not D = 2 is a lower

critical dimension for symmetry breaking in this setting remains unclear. This question

is particularly relevant near a possible phase boundary where quantum correlations may

play a more prominent role. The second question which can be addressed is the form of

the correlations in the stationary state; if the sXY phase remains stable, then we might

expect quasi long-range algebraic order, on the other hand if it is completely suppressed
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then the correlations are likely to be short range. Finally we can address the question

of the character of the transition between the pure state at strong dissipation and the

maximally mixed state predicted by PT -symmetry as the dissipation tends to zero.

5.5 Methods

iPEPO Steady State Calculations

The dynamics and steady state expectation values are calculated using the FET+WTG

iPEPO algorithm presented in Chapter 4. A two-site unit cell with two unique iPEPO

tensors A and B is used to represent the system and the environments E tr and Ehs are

calculated using the CTMRG-SVD algorithms. To test the stability of the sXY phase,

the iPEPO is initialised in a state for which the U(1) symmetry is explicitly broken, in

particular, ⟨σxA⟩ = 1 and ⟨σxB⟩ = −1. From here, steady states for all bond dimensions

are calculated up to D = 4. For results with bond dimensions D > 4, we calculate the

steady state for a bond dimension D using that calculated for D − 1 as an initial state.

In all cases, convergence in time is reached when the local expectation values o satisfy

the inequality ϵt < 10−6, where

ϵt = |tr (oρt+τ ) − tr (oρt)|
|tr (oρt)|τ

.

iPEPO Dynamics Calculations

To explore the dynamical evolution of the system starting from the symmetry broken

phase, we first initialise the system in a state for which the U(1) symmetry is explicitly

broken then calculate the D = 1 steady state. For all higher bond dimensions D > 1

shown we initialise the system with the D = 1 steady state and then calculate its time

evolution up to a total time of tΓ = 50. At each time step the magnetisations of the
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sublattices are measured.

Entanglement Negativity

In assessing the nature of the transition between the pure steady state at large dissipation

rates and the maximally mixed state at low dissipation rates, it is useful to employ some

measures of non-classical correlations. In particular, we would like to understand the

structure of the state from the perspective of entanglement and correlations. Two tools

are used in this regard, the first is the entanglement negativity and the second is the

von Neumann entropy.

Given that we are working with mixed states, the entanglement negativity N and the

related logarithmic negativity are useful indicators of the presence of entanglement. First

defined in [178], entanglement negativity has become an important tool in understanding

the structure of mixed state systems. Importantly, it is a easily computable measure

of entanglement in that it does not require optimisation over all possible states in the

relevant Hilbert space which is the case for some other entanglement measures and in

can be computed directly from the bipartite density matrix of a system.

The entanglement negativity N (ρ) is defined in terms of a generic state ρ of a bi-

partite system with a finite-dimensional Hilbert space HA ⊗ HB. The partial trans-

pose ρTA denotes the transposition of the subspace HA . More precisely, the indices

of the partially transposed matrix ρTA are related to the density matrix ρ such that

⟨iA, jB|ρTA|i′A, j′
B⟩ ≡ ⟨i′A, jB|ρ|iA, j′

B⟩. With the partial transpose defined, the negat-

ivity can be understood as the absolute value of the sum of the negative eigenvalues

of ρTA . In terms of the trace norm ||M ||1 = tr
√
M †M , the negativity is defined as

N (ρ) = 1
2(||ρTA||1 − 1). This definition comes from the fact that for any Hermitian mat-

rix M , the trace norm is equivalent to the sum of the absolute values of the eigenvalues

of M and given that the partial transpose preserves the unit trace of ρ the trace norm of
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ρTA is related to the negativity as ||ρTA||1 = 1 + 2|∑i µi|, where the µi are the negative

eigenvalues of ρTA .

For any separable state, the partial transpose is also separable such that it remains

a positive semidefinite matrix and therefore has zero negativity. As shown in [178],

the negativity is an entanglement monotone, meaning that it does not increase under

local transformation and it is a convex function of ρ. In practice, if the density matrix

is known, then the negativity is easily computed using standard eigenvalue solvers for

Hermitian matrices. As noted previously, the iPEPO representation cannot guarantee

positivity of the reduced density matrices, it is therefore important to check that this

criterion for the proper representation of physical states is fulfilled before calculating

negativity.

With the negativity defined we need to choose a subsystem A which is to be trans-

posed. Given the PT -symmetric structure of the Liouvillian discussed previously, it is

natural to consider a bipartition between the A and B checkerboard sublattices. This is

perhaps a somewhat unusual bipartition—it is more common to consider bipartitions of

two blocks of contiguous lattice sites—however, as we shall see in the results, we find no

entanglement negativity between sites on the same sublattice and in this case choosing

to partially transpose over the space of one of the two sublattices offers insight into the

entanglement between the subsystems with respect to which a symmetry breaking may

or may not occur.

With this in mind we compute the entanglement negativity with respect to reduced

density matrices of differing sizes representing rectangular blocks of spins. In particular

we consider reduced density matrices ρnx×ny where nx and ny are the cartesian sizes

of the rectangular blocks. The smallest non-trivial ρnx×ny is ρ2×1 which contains one

spin from the A sublattice and one spin from the B sublattice. In cases where the

translational invariance affords more than one equivalent choice of ρnx×ny we average
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over the contributions. For example, for the reduced density matrices involving two

lattice sites we have N2×1 = 1
4 [N (ρTA

2×1) + N (ρTB
2×1) + N (ρTA

1×2) + N (ρTB
1×2)].

Calculation of Correlation Functions

Correlations functions are calculated starting from the steady state iPEPO solution. For

a given value of the bond dimension D, the trace effective environment E tr is calculated

such that convergence is achieved with respect to the environment bond dimension χtr.

By constructing multi-site reduced density matrices, values such as ⟨σjσk⟩ where j and k

are within a few lattice sites of each other, are straightforward to calculate as described

in Chapter 4. For example when calculating “off-axis” correlations ⟨σjσk⟩ in which

j and k do not lie on the same row or column of the lattice, it is simplest to first

calculate the nx × ny density matrices and then calculate tr(σj ⊗ σkρnx×ny). Using this

method limits the off-axis correlations calculated to smaller distances given the cost of

calculating ρnx×ny is equivalent the that of contracting a PEPS which is know to be a

computationally hard problem in the complexity class ♯P [157].

To calculate correlation functions at distances r = |j − k| larger than a few lattice

sites and along the same row or column, it is convenient to first construct the transfer

matrices in the x-direction and the y-direction for each unique iPEPO tensor in the unit

cell. For example, calculating longer range correlations in the x-directionas illustrated

in Figure 4.14 benefits from first calculating the transfer matrices TatrT tr
u and T tr

d b
trT tr

u ,

where atr = trd(A) and btr = trd(B). The transfer matrices can then be chained together

to represent the traced sites between site j and k in the correlation.
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Figure 5.3: Phase diagram close to the transition point. The magnitude of the difference
between mx magnetisations on the A and B sublattices. For the MF theory and the
iPEPO up to D = 3, a clear transition to the sXY phase is visible. For D = 4, the
transition is absent.

5.6 Results

Phase Diagram Near the MF Transition

We first find the steady state iPEPO representation of the model for a bond dimension

D = 1 which is equivalent to a MF solution at a range of values crossing the MF trans-

ition point at J/Γ = 0.25. To do this, the iPEPO is initialised in a in a state for which

the symmetry is explicitly broken ⟨σxA⟩ = −⟨σxB⟩ = 1 and evolve the system in real time

with D = 1 until a steady state is reached using the WTG+FET method. Then, using

the resulting iPEPO solution as an initial state, fluctuations are systematically intro-

duced by calculating steady states for bond dimensions D ∈ [2, 3, 4], until convergence

in time is reached in each case. Results of this procedure are plotted in Figure 5.3 along

with the corresponding results from the MF method.

Comparing first the MF solution to the D = 1 iPEPO solution, we find good agree-

ment as expected, while the D = 1 solution deviates slightly from the MF solution

for J/Γ ⪆ 0.3, the D = 1 solution still shows a transition between the PM and sXY
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phases at J/Γ = 1/4. The sXY phase remains stable for bond dimensions of D = 2

and D = 3 evidenced by the finite value of S⊥, interestingly however, the transition

point is shifted to slightly smaller values of J/Γ in both cases, at these bond dimensions,

the fluctuations stabilise rather than suppress the sXY phase. Ultimately, for a bond

dimension of D = 4 the sXY phase is completely suppressed throughout the range of

hopping strengths calculated.

It is interesting to consider the reasons behind the qualitative difference between

the phase diagram for D ≤ 3 and D = 4—the former show a stable sXY phase while

in the latter it appears completely suppressed. Remembering that the Keldysh field

theory of [114] concluded that this model’s steady state is in the same universality

class as the classical XY-model, one might suspect that the disordering mechanism is

due to topological defects and perhaps smaller bond dimensions suppress the relevant

disordering defects. One possible way to study this feature further would be to try and

adapt the entanglement order parameter construction recently introduced in [85] for the

study of topological phases in iPEPS to the current iPEPO setting. However, the origin

of this feature remains unclear and uncovering it is left for future work.

Dynamics in the sXY Phase

To further study the stability of the sXY phase we calculate the time dynamics of local

magnetisations at a particular value of the hopping-dissipation ratio J/Γ = 0.3. Using

the steady state calculated using a bond dimension of D = 1 as the initial state for

higher bond dimensions, time dynamics are integrated and local expectation values cal-

culated for a total time of tΓ = 50, at which point we observe a good convergence with

respect to time. The results are plotted in Figure 5.4. For a bond dimensions D = 3 the

system remains in the sXY phase, this is consistent with the phase diagram of Figure

5.3 discussed in the previous section. For D ∈ [4, 5, 6], however, the spin magnetisation
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Figure 5.4: The fate of staggered-XY phase at J/Γ = 0.3. The local magnetisations
mx,y,z(t) on the A and B sublattices are calculated as the state evolves from the D = 1
steady state solution in which the sXY phase is stable for bond dimensions of increasing
sizes D ∈ [3, 4, 5, 6]. For D = 3, the system remains in the sXY phase. For D ∈ [4, 5, 6],
the transverse magnetisations mx and my on both sublattices tend towards zero and the
sXY is suppressed. The mz, magnetisation, equal on both sublattices remains finite.
The numerics are well converged for D ≥ 5.

mz(t), which is uniform across both sublattices, is slightly modified and the magnetisa-

tions mx(t) and my(t) on each sublattice tend towards zero such that the continuous

symmetry breaking appears to be completely suppressed in the stationary state. The

sXY phase therefore appears unstable to quantum fluctuations. These results corrobor-

ate the Keldysh field theory predictions of [114] and suggest that the long wavelength

fluctuations captured by the approximate theory along with the arguments based on the

MF theory are enough to capture the suppression of the sXY phase.

Transition From Pure to Mixed Steady State

In Figures 5.5 and 5.7 we show the phases of the steady states across a range of J/Γ

between the limits of large dissipation where the dissipation drives the system to the pure

product state with all spins in their |↓z⟩ configuration and the limit of large hopping

where, based on the model’s classification as PT -symmetric, the system should tend
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towards a maximally mixed steady state. All data points in Figures 5.5 and 5.7 were

calculated using the FET+WTG iPEPO method with bond dimensions D = 6 and

χ = 18 and with a time step of τ = 0.005 for which we find good convergence.

In Figure 5.5 (a) Sz = 1
2(mz

A + mz
B) and S⊥ = 1

2
∑
j∈A,B

√
⟨σxj ⟩2 + ⟨σyj ⟩2 are plotted

as a function of J/Γ. We find that S⊥ = 0 for all values of J/Γ which is consistent

with the complete suppression of the sXY phase. The magnetisation Sz = −1 in the

large dissipation limit and varies smoothly as J/Γ increases, consistent with a smooth

transition between the two limiting regimes.

In Figure 5.5 (b) the purity of the steady state reduced density matrices tr(ρ2
nx×ny

)

where nx × ny indicates the number of lattice sites represented by the reduced density

matrix is plotted as a function of J/Γ. For each of the sizes nx ×ny the reduced density

matrices are found to be pure in the limit of large dissipation and tend towards being

maximally mixed as the dissipation increases where the minimum purity of an nx × ny

reduced density matrix is indicated by the horizontal dashed line. Between the two

limiting regimes, the purity of all reduced density matrices varies smoothly as a function

of J/Γ.

In Figure 5.6 the negativity for two types of reduced density matrix containing two

lattice sites is plotted. As demonstrated in Figure 5.6 inset, the first type (orange data)

contains two neighbouring lattice sites along a diagonal from the same sublattice A

or B and the second type (blue data) contains one lattice site from each of the two

sublattices. The data show that the entanglement negativity between lattice sites on

the same sublattice is zero throughout the phase diagram while the negativity is peaked

at an intermediate value of J/Γ if it is measured between sublattices. Note that in the

data, all possible reduced density matrices of each type have been averaged over.

In Figure 5.7 (a), the entanglement negativity N (ρnx×ny) for reduced density matrices

of different sizes is plotted as a function of J/Γ. In each case, the partial trace is taken
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Figure 5.5: (a) The transverse magnetisation S⊥ = 1
2

∑
j=A,B

√
⟨σxj ⟩2 + ⟨σyj ⟩2 remains

zero throughout the phase indicating that the symmetry broken phase is suppressed
while the magnetisation Sz smoothly towards zero J/Γ is increased. (b) The purity of
the system as a function of J/Γ. The purely dissipative dynamics at J/Γ = 0 drive the
system towards a pure state in the ρ = ⊗|↓z⟩⟨↓z| configuration while for larger values of
the hopping, the reduced density matrices tend towards their maximally mixed phases
indicated by the dashed lines.

Figure 5.6: Entanglement negativity for reduced density matrices containing two lattice
sites as shown in the diagram inset. The partial trace is performed on the space of one
two sites. Entanglement negativity between two sites on the same sublattice is zero
throughout the phase diagram whereas it is peaked at an intermediate value of J/Γ if
each site is from a different sublattices. Note that the negativity has been averaged over
all possible reduced density matrix of each type.
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Figure 5.7: (a) The entanglement negativity between the A and B sublattices for
reduced density matrices with even numbers of lattice sites shows a peak near the sym-
metry breaking transition of the MF theory. Inset: The partially transposed reduced
density matrices of size nx × ny. (b) The von Neumann entropy S(ρ) as a function of
J/Γ for reduced density matrices of various sizes.

over the A or B subsystem as discussed in the methods section and indicated in the

inset. The data shows that the negativity tends to zero in the limits of small and large

dissipation while in between these limits it peaks at a value which is close to the MF

critical point at J/Γ = 1/4. The position of the peak changes by a small amount with

respect the size of of the reduced density matrix however it is not clear if this is a

systematic effect and it is difficult to assess this given that the reduced density matrices

are quite small.

In Figure 5.7 (b) the von Neumann entropy S(ρ) = −tr(ρ ln ρ) is plotted as a function

of J/Γ for reduced density matrices of varying sizes. The slope of the curves is maximal

in the region of the MF transition point J/Γ = 1/4 and for larger values of the hopping

rate, the von Neumann entropy reaches a plateau as the density matrices approach the

maximally mixed phase, behaviour which is reminiscent of a second order thermal phase

transition [148].
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Figure 5.8: Left: The correlation function Sxxj,k = ⟨σxj σxk⟩ against distance r displays a
staggered form which is a remnant of the sXY phase; the correlations at odd step radii
(red squares) are zero while those at even step radii (blue circles) are finite and decaying
with r. Left Inset: Exponential fit to even step correlations giving exponent ξ ≈ 0.93.
Right: Odd and even step radii on the square lattice.

Correlations

In Figure 5.8 the correlation function Sxxk,j = ⟨σxj σxk⟩ (note that ⟨σxj ⟩⟨σxk⟩ ≈ 0) is plotted.

It shows a staggered structure reminiscent of the sXY phase where correlations at a radii

r (see Figure 5.8 (right) ) which correspond to an odd number of steps on the lattice are

zero, whereas correlations at even step radii are finite and decay with r. If only the even

step correlations are considered it is found that the decay is well approximated by an

exponential function of the form Sxxr∈even ∝ e−r/ξ with ξ ≈ 0.93. Any long range algebraic

order which might have been associated to the symmetry broken phase is not observed

in the iPEPO solution. This is consistent with the Keldysh field theory result and would

suggests that the system is in the disordered phase. It is important to note once again

here that while the iPEPO ansatz can describe an algebraic decay of correlations at least

for classical systems, more work needs to be done to assess whether this remains true in

the present context. Good convergence is found for D = 6 and τΓ = 0.005 resulting in

infidelity of truncation I(t) < 10−9 ∀t .
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It is important to note here that, while the iPEPO ansatz can in principle represent

algebraic correlation functions, further research needs to be done to assess whether it is

capable of faithfully representing algebraic correlations which may appear in the present

context. For some classical models such as the thermal Ising model on a square lattice,

it is possible to construct an exact representation of the system at any temperature,

including the critical temperature βc = 1
2 ln(1 +

√
2) [133] where correlations decay as

∼ 1/
√
r [133, 173]. Furthermore, an iPEPS ansatz has been used to study criticality

in the two-dimensional classical XY-model [169, 194] and the iPEPO used to represent

the state of the Bose Hubbard model in [100] where in the latter, spontaneous breaking

of the model’s U(1) symmetry giving a finite condensate fraction is observed but the

authors suggest that the finite bond dimension seems to introduce a finite correlation

length in the system and it may be necessary to perform a finite-D scaling to correctly

probe the thermodynamic limit. In the present work, it would be interesting to compare

correlation functions computed for D ≤ 3 where local symmetry breaking appears to

remain stable to those computed for D ≥ 4 in order to assess any qualitative difference

in the correlation functions between these two regimes.

Convergence

The value of the von Neumann entropy is a good choice to test for convergence since it

is sensitive to small changes in the density matrix. This can be seen from the spectral

decomposition S(ρ) = −tr(ρlnρ) = − ∑
r pr ln(pr) where the pr are the probabilities

associated to the spectral decomposition ρ = ∑
r pr|ψr⟩⟨ψr|. Due to the logarithmic

terms in the summation, S(ρ) is sensitive to small values of pr. To test the convergence

of the numerics the von Neumann entropy of the 2 × 2 reduced density matrices are

plotted for a range of bond dimensions D and environment dimensions χhs in Figure

5.9 (a) and in (b) of the same Figure, the difference between S(ρ) calculated using
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Figure 5.9: (a) The von Neumann entropy S(ρ) = −tr(ρ ln ρ) of the nx × ny = 2 × 2
reduced density matrices for a range of bond dimensions D and environment dimensions
χhs. (b) The difference δSD,χ = |SD,χ − SDmax,χmax| where Dmax = 6 and χmax = 12 are
the largest values calculated for a range of bond and environment dimensions.

the largest iPEPO parameters Dmax = 6 and χhsmax = 12 and those of lower convergence

parameters δSD,χ = |SD,χhs −SDmax,χhs
max

| is given. For D ≥ 6 the data appear reasonably

well converged with δS6,6 ⪅ 0.01 for all values of J/Γ.

5.7 Discussion

In this chapter the dissipative anisotropic XY-model was studied on a two-dimensional

lattice using the FET+WTG iPEPO TN algorithm presented in Chapter 4. In section 5.1

the model was introduced in the Lindblad formalism and its symmetries were discussed,

this included as discussion of its identification as PT -symmetric in the sense of [83].

In section 5.2 the mean field description of the model from [108] was reproduced and

the symmetry broken staggered phase (sXY) shown. In section 5.3 the Keldysh field

theory treatment of the model from [114] was recounted and the expectations of this

long wavelength approximation were given, in particular, the steady state physics of the

effective model was predicted to belong to the same universality class as the classical

XY model but that a the steady state should remain disordered phase throughout the
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phase diagram. In section 5.4 a set of research questions were proposed and in section

5.5 the methodology used to integrate the master equation using the iPEPO method

and calculate observables was described. Section 5.6 explored the results of the study.

The main result of the is that the symmetry broken sXY phase characterised by the

local magnetisation which is stable in the MF approximation appears to be completely

suppressed in the iPEPO solution when correlations are taken into account above a bond

dimension D ≥ 4. This finding is broadly in line with the long wavelength Keldysh field

theory treatment which predicts a disordered steady state in two dimensions. indeed, by

calculating the dynamics of the system initialised in the symmetry broken sXY phase we

find that finite magnetisations mx
A and mx

B characteristic of the sXY phase rapidly decay

to zero. In an attempt to further characterise the nature of the steady state the phase

diagram parameterised by the ratio of the hopping and dissipation J/Γ was calculated

using the FET+WTG method for a range of iPEPO bond dimensions. Interestingly,

while the sXY phase appears to be suppressed for bond dimensions D ≥ 4 the sXY

phase appears to remain stable for bond dimensions D ≤ 3, an interesting research

direction would be to assess the reason behind this qualitative change in the iPEPO

solution and this may give insight into the disordering mechanism.

As discussed in section 5.1, apart from the U(1) symmetry, the model is also PT -

symmetric in the parlance of [83]. This suggests a transition between a pure steady state

in the limit of large dissipation and a highly mixed steady state in the limit of vanishing

dissipation. The character of the transition between these two limits was investigated by

calculating a range of quantities in the steady state, these included: local observables,

the purity of reduced density matrices of different sizes Nx × Ny, the von Neumann

entropy and the entanglement negativity between A and B sublattices. From these

results it was found that, in contrast to the MF solution, the transition mapped out

by local observables is smooth. The purity of the finite sized reduced density matrices
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transition smoothly from the pure to a highly mixed phases while the von Neumann

entropy which is zero in the limit of large dissipation smoothly increases and plateaus

as the dissipation decreases. To further characterise the purity of the state in the limit

Γ → 0+it may be instructive to calculate the overlap of the unit cell iPEPO with an

iPEPO representation of the maximally mixed state which can be constructed exactly.

Furthermore, it would be interesting to assess whether the order of limits is important

in this context: there are three limits to consider; the limit of time t → ∞, system size

N → ∞ and dissipation rate Γ → 0+.

Interestingly the entanglement negativity calculated between two sites on the same

sublattice is zero throughout the phase diagram, whereas, if the two sites are from

different sublattices then the negativity is peaked at an intermediate value of J/Γ. Con-

sidering larger reduced density matrices and taking a partial trace over one of the two

sXY sublattices it is found that the entanglement negativity is peaked in the region

of the MF sXY transition at J/Γ. This suggests that entanglement is playing a role

in the transition and it would be interesting to investigate this further; for example,

by performing a finite size scaling analysis of the negativity and entropy or assessing

alternative entanglement measures such as the mutual information.

By observing the correlation function Sxxj,k as a function of distance r = |k − j| it

is found that all correlations associated to odd numbers of lattice steps are zero while

the even step correlations decay exponentially with distance. This appears to agree

with the Keldysh field theory prediction, however more research needs to be done on

whether the iPEPO ansatz is capable of faithfully representing an algebraic decay of

correlations in this particular context. Nevertheless, the results appear to point towards

a disordered steady state where an even-odd remnant of the sXY pattern is present in

the correlations. To further characterise the steady state, it would be instructive to

calculated other correlation functions in the model and compare these across different
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bond dimensions, in particular, it would be interesting to assess any differences in the

nature of the correlation functions between the ordered phases which appear to be stable

at D ≤ 3 and for D ≥ 4.

Further possibilities in this direction are to model other systems which obey PT -

symmetric which could include alternating gain and loss. Alternatively, small deviations

from the perfect PT -symmetric could be studied in order to establish the stability with

respect to perturbations of the results discussed in this chapter. As mentioned in the

introduction, the general dissipative XYZ model of which the anisotropic dissipative

XY-model is a special case, hosts a remarkable array of unconventional magnetic phases

at the MF level. It would be interesting to study these models beyond MF theory

particularly to probe the nature of phenomena which may be robust to—or arise from—

the addition of quantum correlations.



Chapter 6

Conclusions and Future Work

Open many-body quantum lattice models describe many-body quantum systems which

interact with their environment, for example via an external drive or some incoherent

dissipative processes which requires an inherently non-equilibrium description. The sub-

ject of this thesis was the development of numerical tensor network methods to treat

open many-body quantum lattice models. This chapters briefly reviews the content and

findings of the thesis and suggests possible directions for future work.

6.1 Conclusion

Chapter 1 introduced the basic concepts of open quantum lattice models and the Lind-

blad master equation. It also discussed some of the phenomena related to open quantum

lattice models, such as time crystallinity and non-equilibrium criticality. The extra rich-

ness provided by the non-equilibrium nature of these systems is likely to give rise to

new and unexplored phenomena. Some of the numerical techniques which have been

developed over the years to tackle open many-body quantum lattice modes were also

discussed in Chapter 1. These included stochastic methods, phase space methods and

cluster based methods among others, all of which aim to make progress beyond mean
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field theories. It is clear from this discussion that there is no single ideal approach and

that, depending on the nature of the system being studied, one or more of these methods

will be more appropriate than the others.

In Chapter 2, tensor network methods for one-dimensional systems were introduced.

This began with a bottom-up discussion of the structure of the tensor network ansatz

from the perspective of closed quantum systems governed by Hamiltonians and drew

upon notions related to correlations and entanglement which, as it turns out, lie at the

heart of why tensor network methods have been so successful in this domain. The various

tensor network ansatze associated to one-dimensional systems, including the Matrix

Product State and the Matrix Product Operator where then introduced. Following this,

a brief review of literature surrounding the various tensor network algorithms intended

for open quantum systems was given. This discussion revealed the array of differing

approaches which can be used to simulate open quantum systems using tensor networks.

Chapter 2 concluded with a more detailed description of a tensor network algorithm

for calculating steady states of one-dimensional open quantum lattice models in the

framework of a cluster mean field theory.

The work presented in Chapter 3 focussed on the numerical modelling of steady state

properties of a dissipative Jaynes-Cummings-Hubbard model with a two-photon drive.

This model described a coupled resonator array where, in each resonator, a two-level

systems coupled to the resonator modes. The numerical experiments probed the steady

state properties of the system for coupled resonator arrays of different sizes. This allowed

for a finite size scaling analysis with respect the critical exponents of the quantum Ising

model similar to the work of [147]. From the results it was concluded that the one-

dimensional Jaynes-Cummings-Hubbard model can act as a quantum simulator of the

quantum Ising model at a finite temperature.

In Chapter 4 the focus shifted to two-dimensional tensor network methods where the
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Project Entangled Pair State was discussed as the natural generalisation of the Matrix

Product State. Some of the additional complexities associated to higher dimensional

tensor networks were briefly discussed, these included the high computational cost of

contracting a PEPS and the extra care needed to deal with internal correlations. Moving

to open systems, as in [101] the Projected Entangled Pair Operator was considered as

an ansatz for open quantum lattice models on a square lattice. The bulk of Chapter

4 was devoted to the details of an algorithm for calculating time dynamics and steady

states based on the iPEPO ansatz. One of the key developments of this method was

the identification of two types of effective environment: the trace effective environment

was used to calculate reduced density matrices of the system which the Hilbert-Schmidt

effective environment was used during the algorithm to find optimal truncations of en-

larged bonds. The method introduced for optimising truncations was another of this

chapter’s key developments, the method adapted much of the machinery of [56] to the

open systems context, in particular, truncations were optimised with respect to a ob-

jective function appropriate for open systems using the method of Full Environment

Truncation. Other important details of the algorithms such as gauge fixing and meas-

urement procedures were also presented. Chapter 4 concluded by testing the newly

developed algorithm against exactly solvable cases and results from the literature in

dissipative and driven-dissipative regimes. It was found that the algorithm performed

well in regions where the mean field gave incorrect results, reproducing exact results to

good accuracy. The method was also found to be easily adaptable to studying thermal

systems and was tested against the exactly solvable classical Ising model. Although, no

great advantage is observed by using the Full Environment Truncation technique in this

setting, it is expected that it would improve the accuracy of numerical results in the

case of a non-classical thermal model, such as a transverse quantum Ising model.

In Chapter 5 the iPEPO algorithm presented in Chapter 4 was used to study aspects
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of an anisotropic dissipative XY-model on a square lattice. It was found that the uncon-

ventional magnetism observed in the mean field theory, a symmetry breaking transition

to a staggered sXY phase appeared to be completely suppressed in the tensor network

solution as quantum fluctuations were included. The model was parameterised by the

ratio of the nearest neighbour hopping and the strength of dissipation which moved the

system from a pure state in the limit of large dissipation to a maximally mixed state

in the limit of weak dissipation. The transition was found to be smooth and featured a

peak in the entanglement negativity between two checkerboard sublattices. Spatial cor-

relation functions suggested that correlations decayed exponentially in space such that

the system was not in an ordered phase but that a staggered structure in the correlations

showed remnants of the sXY phase of the mean field theory.

6.2 Future Work

In terms of one-dimensional systems, it would be interesting to explore alternative op-

timisation protocols in the non-equilibrium open systems context. For example, instead

of truncating with respect to the Frobenius norm distance, equivalent to discarding the

smallest Schmidt coefficients in the TEBD setting, one could think of optimising with

respect to a different norm. For example, the work of [187] simulated thermalisation of a

closed quantum system using a TEBD algorithm with a a more sophisticated truncation

scheme than the standard Frobenius method which preserved local symmetries.

In the context of the dissipative Jaynes-Cummings-Hubbard model with a two photon

drive there are many avenues for exploration. With the Matrix Product Operator steady

state representation at hand, it would be straightforward to correlation functions and

spin structure factors. These non-local observables would give more insight into the

nature of the system. The behaviour of the system as a function of the rate of single

photon dissipation would be an interesting topic, in principle, the strength of the single-
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photon dissipation should behave like the effective temperature of the system, further

analogies could then be drawn with equilibrium systems. One advantage of the Jaynes-

Cummings-Hubbard model over the Bose-Hubbard model is the ability to tune the

details of the two-level system. In this vein, it would be interesting to explore the

physics of the system in the atomic limit of the model where the qubit component of

the polariton dressed states are dominant. Other avenues for exploration are transport

properties of the system and the nature of quenches across the transition point where

defects associated to spins and bosons could be investigated.

Numerical tensor network methods for two-dimensional open quantum systems re-

main very much in their infancy. As such there is a lot of room for improvement. The

Full Environment Truncation framework presented in Chapter 4 can be adapted in many

ways. Thanks to its construction in terms of the bond environment, the optimisation

routine could be adapted in several ways. The bond environment construction is agnostic

to the geometry of the network; optimisation of truncation of bonds on an arbitrary net-

work geometry can be achieved in principle, so long as the bond environment can be

calculated efficiently. For example, instead of calculating the full environment which

is numerically costly algorithm, one could consider constructing the bond environment

using a local set of tensors. A Partial Environment Truncation like this would have ana-

logies to more traditional cluster based methods. Alternatively, one could specialise to

finite size systems and calculate the bond environment by exactly or approximately con-

tracting the network, some approximate contraction schemes might make this possible

for example [112]. Extending the range of more traditional cluster mean field algorithms

by representing the cluster as a finite size PEPO could be an interesting direction.

In the context of calculating the full environment there is likely much room for

optimisation of the numerical routines used, particularly in the CTMRG environment

calculation steps which could find significant, for example on a Graphical Processing
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Unit or using a fixed point method, see for example [62]. Moreover, there are a number

of ways one could conceive of calculating the environment beyond the framework of

Corner Transfer Matrices, for example using a boundary MPS based approach [90].

The topic of non-Markovian master equations was not discussed in this thesis, how-

ever, these systems can also be modelled in the framework of tensor networks, see for

example [164]. Modelling two-dimensional non-Markovian systems using tensor net-

works is likely a challenging problem, nevertheless it is possible that some progress can

be made in this direction.

Extensions to larger unit cells is another obvious research direction, all elements of

the work presented generalise to larger unit cells in a straightforward manner, albeit

with extra computational complexity. The simulation of larger unit cells could be used

to investigate any translational symmetry breaking or tunnelling induced instabilities

which may not be captured if the unit cell is too small. Furthermore one could think

about alternatives to the square lattice iPEPO, in the same way as is done in PEPS

simulations (see for example [86]), Ruby, hexagonal, and even more complicated lattices

could be treated.

The anisotropic dissipative XY model on the square lattice did not reveal an ordered

phase when quantum correlations were included. A very interesting direction would be

to study the phase diagram of the more general XYZ model or dissipative transverse

Ising model in detail using the iPEPO algorithm, these models have both shown evidence

of an ordered phase in two dimensions, see for example [88, 89, 101, 183].



References

[1] Albert, V.V. and Jiang, L. Symmetries and conserved quantities in lindblad master

equations. Phys. Rev. A, 89, 022118 (2014). doi:10.1103/PhysRevA.89.022118.

[2] Amo, A. and Bloch, J. Exciton-polaritons in lattices: A non-linear photonic simu-

lator. Comptes Rendus Physique, 17, 8, 934–945 (2016). doi:10.1016/j.crhy.2016.

08.007. Polariton physics / Physique des polaritons.

[3] Aolita, L., de Melo, F., and Davidovich, L. Open-system dynamics of entangle-

ment:a key issues review. Reports on Progress in Physics, 78, 4, 042001 (2015).

doi:10.1088/0034-4885/78/4/042001.

[4] Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas,

R., Boixo, S., Brandao, F.G.S.L., Buell, D.A., Burkett, B., Chen, Y., Chen, Z.,

Chiaro, B., Collins, R., Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., Fowler,

A., Gidney, C., Giustina, M., Graff, R., Guerin, K., Habegger, S., Harrigan, M.P.,

Hartmann, M.J., Ho, A., Hoffmann, M., Huang, T., Humble, T.S., Isakov, S.V.,

Jeffrey, E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P.V., Knysh,

S., Korotkov, A., Kostritsa, F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh,

D., MandrÃ , S., McClean, J.R., McEwen, M., Megrant, A., Mi, X., Michielsen,

K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., Niu, M.Y., Ostby,

E., Petukhov, A., Platt, J.C., Quintana, C., Rieffel, E.G., Roushan, P., Rubin,

N.C., Sank, D., Satzinger, K.J., Smelyanskiy, V., Sung, K.J., Trevithick, M.D.,



158 References

Vainsencher, A., Villalonga, B., White, T., Yao, Z.J., Yeh, P., Zalcman, A., Neven,

H., and Martinis, J.M. Quantum supremacy using a programmable superconducting

processor. Nature, 574, 7779, 505–510 (2019). doi:10.1038/s41586-019-1666-5.

[5] Barthel, T., Schollwöck, U., and White, S.R. Spectral functions in one-dimensional

quantum systems at finite temperature using the density matrix renormalization

group. Phys. Rev. B, 79, 245101 (2009). doi:10.1103/PhysRevB.79.245101.

[6] Bartolo, N., Minganti, F., Casteels, W., and Ciuti, C. Exact steady state of a kerr

resonator with one- and two-photon driving and dissipation: Controllable wigner-

function multimodality and dissipative phase transitions. Phys. Rev. A, 94, 033841

(2016). doi:10.1103/PhysRevA.94.033841.

[7] Bartolo, N., Minganti, F., Lolli, J., and Ciuti, C. Homodyne versus photon-

counting quantum trajectories for dissipative kerr resonators with two-photon driv-

ing. The European Physical Journal Special Topics, 226, 12, 2705–2713 (2017).

doi:10.1140/epjst/e2016-60385-8.

[8] Baxter, R.J. Dimers on a rectangular lattice. Journal of Mathematical Physics, 9,

4, 650–654 (1968). doi:10.1063/1.1664623.

[9] Baxter, R.J. Variational approximations for square lattice models in statistical

mechanics. Journal of Statistical Physics, 19, 5, 461–478 (1978). doi:10.1007/

BF01011693.

[10] Bell, J.S. On the einstein podolsky rosen paradox. Physics Physique Fizika, 1,

195–200 (1964). doi:10.1103/PhysicsPhysiqueFizika.1.195.

[11] Bellman, R. Dynamic programming princeton university press princeton. New

Jersey Google Scholar (1957).



References 159

[12] Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., and Wootters, W.K. Mixed-state

entanglement and quantum error correction. Phys. Rev. A, 54, 3824–3851 (1996).

doi:10.1103/PhysRevA.54.3824.

[13] Bethe, H.A. and Bragg, W.L. Statistical theory of superlattices. Proceedings of

the Royal Society of London. Series A - Mathematical and Physical Sciences, 150,

871, 552–575 (1935). doi:10.1098/rspa.1935.0122.

[14] Biella, A., Jin, J., Viyuela, O., Ciuti, C., Fazio, R., and Rossini, D. Linked cluster

expansions for open quantum systems on a lattice. Phys. Rev. B, 97, 035103 (2018).

doi:10.1103/PhysRevB.97.035103.

[15] Biondi, M., Lienhard, S., Blatter, G., Türeci, H.E., and Schmidt, S. Spatial cor-

relations in driven-dissipative photonic lattices. New Journal of Physics, 19, 12,

125016 (2017). doi:10.1088/1367-2630/aa99b2.

[16] Blais, A., Grimsmo, A.L., Girvin, S.M., and Wallraff, A. Circuit quantum elec-

trodynamics. Rev. Mod. Phys., 93, 025005 (2021). doi:10.1103/RevModPhys.93.

025005.

[17] Blatt, R. and Roos, C.F. Quantum simulations with trapped ions. Nature Physics,

8, 4, 277–284 (2012). doi:10.1038/nphys2252.

[18] Blatt, R. and Wineland, D. Entangled states of trapped atomic ions. Nature, 453,

7198, 1008–1015 (2008). doi:10.1038/nature07125.

[19] Bloch, I., Dalibard, J., and Nascimbène, S. Quantum simulations with ultracold

quantum gases. Nature Physics, 8, 4, 267–276 (2012). doi:10.1038/nphys2259.

[20] Booker, C., Buča, B., and Jaksch, D. Non-stationarity and dissipative time crys-

tals: spectral properties and finite-size effects. New Journal of Physics, 22, 8,

085007 (2020). doi:10.1088/1367-2630/ababc4.



160 References

[21] Brandão, F.G.S.L., Cubitt, T.S., Lucia, A., Michalakis, S., and Perez-Garcia, D.

Area law for fixed points of rapidly mixing dissipative quantum systems. Journal

of Mathematical Physics, 56, 10, 102202 (2015). doi:10.1063/1.4932612.

[22] Brandão, F.G.S.L. and Horodecki, M. Exponential decay of correlations implies

area law. Communications in Mathematical Physics, 333, 2, 761–798 (2015). doi:

10.1007/s00220-014-2213-8.

[23] Breuer, H.P., Petruccione, F., et al. The theory of open quantum systems. Oxford

University Press on Demand (2002).

[24] Buča, B. and Prosen, T. A note on symmetry reductions of the lindblad equation:

transport in constrained open spin chains. New Journal of Physics, 14, 7, 073007

(2012). doi:10.1088/1367-2630/14/7/073007.

[25] Buča, B., Tindall, J., and Jaksch, D. Non-stationary coherent quantum many-

body dynamics through dissipation. Nature Communications, 10, 1, 1730 (2019).

doi:10.1038/s41467-019-09757-y.

[26] Cahill, K.E. and Glauber, R.J. Density operators and quasiprobability distributions.

Phys. Rev., 177, 1882–1902 (1969). doi:10.1103/PhysRev.177.1882.

[27] Cai, Z. and Barthel, T. Algebraic versus exponential decoherence in dissi-

pative many-particle systems. Phys. Rev. Lett., 111, 150403 (2013). doi:

10.1103/PhysRevLett.111.150403.

[28] Carmichael, H.J. Statistical methods in quantum optics 2: Non-classical fields.

Springer Science & Business Media (2009).

[29] Carusotto, I. and Ciuti, C. Spontaneous microcavity-polariton coherence across

the parametric threshold: Quantum monte carlo studies. Phys. Rev. B, 72, 125335

(2005). doi:10.1103/PhysRevB.72.125335.



References 161

[30] Carusotto, I. and Ciuti, C. Quantum fluids of light. Rev. Mod. Phys., 85, 299–366

(2013). doi:10.1103/RevModPhys.85.299.

[31] Chen, C.F., Kato, K., and Brandão, F.G.S.L. Matrix product density operators:

when do they have a local parent hamiltonian? (2021).

[32] Chiorescu, I., Bertet, P., Semba, K., Nakamura, Y., Harmans, C.J.P.M., and

Mooij, J.E. Coherent dynamics of a flux qubit coupled to a harmonic oscillator.

Nature, 431, 7005, 159–162 (2004). doi:10.1038/nature02831.

[33] Cirac, J.I., Pérez-García, D., Schuch, N., and Verstraete, F. Matrix product states

and projected entangled pair states: Concepts, symmetries, theorems. Rev. Mod.

Phys., 93, 045003 (2021). doi:10.1103/RevModPhys.93.045003.

[34] Cirac, J.I. and Zoller, P. Quantum computations with cold trapped ions. Phys.

Rev. Lett., 74, 4091–4094 (1995). doi:10.1103/PhysRevLett.74.4091.

[35] Clark, S.R., Prior, J., Hartmann, M.J., Jaksch, D., and Plenio, M.B. Exact matrix

product solutions in the heisenberg picture of an open quantum spin chain. New

Journal of Physics, 12, 2, 025005 (2010). doi:10.1088/1367-2630/12/2/025005.

[36] Corboz, P., Jordan, J., and Vidal, G. Simulation of fermionic lattice models in

two dimensions with projected entangled-pair states: Next-nearest neighbor hamil-

tonians. Phys. Rev. B, 82, 245119 (2010). doi:10.1103/PhysRevB.82.245119.

[37] Cramer, M. and Eisert, J. Correlations, spectral gap and entanglement in harmonic

quantum systems on generic lattices. New Journal of Physics, 8, 5, 71–71 (2006).

doi:10.1088/1367-2630/8/5/071.

[38] Cramer, M., Eisert, J., and Plenio, M.B. Statistics dependence of the entanglement

entropy. Phys. Rev. Lett., 98, 220603 (2007). doi:10.1103/PhysRevLett.98.220603.



162 References

[39] Cubitt, T.S., Lucia, A., Michalakis, S., and Perez-Garcia, D. Stability of local

quantum dissipative systems. Communications in Mathematical Physics, 337, 3,

1275–1315 (2015). doi:10.1007/s00220-015-2355-3.

[40] Cui, J., Cirac, J.I., and Bañuls, M.C. Variational matrix product operators for the

steady state of dissipative quantum systems. Phys. Rev. Lett., 114, 220601 (2015).

doi:10.1103/PhysRevLett.114.220601.

[41] Czarnik, P. and Dziarmaga, J. Time evolution of an infinite projected entangled

pair state: an algorithm from first principles. Phys. Rev. B 98, 045110 (2018)

(2018). doi:10.1103/PhysRevB.98.045110.

[42] Czarnik, P., Dziarmaga, J., and Corboz, P. Time evolution of an infinite projected

entangled pair state: an efficient algorithm. Phys. Rev. B 99, 035115 (2019) (2018).

doi:10.1103/PhysRevB.99.035115.

[43] Dagvadorj, G., Fellows, J.M., Matyjaśkiewicz, S., Marchetti, F.M., Carusotto,

I., and Szymańska, M.H. Nonequilibrium phase transition in a two-dimensional

driven open quantum system. Phys. Rev. X, 5, 041028 (2015). doi:10.1103/

PhysRevX.5.041028.

[44] Daley, A.J. Quantum trajectories and open many-body quantum systems. Advances

in Physics, 63, 2, 77–149 (2014). doi:10.1080/00018732.2014.933502.

[45] Dalibard, J., Castin, Y., and Mølmer, K. Wave-function approach to dissipative

processes in quantum optics. Phys. Rev. Lett., 68, 580–583 (1992). doi:10.1103/

PhysRevLett.68.580.

[46] Dalla Torre, E.G., Demler, E., Giamarchi, T., and Altman, E. Dynamics and

universality in noise-driven dissipative systems. Phys. Rev. B, 85, 184302 (2012).

doi:10.1103/PhysRevB.85.184302.



References 163

[47] De las Cuevas, G., Drescher, T., and Netzer, T. Separability for mixed states

with operator Schmidt rank two. Quantum, 3, 203 (2019). doi:10.22331/

q-2019-12-02-203.

[48] de las Cuevas, G. and Netzer, T. Mixed states in one spatial dimension: Decom-

positions and correspondence with nonnegative matrices. Journal of Mathematical

Physics, 61, 4, 041901 (2020). doi:10.1063/1.5127668.

[49] Deuar, P., Ferrier, A., Matuszewski, M., Orso, G., and Szymańska, M.H. Fully

quantum scalable description of driven-dissipative lattice models. PRX Quantum,

2, 010319 (2021). doi:10.1103/PRXQuantum.2.010319.

[50] Diehl, S., Micheli, A., Kantian, A., Kraus, B., Büchler, H.P., and Zoller, P. Quan-

tum states and phases in driven open quantum systems with cold atoms. Nature

Physics, 4, 11, 878–883 (2008). doi:10.1038/nphys1073.

[51] Drummond, P.D. and Gardiner, C.W. Generalised p-representations in quantum

optics. Journal of Physics A: Mathematical and General, 13, 7, 2353–2368 (1980).

doi:10.1088/0305-4470/13/7/018.

[52] Dziarmaga, J. Time evolution of an infinite projected entangled pair state: Neigh-

borhood tensor update. Phys. Rev. B, 104, 094411 (2021). doi:10.1103/PhysRevB.

104.094411.

[53] Eisert, J. Entanglement and tensor network states. Modeling and Simulation 3,

520 (2013) (2013).

[54] Eisert, J., Cramer, M., and Plenio, M.B. Colloquium: Area laws for the entangle-

ment entropy. Rev. Mod. Phys., 82, 277–306 (2010). doi:10.1103/RevModPhys.

82.277.



164 References

[55] Else, D.V., Monroe, C., Nayak, C., and Yao, N.Y. Discrete time crys-

tals. Annu. Rev. Condens. Matter Phys., 11, 1, 467–499 (2020). doi:10.1146/

annurev-conmatphys-031119-050658.

[56] Evenbly, G. Gauge fixing, canonical forms, and optimal truncations in tensor net-

works with closed loops. Phys. Rev. B, 98, 085155 (2018). doi:10.1103/PhysRevB.

98.085155.

[57] Evenbly, G. and Vidal, G. Tensor network renormalization. Phys. Rev. Lett., 115,

180405 (2015). doi:10.1103/PhysRevLett.115.180405.

[58] Feiguin, A.E. and Fiete, G.A. Spectral properties of a spin-incoherent luttinger

liquid. Phys. Rev. B, 81, 075108 (2010). doi:10.1103/PhysRevB.81.075108.

[59] Feynman, R.P. Simulating physics with computers. International Journal of The-

oretical Physics, 21, 6, 467–488 (1982). doi:10.1007/BF02650179.

[60] Finazzi, S., Le Boité, A., Storme, F., Baksic, A., and Ciuti, C. Corner-space

renormalization method for driven-dissipative two-dimensional correlated systems.

Phys. Rev. Lett., 115, 080604 (2015). doi:10.1103/PhysRevLett.115.080604.

[61] Fisher, M.E. and Barber, M.N. Scaling theory for finite-size effects in the critical

region. Phys. Rev. Lett., 28, 1516–1519 (1972). doi:10.1103/PhysRevLett.28.1516.

[62] Fishman, M.T., Vanderstraeten, L., Zauner-Stauber, V., Haegeman, J., and Ver-

straete, F. Faster methods for contracting infinite two-dimensional tensor net-

works. Phys. Rev. B, 98, 235148 (2018). doi:10.1103/PhysRevB.98.235148.

[63] Foss-Feig, M., Niroula, P., Young, J.T., Hafezi, M., Gorshkov, A.V., Wilson, R.M.,

and Maghrebi, M.F. Emergent equilibrium in many-body optical bistability. Phys.

Rev. A, 95, 043826 (2017). doi:10.1103/PhysRevA.95.043826.



References 165

[64] Foss-Feig, M., Young, J.T., Albert, V.V., Gorshkov, A.V., and Maghrebi, M.F.

Solvable family of driven-dissipative many-body systems. Physical Review Letters,

119, 19, 190402 (2017). doi:10.1103/physrevlett.119.190402.

[65] Gangat, A.A., I, T., and Kao, Y.J. Steady states of infinite-size dissipative quantum

chains via imaginary time evolution. Phys. Rev. Lett., 119, 010501 (2017). doi:

10.1103/PhysRevLett.119.010501.

[66] Gilchrist, A., Gardiner, C.W., and Drummond, P.D. Positive p representa-

tion: Application and validity. Phys. Rev. A, 55, 3014–3032 (1997). doi:

10.1103/PhysRevA.55.3014.

[67] Gisin, N. and Percival, I.C. The quantum-state diffusion model applied to open

systems. Journal of Physics A: Mathematical and General, 25, 21, 5677–5691

(1992). doi:10.1088/0305-4470/25/21/023.

[68] Glasser, I., Sweke, R., Pancotti, N., Eisert, J., and Cirac, I. Expressive

power of tensor-network factorizations for probabilistic modeling. In H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,

Advances in Neural Information Processing Systems, volume 32. Curran Asso-

ciates, Inc. (2019).

[69] Gray, J. and Kourtis, S. Hyper-optimized tensor network contraction. Quantum,

5, 410 (2021). doi:10.22331/q-2021-03-15-410.

[70] Griffiths, D.J. and Schroeter, D.F. Introduction to Quantum Mechanics. Cam-

bridge University Press, 3 edition (2018). doi:10.1017/9781316995433.

[71] Gross, C. and Bloch, I. Quantum simulations with ultracold atoms in optical

lattices. Science, 357, 6355, 995–1001 (2017). doi:10.1126/science.aal3837.



166 References

[72] Grujic, T., Clark, S.R., Jaksch, D., and Angelakis, D.G. Non-equilibrium many-

body effects in driven nonlinear resonator arrays. New Journal of Physics, 14, 10,

103025 (2012). doi:10.1088/1367-2630/14/10/103025.

[73] Gu, Z.C., Levin, M., and Wen, X.G. Tensor-entanglement renormalization group

approach as a unified method for symmetry breaking and topological phase transi-

tions. Phys. Rev. B, 78, 205116 (2008). doi:10.1103/PhysRevB.78.205116.

[74] Haegeman, J., Cirac, J.I., Osborne, T.J., Pižorn, I., Verschelde, H., and Verstraete,

F. Time-dependent variational principle for quantum lattices. Phys. Rev. Lett.,

107, 070601 (2011). doi:10.1103/PhysRevLett.107.070601.

[75] Haegeman, J., Lubich, C., Oseledets, I., Vandereycken, B., and Verstraete, F.

Unifying time evolution and optimization with matrix product states. Phys. Rev.

B, 94, 165116 (2016). doi:10.1103/PhysRevB.94.165116.

[76] Hartmann, M.J. and Carleo, G. Neural-network approach to dissipative quan-

tum many-body dynamics. Phys. Rev. Lett., 122, 250502 (2019). doi:10.1103/

PhysRevLett.122.250502.

[77] Hartmann, M.J., Prior, J., Clark, S.R., and Plenio, M.B. Density matrix renor-

malization group in the heisenberg picture. Phys. Rev. Lett., 102, 057202 (2009).

doi:10.1103/PhysRevLett.102.057202.

[78] Hastings, M.B. Solving gapped hamiltonians locally. Phys. Rev. B, 73, 085115

(2006). doi:10.1103/PhysRevB.73.085115.

[79] Hastings, M.B. An area law for one-dimensional quantum systems. Journal of

Statistical Mechanics: Theory and Experiment, 2007, 08, P08024–P08024 (2007).

doi:10.1088/1742-5468/2007/08/p08024.



References 167

[80] Hauschild, J., Leviatan, E., Bardarson, J.H., Altman, E., Zaletel, M.P., and Poll-

mann, F. Finding purifications with minimal entanglement. Phys. Rev. B, 98,

235163 (2018). doi:10.1103/PhysRevB.98.235163.

[81] Hein, M., Eisert, J., and Briegel, H.J. Multiparty entanglement in graph states.

Phys. Rev. A, 69, 062311 (2004). doi:10.1103/PhysRevA.69.062311.

[82] Huang, C., Zhang, F., Newman, M., Ni, X., Ding, D., Cai, J., Gao, X., Wang, T.,

Wu, F., Zhang, G., Ku, H.S., Tian, Z., Wu, J., Xu, H., Yu, H., Yuan, B., Szegedy,

M., Shi, Y., Zhao, H.H., Deng, C., and Chen, J. Efficient parallelization of tensor

network contraction for simulating quantum computation. Nature Computational

Science, 1, 9, 578–587 (2021). doi:10.1038/s43588-021-00119-7.

[83] Huber, J., Kirton, P., Rotter, S., and Rabl, P. Emergence of PT-symmetry breaking

in open quantum systems. SciPost Physics, 9, 4 (2020). doi:10.21468/scipostphys.

9.4.052.

[84] Iemini, F., Russomanno, A., Keeling, J., Schiró, M., Dalmonte, M., and Fazio,

R. Boundary time crystals. Phys. Rev. Lett., 121, 035301 (2018). doi:10.1103/

PhysRevLett.121.035301.

[85] Iqbal, M. and Schuch, N. Entanglement order parameters and critical behavior

for topological phase transitions and beyond. Phys. Rev. X, 11, 041014 (2021).

doi:10.1103/PhysRevX.11.041014.

[86] Jahromi, S.S., Orús, R., Kargarian, M., and Langari, A. Infinite projected

entangled-pair state algorithm for ruby and triangle-honeycomb lattices. Phys.

Rev. B, 97, 115161 (2018). doi:10.1103/PhysRevB.97.115161.

[87] Jiang, H.C., Weng, Z.Y., and Xiang, T. Accurate determination of tensor network



168 References

state of quantum lattice models in two dimensions. Phys. Rev. Lett., 101, 090603

(2008). doi:10.1103/PhysRevLett.101.090603.

[88] Jin, J., Biella, A., Viyuela, O., Mazza, L., Keeling, J., Fazio, R., and Rossini, D.

Cluster mean-field approach to the steady-state phase diagram of dissipative spin

systems. Physical Review X, 6, 3, 031011 (2016). doi:10.1103/physrevx.6.031011.

[89] Jin, J., He, W.B., Iemini, F., Ferreira, D., Wang, Y.D., Chesi, S., and Fazio, R.

Determination of the critical exponents in dissipative phase transitions: coherent

anomaly approach (2021).

[90] Jordan, J., Orús, R., Vidal, G., Verstraete, F., and Cirac, J.I. Classical simulation

of infinite-size quantum lattice systems in two spatial dimensions. Phys. Rev. Lett.,

101, 250602 (2008). doi:10.1103/PhysRevLett.101.250602.

[91] Kardar, M. Statistical Physics of Fields. Cambridge University Press (2007).

doi:10.1017/cbo9780511815881.

[92] Kastoryano, M.J. and Eisert, J. Rapid mixing implies exponential decay of

correlations. Journal of Mathematical Physics, 54, 10, 102201 (2013). doi:

10.1063/1.4822481.

[93] Keßler, H., Kongkhambut, P., Georges, C., Mathey, L., Cosme, J.G., and Hem-

merich, A. Observation of a dissipative time crystal. Phys. Rev. Lett., 127, 043602

(2021). doi:10.1103/PhysRevLett.127.043602.

[94] Kilda, D., Biella, A., Schiró, M., Fazio, R., and Keeling, J. On the stability of the

infinite projected entangled pair operator ansatz for driven-dissipative 2d lattices.

SciPost Phys. Core, 4, 1, 005 (2021). doi:10.21468/SciPostPhysCore.4.1.005.

[95] Kliesch, M., Gogolin, C., Kastoryano, M.J., Riera, A., and Eisert, J. Locality of

temperature. Phys. Rev. X, 4, 031019 (2014). doi:10.1103/PhysRevX.4.031019.



References 169

[96] Kliesch, M., Gross, D., and Eisert, J. Matrix-product operators and states: Np-

hardness and undecidability. Phys. Rev. Lett., 113, 160503 (2014). doi:10.1103/

PhysRevLett.113.160503.

[97] Kosterlitz, J.M. and Thouless, D.J. Ordering, metastability and phase transitions

in two-dimensional systems. Journal of Physics C: Solid State Physics, 6, 7, 1181–

1203 (1973). doi:10.1088/0022-3719/6/7/010.

[98] Krämer, S., Plankensteiner, D., Ostermann, L., and Ritsch, H. Quantumoptics.jl:

A julia framework for simulating open quantum systems. Computer Physics Com-

munications, 227, 109–116 (2018). doi:10.1016/j.cpc.2018.02.004.

[99] Kraus, C.V. and Osborne, T.J. Time-dependent variational principle for dissipa-

tive dynamics. Phys. Rev. A, 86, 062115 (2012). doi:10.1103/PhysRevA.86.062115.

[100] Kshetrimayum, A., Rizzi, M., Eisert, J., and Orús, R. Tensor network annealing

algorithm for two-dimensional thermal states. Physical Review Letters, 122, 7,

070502 (2019). doi:10.1103/physrevlett.122.070502.

[101] Kshetrimayum, A., Weimer, H., and Orús, R. A simple tensor network algorithm

for two-dimensional steady states. Nature Communications, 8, 1 (2017). doi:

10.1038/s41467-017-01511-6.

[102] Kulaitis, G., Krüger, F., Nissen, F., and Keeling, J. Disordered driven coupled

cavity arrays: Nonequilibrium stochastic mean-field theory. Physical Review A,

87, 1, 013840 (2013). doi:10.1103/physreva.87.013840.

[103] Landa, H., Schiró, M., and Misguich, G. Multistability of driven-dissipative

quantum spins. Physical Review Letters, 124, 4, 043601 (2020). doi:10.1103/

physrevlett.124.043601.



170 References

[104] las Cuevas, G.D., Cubitt, T.S., Cirac, J.I., Wolf, M.M., and Pérez-García, D.

Fundamental limitations in the purifications of tensor networks. Journal of Math-

ematical Physics, 57, 7, 071902 (2016). doi:10.1063/1.4954983.

[105] las Cuevas, G.D., Schuch, N., Pérez-García, D., and Cirac, J.I. Purifications of

multipartite states: limitations and constructive methods. New Journal of Physics,

15, 12, 123021 (2013). doi:10.1088/1367-2630/15/12/123021.

[106] Lazarides, A., Roy, S., Piazza, F., and Moessner, R. Time crystallinity in dis-

sipative floquet systems. Phys. Rev. Research, 2, 022002 (2020). doi:10.1103/

PhysRevResearch.2.022002.

[107] Le Boité, A., Orso, G., and Ciuti, C. Steady-state phases and tunneling-induced

instabilities in the driven dissipative bose-hubbard model. Phys. Rev. Lett., 110,

233601 (2013). doi:10.1103/PhysRevLett.110.233601.

[108] Lee, T.E., Gopalakrishnan, S., and Lukin, M.D. Unconventional magnetism via

optical pumping of interacting spin systems. Physical Review Letters, 110, 25,

257204 (2013). doi:10.1103/physrevlett.110.257204.

[109] Legeza, O. and Sólyom, J. Quantum data compression, quantum information

generation, and the density-matrix renormalization-group method. Phys. Rev. B,

70, 205118 (2004). doi:10.1103/PhysRevB.70.205118.

[110] Levin, M. and Nave, C.P. Tensor renormalization group approach to two-

dimensional classical lattice models. Phys. Rev. Lett., 99, 120601 (2007). doi:

10.1103/PhysRevLett.99.120601.

[111] Lieb, E.H. and Robinson, D.W. The Finite Group Velocity of Quantum Spin

Systems, pp. 425–431. Springer Berlin Heidelberg, Berlin, Heidelberg (2004). ISBN

978-3-662-10018-9. doi:10.1007/978-3-662-10018-9_25.



References 171

[112] Lubasch, M., Cirac, J.I., and Bañuls, M.C. Unifying projected entangled pair

state contractions. New Journal of Physics, 16, 3, 033014 (2014). doi:10.1088/

1367-2630/16/3/033014.

[113] MacFarlane, A.G.J., Dowling, J.P., and Milburn, G.J. Quantum technology: the

second quantum revolution. Philosophical Transactions of the Royal Society of

London. Series A: Mathematical, Physical and Engineering Sciences, 361, 1809,

1655–1674 (2003). doi:10.1098/rsta.2003.1227.

[114] Maghrebi, M.F. and Gorshkov, A.V. Nonequilibrium many-body steady states via

keldysh formalism. Physical Review B, 93, 1, 014307 (2016). doi:10.1103/physrevb.

93.014307.

[115] Makhlin, Y., Schön, G., and Shnirman, A. Quantum-state engineering with

josephson-junction devices. Rev. Mod. Phys., 73, 357–400 (2001). doi:10.1103/

RevModPhys.73.357.

[116] Marino, J. and Diehl, S. Driven markovian quantum criticality. Phys. Rev. Lett.,

116, 070407 (2016). doi:10.1103/PhysRevLett.116.070407.

[117] Masanes, L. Area law for the entropy of low-energy states. Phys. Rev. A, 80,

052104 (2009). doi:10.1103/PhysRevA.80.052104.

[118] Mascarenhas, E., Flayac, H., and Savona, V. Matrix-product-operator approach

to the nonequilibrium steady state of driven-dissipative quantum arrays. Physical

Review A, 92, 2, 022116 (2015). doi:10.1103/physreva.92.022116.

[119] Mendoza-Arenas, J.J., Clark, S.R., Felicetti, S., Romero, G., Solano, E., Angelakis,

D.G., and Jaksch, D. Beyond mean-field bistability in driven-dissipative lattices:

Bunching-antibunching transition and quantum simulation. Physical Review A,

93, 2, 023821 (2016). doi:10.1103/physreva.93.023821.



172 References

[120] Mermin, N.D. and Wagner, H. Absence of ferromagnetism or antiferromagnetism

in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett., 17,

1133–1136 (1966). doi:10.1103/PhysRevLett.17.1133.

[121] Minganti, F., Biella, A., Bartolo, N., and Ciuti, C. Spectral theory of liouvillians

for dissipative phase transitions. Phys. Rev. A, 98, 042118 (2018). doi:10.1103/

PhysRevA.98.042118.

[122] Mitra, A., Takei, S., Kim, Y.B., and Millis, A.J. Nonequilibrium quantum crit-

icality in open electronic systems. Phys. Rev. Lett., 97, 236808 (2006). doi:

10.1103/PhysRevLett.97.236808.

[123] Molnar, A., Schuch, N., Verstraete, F., and Cirac, J.I. Approximating gibbs states

of local hamiltonians efficiently with projected entangled pair states. Phys. Rev. B,

91, 045138 (2015). doi:10.1103/PhysRevB.91.045138.

[124] Monroe, C., Campbell, W.C., Duan, L.M., Gong, Z.X., Gorshkov, A.V., Hess,

P.W., Islam, R., Kim, K., Linke, N.M., Pagano, G., Richerme, P., Senko, C., and

Yao, N.Y. Programmable quantum simulations of spin systems with trapped ions.

Rev. Mod. Phys., 93, 025001 (2021). doi:10.1103/RevModPhys.93.025001.

[125] Moore, G.E. Cramming more components onto integrated circuits, reprinted from

electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-State Cir-

cuits Society Newsletter, 11, 3, 33–35 (2006). doi:10.1109/N-SSC.2006.4785860.

[126] Movassagh, R. and Shor, P.W. Supercritical entanglement in local systems: Coun-

terexample to the area law for quantum matter. Proceedings of the National

Academy of Sciences, 113, 47, 13278–13282 (2016). doi:10.1073/pnas.1605716113.

[127] Myatt, C.J., King, B.E., Turchette, Q.A., Sackett, C.A., Kielpinski, D., Itano,

W.M., Monroe, C., and Wineland, D.J. Decoherence of quantum superpositions



References 173

through coupling to engineered reservoirs. Nature, 403, 6767, 269–273 (2000).

doi:10.1038/35002001.

[128] Nagy, A. and Savona, V. Variational quantum monte carlo method with a neural-

network ansatz for open quantum systems. Phys. Rev. Lett., 122, 250501 (2019).

doi:10.1103/PhysRevLett.122.250501.

[129] Nietner, A., Vanhecke, B., Verstraete, F., Eisert, J., and Vanderstraeten, L. Effi-

cient variational contraction of two-dimensional tensor networks with a non-trivial

unit cell. Quantum, 4, 328 (2020). doi:10.22331/q-2020-09-21-328.

[130] Nishino, T. and Okunishi, K. Corner transfer matrix renormalization group

method. Journal of the Physical Society of Japan, 65, 4, 891–894 (1996). doi:

10.1143/JPSJ.65.891.

[131] Nishino, T. and Okunishi, K. Corner transfer matrix algorithm for classical renor-

malization group. Journal of the Physical Society of Japan, 66, 10, 3040–3047

(1997). doi:10.1143/JPSJ.66.3040.

[132] Noh, C. and Angelakis, D.G. Quantum simulations and many-body physics with

light. Reports on Progress in Physics, 80, 1, 016401 (2016). doi:10.1088/0034-4885/

80/1/016401.

[133] Onsager, L. Crystal statistics. i. a two-dimensional model with an order-disorder

transition. Physical Review, 65, 3-4, 117–149 (1944). doi:10.1103/physrev.65.117.

[134] Orús, R. A practical introduction to tensor networks: Matrix product states and

projected entangled pair states. Annals of Physics, 349, 117–158 (2014). doi:

10.1016/j.aop.2014.06.013.

[135] Orús, R. and Vidal, G. Infinite time-evolving block decimation algorithm beyond



174 References

unitary evolution. Phys. Rev. B, 78, 155117 (2008). doi:10.1103/PhysRevB.78.

155117.

[136] Orús, R. and Vidal, G. Simulation of two-dimensional quantum systems on an

infinite lattice revisited: Corner transfer matrix for tensor contraction. Phys. Rev.

B, 80, 094403 (2009). doi:10.1103/PhysRevB.80.094403.

[137] Overbeck, V.R. and Weimer, H. Time evolution of open quantum many-body

systems. Phys. Rev. A, 93, 012106 (2016). doi:10.1103/PhysRevA.93.012106.

[138] Penrose, R. A generalized inverse for matrices. Mathematical Proceedings

of the Cambridge Philosophical Society, 51, 3, 406–413 (1955). doi:10.1017/

S0305004100030401.

[139] Percival, I. Quantum State Diffusion (2005).

[140] Pirvu, B., Murg, V., Cirac, J.I., and Verstraete, F. Matrix product oper-

ator representations. New Journal of Physics, 12, 2, 025012 (2010). doi:

10.1088/1367-2630/12/2/025012.

[141] Plenio, M.B., Eisert, J., Dreißig, J., and Cramer, M. Entropy, entanglement, and

area: Analytical results for harmonic lattice systems. Phys. Rev. Lett., 94, 060503

(2005). doi:10.1103/PhysRevLett.94.060503.

[142] Plenio, M.B., Huelga, S.F., Beige, A., and Knight, P.L. Cavity-loss-induced

generation of entangled atoms. Phys. Rev. A, 59, 2468–2475 (1999). doi:

10.1103/PhysRevA.59.2468.

[143] Plenio, M.B. and Knight, P.L. The quantum-jump approach to dissipative dy-

namics in quantum optics. Rev. Mod. Phys., 70, 101–144 (1998). doi:10.1103/

RevModPhys.70.101.



References 175

[144] Preskill, J. Quantum computing and the entanglement frontier (2012).

[145] Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum, 2, 79

(2018). doi:10.22331/q-2018-08-06-79.

[146] Ritsch, H., Domokos, P., Brennecke, F., and Esslinger, T. Cold atoms in cavity-

generated dynamical optical potentials. Rev. Mod. Phys., 85, 553–601 (2013).

doi:10.1103/RevModPhys.85.553.

[147] Rota, R., Minganti, F., Ciuti, C., and Savona, V. Quantum critical regime in

a quadratically driven nonlinear photonic lattice. Phys. Rev. Lett., 122, 110405

(2019). doi:10.1103/PhysRevLett.122.110405.

[148] Rota, R., Storme, F., Bartolo, N., Fazio, R., and Ciuti, C. Critical behavior of

dissipative two-dimensional spin lattices. Phys. Rev. B, 95, 134431 (2017). doi:

10.1103/PhysRevB.95.134431.

[149] Sacha, K. and Zakrzewski, J. Time crystals: a review. Reports on Progress in

Physics, 81, 1, 016401 (2017). doi:10.1088/1361-6633/aa8b38.

[150] Sakurai, J. and Napolitano, J. Modern Quantum Mechanics. Cambridge University

Press (2020). ISBN 9781108473224.

[151] Savona, V. Spontaneous symmetry breaking in a quadratically driven nonlinear

photonic lattice. Phys. Rev. A, 96, 033826 (2017). doi:10.1103/PhysRevA.96.

033826.

[152] Schachenmayer, J., Pikovski, A., and Rey, A.M. Many-body quantum spin dy-

namics with monte carlo trajectories on a discrete phase space. Phys. Rev. X, 5,

011022 (2015). doi:10.1103/PhysRevX.5.011022.



176 References

[153] Schäfer, F., Fukuhara, T., Sugawa, S., Takasu, Y., and Takahashi, Y. Tools

for quantum simulation with ultracold atoms in optical lattices. Nature Reviews

Physics, 2, 8, 411–425 (2020). doi:10.1038/s42254-020-0195-3.

[154] Schlosshauer, M. Decoherence, the measurement problem, and interpretations

of quantum mechanics. Rev. Mod. Phys., 76, 1267–1305 (2005). doi:10.1103/

RevModPhys.76.1267.

[155] Schmidt, S., Blatter, G., and Keeling, J. From the jaynes-cummings-hubbard to

the dicke model. J. Phys. B: At. Mol. Opt. Phys. 46 224020 (2013) (2013). doi:

10.1088/0953-4075/46/22/224020.

[156] Schollwöck, U. The density-matrix renormalization group in the age of matrix

product states. Annals of Physics, 326, 1, 96–192 (2011). doi:https://doi.org/10.

1016/j.aop.2010.09.012. January 2011 Special Issue.

[157] Schuch, N., Wolf, M.M., Verstraete, F., and Cirac, J.I. Computational complexity

of projected entangled pair states. Phys. Rev. Lett., 98, 140506 (2007). doi:10.

1103/PhysRevLett.98.140506.

[158] Shi, Y.Y., Duan, L.M., and Vidal, G. Classical simulation of quantum many-

body systems with a tree tensor network. Phys. Rev. A, 74, 022320 (2006). doi:

10.1103/PhysRevA.74.022320.

[159] Shore, B.W. and Knight, P.L. The jaynes-cummings model. Journal of Modern

Optics, 40, 7, 1195–1238 (1993). doi:10.1080/09500349314551321.

[160] Siddiqi, I. Engineering high-coherence superconducting qubits. Nature Reviews

Materials, 6, 10, 875–891 (2021). doi:10.1038/s41578-021-00370-4.



References 177

[161] Sieberer, L.M., Huber, S.D., Altman, E., and Diehl, S. Dynamical critical phe-

nomena in driven-dissipative systems. Phys. Rev. Lett., 110, 195301 (2013). doi:

10.1103/PhysRevLett.110.195301.

[162] Srednicki, M. Entropy and area. Phys. Rev. Lett., 71, 666–669 (1993). doi:

10.1103/PhysRevLett.71.666.

[163] Steane, A. The ion trap quantum information processor. Applied Physics B, 64,

6, 623–643 (1997). doi:10.1007/s003400050225.

[164] Strathearn, A., Kirton, P., Kilda, D., Keeling, J., and Lovett, B.W. Efficient

non-markovian quantum dynamics using time-evolving matrix product operators.

Nature Communications, 9, 1, 3322 (2018). doi:10.1038/s41467-018-05617-3.

[165] Terhal, B.M., Horodecki, M., Leung, D.W., and DiVincenzo, D.P. The entangle-

ment of purification. Journal of Mathematical Physics, 43, 9, 4286–4298 (2002).

doi:10.1063/1.1498001.

[166] Toner, J. and Tu, Y. Flocks, herds, and schools: A quantitative theory of flocking.

Phys. Rev. E, 58, 4828–4858 (1998). doi:10.1103/PhysRevE.58.4828.

[167] Tucker, K., Zhu, B., Lewis-Swan, R.J., Marino, J., Jimenez, F., Restrepo, J.G.,

and Rey, A.M. Shattered time: can a dissipative time crystal survive many-

body correlations? New Journal of Physics, 20, 12, 123003 (2018). doi:

10.1088/1367-2630/aaf18b.

[168] Vanderstraeten, L., Haegeman, J., and Verstraete, F. Tangent-space methods for

uniform matrix product states. SciPost Phys. Lect. Notes, p. 7 (2019). doi:10.

21468/SciPostPhysLectNotes.7.

[169] Vanderstraeten, L., Vanhecke, B., Läuchli, A.M., and Verstraete, F. Approaching



178 References

the kosterlitz-thouless transition for the classical xy model with tensor networks.

Phys. Rev. E, 100, 062136 (2019). doi:10.1103/PhysRevE.100.062136.

[170] Verstraelen, W., Rota, R., Savona, V., and Wouters, M. Gaussian trajectory

approach to dissipative phase transitions: The case of quadratically driven photonic

lattices. Phys. Rev. Research, 2, 022037 (2020). doi:10.1103/PhysRevResearch.2.

022037.

[171] Verstraete, F., García-Ripoll, J.J., and Cirac, J.I. Matrix product density operators:

Simulation of finite-temperature and dissipative systems. Phys. Rev. Lett., 93,

207204 (2004). doi:10.1103/PhysRevLett.93.207204.

[172] Verstraete, F., Wolf, M.M., and Ignacio Cirac, J. Quantum computation and

quantum-state engineering driven by dissipation. Nature Physics, 5, 9, 633–636

(2009). doi:10.1038/nphys1342.

[173] Verstraete, F., Wolf, M.M., Perez-Garcia, D., and Cirac, J.I. Criticality, the area

law, and the computational power of projected entangled pair states. Phys. Rev.

Lett., 96, 220601 (2006). doi:10.1103/PhysRevLett.96.220601.

[174] Vicentini, F., Biella, A., Regnault, N., and Ciuti, C. Variational neural-network

ansatz for steady states in open quantum systems. Phys. Rev. Lett., 122, 250503

(2019). doi:10.1103/PhysRevLett.122.250503.

[175] Vidal, G. Efficient classical simulation of slightly entangled quantum computations.

Phys. Rev. Lett., 91, 147902 (2003). doi:10.1103/PhysRevLett.91.147902.

[176] Vidal, G. Efficient simulation of one-dimensional quantum many-body systems.

Phys. Rev. Lett., 93, 040502 (2004). doi:10.1103/PhysRevLett.93.040502.

[177] Vidal, G., Latorre, J.I., Rico, E., and Kitaev, A. Entanglement in quantum critical



References 179

phenomena. Phys. Rev. Lett., 90, 227902 (2003). doi:10.1103/PhysRevLett.90.

227902.

[178] Vidal, G. and Werner, R.F. Computable measure of entanglement. Physical Review

A, 65, 3, 032314 (2002). doi:10.1103/physreva.65.032314.

[179] Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar,

S., Girvin, S.M., and Schoelkopf, R.J. Strong coupling of a single photon to a

superconducting qubit using circuit quantum electrodynamics. Nature, 431, 7005,

162–167 (2004). doi:10.1038/nature02851.

[180] Wang, X., Yu, C.S., and Yi, X. An alternative quantum fidelity for mixed states

of qudits. Physics Letters A, 373, 1, 58–60 (2008). doi:10.1016/j.physleta.2008.10.

083.

[181] Watanabe, H. and Oshikawa, M. Absence of quantum time crystals. Phys. Rev.

Lett., 114, 251603 (2015). doi:10.1103/PhysRevLett.114.251603.

[182] Weimer, H. Variational analysis of driven-dissipative rydberg gases. Phys. Rev. A,

91, 063401 (2015). doi:10.1103/PhysRevA.91.063401.

[183] Weimer, H. Variational principle for steady states of dissipative quantum many-

body systems. Phys. Rev. Lett., 114, 040402 (2015). doi:10.1103/PhysRevLett.

114.040402.

[184] Weimer, H., Kshetrimayum, A., and Orús, R. Simulation methods for open quan-

tum many-body systems. Rev. Mod. Phys., 93, 015008 (2021). doi:10.1103/

RevModPhys.93.015008.

[185] Weimer, H., Müller, M., Lesanovsky, I., Zoller, P., and Büchler, H.P. A rydberg

quantum simulator. Nature Physics, 6, 5, 382–388 (2010). doi:10.1038/nphys1614.



180 References

[186] Werner, A.H., Jaschke, D., Silvi, P., Kliesch, M., Calarco, T., Eisert, J., and Mon-

tangero, S. Positive tensor network approach for simulating open quantum many-

body systems. Phys. Rev. Lett., 116, 237201 (2016). doi:10.1103/PhysRevLett.

116.237201.

[187] White, C.D., Zaletel, M., Mong, R.S.K., and Refael, G. Quantum dynamics of

thermalizing systems. Phys. Rev. B, 97, 035127 (2018). doi:10.1103/PhysRevB.

97.035127.

[188] Wigner, E.P. On the Quantum Correction for Thermodynamic Equilibrium, pp.

110–120. Springer Berlin Heidelberg, Berlin, Heidelberg (1997). ISBN 978-3-642-

59033-7. doi:10.1007/978-3-642-59033-7_9.

[189] Wilen, C.D., Abdullah, S., Kurinsky, N.A., Stanford, C., Cardani, L., D‘Imperio,

G., Tomei, C., Faoro, L., Ioffe, L.B., Liu, C.H., Opremcak, A., Christensen,

B.G., DuBois, J.L., and McDermott, R. Correlated charge noise and relax-

ation errors in superconducting qubits. Nature, 594, 7863, 369–373 (2021). doi:

10.1038/s41586-021-03557-5.

[190] Wolf, M.M., Verstraete, F., Hastings, M.B., and Cirac, J.I. Area laws in quantum

systems: Mutual information and correlations. Phys. Rev. Lett., 100, 070502

(2008). doi:10.1103/PhysRevLett.100.070502.

[191] Xiang, T., Lou, J., and Su, Z. Two-dimensional algorithm of the density-matrix

renormalization group. Phys. Rev. B, 64, 104414 (2001). doi:10.1103/PhysRevB.

64.104414.

[192] Yoshioka, N. and Hamazaki, R. Constructing neural stationary states for open

quantum many-body systems. Phys. Rev. B, 99, 214306 (2019). doi:10.1103/

PhysRevB.99.214306.



References 181

[193] You, J.Q. and Nori, F. Atomic physics and quantum optics using superconducting

circuits. Nature, 474, 7353, 589–597 (2011). doi:10.1038/nature10122.

[194] Yu, J.F., Xie, Z.Y., Meurice, Y., Liu, Y., Denbleyker, A., Zou, H., Qin, M.P., Chen,

J., and Xiang, T. Tensor renormalization group study of classical xy model on the

square lattice. Phys. Rev. E, 89, 013308 (2014). doi:10.1103/PhysRevE.89.013308.

[195] Zauner-Stauber, V., Vanderstraeten, L., Fishman, M.T., Verstraete, F., and

Haegeman, J. Variational optimization algorithms for uniform matrix product

states. Phys. Rev. B, 97, 045145 (2018). doi:10.1103/PhysRevB.97.045145.

[196] Zhu, B., Marino, J., Yao, N.Y., Lukin, M.D., and Demler, E.A. Dicke time crystals

in driven-dissipative quantum many-body systems. New Journal of Physics, 21, 7,

073028 (2019). doi:10.1088/1367-2630/ab2afe.

[197] Zwolak, M. and Vidal, G. Mixed-state dynamics in one-dimensional quantum

lattice systems: A time-dependent superoperator renormalization algorithm. Phys.

Rev. Lett., 93, 207205 (2004). doi:10.1103/PhysRevLett.93.207205.





Appendix A

PT −Symmetry of the Anisotropic

Dissipative XY- Model

In this section we follow [83] to show the PT -symmetry of the anisotropic dissipative

XY-model considered in chapter 5. To begin, it is useful to express the Hamiltonian

of the anisotropic XY model in terms of the spin raising and lowering operators and

labelling the two subspaces A and B explicitly. Doing this results in the a Liouvillian

L[HXY ;
√

Γσ−
A ,

√
Γσ−

B ] where the Hamiltonian is HXY = J
z

∑
⟨A,B⟩ σ

+
A ⊗ σ+

B + σ−
A ⊗ σ−

B

and dissipators are the local Lindblad jump operators on each subspace LA =
√

Γσ−
A

and LB =
√

Γσ−
B . By choosing the unitary U = ei

π
2 (σx

A+σx
B), the transformation PT(O) =

PUO†(PU)−1 leaves the components of L[H;
√

Γσ−
A ,

√
Γσ−

B ] invariant, in particular it

satisfies the equation

L[PT(HXY );PT(
√

Γσ−
A),PT(

√
Γσ−

B)] = L[H;
√

Γσ−
A ,

√
Γσ−

B ]. (A.1)

To verify this, the symmetry is applied to each term individually as follows. Recall that

the parity operator has the effect of swapping the subspaces such that PA ⊗ BP−1 =

B ⊗ A and the unitary U acts on each subspace independently and corresponds to a π
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rotation about the x-axis.

PT(HXY ) =J
z

∑
⟨A,B⟩

PU [σ+
A ⊗ σ+

B + σ−
A ⊗ σ−

B ]†(PU)−1

=J
z

∑
⟨A,B⟩

PU [σ−
A ⊗ σ−

B + σ+
A ⊗ σ+

B ](PU)−1

=J
z

∑
⟨A,B⟩

P [σ+
A ⊗ σ+

B + σ−
A ⊗ σ−

B ](P)−1

=J
z

∑
⟨B,A⟩

[σ+
B ⊗ σ+

A + σ−
B ⊗ σ−

A ]

=HXY

(A.2)

PT(
√

Γσ−
A) =

√
ΓPU [σ− ⊗ I]†(PU)−1

=
√

ΓPU [σ+ ⊗ I](PU)−1

=
√

ΓPσ− ⊗ IP−1

=
√

ΓI ⊗ σ−

=
√

Γσ−
B

(A.3)

PT(
√

Γσ−
B) =

√
ΓPU [I ⊗ σ−]†(PU)−1

=
√

ΓPU [I ⊗ σ+](PU)−1

=
√

ΓPI ⊗ σ−P−1

=
√

Γσ− ⊗ I

=
√

Γσ−
A

(A.4)

We are therefore left with the Liouvillian L[HXY ;
√

Γσ−
B ,

√
Γσ−

A ], we can then use its

symmetry under swapping subsystems A ↔ B to arrive at the original Liouvillian

L[HXY ;
√

Γσ−
A ,

√
Γσ−

B ]. For this model, the occupations on each sublattice remain the

same for any values of the dissipation and the model is PT -symmetric.

This results associated to the model’s classification as PT -symmetric hold so long
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as any additional symmetry S of the Hamiltonian commutes with P . Of course the

symmetry defined by the unitary U z
ϕ = eiϕ

∑
(σz

A−σz
B) clearly does not commute with P ,

however this does not play a role in this case since ⟨σzA⟩ = ⟨σzB⟩ throughout.
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